活度系数实验报告

活度系数实验报告
活度系数实验报告

实验三 色谱法测定无限稀释溶液的活度系数

一、实验目的

1. 用气液色谱法测定苯和环己烷在邻苯二甲酸二壬酯中的无限稀释活度系数。

2. 通过实验掌握测定原理和操作方法。熟悉流量、温度和压力等基本测量方法。

3. 了解气液色谱仪的基本构造及原理。

二、基本原理

采用气液色谱测定无限稀释溶液活度系数,样品用量少,测定速度快,仅将一般色 谱仪稍加改装,即可使用。目前,这一方法已从只能测定易挥发溶质在难挥发溶剂中的 无限稀释活度系数,扩展到可以测定在挥发性溶剂中的无限稀释活度系数。因此,该法 在溶液热力学性质研究、气液平衡数据的推算、萃取精馏溶剂评选和气体溶解度测定等 方面的应用,日益显示其重要作用。

当气液色谱为线性分配等温线、气相为理想气体、载体对溶质的吸附作用可忽略等 简化条件下,根据气体色谱分离原理和气液平衡关系,可推导出溶质i 在固定液j 上进 行色谱分离时,溶质的校正保留体积与溶质在固定液中无限稀释活度系数之间的关系式。 根据溶质的保留时间和固定液的质量,计算出保留体积,就可得到溶质在固定液中的无 限稀释活度系数。

实验所用的色谱柱固定液为邻苯二甲酸二壬酯。样品苯和环己烷进样后汽化,并与 载气2H 混合后成为气相。

当载气2H 将某一气体组分带过色 谱柱时,由于气体组分与固定液的相互 作用,经过一定时间而流出色谱柱。通 常进样浓度很小,在吸附等温线的线性 范围内,流出曲线呈正态分布,如右图 所示。

设样品的保留时间为r t (从进样到样品峰顶的时间),死时间为d t (从惰性气体空气 进样到其峰顶的时间),则校正保留时间为:

d r r t t t -='

(1)

校正保留体积为: c r r F t V ?='

' (2)

式中,c F ——校正到柱温、柱压下的载气平均流量,s /m 3 校正保留体积与液相体积l V 关系为:

K V V l r ?=' (3)

而 g i l

i c c K = (4)

式中,3m 液相体积,--l V ; 分配系数--K ;

3m /mol 样品在液相中的浓度,--l i c ; 3m /mol 样品在气相中的浓度,--g i c 。 由式(3)、(4)可得:

l i g i l i V V c c '= (5)

因气相视为理想气体,则 c

i

g i RT p c =

(6) 而当溶液为无限稀释时,则 l

i

l l i M x c ρ=

(7)

式中,气体常数--R ;

3m /kg 纯液体的密度,--l ρ; 固定液的分子量--i M ; 的摩尔分率样品i --i x ; Pa 样品的分压,--i p ; K 柱温,--c T 。

汽液平衡时,则

i o i o i i x p p γ= (8) 式中,Pa i 的饱和蒸汽压,样品--o i p ; 的无限稀释活度系数样品i --o i γ。 将(6)、(7)、(8)代入式(5)得: o

i o i l c

l o i o i l c l l r p M RT W p M RT V V γγρ==

' (9)

式中,固定液标准质量--l W 。 将式(2)代入式(9),则 c

r o i l c

l o i F t p M RT W '=

γ (10)

式中c F 可用式(11)求得:

()?????

?-??????

??????-??? ??-??? ??=c a c o w o o b o b c F T T p p p p p p p F 113

223 (11) 式中,Pa 柱前压力,--b p ; Pa 柱后压力,--o p ; Pa T a 下的水蒸汽压,在--w p ; K 环境压力,--a T ; K 柱温,--c T ;

s /m 3,载气在柱后的平均流量--c F 。

这样,只要把准确称量的溶剂作为固定液涂渍在载体上装入色谱柱,用被测溶质作 为进样,测得(10)式右端各参数,即可计算溶质i 在溶剂中的无限稀释活度系数。

三、实验流程

本实验流程如下图所示:

四、实验步骤

(1)开启载气钢瓶,调节载气流量, 检漏后,开启色谱仪, 色谱条件为:柱温60℃汽化温度120℃,打开桥电流开关,控制在100mA左右;

在色谱柱后的平均流量,即气体通过肥皂(2)色谱条件稳定后用皂膜流量计来测载气H

2

水鼓泡,形成一个薄膜并随气体上移,用秒表来测流过10ml的体积,所用的时间,

控制在20ml/min左右,需测三次,取平均值。用标准压力表测量柱前压;

(3)待色谱仪基线稳定后(使用色谱数据处理机来测),用10μl进样器准确取样品苯

0.2μl,再吸入8μl空气,然后进样。用秒表来测定空气峰最大值到苯峰最大值

之间的时间。再分别取0.4μl、0.6μl、0.8μl环己烷,重复上述实验。每种进

样量至少重复三次,取平均值;

(4)用笨作溶质,重复第(3)项操作;

(5)实验完毕后,先关闭色谱仪的电源。

五、实验结果记录

表1 载气流量测定数据记录表

10 ml

、测定使用第 2 套仪器,其中气液色谱操作条件如下:柱温58 ℃,汽化室温度115 ℃,检测器温度为119 ℃,桥电流为90 mA。

2、实验开始时环境温度为25.5 ℃,结束时温度为25.5 ℃。

3、固定液标准质量为0.1041 g。

六、实验数据处理

查T a =298.15K 时水、T c =330.15K 时环己烷和苯的安东尼系数,绘制下表:

1201.863lg 5.963708-

1.68458273.15-50.3522p ==+环己烷 0

48.25p kPa =环己烷

01204.682lg 6.01907- 1.68758273.15-53.072

p ==+苯 0

48.63p kPa =苯

01657.459lg 7.074056-0.510425.5273.15-46.13

p ==+水 0

3.239p kPa =水

载气在柱后的平均流量:

73103

0.3230/ 3.23010/(30.1029.8430.16)c ml F ml s m s s

-?=

==?++

校正到柱温、柱压下载气的平均流量:

220033

00773(/)1()33(0.132825/0.101325)1[][][]2(/)12(0.132825/0.101325)10.101325-0.003239)(58273.15)[ 3.23010] 2.98310(/)

