铝合金化学镀镍磷合金和性能

铝合金化学镀镍磷合金和性能
铝合金化学镀镍磷合金和性能

化学镀镍磷合金英文文献

An investigation on effects of heat treatment on corrosion properties of Ni–P electroless nano-coatings Taher Rabizadeh,Saeed Reza Allahkaram *,Arman Zarebidaki School of Metallurgy and Materials Engineering,University College of Engineering,University of Tehran,P.O.Box 11155-4563,Tehran,Iran a r t i c l e i n f o Article history: Received 19January 2010Accepted 15February 2010 Available online 17February 2010Keywords:C.Coating C.Heat treatment E.Corrosion a b s t r a c t Electroless Ni–P coatings are recognized for their excellent properties.In the present investigation elec-troless Ni–P nano-crystalline coatings were prepared.X-ray diffraction technique (XRD),scanning elec-tron microscopy (SEM),potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)were utilized to study prior and post-deposition vacuum heat treatment effects on corrosion resis-tance together with the physical properties of the applied coatings. X-ray diffraction (XRD)results indicated that the As-plated had nano-crystalline structure.Heat treat-ment of the coatings produced a mixture of polycrystalline phases.The highest micro-hardness was achieved for the samples annealed at 600°C for 15min due to the formation of an inter-diffusional layer at the substrate/coating interface. Lower corrosion current density values were obtained for the coatings heat treated at 400°C for 1h.EIS results showed that proper heat treatments also enhanced the corrosion resistance,which was attributed to the coatings’structure improvement. ó2010Elsevier Ltd.All rights reserved. 1.Introduction Since the invention of electroless plating technology in 1946by A.Brenner and G.Riddell,electroless nickel (EN)coatings have been actively and widely studied [1,2]. Nano-crystalline Ni–P alloys show a high degree of hardness,wear resistance,low friction coef?cient,non-magnetic behavior and high electro-catalytic activity.Today such Ni–P alloys are widely used in the electronic industry as under-layer in thin ?lm memory disks and in a broad range of other evolving technological applications.It is generally accepted that only nano-crystalline al-loys –irrespective of the way of production –show high corrosion resistance.Indeed,electrodeposited Ni–P alloys with crystalline structure (6–11at.%P)showed anodic dissolution in 0.1M NaCl.On nano-crystalline samples (17–28at.%P)a current arrest was found instead [3–5]. To explain high corrosion resistance of Ni–P electroless coatings different models have been proposed,but the issue is still under discussion:a protective nickel phosphate ?lm,the barrier action of hypophosphites (called ‘‘chemical passivity”),the presence of phosphides,a stable P-rich amorphous phase or the phosphorus enrichment of the interface alloy-solution were proposed.Note that such phosphorus enrichment at the interface was reported by some of the authors to explain the outstanding corrosion resis-tance of Fe70Cr10P13C7amorphous alloys [5]. Electroless Ni–P alloys are thermodynamically unstable and eventually form stable structures of face-centered cubic (fcc)Ni crystal and body-centered tetragonal (bct)nickel phosphide (Ni 3P)compounds.Different results have been reported regarding the microstructures in the As-deposited condition and the stable phases after heat treatments.For low P and medium P alloys,nickel crystal precipitated ?rstly and Ni 3P followed;however,Ni 3P and (or)Ni x P y compounds such as Ni 2P,Ni 5P 2,Ni 12P 5,and Ni 7P 3occur ?rstly in high P alloys [6–8]. In general,the hardness of the electroless Ni–P coatings can be improved by appropriate heat treatment,which can be attributed to ?ne Ni crystallites and hard inter-metallic Ni 3P particles precip-itated during crystallization of the amorphous phase [8–10]. The main reasons for heat treatment are:(1)to eliminate any hydrogen embrittlement in the basic metal,(2)to increase deposit hardness or abrasion resistance,(3)to increase deposit adhesion in the case of certain substrate and (4)to increase temporary corro-sion resistance or tarnish resistance [11]. The crystallization and phase transformation behavior of elec-troless-plated Ni–P deposits during thermal processing has also been the subject of various investigations;it has been shown that different alloy compositions and heat treatment conditions could affect both the corrosion resistance and crystallization behavior of the deposit [8]. 0261-3069/$-see front matter ó2010Elsevier Ltd.All rights reserved.doi:10.1016/j.matdes.2010.02.027 *Corresponding author.Tel./fax:+982161114108.E-mail address:akaram@ut.ac.ir (S.R.Allahkaram). Materials and Design 31(2010) 3174–3179 Contents lists available at ScienceDirect Materials and Design j o u r n a l h o m e p a g e :w w w.e l s e vier.c om/loc ate/mat des

