电力变压器计算单-S11-M-315-10-0.4

电力变压器计算单-S11-M-315-10-0.4
电力变压器计算单-S11-M-315-10-0.4

变压器差的动保护原理(详细)

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高 =220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KV A, I1’:流过变压器高压侧的一次电流; I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2” I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地) 单相接地故障以及匝间、层间短路故障;

四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。以p点为 例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2,最小制动电流 Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流I1=6A,180度,低压侧电流I2=6A,0度,固定I1升 I2,当I2升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(I1+I2)/2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)=1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就 判此电流为非故障电流,进行谐波闭锁。500kv一下等级的变压器之

油浸电力变压器设计手册-沈阳变压器(1999) 6负载损耗计算

目录 1 概述SB-007.6 第 1 页 2 绕组导线电阻损耗(P R)计算SB-007.6 第 1 页 3 绕组附加损耗(P f)计算SB-007.6 第1页3.1 层式绕组的附加损耗系数(K f %)SB-007.6 第 1 页3.2 饼式绕组的附加损耗系数(K f %)SB-007.6 第 2 页3.3 导线中涡流损耗系数(K w %)计算SB-007.6 第 2 页 3.3.1 双绕组运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 2 页3.3.2 降压三绕组变压器联合运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 3 页 SB-007.6 第3 页3.3.3 升压三绕组(或高-低-高双绕组)变压器联合运行方式的最大纵向漏 磁通密度(B m)计算 3.3.4 双绕组运行方式的涡流损耗系数(K w %)简便计算SB-007.6 第4 页3.4 环流损耗系数(K C %)计算SB-007.6 第 4 页3. 4.1 连续式绕组的环流损耗系数(K C %)计算SB-007.6 第4 页3.4.2 载流单螺旋―242‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第5 页 SB-007.6 第5 页3.4.3 非载流(处在漏磁场中间)单螺旋―242‖换位的绕组环流损耗系数 (K C2 %)计算 3.4.4 载流双螺旋―交叉‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第6 页 SB-007.6 第7 页3.4.5 非载流(处在漏磁场中间)双螺旋―交叉‖ 换位的绕组环流损耗 系数(K C2 %)计算 4引线损耗(P y)计算SB-007.6 第7 页5杂散损耗(P ZS)计算SB-007.6 第8 页5.1小型变压器的杂散损耗(P Z S)计算SB-007.6 第8 页5.2中大型变压器的杂散损耗(P Z S)计算SB-007.6 第9 页5.3 特大型变压器的杂散损耗(P Z S)计算SB-007.6 第10 页

电力变压器主要技术参数

电力变压器主要技术参数 变压器在规定的使用环境与运行条件下,主要技术数据一般都都标注在变压器的铭牌上。主要包括:额定容量、额定电压及其分接、额定频率、绕组联结组以及额定性能数据(阻抗电压、 空载电流、空载损耗与负载损耗)与总重。 A、额定容量(kVA):额定电压、额定电流下连续运行时,能输送的容量。 B、额定电压(kV):变压器长时间运行时所能承受的工作电压、为适应电网电压变化的需要, 变压器高压侧都有分接抽头,通过调整高压绕组匝数来调节低压侧输出电压、 C、额定电流(A):变压器在额定容量下,允许长期通过的电流、 D、空载损耗(kW): 当以额定频率的额定电压施加在一个绕组的端子上,其余绕组开路时所吸 取的有功功率。与铁心硅钢片性能及制造工艺、与施加的电压有关、 E、空载电流(%): 当变压器在额定电压下二次侧空载时,一次绕组中通过的电流、一般以额 定电流的百分数表示、 F、负载损耗(kW): 把变压器的二次绕组短路,在一次绕组额定分接位置上通入额定电流,此 时变压器所消耗的功率、 G、阻抗电压(%):把变压器的二次绕组短路,在一次绕组慢慢升高电压,当二次绕组的短路电 流等于额定值时,此时一次侧所施加的电压、一般以额定电压的百分数表示、 H、相数与频率:三相开头以S表示,单相开头以D表示。中国国家标准频率f为50Hz。国外 有60Hz的国家(如美国)。 I、温升与冷却:变压器绕组或上层油温与变压器周围环境的温度之差,称为绕组或上层油面的温升、油浸式变压器绕组温升限值为65K、油面温升为55K。冷却方式也有多种:油浸自冷、 强迫风冷,水冷,管式、片式等。 J、绝缘水平:有绝缘等级标准。绝缘水平的表示方法举例如下:高压额定电压为35kV级,低压额定电压为10kV级的变压器绝缘水平表示为 LI200AC85/LI75AC35,其中LI200表示该变压器高压雷电冲击耐受电压为200kV,工频耐受电压为85kV,低压雷电冲击耐受电压为75kV,工频耐受电压为35kV、奥克斯高科技有限公司目前的油浸变压器产品的绝缘水平为