0.101325(25.5273.15)

b w

c c c b a p p p p T F F p p p T m s -----==--+??=?+(

利用Origin 软件,以环己烷或苯的进料量为横坐标,校正停留时间为纵坐标,作出环己烷进

样量与校正保留时间关系图如下:

606264

t (s )

V

t (s)

Linear Fit of t

图一 环己烷r t —进料量关系图

0.30.60.9

98

100

102

V

tr

V

Linear Fit of V

图二 苯r t —进料量关系图

根据邻苯二甲酸二壬酯的分子式C 26H 42O 4,可以算出M l =0.41861kg/mol

由图3、4可知环己烷进样量趋于零时的校正保留时间为59.105s ,苯的进样量趋于零时的校正保留时间为96.34s 。 对环己烷进行计算:3-7'

0.10418.31458273.150.806418.6148.251059.015 2.98310

l c i l i r c W RT M p t F γ??+=

==?????。。()

同理可得苯3-7'

0.10418.31458273.150.490418.6148.631096.34 2.98310l c i l i r c

W RT M p t F γ??+=

==?????。。()

环己烷和苯的真实。i γ值分别为:0.842、0.526 所以:相对误差(环己烷)=

0.806-0.842

100% 4.28%0.842

?=

相对误差(苯)0.490-0.526

100% 6.84%0.526

=

?=

七、实验分析与讨论:

实验测得的结果产生的相对误差较小,苯的相对误差要略高于环己烷的相对误差,

原因可能是由于测量时间时,苯的第三个点测量有误差。而整体误差的产生可能是由于计时上出现的问题,因为人的反应速度的影响,计时或许存在不精确,还有就是本实验关于外界压力的计算采取的是标准大气压,可能存在偏差;另外,是本实验采取的是安托尼方程计算饱和蒸汽压,可能会存在不精确之处。

关于实验过程,要注意实验条件是否稳定,比如温度、氢气流速等条件,还要注意如果实验现象出现偏差,要及时找出问题,以及时改正。

八、 思考题:

⑴.如果溶剂也是易挥发性物质,本法是否适用?

答:计算方法适用。只要在分离柱前接入预饱和柱,使气相中溶剂分子浓度达到柱温柱

压下溶剂饱和浓度,就可以防止固定液挥发。

⑵.苯和环己烷分别与邻苯二甲酸二壬酯所组成的溶液,对拉乌尔定律是正偏差还是负偏

差?它们中哪一个活度系数较小?为什么?

答:负偏差。苯在邻苯二甲酸二壬酯中的活度系数较小。由于异种分子作用力大于同种分子作用力,所以溶液对拉乌尔定律是负偏差。又由于苯的结构和邻苯二甲酸二壬酯更相近,导致异种分子之间的相互作用力更强烈,所以苯的活度系数更小。⑶.影响实验结果准确度的因素有哪些?

答:校正保留时间、样品进样量、柱前压力、环境温度、载气流量和柱温的测定的准确度都影响着实验结果的准确度。另外作图法求截距时直线的连接也在很大程度上影响着实验结果。所以相对于作图法,我更倾向于使用最小二乘法拟合直线求算截距。

固体热膨胀系数的测量实验报告图文稿

固体热膨胀系数的测量 实验报告 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

固体热膨胀系数的测量 班级: 姓名: 学号: 实验日期: 一、实验目的 测定金属棒的线胀系数,并学习一种测量微小长度的方法。 二、仪器及用具 热膨胀系数测定仪(尺读望远镜、米尺、固体线膨胀系数测定仪、铜棒、光杠杆、温度计等) 三、实验原理 1.材料的热膨胀系数 线膨胀是材料在受热膨胀时,在一维方向上的伸长。在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L ,由初温t1加热至末温t2,物体伸长了 △L,则有 ()12t t L L -=?α (1) (2) 此式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。比例系数称为固体的线胀系数。一般情况下,固体的体胀系数为其线胀系数的3倍。 2.线胀系数的测量 在式(1)中△L 是个极小的量,这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。考虑到测量方便和测量精度,我们采用光杠杆法测量。光杠杆系统是由平面镜及底座,望远镜和米尺组成的。光杠杆放大原理如下图所示: 当金属杆伸长△L 时,从望远镜中叉丝所对标尺刻度前后为b1、b2,这时()12t t L L -?= α

有: 带入(2)式得固体线膨胀系数为: 四、实验步骤及操作 1.单击登陆进入实验大厅 2.选择热力学试验单击 3.双击固体热膨胀系数的测量进入实验界面 4.在实验界面单击右键选择“开始实验” 5.调节平面镜至竖直状态 6.进行望远镜调节,调节方位、聚焦、目镜是的标尺刻线清晰,调节 中丝读数为0.0mm,并打开望远镜视野 7.单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记 录每升高10度时标尺读数直至温度升高到90度止 8.单击卷尺,分别测量l、D, 9.以t为横轴,b为纵轴作b-t关系曲线,求直线斜率。 10.代入公式计算线膨胀系数值。 由图得k=0.3724 五、实验数据记录与处理 六、思考题 1.对于一种材料来说,线胀系数是否一定是一个常数为什么 答:不是。因为同一材料在不同的温度区域,其线性系数是不同的,有实验结果的事实可证明。 2.你还能想出一种测微小长度的方法,从而测出线胀系数吗? 答:目前想不到更好地方法。 3. 引起测量误差的主要因素是什么? 答:仪器的精准度,操作过程中的不可避免性的失误,温度变化的控制,铜棒受热不均匀等。

固体热膨胀系数的测量实验报告

固体热膨胀系数的测量班级:姓名:学号:实验日期: 一、实验目的 测定金属棒的线胀系数,并学习一种测量微小长度的方法。 二、仪器及用具 热膨胀系数测定仪(尺读望远镜、米尺、固体线膨胀系数测定仪、铜棒、光杠杆、温度计等) 三、实验原理 1.材料的热膨胀系数 线膨胀是材料在受热膨胀时,在一维方向上的伸长。在一定的温度范围内,固体受 热后,其长度都会增加,设物体原长为L,由初温t1加热至末温t2,物体伸长了 △L,则有 () 1 2 t t L L- = ?α(1)(2) 此式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。比例系 数称为固体的线胀系数。一般情况下,固体的体胀系数为其线胀系数的3倍。 2.线胀系数的测量 在式(1)中△L是个极小的量,这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。考虑到测 量方便和测量精度,我们采用光杠杆法测量。光杠杆系统是由平面镜及底座,望远 镜和米尺组成的。光杠杆放大原理如下图所示: () 1 2 t t L L - ? = α