钢铁的化学镀镍磷

钢铁的化学镀镍磷 金属1002 陈浩 3100702039 摘要:本文简要介绍了钢铁化学镀镍磷的原理与工艺流程,简述了镀层的性能及技术指标,随之分析了影响镀层性能的主要因素,并据此给出了工艺中的除锈配方和镀液配方,最后对试验参数进行了测定与比较,得出了一定的结论。 关键词:化学镀镀镍磷表面强化耐磨耐腐蚀性 一.前言 化学镀镍磷工艺是近年来迅速发展起来的一种新型表面保护和表面强化技术手段,具有广泛的应用前景。目前化学镀镍磷合金已广泛地应用在石油化工、石油炼制、电子能源、汽车、化工等行业。石油炼制和石油化工是其最大的市场,并且随着人们对这一化学镀特性的认识,它的应用也越来越广泛,主要用在石油炼制、石油化工的冷换设备上,化学镀镍磷能够显著提高设备的耐磨、耐蚀性能,延长其寿命,性能优于目前使用的有机涂料,而且适用于碳钢、铸铁、有色金属等不同基材。 二.实验原理 化学镀镍磷合金是一种在不加电流的情况下,利用还原剂在活化零件表面上自催化还原沉积得到镍磷镀层的方法。其主要反应为应用次亚磷酸钠还原镍离子为金属镍,即在水溶液中镍离子和次亚磷酸根离子碰撞时,由于镍触媒作用析出原子态氢,而原子态氢又被催化金属吸附并使之活化,把水溶液中的镍离子还原为金属镍形成镀层,另外次亚磷酸根离子由于在催化表面析出原子态氢的作用,被还原成活性磷,与镍结合形成Ni-P合金镀层。 以次磷酸钠为还原剂的化学镀镍磷工艺,其反应机理,现普遍被接受的是“原子氢态理论”和“氢化物理论”。下面介绍“原子氢态理论”,其过程可分为以下四步: 1、化学沉积镍磷合金镀液加热时不起反应,而是通过金属的催化作用,次亚磷酸根在水溶液中脱氢而形成亚磷酸根,同时放出初生态原子氢。 H 2PO 2 -+H 2 O→HPO 3 -+2H+H-

镁合金表面化学镀镍

镁合金表面化学镀镍处理 摘要:本实验研究以硫酸镍为主盐的AZ91镁合金化学镀镍。选择适合的工艺流程、对实验材料进行化学镀镍处理、对化学镀镍层进行宏观或微观形貌观察、测量镀镍层的硬度、检验化学镀镍层的耐蚀性。实验表明,用该工艺能够在AZ91合金表面上生成化学镀镍层,镀层表面为胞状结构而且胞表面的晶界和缺陷较多,化学镀镍层较好地提高了镁合金的耐腐蚀性能,硬度有所提高。 关键词:AZ91D镁合金化学镀镍腐蚀性硬度 The chemical nickel plated of the surface of Magnesium alloy Abstract: The experimental study the nickel plating of Magnesium alloys of AZ91 that the sulfuric acid salt of nickel is the mainly electroless. Select the appropriate process, chemical nickel plating for experimental material, macro-or micro-morphology of electroless nickel deposits, measuring the hardness of nickel-plated, testing chemical corrosion resistance of nickel plating. Experiments show, we can generated plating layer on the surface of the AZ91 alloy with this technology, and the surface of the plating is the cell structure and there are more grain boundaries and defects on the cell surface ,the sulfuric processed chemical nickel plating layer is good to improve the magnesium alloy corrosion resistance, and the hardness is improved. Keywords: AZ91D magnesium alloy electroless nickel plating corrosive hardness t

化学镀镍配方_铝合金化学镀镍工艺研究论文

化学镀镍配方_铝合金化学镀镍工艺研究论文 摘要:研究了铝合金表面化学镀Ni-P合金的预处理、镀液配方及镀后热处理。采用碱性化学镀镍作底层,然后进行酸性化学镀镍, 能在铝合金表面获得光亮、平整、附着力良好化学镀镍Ni-P层。镀层硬度为686HV,含磷量为11.17%。 关键词:铝合金;预处理;化学镀镍;附着力 1 引言 化学镀Ni-P具有厚度均匀、硬度高、抗蚀性优异等特点,因此镀层广泛被应用于需耐磨的工件。但是,铝合金表面即使在空气中停留时间极短也会迅速地形成一层氧化膜,以致影响镀层质量,降低镀层与基体的结合力。 本项研究得出了比较好的预处理方案,从而得到结合力良好,表面比较光亮的Ni-P 镀层。 2 实验方法 2.1 实验工艺流程 试样制备→配制除油溶液→化学除油→水洗→侵蚀→水洗→超声波水洗→去离子水洗→一次锓锌→水洗→退锌→水洗→超声波水洗→去离子水洗→二次锓锌→水洗→去离子水洗→碱性镀→水洗→酸性镀→去离子水洗→吹干→冷却 2.2 除油配方及工艺 除油:Na3PO412H2O 30 g/LNaCO3 30 g/L温度(65℃)时间(3min) 2.3 浸锌配方及工艺 ZnSO440g/l NaOH90g/l NaF1g/l Fecl31g/l KNaC4O4H40610g/L 温度(42℃)一次浸锌时间(90S)二次浸锌时间(18S) 2.4 镀液配方与工艺 碱性预镀液NiSO46H2O(30g/l)NaH2PO2H2O(25g/l)NH4C6H5O7 H2O(100g/l)温度(65℃) PH值(8.2)施镀时间(8min) 酸性镀液NiSO46H2O(30g/l) NaH2PO2H2O(25g/l) NH4C6H5O7 H2O(10g/l) 乳酸C3H6O3(40ml/l) NaC2H302(10g/ L)温度(85℃) PH值(4.8)施镀时间(120min) 3 实验结果与分析