变压器差动保护整定计算

变压器差动保护整定计算 1. 比率差动 装置中的平衡系数的计算 1).计算变压器各侧一次额定电流: n n n U S I 113= 式中n S 为变压器最大额定容量,n U 1为变压器计算侧额定电压。 2).计算变压器各侧二次额定电流: LH n n n I I 12= 式中n I 1为变压器计算侧一次额定电流,LH n 为变压器计算侧TA 变比。 3).计算变压器各侧平衡系数: b n n PH K I I K ?= -2min 2,其中)4,min(min 2max 2--=n n b I I K 式中n I 2为变压器计算侧二次额定电流,min 2-n I 为变压器各侧二次额定电流值中最小值,max 2-n I 为变压器各侧二次额定电流值中最大值。

平衡系数的计算方法即以变压器各侧中二次额定电流为最小的一侧为基准,其它侧依次放大。若最大二次额定电流与最小二次额定电流的比值大于4,则取放大倍数最大的一侧倍数为4,其它侧依次减小;若最大二次额定电流与最小二次额定电流的比值小于4,则取放大倍数最小的一侧倍数为1,其它侧依次放大。装置为了保证精度,所能接受的最小系数ph K 为,因此差动保护各侧电流平衡系数调整范围最大可达16倍。 差动各侧电流相位差的补偿 变压器各侧电流互感器采用星形接线,二次电流直接接入本装置。电流互感器各侧的极性都以母线侧为极性端。 变压器各侧TA 二次电流相位由软件调整,装置采用Δ->Y 变化调整差流平衡,这样可明确区分涌流和故障的特征,大大加快保护的动作速度。对于Yo/Δ-11的接线,其校正方法如下: Yo 侧: )0('I I I A A ? ??-= )0(' I I I B B ? ? ? -= )0('I I I C C ? ??-= Δ侧: 3/ )('c a a I I I ? ??-=

变压器计算公式

变压器计算公式已知容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。 这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化, 省去了容量除以千伏数,商数再乘系数。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数是考虑电动机功率因数和效率等计算而得的综合值。功率因数为,效率不,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电压数去除、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW 数又恰是6kV数的倍数,则容量除以千伏数,商数乘以系数。 (5)误差。由口诀c 中系数是取电动机功率因数为、效率为而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。 *测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀: 无牌电机的容量,测得空载电流值, 乘十除以八求算,近靠等级千瓦数。 说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。 测知电力变压器二次侧电流,求算其所载负荷容量 口诀: 已知配变二次压,测得电流求千瓦。 电压等级四百伏,一安零点六千瓦。

变压器差动保护计算要领

变压器比率制动纵差保护 整定计算步骤及要领 1.计算制动电流启动值 正常运行中变压器负荷电流通常在额定电流I e 以下,不平衡I bp 电流很小, 无需比率制动,差动动作电流I cd 为恒定,不随制动电流的增大而增大。 所以制动电流启动值:I Zd qd =(0.8~1.0)I e /n L 式中:n L -电流互感器变比 制动电流启动值也就是一折线的拐点电流值。 2.计算差动保护启动电流值 差动保护启动电流(门槛值)现场一般取:I cd qd =(0.4~0.7)I e /n L 如果有条件,最好在现场实测变压器的不平衡电流I bph ,作为差动启动电流 整定计算的依据。 3.计算差动保护速断电流值 差动速断电流值:I cd sd =(6~8)I e /n L 4.计算比率制动系数 比率制动系数K zd 与变压器外部三相最大短路电流、制动电流启动值相关, 与差动电流启动值、速断值相关。 计算比率制动系数:K zd = e I .max )3(I e I 23.0.max )3(I 5.40--外外 5.计算制动电流 制动电流:I Zd =(I cd sd - I cd qd )/ K zd +I Zd qd 举 例 一、已知参数: 主变容量=10000KVA ;额定电压=35/10.5KV ;

计算变压器一次侧额定电流=35 310000?=165(A ); 一次侧CT 变比=300/5、CT 二次额定电流=60 165=2.75(A ) 主变阻抗电压百分比=7.33% 通过短路电流计算已知主变外部三相最大短路电流=2095(A ) 二、计算定值 1.计算制动电流启动定值:I Zd qd =1.0I e /n L =60 165=2.75(A ) 2.计算差动启动电流定值:I cd qd =0.7I 2e =0.7×2.75=1.925 取I cd qd =2.0 3.计算差动速断电流定值:I cd sd =8I e /n L =60 1658?= 22(A ) 4. 计算比率制动系数:K zd =e max )3(e .max )3(I .I I 23.0I 5.40--外外 =165 209516523.02095I 5.40-?-? =0.468 取K zd =0.5 5.计算制动电流:I Zd =(I cd sd - I cd qd )/ K zd +I Zd qd =(22-2)/0.5+2.75 =42.75A 取I Zd =43A 说明:本计算公式中的代表符号与说明书不一致,在使用时应注意。