当金属杆伸长△L时,从望远镜中叉丝所对标尺刻度前后为b1、b2,这时有:带入(2)式得固体线膨胀系数为: 四、实验步骤及操作 1.单击登陆进入实验大厅 2.选择热力学试验单击 3.双击固体热膨胀系数的测量进入实验界面 4.在实验界面单击右键选择“开始实验” 5.调节平面镜至竖直状态 6.进行望远镜调节,调节方位、聚焦、目镜是的标尺刻线清晰,调节中丝读 数为0.0mm,并打开望远镜视野 7.单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升 高10度时标尺读数直至温度升高到90度止 l L D b b? = - 2 1 2 () D l b b L 2 1 2 - = ? () ()k DL l t t DL b b l 2 2 1 2 1 2= - - = α

电势-PH曲线实验报告

基 础 化 学 实 验 实验十二电势-pH曲线的测定 姓名:赵永强 指导教师:吴振玉

一、目的要求 1.掌握电极电势、电池电动势及pH 的测定原理和方法。 2. 了解电势-pH 图的意义及应用。 3. 测定Fe 3+/Fe 2+-EDTA 溶液在不同pH 条件下的电极电势,绘制电势-pH 曲线。 二、实验原理 很多氧化还原反应不仅与溶液中离子的浓度有关,而且与溶液的pH 值有关,即电极电势与浓度和酸度成函数关系。如果指定溶液的浓度,则电极电势只与溶液的pH 值有关。在改变溶液的pH 值时测定溶液的电极电势,然后以电极电势对pH 作图,这样就可得到等温、等浓度的电势-pH 曲线。 对于Fe 3+/Fe 2+-EDTA 配合体系在不 同的pH 值范围内,其络合产物不同,以Y 4-代表EDTA 酸根离子。我们将在三个不同pH 值的区间来讨论其电极电势的变化。 ①高pH 时电极反应为 Fe(OH)Y 2-+e FeY 2-+OH - 根据能斯特(Nernst)方程,其电极电势为: (标准) Φ=Φ-- 2--2Fe(OH)Y OH FeY ln a a a F RT ? 稀溶液中水的活度积K W 可看作水的离子积,又根据pH 定义,则上式可写成 (标准) Φ=Φ-b 1-F RT m m F RT 303.2ln -2-2Fe(OH)Y FeY -) ()(pH 其中1b =) )(()(ln 22--?Y OH Fe Kw FeY F RT γγ。 在EDTA 过量时,生成的络合物的浓度可近似看作为配制溶液时铁离子的浓度。即 m FeY 2- ≈m Fe 2+ 。在m Fe 2+ / m Fe 3+ 不变时,Φ与pH 呈线性关系。如图中的 cd 段。 ②在特定的PH 范围内,Fe 2+和Fe 3+能与EDTA 生成稳定的络合物FeY 2-和FeY -,其电极反应为 FeY - +e FeY 2- 其电极电势为 (标准) Φ=Φ-- 2FeY FeY ln a a F RT - 式中,(标准)Φ为标准电极电势;a 为活度,a =γ·m (γ为活度系数;m 为质量摩尔浓度)。

《传热学》实验 球体法测粒状材料的导热系数

《传热学》实验球体法测粒状材料的导热系数 一、实验目的和要求 1、巩固稳定导热的基本理论,学习用圆球法测定疏散物质的导热系数的实验方法 和测试技能。 2、实际测定被试材料的导热系数λ。 m 3 、绘制出材料的导热系数λ与温度t的关系曲线。 m 二、实验原理 圆球法测定物质的导热系数,就是应用沿球壁半径方向三向度稳定导热的基本原理来进行对颗粒状及粉末状材料导热系数的实验测定。 导热系数是一个表征物质导热能力大小的物理量,对于不同物质,导热系数是不相同的,对于同一种物质,导热系数会随着物质的温度、压力、物质的结构和重 度等有关因素而变异。各种不同物质导热系数都是用实验方法来测定的;几何形状 不同的物质可采用不同的实验方法,圆球法是用来疏散物质导热系数的实验方法之 一。 圆球法是在两个同心圆球所组成的夹层中放入颗粒状或粉末状材料,内球为热球,直径为d表面温度为t,外球(球壳)为冷球,直径为d壁面温度为t。根DDvd 据稳态导热的付立叶定律,通过夹层试材的导热量为: ,tt12 [w] ,,111(,)2,,ddm12

在实验过程中,测定出Φ、t 和t,就可以根据上式计算出材料的导热系数:12 ,(d,d)21, [w/m ?] ,m,2dd(t,t)1212 改变加热量Φ就可以改变避面温度t 和t,也就可以测出不同的温度下试材的12导热系数,这样就可以在t 和t坐标中测出一条t 和t的关系曲线,根据这条曲1212线即可求出λ=f(t)的关系式。 三、实验装置及测量仪表 球体法实验装置的系统图如图4-1所示,整个测试系统包括:圆球本体装置、交流调压器、交流稳压电源、0.5级瓦特表、UJ33a型电位差计和热电偶转换开关盒等。 圆球本体的示意图如图4-2所示,它由铜质热球球体、冷球球壳、保温球盒和泡沫塑料保温套等组成。热球球体由塑料支架架设在整个圆球本体的中央,球体内 ;冷球球壳由两个半球球壳合成,球壳内空,为恒温水套,通以恒温水槽的D 部埋设加热元件,通电后是球体加热,球体表面设有热电偶1,用以测量热球表面循环水流,球壳内壁面设有热电偶2,用以测量冷球壳壁温度t;热球和冷球球壳2温度t 之间的夹层中,可放入疏散颗粒体或粉末体试材料,热球发出的热量将全部通过被 试验材料传导的冷球球壳,并由球壳中的循环水带走。冷球球壳外围的保温球壳也 是通过恒温水槽的循环水流,保温球壳之外还设有泡沫塑料保温套。保温球壳和泡 沫保温套的作用是用以提高测试的精度。