铝合金化学镀镍的研究 开题报告

题目:铝合金化学镀镍的研究

1.毕业设计(论文)综述(题目背景、研究意义及国内外相关研究情况) 化学镀镍是一种比较新的工艺技术[1]。1844年,A.Wurtz发现金属镍可以从金属镍盐的水溶液中被次亚磷酸盐还原而沉积出来。化学镀镍技术的真正发现并应用是在1944年[2],美国国家标准局的A.Brenner和G.Riddell进行了第一次实验室试验[3]。到20世纪70年代,科学技术的发展和工业的进步,促进了化学镀镍的应用与研究。20世纪80年代中期化学镀镍的年产量为1500t按厚度为25um计,面积达到7.50km2.其中美国占40%,远东地区20%,其余为南非和南美洲。美国有900个化学镀镍的工厂,产值约2亿美元。 化学镀镍是通过向溶液中加入适当的还原剂,使镍离子还原成金属镍,并在镀件表面沉积的过程。和电镀镍相比,化学镀镍具有许多优点,主要表现为:1镀层均匀,和同等厚度的电镀镍层比较,化学镀镍层的微孔隙小于电镀镍层,因而其镀层的防腐蚀性能优于电镀镍层;2由于化学镀镍层的致密结构,具有很高的硬度,因而具有优良的耐磨性;3均镀能力好,操作简便,易于掌握,配槽与调整十分简便;4镀液已形成系列化商品;5通过施镀,使某些金属和非金属具有钎焊和锡焊能力;6 生产效率高[4-8]。由于这些优点,化学镀镍已在机械、电子及微电子、航空航天、石油化工、汽车、纺织、食品、军事等工业部门获得广泛应用。 化学镀镍磷合金具有结晶细致、光亮、抗蚀性和耐磨性好等特点,对形状复杂和尺寸精度高的零部件,更具有其独特的优越性[9]。采用化学镀镍再进行必要的热处理,将会大大提高制件的使用寿命。 近10年来,在各种期刊上发表了许多有关镀镍的论文、综述、书评和会议纪要。英国化学镀镍协会和金属精饰学会、美国产品精饰杂志都对化学镀镍进行了研究报告。同样化学镀镍在国内也引起了充分的重视。我国的化学镀镍工业化生产起步较晚,但近几年的发展十分迅速。据推测国内目前每年的化学镀镍以每年10%~15%的速度发展。近来的化学镀镍主要向着以下方向发展:化学镀镍、低温化学镀镍、用自来水代替蒸馏水、局部化学镀、复合镀层及多元镀层[10]。 2.本课题研究的主要内容和拟采用的研究方案、研究方法或措施 在基体表面镀镍能使其表面获得非结晶态的镀层,使基体表面光亮,起到防腐、耐磨功能。 研究出一种多功能的化学镀镍液,可用于多种基体材料,并尽可能模拟工厂生产

钢的化学镀镍磷

钢的化学镀镍磷 DC 金属3090****** 材料科学与工程学院 摘要:本文简要介绍了钢铁化学镀镍磷的原理与工艺流程,简述了镀层的性能及技术指标,随之分析了影响镀层性能的主要因素,并据此给出了工艺中的除锈配方和镀液配方,最后对试验参数进行了测定与比较,得出了一定的结论,由此论证了化学镀镍磷的重要作用和这一工艺对钢铁性能改进的重要影响。 关键词:原子氢态理论镀层工艺热处理参数测定 前言:化学镀镍磷工艺是近年来迅速发展起来的一种新型表面保护和表面强化技术手段,具有广泛的应用前景。目前化学镀镍磷合金已广泛地应用在石油化工、石油炼制、电子能源、汽车、化工等行业。石油炼制和石油化工是其最大的市场,并且随着人们对这一化学镀特性的认识,它的应用也越来越广泛,主要用在石油炼制、石油化工的冷换设备上,化学镀镍磷能够显著提高设备的耐磨、耐蚀性能,延长其寿命,性能优于目前使用的有机涂料,而且适用于碳钢、铸铁、有色金属等不同基材[1]。 一、实验原理 化学镀镍磷合金是一种在不加电流的情况下,利用还原剂在活化零件表面上自催化还原沉积得到镍磷镀层的方法。其主要反应为应用次亚磷酸钠还原镍离子为金属镍,即在水溶液中镍离子和次亚磷酸根离子碰撞时,由于镍触媒作用析出原子态氢,而原子态氢又被催化金属吸附并使之活化,把水溶液中的镍离子还原为金属镍形成镀层,另外次亚磷酸根离子由于在催化表面析出原子态氢的作用,被还原成活性磷,与镍结合形成Ni-P合金镀层。 以次磷酸钠为还原剂的化学镀镍磷工艺,其反应机理,现普遍被接受的是“原子氢态理论”和“氢化物理论”。下面介绍“原子氢态理论”,其过程可分为以下四步: 1、化学沉积镍磷合金镀液加热时不起反应,而是通过金属的催化作用,次亚磷酸根在水溶液中脱氢而形成亚磷酸根,同时放出初生态原子氢。 H2PO2-+H2O→HPO3-+2H+H-

镁合金防腐蚀方案汇总

镁合金防腐蚀方案汇总 化学转化处理 镁合金的化学转化膜按溶液可分为:铬酸盐系、有机酸系、磷酸盐系、KMnO4系、稀土元素系和锡酸盐系等。 传统的铬酸盐膜以Cr为骨架的结构很致密,含结构水的Cr则具有很好的自修复功能,耐蚀性很强。但Cr具有较大的毒性,废水处理成本较高,开发无铬转化处理势在必行。镁合金在KMnO4溶液中处理可得到无定型组织的化学转化膜,耐蚀性与铬酸盐膜相当。碱性锡酸盐的化学转化处理可作为镁合金化学镀镍的前处理,取代传统的含Cr、F或CN等有害离子的工艺。化学转化膜多孔的结构在镀前的活化中表现出很好的吸附性,并能改镀镍层的结合力与耐蚀性。 有机酸系处理所获得的转化膜能同时具备腐蚀保护和光学、电子学等综合性能,在化学转化处理的新发展中占有很重要的地位。 化学转化膜较薄、软,防护能力弱,一般只用作装饰或防护层中间层。 阳极氧化 阳极氧化可得到比化学转化更好的耐磨损、耐腐蚀的涂料基底涂层,并兼有良好的结合力、电绝缘性和耐热冲击等性能,是镁合金常用的表面处理技术之一。 传统镁合金阳极氧化的电解液一般都含铬、氟、磷等元素,不仅污染环境,也损害人类健康。近年来研究开发的环保型工艺所获得的氧化膜耐腐蚀等性能较经典工艺Dow17和HAE有大程度的提高。优良

的耐蚀性来源于阳极氧化后Al、Si等元素在其表面均匀分布,使形成的氧化膜有很好的致密性和完整性。 一般认为氧化膜中存在的孔隙是影响镁合金耐蚀性能的主要因素。研究发现通过向阳极氧化溶液中加入适量的硅-铝溶胶成分,一定程度上能改善氧化膜层厚度、致密度,降低孔隙率。而且溶胶成分会使成膜速度出现阶段性快速和缓慢增长,但基本上不影响膜层的X 射线衍射相结构。 但阳极氧化膜的脆性较大、多孔,在复杂工件上难以得到均匀的氧化膜层。 金属涂层 镁及镁合金是最难镀的金属,其原因如下: (1)镁合金表面极易形成的氧化镁,不易清除干净,严重影响镀层结合力; (2)镁的电化学活性太高,所有酸性镀液都会造成镁基体的迅速腐蚀,或与其它金属离子的置换反应十分强烈,置换后的镀层结合十分松散; (3)第二相(如稀土相、γ相等)具有不同的电化学特性,可能导致沉积不均匀; (4)镀层标准电位远高于镁合金基体,任何一处通孔都会增大腐蚀电流,引起严重的电化学腐蚀,而镁的电极电位很负,施镀时造成针孔的析氢很难避免; (5)镁合金铸件的致密性都不是很高,表面存在杂质,可能成为

铝合金化学镀镍

铝合金化学镀镍 前言:所谓化学镀就是指不使用外电源,而是依靠金属的催化作用,通过可控制的氧化—还原反应,使镀液中的金属离子沉积到镀件上去的方法,因而化学镀也被称为自催化镀或无电镀。化学镀液组成一般包括金属盐、还原剂、络合剂、pH缓冲剂、稳定剂、润湿剂和光亮剂等。当镀件进入化学镀溶液时,镀件表面被镀层金属覆盖以后,镀层本身对上述氧化和还原反应的催化作用保证了金属离子的还原沉积得以在镀件上继续进行下去。目前已能用化学镀方法得到镍、铜、钴、钯、铂、金、银、锡等金属或合金的镀层。化学镀既可以作为单独的加工工艺,用来改善材料的表面性能,也可以用来获得非金属材料电镀前的导电层。化学镀在电子、石油化工、航空航天、汽车制造、机械等领域有着广泛的应用。化学镀具有以下优点:表面硬度高,耐磨性能好;硬化层的厚度及其均匀,处理部件不受形状限制,不变形,特别是适用于形状复杂,深盲孔及精度要求高的细小及大型部件的表面强化处理;具有优良的抗耐蚀性能,在许多酸、碱、盐、氨和海水中具有良好的耐蚀性,其耐蚀性要比不锈钢优越的多;处理后的部件,表面光洁度高,表面光亮,不需要重新的机械加工和抛光,可直接装机使用;镀层与基体的结合力高,不易剥落,其结合力比电镀硬铬和离子镀要高;可处理的基体材料广泛。〔1〕 化学镀分类(广义分类): 1.置换镀(离子交换或电荷交换沉积):一种金属浸在第二种金属的金属盐溶液中,第一种金属的表面上发生局部溶解,同时在其表面自发沉积上第二种金属上。在离子交换的情况下,基体金属本身就是还原剂。 2.接触镀:将欲镀的金属与另一种或另一块相同的金属接触,并沉浸在沉积金属的盐溶液中的沉积法。当欲镀的导电基体底表面与比溶液中待沉积的金属更为活泼的金属接触时,便构成接触沉积。 3.真正的化学镀:从含有还原剂的溶液中沉积金属〔1〕。 日前工业上应用最多的是化学镀镍和化学镀铜。可以使用化学镀进行表面加工的金属及合金有很多,下面以铝合金镀镍为例进行说明,而铝合金化学镀镍属于化学镀的第三种即真正的化学镀。 铝合金简介 铝合金具有机械强度高、密度小、导热导电性好、韧性好、易加工等特点,因而在工业部门,特别是航空航天、国防工业,乃至人们的日常生活中,都有较广泛的应用。铝合金表面覆盖一层致密的氧化膜,它可将铝合金与周围环境隔离开来,避免被氧化。但是这层氧化膜易受到强酸和强碱的腐蚀,同时铝合金易产生晶间腐蚀,表面硬度低,不耐磨。化学镀是赋予铝合金表面良好性能的新型工艺手段之一,它不仅是其抗蚀性、耐磨性、可焊性、和电接触能得到提高,镀层与铝合金机体间结合力好,镀层外观漂亮,而且通过镀覆不同的镍基合金,可以赋予铝合金各种新性能,如磁性能、润滑性等。〔2〕 铝合金化学镀镍原理: 化学镀镍是利用镍盐溶液在强还原剂次亚磷酸钠的作用下,使镍离子还原成金属镍,同时次磷酸钠分解析出磷,因而在具有催化表面的镀件上,获得镍磷合金镀层。 对于次磷酸钠还原镍离子的总反应可以写成: 3NaH 2PO 2 +3H 2 O+NiSO 4 -----3 NaH 2 PO 3 +H 2 SO 4 +2H 2 +Ni 同样的反应可写成如下离子式: 2 H 2PO 2 -+ Ni2++2H 2 O-----2 H 2 PO 3 -+ H 2 +2H++ Ni 或写成另一种形式:Ni 2++H 2 PO 2 -+H 2 O------H 2 PO 3 -+Ni+2H+ 所有这些反应都发生在催化活性表面上,需要外界提供能量,即在较高温度(60≤T≤