金属线胀系数的测定实验报告

实验5 金属线胀系数的测定 测量固体的线胀系数,实验上归结为测量在某一问题范围内固体的相对伸长量。此相对伸长量的测量与杨氏弹性模量的测定一样,有光杠杆、测微螺旋和千分表等方法。而加热固体办法,也有通入蒸气法和电热法。一般认为,用电热丝同电加热,用千分表测量相对伸长量,是比较经济又准确可靠的方法。 一、实验目的 1.学会用千分表法测量金属杆长度的微小变化。 2.测量金属杆的线膨胀系数。 二、实验原理 一般固体的体积或长度,随温度的升高而膨胀,这就是固体的热膨胀。设物体的温度改变t ?时,其长度改变量为L ?,如果t ?足够小,则t ?与L ?成正比,并且也与物体原长L 成正比,因此有 t L L ?=?α (1) 式(1)中比例系数α称为固体的线膨胀系数,其物理意义是温度每升高1℃时物体的伸长量与它在0℃时长度之比。设在温度为0℃时,固体的长度为0L ,当温度升高为t ℃时,其长度为t L ,则有 t L L L t α=-00/)( 即 )1(0t L L t α+= (2) 如果金属杆在温度为1t ,2t 时,其长度分别为1L ,2L ,则可写出 )1(101t L L α+= (3) )1(202t L L α+= (4) 将式(3)代入式(4),又因1L 与2L 非常接近,所以,1/12=L L ,于是可得到如下

结果: )(12112t t L L L --=α (5) 由式(5),测得1L ,2L ,1t 和2t ,就可求得α值。 三、仪器介绍 (一)加热箱的结构和使用要求 1.结构如图5-1。 2.使用要求 (1)被测物体控制于mm 4008?φ尺寸; (2)整体要求平稳,因伸长量极小,故仪器不应有振动; (3)千分表安装须适当固定(以表头无转动为准)且与被测物体有良好的接触(读数在0.2~0.3mm 处较为适宜,然后再转动表壳校零); (4)被测物体与千分表探头需保持在同一直线。 (二)恒温控制仪使用说明

气液平衡-实验报告解读

化工专业实验报告 实验名称:二元气液平衡数据的测定 实验人员: 同组人 实验地点:天大化工技术实验中心 606 室 实验时间: 2015年4月20日下午14:00 年级: 2014硕;专业:工业催化;组号: 10(装置2);学号:指导教师:______赵老师________ 实验成绩:_____________________

一.实验目的 (1)测定苯-正庚烷二元体系在常压下的气液平衡数据; (2)通过实验了解平衡釜的结构,掌握气液平衡数据的测定方法和技能; (3)应用 Wilson 方程关联实验数据。 二.实验原理 气液平衡数据是化学工业发展新产品、开发新工艺、减少能耗、进行三废处理的重要基础数据之一。化工生产中的蒸馏和吸收等分离过程设备的改造与设计、挖潜与革新以及对最佳工艺条件的选择,都需要精确可靠的气液平衡数据。这是因为化工生产过程都要涉及相间的物质传递,故这种数据的重要性是显而易见的。 平衡数据实验测定方法有两类,即间接法和直接法。直接法中又有静态法、流动法和循环法等。其中循环法应用最为广泛。若要测得准确的气液平衡数据,平衡釜是关键。现已采用的平衡釜形式有多种,而且各有特点,应根据待测物系的特征,选择适当的釜型。用常规的平衡釜测定平衡数据,需样品量多,测定时间长。所以,本实验用的小型平衡釜主要特点是釜外有真空夹套保温,釜内液体和气体分别形成循环系统,可观察釜内的实验现象,且样品用量少,达到平衡速度快,因而实验时间短。 以循环法测定气液平衡数据的平衡釜类型虽多,但基本原理相同,如图 1 所示。当体系达到平衡时,两个容器的组成不随时间变化,这时从 A 和 B 两容器中取样分析,即可得到一组平衡数据。 图1 平衡法测定气液平衡原理图 当达到平衡时,除了两相的压力和温度分别相等外,每一组分的化学位也相等,即逸度相等,其热力学基本关系为:

固体线胀系数测定

SUES大学物理选择性实验讲义Typeset by L A T E X2ε 固体线胀系数测定? 一实验目的 本实验通过固体线胀系数测定仪测定不同金属的线胀系数,要求达到: 1.掌握使用千分表和温度控制仪的操作方法; 2.分析影响测量精度的诸因素; 3.观察合金材料在金相组织发生变化温度附近,出现线膨胀量的突变现象。二实验原理 绝大多数物质具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。这个性质在工程结构的设计中,在机械和仪表的制造中,在材料的加工(如焊接)中都应考虑到。否则,将影响结构的稳定性和仪表的精度,考虑失当,甚至会造成工程结构的毁损,仪表的失灵以及加工焊接中的缺陷和失败等等。 固体材料的线膨胀是材料受热膨胀时,在一维方向上的伸长。线胀系数是选用材料的一项重要指标,在研制新材料中,测量其线胀系数更是必不可少的。SLE-1固体线胀系数测定仪通过加热温度控制仪,精确地控制实验样品在一定的温度下,由千分表直接读出实验样品的伸长量,实现对固体线胀系数测定。 SLE-1固体线胀系数测定仪的恒温控制由高精度数字温度传感器与HTC-1加热温度控制仪组成,可加热温度控制在室温至80.0?C之间。HTC-1加热温度控制?修订于2009年2月4日 1

仪自动检测实测温度与目标温度的差距,确定加热策略,并以一定的加热输出电压维持实测温度的稳度,分别由四位数码管显示设定温度和实验样品实测温度,读数精度为±0.1?C。专用加热部件的加热电压为12V。 物质在一定温度范围内,原长为l的物体受热后伸长量?l与其温度的增加量?t近似成正比,与原长l也成正比,即:?l=α·l·?t。式中α为固体的线胀系数。实验证明:不同材料的线膨胀系数是不同的。本实验配备的实验样品为铁棒、铜棒、铝棒(加工成6×400mm的圆棒)。 三仪器技术指标 1、温度读数精度:±0.1?C。 2、温度控制稳定度:±0.1?C/10分钟。 3、温度设定范围:?5.0?C~+85?C,四位数码管显示。 4、实验样品实测温度:室温至82.0?C,四位数码管显示。 5、伸长量测量精度:0.001mm,量程:0~1mm。 6、HTC-1加热温度控制仪使用条件 1)输入电源:220V±10%50Hz~60Hz 2)湿度:<85% 3)温度:0~40?C 4)功耗:<70W 四仪器组成 由SLE-1固体线胀系数测定仪实验装置和HTC-1加热温度控制仪组成。 1、实验仪器如图1: 2、实验条件 2

电动势的测定及应用[实验报告]

实验报告 电动势的测定及其应用 一.实验目的 1.掌握对消法测定电动势的原理及电位差计,检流计及标准电池使用注意事项及简单原理。 2.学会制备银电极,银~氯化银电极,盐桥的方法。 3.了解可逆电池电动势的应用。 二.实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极上发生还原反应,负极则发生氧化反应,电池反应是电池中所有反应的总和。 电池除可用作电源外,还可用它来研究构成此电池的化学反应的热力学性质,从化学热力学得知,在恒温、恒压、可逆条件下,电池反应有以下关系: △r G m =-nFE 式中△r G m 是电池反应的吉布斯自由能增量;n 为电极反应中电子得失数;F 为法拉第常数;E 为电池的电动势。从式中可知,测得电池的电动势E 后,便可求得△r G m ,进而又可求得其他热力学参数。但须注意,首先要求被测电池反应本身是可逆的,即要求电池的电极反应是可逆的,并且不存在不可逆的液接界。同时要求电池必须在可逆情况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通过电池。因此,在用电化学方法研究化学反应的热力学性质时,所设计的电池应尽量避免出现液接界,在精确度要求不高的测量中,常用“盐桥”来减小液接界电势。 为了使电池反应在接近热力学可逆条件下进行,一般均采用电位差计测量电池的电动势。原电池电动势主要是两个电极的电极电势的代数和,如能分别测定出两个电极的电势,就可计算得到由它们组成的电池电动势。 附【实验装置】(阅读了解) UJ25型电位差计 UJ25型箱式电位差计是一种测量低电势的电位差计,其测量范围为 mV .V 1171-μ(1K 置1?档)或 mV V 17110-μ(1K 置10?档) 。使用V V 4.6~7.5外接工作电源,标准电池和 灵敏电流计均外接,其面板图如图5.8.2 所示。调节工作电流(即校准)时分别调节1p R (粗调)、2p R (中调)和3p R (细 调)三个电阻转盘,以保证迅速准确地调 节工作电流。n R 是为了适应温度不同时标准电池电动势的变化而设置的,当温度不同 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

原电池电动势的测定实验报告

实验九 原电池电动势的测定及应用 一、实验目的 1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC -Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=- (9-1) 式中G ?是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -?);E 为电池的电动势。所以测出该电池的电动势E 后,进而又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。

在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s |||| 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应: { }22()()2Zn Zn s Zn a e ++-+? 正极起还原反应: 22()2()Cu Cu a e Cu s ++-+? 电池总反应为: 2222()()()()Cu Zn Zn s Cu a Zn a Cu s ++++++? 电池反应的吉布斯自由能变化值为: 22ln Cu Zn Zn Cu a a G G RT a a ++?=?- (9-2) 上述式中G ?为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。而在标态时,221Cu Zn a a ++==,则有: G G nFE ?=?=- (9-3) 式中E 为电池的标准电动势。由(9-1)至(9-1)式可得: 22ln Zn Cu a RT E E nF a + + =- (9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为: E ??+-=- (9-5) 对铜-锌电池而言 22,1 ln 2Cu Cu Cu RT F a ??+ + += - (9-6)

金属线胀系数

金属线胀系数的测定 实验目的:1)学会用千分表法测量金属杆长度的微小变化 2)测量金属杆的线胀系数,并判断此金属为何种金属 实验仪器: 实验原理:大家都知道热胀冷缩的现象,一般固体的长度或体积会随着温度的升高而膨胀,这就是固体的热膨胀。 设物体的温度改变Δt 时,其长度改变量为ΔL,如果Δt 足够小,则Δt 与ΔL 成正比,并且也与物体的原长有关系。因此它们三个量之间有: ΔL=αL Δt 式中的比例系数α称为固体的线胀系数,其物理意义是温度每升高1℃时其伸长量与它在0℃时长度的比。设金属在0℃时的长度是L0,当温度升高为t ℃时其长度为Lt,则有: (Lt-L0)/L0=αt 即Lt=L0(1+αt) 如果金属杆在温度为t1,t2时的长度分别为L1,L2,则可加热箱 恒温控制仪

以得到: L1=L0(1+αt1),L2=L0(1+αt2) 因为L1,L2非常接近,所以得到下式: α=(L2-L1)/L0(t2-t1) 由上式测得L1,L2,t1,t2就可以测得α值了。 实验过程: 1)接好电源和各个接口。 2)打开恒温控制仪,记录室温t1,再设定温度最大值,再记录此时千分表读数n1,最后按下确定键开始加热。 (实验所用金属杆0℃时长度为400mm) 3)每隔5℃读一次数tn ,同时记录千分表读数n n 。 4) 将数据整理填入设计好的表格中,待处理。 实验数据记录与处理: t1=21℃ L0=400mm n1=0.4012mm tn/℃ 26 31 36 41 46 51 tn-t1/℃ 5 10 15 20 25 30 n n /mm 0.4630 0.5119 0.553 0.591 0.624 0.658 n n -n1/mm 0.062 0.111 0.152 0.19 0.223 0.26

线膨胀系数实验报告参考

线胀系数测量实验报告参考稿 【实验目的】 1.学习并掌握测量金属线膨胀系数的一种方法。 2.学会用千分表测量长度的微小增量。 【实验仪器】 FB712型金属线膨胀系数测量仪一台,千分表(1-0-0.001mm )一个,待测铜管一根。 【实验原理】 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 如图所示,待测铜管的线胀系数为: () t L L ???= α 式中L 为温度为1t 摄氏度时的管长,L ?为管受热后温度从1t 升高到2t 时的伸长量,t ?为管受热前后的温度升高量 (12t t t -=?) 。 该式所定义的线胀系数的物理意义是固体材料在()21t , t 温度区域内,温度每升高一度时材料的相对伸长量,其单位为()1 C -?。 【实验内容和步骤】 1.把样品铜管安装在测试架上。连接好加热皮管,打开电源开关,以便从仪器面板水位显示器上观察水位情况。水箱容积大约为ml 750。 3.加水步骤:先打开机箱顶部的加水口和后面的溢水管口塑料盖,用漏斗从加水口往系统内加水,管路中的气体将从溢水管口跑出,直到系统的水位计仅有上方一个红灯亮,其余都转变为绿灯时,可以先关闭溢水管口塑料盖。接着可以按下强制冷却按钮,让循环水泵试运行,由于系统内可能存在大量气泡,造成水位计显示虚假水位,只有利用循环水泵试运行过程,把系统内气体排出,这时候水位下降,仪器自动保护停机。 4.设置好温度控制器加热温度:金属管加热温度设定值可根据金属管所需要的实际温度值设置。 5.将铜管(或铝管)对应的测温传感器信号输出插座与测试仪的介质温度传感器插座相连接。将千分尺装在被测介质铜管(或铝管)的自由伸缩端固定位置上,使千分表测试端与被测介质接触,为了保证接触良好,一般可使千分表初读数为mm 2.0左右,只要把该数值作为初读数对待,不必调零。(如认为有必要,可以通过转动表面,把千分尺主指针读数基本调零,而副指针无调零装置。) 6.正常测量时,按下加热按钮(高速或低速均可,但低速档由于功率小,一般最多只能加热到C 50?左右),观察被测金属管温度的变化,直至金属管温度等于所需温度值(例如C 35?)。.