化学镀镍磷合金最新进展

化学镀镍磷合金研究进展 摘要:化学镀镍磷合金镀层由于其优良的耐磨耐蚀、无磷和镀层均匀等特性,在许多领域得到广泛应 用。本文综述了化学镀镍磷合金在各方面的研究进展,对化学镀镍磷工艺、沉积过程及沉积机理、镀层组织结构、性能及应用作了详细论述。 关键词化学镀,镍磷合金,组织结构,性能 Abstract Electroless despite of nickel phosphorus alloy has been widely used in diverse fieldsfortheiruniquecombinationsofpropertiessuchasrestistance,corrosionesistance,non-magnetism and uniformity of coating thick-ness. Research development of electroless Ni-P deposit on various aspect is summarized in this paper.Special attention has been focused on deposition process,depositionmechanism,microstructure,as well as some properties and applications of the despoists. Key words Electrolessdepoists,Ni-P alloy,Microstructure,Property 1概述 化学镀是用还原剂还原溶液中的络合金属离子,在催化活化表面获得所需的金属镀层,而赋予基体材料本身并不具有的表面性能。化学镀具有如下特点:(l)优良的深镀及均镀能力;(2)适用范围广,可在常用金属及经特殊处理的非导体和半导体材料表面沉积出镀层;(3)设备简单,操作方便;(4)镀层致密,无针孔,具有优良的耐蚀性;(5)镀层具有较高硬度和良好的耐磨性;(6)镀层成分可以根据需要改变镀液类型及操作条件来加以选择。化学镀镍由于其独特的沉积特性和优越的物理、化学和力学性能而在石油、化工、航空、航天、电子、计算机、汽车等工业领域获得广泛应用。 目前,得到深人研究及广泛应用的是化学镀镍层。在美国、日本、欧洲等国家都有商品化学镀镍液出售,并已形成门类齐全的商品系列,镍用于化学镀的消耗量每年以15%的速度增长。化学镀镍分Ni一P、Ni一B两类工艺,本文将主要探讨以次亚磷酸钠为还原剂的化学镀Ni一P层的各方面研究。 2化学镀镍磷工艺 60年代初,具有广泛适用性的专利性化学镀镍工艺进人了美国市场,当时的产品都是中等磷含量[5%一8%P(质量分数)]镀层,该镀层通常采用了含硫稳定剂或重金属离子,在各种性能上有一定的局限性。70年代后期到80年代,研究重点转向高磷化学镀镍层[9%一12%P(质量分数)],该种镀层具有非晶态结构,而赋予镀层极佳的耐蚀性,改善了压应力,延长了疲劳寿命,并具有非磁特性,而深得广大工程技术人员的青睐。近期人们研究发现,低磷镀层[1%一5%P(质量分数)]具有高的镀态硬度和优良的耐碱蚀特性,在许多应用场合可用来代替硬铬及镍硼镀层,特别适用于要求耐磨性而不能经受高温热处理的材料(如铝及铝合金),显示出广阔的开发应用前景。 化学镀Ni-P工艺按溶液pH值可分为酸性和碱性两大体系,镀液的主要成分是NISO4·6H2O和NaH2PO2·2H2O,同时为了保证镀液稳定和镀层质量,镀液中还必须加入一定量的络合剂、加速剂、稳定剂、光亮剂等。只有在正确选择了各种添加剂及含量的情况下,才能获得优良的化学镀镍工艺,要求工艺不仅有较快的沉积速度,而且镀液稳定性好,使用周期长,同时还要保证镀层优良的使用性能。 3化学镀镍磷沉积过程与沉积机理 3.1化学镀镍磷的沉积速度及镀层组成 化学镀镍沉积反应的动力学同时控制着沉积速率和镀层组成。对于化学镀镍这样一个含有多种化学成分的复杂反应体系,人们广泛研究了各种操作参数及溶液组成对沉积速度和镀