活度系数实验报告

实验三 色谱法测定无限稀释溶液的活度系数 一、实验目的 1. 用气液色谱法测定苯和环己烷在邻苯二甲酸二壬酯中的无限稀释活度系数。 2. 通过实验掌握测定原理和操作方法。熟悉流量、温度和压力等基本测量方法。 3. 了解气液色谱仪的基本构造及原理。 二、基本原理 采用气液色谱测定无限稀释溶液活度系数,样品用量少,测定速度快,仅将一般色 谱仪稍加改装,即可使用。目前,这一方法已从只能测定易挥发溶质在难挥发溶剂中的 无限稀释活度系数,扩展到可以测定在挥发性溶剂中的无限稀释活度系数。因此,该法 在溶液热力学性质研究、气液平衡数据的推算、萃取精馏溶剂评选和气体溶解度测定等 方面的应用,日益显示其重要作用。 当气液色谱为线性分配等温线、气相为理想气体、载体对溶质的吸附作用可忽略等 简化条件下,根据气体色谱分离原理和气液平衡关系,可推导出溶质i 在固定液j 上进 行色谱分离时,溶质的校正保留体积与溶质在固定液中无限稀释活度系数之间的关系式。 根据溶质的保留时间和固定液的质量,计算出保留体积,就可得到溶质在固定液中的无 限稀释活度系数。 实验所用的色谱柱固定液为邻苯二甲酸二壬酯。样品苯和环己烷进样后汽化,并与 载气2H 混合后成为气相。 当载气2H 将某一气体组分带过色 谱柱时,由于气体组分与固定液的相互 作用,经过一定时间而流出色谱柱。通 常进样浓度很小,在吸附等温线的线性 围,流出曲线呈正态分布,如右图 所示。 设样品的保留时间为r t (从进样到样品峰顶的时间),死时间为d t (从惰性气体空气 进样到其峰顶的时间),则校正保留时间为: d r r t t t -=' (1)

校正保留体积为: c r r F t V ?=' ' (2) 式中,c F ——校正到柱温、柱压下的载气平均流量,s /m 3 校正保留体积与液相体积l V 关系为: K V V l r ?=' (3) 而 g i l i c c K = (4) 式中,3m 液相体积,--l V ; 分配系数--K ; 3m /mol 样品在液相中的浓度,--l i c ; 3m /mol 样品在气相中的浓度,--g i c 。 由式(3)、(4)可得: l i g i l i V V c c '= (5) 因气相视为理想气体,则 c i g i RT p c = (6) 而当溶液为无限稀释时,则 l i l l i M x c ρ= (7) 式中,气体常数--R ; 3m /kg 纯液体的密度,--l ρ; 固定液的分子量--i M ; 的摩尔分率样品i --i x ; Pa 样品的分压,--i p ; K 柱温,--c T 。

01气液平衡实验报告

一、实验目的 1、了解和掌握用双循环汽液平衡器测定二元系统气液平衡数据的方法。 2、了解缔合系统汽—液平衡数据的关联方法,从实验测得的T-p-x-y 数据计算各组分的活度系数。 3、通过实验了解平衡釜的构造,掌握气液平衡数据的测定方法和技能。 4、掌握二元系统气液平衡相图的绘制。 二、实验原理 以循环法测定气液平衡数据的平衡釜类型虽多,但基本原理相同,如图1所示。当体系达到平衡时,两个容器的组成不随时间变化,这时从A和B两容器中取样分析,即可得到一组平衡数据。 图1、平衡法测定气液平衡原理图 当达到平衡时,除了两相的温度和压力分别相等外,每一组分化学位也相等,即逸度相等,其热力学基本关系为: L i f =V i f (1) 0i i i i i py f x ?γ= 常压下,气相可视为理想气体,再忽略压力对流体逸度的影响,0i i p f = 从而得出低压下气液平衡关系式为: i py =0i i i r p x (2) 式中,p ——体系压力(总压); 0i p ——纯组分i 在平衡温度下的饱和蒸汽压,可用Antoine 公式计算; i x 、i y ——分别为组分i 在液相和气相中的摩尔分率; i γ——组分i 的活度系数 由实验测得等压下气液平衡数据,则可用

i y = i i i py x p (3) 计算出不同组成下的活度系数。 本实验中活度系数和组成关系采用Wilson 方程关联。Wilson 方程为: ln γ1=-ln(x 1+Λ12x 2)+x 2( 212112x x Λ+Λ -121221 x x Λ+Λ) (4) ln γ2=-ln(x 2+Λ21x 1)+x 1( 121221x x Λ+Λ -2 12112 x x Λ+Λ) (5) Wilson 方程二元配偶函数Λ12和Λ21采用非线性最小二乘法,由二元气液平衡数据回归得到。 目标函数选为气相组成误差的平方和,即 F =2221211((j m j j y y y y ))计实计实-+-∑= (6) 三、实验装置和试剂 1、实验的装置:平衡釜一台、阿贝折射仪一台、超级恒温槽一台、50-100十分之一的标准温度计一支、0-50十分之一的标准温度计一支、1ml 注射器4支、5ml 注射器1支。 2 、实验的试剂:无水甲醇、异丙醇。 四、实验步骤 1、开启超级恒温槽,调温至测定折射率所需温度25℃或30℃。 2、测温套管中倒入甘油,将标准温度计插入套管中,并将其露出部分中间

物理化学-实验十四:电解质溶液活度系数的测定

实验十四电解质溶液活度系数的测定 一、实验目的 1.掌握用电动势法测定电解质溶液平均离子活度系数的基本原理和方法。 2.通过实验加深对活度、活度系数、平均活度、平均活度系数等概念的理解。 3.学会应用外推法处理实验数据。 二、基本原理 活度系数是用于表示真实溶液与理想溶液中任一组分浓度的偏差而引入的一个校正因子,它与活度a、质量摩尔浓度m之间的关系为: (1) 在理想溶液中各电解质的活度系数为1,在稀溶液中活度系数近似为1。对于电解质溶液,由于溶液是电中性的,所以单个离子的活度和活度系数是不可测量、无法得到的。通过实验 只能测量离子的平均活度系数,它与平均活度、平均质量摩尔浓度之间的关 系为: (2) 平均活度和平均活度系数测量方法主要有:气液相色谱法、动力学法、稀溶液依数性法、电动势法等。本实验采用电动势法测定ZnCl2溶液的平均活度系数。其原理如下: 用ZnCl2溶液构成如下单液化学电池: 该电池反应为: 其电动势为:(3) (4) 根据:(5) (6) (7) 得:(8) 式中:,称为电池的标准电动势。 可见,当电解质的浓度m为已知值时,在一定温度下,只要测得E 值,再由标准电极

电势表的数据求得,即可求得。 值还可以根据实验结果用外推法得到,其具体方法如下: 将代入式(8),可得: (9) 将德拜-休克尔公式:和离子强度的定义:代入到式(9),可得: (10) 可见,可由图外推至时得到。因而,只要由实验测出用不同浓度的ZnCl2溶液构成前述单液化学电池的相应电动势E值,作图,得到一条 曲线,再将此曲线外推至m=0,纵坐标上所得的截距即为。 三、仪器及试剂 仪器LK2005A型电化学工作站(天津兰力科化学电子公司),恒温装置一套,标准电池,100 ml容量瓶6只,5 ml和10 ml移液管各1支,250 ml和400 ml 烧杯各 1 只,Ag /AgCl电极,细砂纸。 试剂ZnCl2(A.R),锌片。 四、操作步骤 1.溶液的配制: 用二次蒸馏水准确配制浓度为 1.0 mol.dm-3的ZnCl2溶液250ml。用此标准浓度的ZnCl2溶液配制0.005、0.01、0.02、0.05、0.1 和0.2 mol.dm-3标准溶液各100 ml。 2.控制恒温浴温度为25.0 ± 0.2 ℃。 3。将锌电极用细砂纸打磨至光亮,用乙醇、丙酮等除去电极表面的油,再用稀酸浸泡片刻以除去表面的氧化物,取出用蒸馏水冲洗干净,备用。 4.电动势的测定:将配制的ZnCl2标准溶液,按由稀到浓的次序分别装入电解池恒温。将锌电极和Ag/AgCl电极分别插入装有ZnCl2溶液的电池管中,用电化学工作站分别测定各种在ZnCl2浓度时电池的电动势。 5.实验结束后,将电池、电极等洗净备用。

金属线膨胀系数测量实验报告

梧州学院学生实验报告 成绩: 指导教师: 专业: 班别: 实验时间: 实验人: 学号: 同组实验人: 实验名称:金属线膨胀系数测量 实验目的:1、学习测量金属线膨胀系数的一种方法。 2、学会使用千分表。 实验仪器: 型号规格 单位 数量 备注 FB7 1 2型金属线膨 胀系数测定仪 台 1 被测件测试架 台 1 千分表 只 1 传感器连接线 根 2 L=80c m 红黑各一根 小漏斗 只 1 电源线 根 1 实验讲义(说明书)] 本 1 注意事项:1、做实验前必须精读FB712型金属线膨胀系数测定仪的使用说明书,正规操作 2 、注意千分表的使 用规范。 FB712型金属线膨胀系数测量仪实验装置示意图 【实验原理】 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。 特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为 L 的物体, 受热后其伸长量厶L 与其温度的增加量△ t 近似成正比,与原长L 亦成正比,即: △ L=a ? L ?△ t (1) 式中的比例系数a 称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数 不同,塑料的 47 -J?V 叱-■: <■:"負号 ■'a ^_A s'.Vi Pf jW 丹 >¥ -i~ ■ "I irtf I - *■ 4 !■":■_! 牡二盂:J 豪迂二辽山输咤或典: &::?,、性%世*巴电冷忙即卜亠:.豆凳;其 応宓云I 恣心加[文 图&匹丁型金属线勝胀無数测定仪实物黑片 强制风冷 低速如撰 高速&]壇 盥控设齧 放水阀 H 水fr 匕 千分表 铝骨 FT1碱度传感黯 循环水管 削* 口 金廉管温度扬示 甥管 爲虔倩号践 S 度 指

固体线热膨胀系数的测定实验报告

固体线热膨胀系数的测定 【实验目的】 材料的线膨胀指的是材料受热后一维长度的伸长。当温度升高时,一般固体由于其原子或分子的热运动加剧,粒子间的平均距离发生变化,温度越高,其平均距离越大,这就是固体的热膨胀。热膨胀是物质的基本热学性质之一。物体的热膨胀不仅与物质种类有关。对金属晶体而言,由于它们是由许多晶粒构成的,这些晶粒在空间方位上排列是无规则的,整体表现出各相同性。它们的线膨胀在各个方向均相同。 虽然固体的热膨胀非常微小,但使物体发生很小形变时就需要很大的应力。在建筑工程、机械装配、电子工业等部门中都需要考虑固体材料的热膨胀因素。因此固体线胀系数是选择材料的一项重要指标,测定固体的线膨胀系数具有重要的实际意义。 1. 掌握测量固体线热膨胀系数的基本原理。测量铁、铜、铝棒的线热膨胀系数。 2. 学会使用千分表,掌握温度控制仪的操作。 3. 学习图解图示法处理实验数据。 【实验原理】 设为物体在温度时的长度,则该物体在时的长度可由下式表示: (1) 其中,为该物体的线膨胀系数,在温度变化不大时,可视为常数。将式(23-1)改写为: (2) 可见,的物理意义为:温度每升高时物体的伸长量与它在时的长度之比,单位为:或。 实际测量中,一般只能测得材料在温度及时的长度及,设是常量,则有: (3) 由式(6)即可求得物体在温度之间的平均线膨胀系数。其 中,微小长度变化量可直接用千分表测量。本实验对金属铁、铜、 铝进行测量求出不同金属的线膨胀系数。 【实验仪器】 FD-LEA固体线热膨胀系数测定仪(一套)、(电加热箱、千分 表、温控仪)金属棒、电源线、加热线、传感器及电缆 仪器介绍 1.千分表是一种测定微小长度变化量的仪表,其外形结构如图