镁合金化学镀

论文 课程名称:轻金属表面处理技术班级: 学号: 姓名: 专业:应用化学 成绩:

镁合金化学镀技术研究进展 摘要综述了镁合金化学镀技术的研究历史和现状,重点介绍了镀前处理工序的革新、镀液配方的优化、多元镀以及复合镀技术的开发,在此基础上指出了镁合金化学镀技术今后的发展方向。 关键词镁合金化学镀表面改性 Abstract The development history of electroless planting on magnesium alloy is simply introduced and a review is made on the status of it.The research progress in the pretreatment,bath formula,polybasic and composite coating is focused.On the basic of them,the existing questions and development tendency of the electroless plating on magnesium alloy are indicated. Key words magnesium alloys,electroless plating,surface modification 1.引言 镁作为最轻的金属结构材料,具有密度低、比强度高、弹性模量小、尺寸稳定、易于回收等优势。随着镁加工工艺的改进,特别是环保标准的提高,镁合金逐渐成为继钢铁、铝之后的第三大金属结构材料,在汽车、航空航天、电子等领域有着广阔的应用前景,但是镁合金化学性质活泼,在侵蚀性环境中极易遭受腐蚀破坏,至今没有得到与其资源、性能相匹配的大规模的工业应用,因此,表面防护处理对于镁合金作为结构材料的应用具有十分重要的意义。目前镁合金的表面处理方法主要有化学镀、电镀、化学转化、阳极/微弧氧化、有机涂装等。其中化学镀技术以其设备投资少、不受工件尺寸和形状限制、镀层性能优越等优势日益受到关注。 常规金属的化学镀技术在20世纪40年代由A.Brenner和G.Riddell研制成功。经过几十年的努力,针对铁基、铝基等处理对象,现已解决诸如镀液再生、镀液稳定性、镀层组织结构性能测试等问题。化学镀技术已逐渐趋于成熟,并在航空航天、汽车、石化、机械、矿业、军事、3C等领域得到了广泛应用。 与铁基和铝基材料相比,镁合金属于难镀基材,其化学镀工艺更复杂、更困难。原因如下:①镁化学性质活泼,自氧化薄膜在合金表面迅速生成,妨碍了沉积金属与基底形成金属-金属键,影响镀层/基体的结合强度;②镁在普通镀液中与其它金属离子置换反应剧烈,容易导致沉积的镀层疏松、多孔、结合力差; ③镁合金的基体相和第二相有不同的电极电位,易形成腐蚀微电池,造成基体严重腐蚀,进而导致镀层沉积不均匀;④镁的标准电极电位低,镀层一般呈阴极性,

化学镀镍磷合金加工

化学镀镍磷合金加工 作者:上传日期: 业务范围:专业从事化学镀镍磷合金加工业务 加工技术:金属表面化学镀NI--P工艺,全面取代电镀处理本公司加工工艺可在钢、铸铁、铝合金、铜合金等材料表面形成光亮如镜的镍 磷合金 镀层,硬度可高达HV1000,相当HRC69,具有很高的耐磨性和耐腐蚀性,镀层结合 力好、厚 度均匀。镀速快,可达20μm/小时。 一、技术特性: 1、耐腐蚀性强:该工艺处理后的金属表面为非晶态镀层,抗腐蚀性特别优良,经硫 酸、盐 酸、烧碱、盐水同比试验,其腐蚀速率低于1cr18Ni9Ti不锈钢。 2、耐磨性好:由于催化处理后的表面为非晶态,即处于基本平面状态,有自润滑性。 因 此,磨擦系数小,非粘着性好,耐磨性能高,在润滑情况下,可替代硬铬使用。 3、光泽度高:催化后的镀件表面光泽度为LZ或▽8-10可与不锈钢制品媲美,呈白 亮不锈钢 颜色。工件镀膜后,表面光洁度不受影响,无需再加工和抛光 4、表面硬度高:经本技术处理后,金属表面硬度可提高一倍以上,在钢铁及铜表面 可达 Hv 570。镀层经热处理后硬度达Hv 1000,工模具镀膜后一般寿命提高3倍以上。