电动势的测定及其应用(实验报告)

实验报告电动势的测定及其应用 一.实验目的 1.掌握对消法测定电动势的原理及电位差计,检流计及标准电池使用注意事项及简单原理。 2.学会制备银电极,银~氯化银电极,盐桥的方法。 3.了解可逆电池电动势的应用。 二.实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极上发生还原反应,负极则发生氧化反应,电池反应是电池中所有反应的总和。 电池除可用作电源外,还可用它来研究构成此电池的化学反应的热力学性质,从化学热力学得知,在恒温、恒压、可逆条件下,电池反应有以下关系: △r G m=-nFE 式中△r G m是电池反应的吉布斯自由能增量;n为电极反应中电子得失数;F为法拉第常数;E为电池的电动势。从式中可知,测得电池的电动势E后,便可求得△r G m,进而又可求得其他热力学参数。但须注意,首先要求被测电池反应本身是可逆的,即要求电池的电极反应是可逆的,并且不存在不可逆的液接界。同时要求电池必须在可逆情况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通过电池。因此,在用电化学方法研究化学反应的热力学性质时,所设计的电池应尽量避免出现液接界,在精确度要求不高的测量中,常用“盐桥”来减小液接界电势。 为了使电池反应在接近热力学可逆条件下进行,一般均采用电位差计测量电池的电动势。原电池电动势主要是两个电极的电极电势的代数和,如能分别测定出两个电极的电势,就可计算得到由它们组成的电池电动势。 附【实验装置】(阅读了解) UJ25型电位差计

UJ25型箱式电位差计是一种测量低电势的电位差计,其测量范围为 mV .V 1171-μ(1K 置1?档)或 mV V 17110-μ(1K 置10?档) 。使用V V 4.6~7.5外接工作电源,标准电池和 灵敏电流计均外接,其面板图如图5.8.2所示。调节工作电流(即校准)时分别调节1p R (粗调)、2p R (中调)和3p R (细 调)三个电阻转盘,以保证迅速准确地调节工作电流。n R 是为了适应温度不同时标准电池电动势的变化而设置的,当温度不同引起标准电池电动势变化时,通过调节n R ,使工作电流保持不变。x R 被分成Ⅰ(1?)、Ⅱ(1.0?)和Ⅲ(001.0?)三个电阻转盘,并在转盘上标出对应x R 的电压值,电位差计处于补偿状态时可以从这三个转盘上直接读出未知电动势或未知电压。左下方的“粗”和“细”两个按钮,其作用是:按下“粗”铵钮,保护电阻和灵敏电流计串联,此时电流计的灵敏度降低;按下“细”按钮,保护电阻被短路,此时电流计的灵敏度提高。2K 为标准电池和未知电动势的转换开关。标准电池、灵敏电流计、工作电源和未知电动势x E 由相应的接线柱外接。 UJ25型电位差计的使用方法: (1)将2K 置到“断”,1K 置于“1?”档或“10?”档(视被测量值而定),分别接上标准电池、灵敏电流计、工作电源。被测电动势(或电压)接于“未知1”(或“未知2”)。 (2)根据温度修正公式计算标准电池的电动势)(t E n 的值,调节n R 的示值与其相等。将2K 置“标准”档,按下 “粗”按钮,调节1p R 、2p R 和3p R ,使灵敏电流计指针指零,再按下 “细”按钮,用2p R 和3p R 精确调节至灵敏电流计指针指零。此操作过程称为“校准”。 (3) 将2K 置“未知1”(或“未知2”)位置,按下“粗”按钮,调节读数转盘Ⅰ、 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

保温材料检测作业指导书

1.1目的:通过对建筑节能保温材料的密度、压缩强度、导热系数的检验及分级来判定是否符合工程设计要求。 1.2范围:适用于泡沫塑料、绝热用模塑聚苯乙烯泡沫塑料、绝热用挤塑聚苯乙烯泡沫塑料、建筑物隔热用硬质聚氨酯泡沫塑料的导热系数、密度、压缩强度以及胶粉聚苯颗粒保温浆料的导热系数、干表观密度、抗压强度进行检验及分级。 2.检测依据标准 《泡沫塑料及橡胶表观密度的测定GB/T6343-2009》 《硬质泡沫塑料压缩性能的测定GB/T8813-2008》 《绝热材料稳态热阻及有关特性的测定防护热板法GB/T10294-2008》 《绝热用模塑聚苯乙烯泡沫塑料GB/T10801.1-2002》 《绝热用模塑聚苯乙烯泡沫塑料GB/T10801.1-2002》 《胶粉聚苯颗粒外墙外保温系统JG158—2004》 《外墙外保温工程技术规程JGJ144—2004》 3.检测仪器设备要求及保养维护 3.1 所需仪器设备及其参数: 电子天平:最大称量100g,精度0.001g; 游标卡尺:0~125mm 精度0.02mm; 烘箱:灵敏度±2℃; 天平:精度0.01g; 干燥器:直径大于300mm; 钢板尺:500mm;精度1mm; 组合式无底金属试模:300×300×30mm; 玻璃板:400×400×(3~5)mm; 压缩试验机:最大试验力 10kn, 试验力测量误差±1%,位移测量误差小于±5%,试验力等速率控制精度±0.5%设定值,恒试验力、恒位移速 率控制精度±1%设定值; 导热系数测定仪:试件规格:(计量)150×150(mm)-(防护)300×300(mm),试 件厚度:~37.5mm,导热系数测定范围:0.01~1W/(m·k), 冷板温度:-3~90℃,热板温度:≤120℃,测试重复性:≤ 1%。 材料切割机:最大通过材料厚度:200mm;最大成型尺寸:(长×宽×高)600× 600×200(mm) 3.2 仪器设备的计量要求 设备应有产品合格证,检定/校准有效期内计量证书。 3.3仪器维护保养,自检要求 3.3.1电子万能试验机维护保养要求 计算机要保持干燥,防尘网需要保持清洁。电源保证接触良好。检查各连线是否完好。

相关文档
最新文档