5、结合强度大:本技术处理后的合金层与金属基件结合强度增大,一般在 350-400Mpa条件 下不起皮、不脱落、无气泡,与铝的结合强度可达102-241Mpa。 6、仿型性好:在尖角或边缘突出部分,没有过份明显的增厚,即有很好的仿型性, 镀后不 需磨削加工,沉积层的厚度和成份均匀。 7、工艺技术高适应性强:在盲孔、深孔、管件、拐角、缝隙的内表面可得到均匀镀 层,所 以无论您的产品结构有多么复杂,本技术处理起来均能得心应手,绝无漏镀之处。 8、低电阻,可焊性好。 9、耐高温:该催化合金层熔点为850-890度 二.适镀基材:铸铁、钢铁、铜及铜合金、铝及铝合金,模具钢、不锈钢。 三.化学镀镍磷合金层的性能(国家钢铁产品质量监督检验中心检测) 按GB10125-1997标准规定进行测试,时间为96小时,Nacl浓度50g/l,ph值: 6.5- 7.2,温度:35,按GB6464-86规定评定防护等级,可达9级。 磷含量(质量百分数):6%-12% 电阻率:60-75μΩ.cm 密度:7.9g/cm3 熔点:860-880℃ 硬度:镀态:Hv500-550(45-48RCH) 热处理后:Hv1000 结合力:400MPa,远高于电镀 内应力:钢上内应力低于7Mpa 本单位生产销售化学镀镍浓缩液、添加剂,光亮剂、浸锌剂、钝化封闭剂等,设计 制作化学镀镍生产线,承揽化学镀镍加工 我厂为客户服务的方式有以下几种: 一、镀覆加工各种工件。

铝合金表面处理工艺

精心整理【工艺知识】铝材表面处理工艺大全介绍 总则 表面处理:它是通过机械和化学的方法处理后,能在产品的表面上形成一层保护机体的保护层。在自然界中能达到稳定状态,增加机体的抗蚀性和增加产品的美观,从而提升产品的价值。表面处理种类的选择首先要从使用环境,使用寿命,人为欣赏的角度出发,当然经济价值也是考虑的核心所在。 第一节 铬化会便产品表面形成一层化学转化膜,膜层厚度在0.5-4um,这层转化膜吸附性好,主要作为涂装底层。外观有金黄色,铝本色,绿色等。这种转化膜导电性能好,是电子产品的最好选项,如手机电池内导电条,磁电设备等。该膜层适合所有铝及铝合金产品。但该转化膜质软,不耐磨,因此不利于做产品外部件利用。 铬化工艺流程:

脱脂—>铝酸脱—>铬化—>包装—>入库 铬化适合于铝及铝合金,镁及镁合金产品。 品质要求: 1)颜色均匀,膜层细致,不可有碰伤,刮伤,用手触摸,不能有粗糙,掉灰等现象。 2)膜层厚度0.3-4um。 之处:不 相对效 色系)。抛光亮面本色,抛光雾面本色,抛光亮面染色,抛光雾面染色。喷吵亮面本色,喷吵雾面本色,喷沙染色。以上镀种均可用在灯饰器材上。 二,阳极氧化工艺流程 除油—>碱蚀—>化抛—>中和—>黎地—>中和 阳极氧化—>染色—>封孔—>热水洗—>烘干

三,常见品质异常判断 A?表面出现花斑。这种异常一般是由于金属调质不好或材质本身太差所至,处理办法,重新热处理。或更换材质。 B表面出现彩虹色。这种异常一般阳极作业失误所致。,上挂时松动,造成产品导电不良。,处理办法,退电重新阳极处理。 C,表面碰伤,刮伤严重。这种异常一般是由于运输或加工过程中,作业大意所致,处理办法,退 D 1)?? 2)? 3)?? 具有导电性好,传热快,比重轻,易于成型等优点,但铝及铝合金有硬度低,不耐磨,易发生晶间腐蚀,不易焊接,等缺点,影响到使用范围。故为了扬长避短,现代工业中,利用电镀解决了这一问题。 二,铝材电镀的优点

铝合金化学镀

铝合金化学镀 一、概述 铝及铝合金是应用最广泛的金属之一,其具有导电性好、传热快、比重轻、强度高、易于成型等优点。但是,铝及铝合金也存在硬度低、不耐磨、易于发生晶间腐蚀、不易焊接等缺点,影响其应用范围和使用寿命。铝及其合金经过表面处理后可扬长避短,延长其使用寿命和扩大应用范围,赋予其防护、装饰等用途。 铝合金的表面处理技术包括阳极氧化、电镀、化学镀等方法。铝上电镀比其他金属上电镀要困难得多,容易出现气泡和脱皮,结合力不良等问题。究其原因是铝合金在空气中极易氧化。因此,在进行一般的除油、碱液腐蚀和浸蚀后,暴露出制件的活化表面,在电镀之前的瞬间又重新被氧化,形成的氧化膜严重地影响了镀层的结合力,造成镀层起泡和脱落。为了解决这一问题,目前普遍采用化学镀的方法。 铝合金表面化学镀因具有诸多的优良性能及特性而在电子工业、石油化工、机械和航天等领域的应用而不断增加,如何优化工艺、提高质量日益成为人们关注的焦点。所谓化学镀,是指不使用外电源,而是依靠金属的催化作用,通过可控制的氧化-还原反应,使镀液中的金属离子沉积到镀件上去的方法,因而化学镀也被称为自催化镀或无电镀。 铝及铝合金属于化学镀难镀基材,因此在其基体上进行化学镀有其自身的特点:①铝是一种化学性质比较活泼的金属,在大气中易生成一层薄而致密的氧化膜,即使在刚刚除去氧化膜的新鲜表面上,也会重新生成氧化膜,严重影响镀层与基体的结合力。②铝的电极电位很低(-1.56V),极易失去电子,当浸入镀液时,能与多种金属离子发生置换反应,析出的金属与铝表面形成接触镀层。这种接触性镀层疏松粗糙,与基体的结合力强度差,严重影响了镀层与基体的结合力。③铝属于两性金属,在酸、碱溶液中都不稳定,往往使化学镀过程复杂化。由此可知,要在铝及铝合金制品上得到良好的化学镀层,最关键的就是结合力问题,而结合力取决于化学镀的前处理。因此,对于铝及其合金来说,镀前处理是十分重要的。【1】 化学镀目前使用最广泛的是化学镀镍,本文以铝合金化学镀镍为例,讲述其机理、体系、工艺及其应用等内容。 二、化学镀镍原理 由化学镀镍溶液中次亚磷酸阴离子引起的镍析出反应,首先镀液中的次亚磷酸阴离子与触媒金属接触后,在触媒金属形成(PO2)—离子: (H2PO2)—→(PO2)—+ 2[H] (1) 由(1)式反应生成的(PO2)-再次在相同的触媒上引起脱氢反应形成亚磷酸离子: (PO2)—+ H2O →H++ (HPO3)2—(2) 该反应因为伴随有[H]和H+的生成,所以反应(1)和(2)都显示出对pH的依存性。反应(1)与(2)是同时进行的。反应(1)生成的氢原子被触媒金属表面吸附,即形成所谓的缩合层,具有很强的活性。由于该氢原子的存在使镀液中的镍离子被还原生成金属镍的同时也产生氢离子。 Ni2++ 2[H] →Ni + 2H+(3) 另外,因次亚磷酸阴离子的脱水反应生成的活性化的磷与镍一起析出生成非晶态Ni-P 合金,附着在被镀金属表面。 (H2PO2)—+ [H] →H2O + OH—+ P (4) 一部分氢原子生成气体状的氢分子 2[H] →H2↑(5) 反应(1)、(2)、(3)在高pH时被促进,而反应(4)在高pH时被抑制。反应(3)析

(完整版)铝合金轮毂直接化学镀镍新工艺

铝合金轮毂直接化学镀镍新工艺 采用特种活化剂在铝合金轮毂直接化学镀镍的新工艺 铝及铝合金直接化学镀镍活化剂是经过多年研制开发出来的具有国内外先进水平的无毒、无味、无污染、独一无二的绿色环保型新产品。相对传统的沉锌工艺来说,即减少了污染排放,又降低了产品成本,提高了一次性电镀合格率。 1利用特种活化剂直接化学镀镍工艺的优势 1.1 省去二次侵锌置换工艺,使技术管理、镀液管理、废水处理都简单化。 1.1.1 工件经特种活化剂活化后只需一次水洗或不经水洗,直接进行化学镀镍或闪镀化学镍,省去繁杂的二次锌置换工艺,减少了生产工序,提高了生产效率,使技术管理、镀液管理、废水处理都简单化。 1.1.2 使用特种活化剂直接进行化学镀镍只需7道工序即可完成全部工作,使用沉锌剂进行二次浸锌处理需要17道工序才能完成电镀镍工作。 1.2 镀层均匀致密,结合力强,镀件质量好 1.2.1 使用特种活化剂直接化学镀镍,由于没有电流的影响,均镀能力特强,无孔不入,可以把很小的针孔、渣孔完整的镀起来,凡是活化剂渗透到的部位就有镀层,使经过活化后的铝轮毂压铸铝材料像钢铁零件一样顺利的在其表面沉积一层光亮、致密、结合力良好的化学镀镍层,镀层致密,镀件质量好。

1.2.2 克服了电解液容易受到二次浸锌溶液中有害杂质影响,污染化学镀镍溶液,使镀层质量不能保持稳定,操作程序复杂,技术难度大,需经常调整、更换化学镀镍溶液等所有不足之处。 镀层与基体结合力:试件采用A356压铸铝合金。经化学镀镍后的工件在烤箱中加温至200℃,恒温2小时,然后在室温的水中多次骤冷,镀层未发现起泡现象。锉刀法、锯条法、胶带法试验均优于二次浸锌工艺。 1.3 一次性合格率高,大幅度的降低了产品成本。 1.3.1 二次沉锌方法在铝轮毂因压铸材料成分晶界偏析富集引起的低电位区易露镀、起泡,使一次性合格率一直在80%左右波动,有的甚至更低。 1.3.2 退镀后的铝轮毂,再抛光、再电镀镍,成本大幅度的上升。据调查,退镀后再电镀镍的铝轮毂,成本比一次性合格的铝轮毂成本高出三倍,二次电化学镀镍后,如果再不合格,铝轮毂毛坯就要报废。有些铝轮毂企业倒闭,就是因为一次性合格率太低造成的。有的化学镀镍铝轮毂当时检测合格,但在仓库存放一段时间后,又有起泡的。。有的在产品发给最终客户使用一段时间后,还有起泡剥落的,原因在于在潮湿的腐蚀性环境中,腐蚀性气氛通过表层的针孔和其它缺陷达到基体时,锌置换层相对于镀覆金属和铝基体成为阳极,将使锌受到横向腐蚀,铝轮毂基体与镀层间出现白色粉末状物质,最终导致镀层起泡、剥落的问题。 1.3.3 使用特种活化剂直接电化学镀镍,使铝轮毂一次性合格率

相关文档
最新文档