变压器经典计算

1. 反激式开关电源电路 2. 开关变压器功能 a. 磁能转换(能量储存) b. 绝缘 c. 电压转换 3. 工作流程 a. 根据PWM(脉宽调制法)控制,当晶体管(例功率MOSFET)打开时电流流过变压器初级绕组,这时变压器储存能量(在磁心GAP),与此同时,因为初级绕组和次级绕组极性不同,整流二极管断开时电流流过次级绕组; b. 因为次级绕组极性是不同于初级绕组,当晶体管关闭(例功率MOSFET)时存储的能量将被释放(从磁心GAP). 同时整流管也打开.所以,电流将流过开关电源变压器的次级绕组; c. 反馈绕组提供PWM工作电压(控制), 所以反馈绕组的圈数是依照PWM 的工作电压来计算;例如, UC3842B(PWM)工作电压是10-16Vdc ,你必须是依照这个电压计算反馈圈数,否则UC3842B(PWM)将不能正常工作!一般, UC3842B(PWM)损坏时,反馈电压是超过30Vdc. 4. 主要参数对整个路的影响 a. 电感:如果初级电感太低,变压器将储存的能量少,使输出电压不连续;如果次级电感也低,变压器的能量将不能完全释放,所以,输出电压将是非常低;这时PWM将不能正常工作.此时反馈绕组的电感也是过低或过高, b. 漏电感: 如果漏电感太高,它将产生一个高的尖峰电压在初级绕组. 它是非常的危险.因为高的尖峰电压可以损坏晶体管!另一方面,漏电感将影响开关电源变压器对电磁干扰的测试,它对整个电流将产生更多的噪音;所以开关变压器要求低漏电感. c. 绝缘强度:因为初级地是不同次级地;它有一个高电压在初级与次级之间,所以,它有很好的绝缘! 一。基本设计条件 1. 输入85-264V ac /输出5Vdc 2A 2. 最大工作比40% (晶体管关闭和打开的时间比率) 3. 工作频率75kHz 4. 温度等级: class B 二。基本的设计步骤 1.变压器尺寸 Ae*Ap=PB*102/2f*B*j*?*K Ae---- 有效截面积 Ap---- 磁芯绕线面积 PB ---- 输出功率 f ----- 工作频率 B ----- 有效饱和磁通 j ----- 电流密度 ? ----- 变压器效率 K ----- 骨架绕线系数 Ae*Ap=2(5.0+0.7)*102/2*75*103*0.17*2.5*0.8*0.2

S9-400/10.5/0.4变压器电磁计算本科论文

S9-400/10.5/0.4变压器电磁计算 摘要 电力变压器是一种静止的电气设备,电力变压器是电力网中的主要电气设备。其设计和制造的好坏是直接影响其运行质量和经济效益的关键所在,因此电力变压器的电磁计算就显得尤为重要。电磁计算的任务在于确定变压器的电、磁负载和主要几何尺寸,计算性能数据和各部分的温升以及计算变压器的重量、外型尺寸和取得比较合理的技术经济效果。计算结果必须满足国家标准及有关技术标准的规定和使用部门的要求。 本文对400kV A/10.5kV/0.4电力变压器进行了电磁计算。首先对电力变压器的发展历史、基本的特性及变压器的设计方法进行了简单的阐述。在电磁计算中,最开始是铁心的选择,这是变压器设计的起点也是一个关键点,然后是变压器绕组材料和型式的选择,绕组有关数据的计算,最为关键的是短路阻抗、负载损耗、空载电流、空载损耗等变压器性能参数的计算,最后完成变压器油箱、变压器温升、短路电动力、变压器总油量和总质量的确定与计算。其中的短路阻抗计算困难最大,需要经过反复计算才能达到技术要求。在电磁计算的全过程中较为详细的阐明了电力变压器计算的基本公式和计算方法,给出了一套完整的设计方案。 关键词:电力变压器;电磁计算;绕组;短路电动力 S9-400/10.5 /0.4/of Electromagnetic Power

Transformer Design Abstract Power transformer is a kind of static electrical equipment in power network, it is the main electric equipment. The design and manufacturing quality is directly affecting the operation quality and the economic benefit is the key, so the electromagnetic calculation of power transformer is very important. Electromagnetic computing task is to identify transformer electric, magnetic load and main dimensions, computing performance data and the various parts of the temperature rise and the calculation of transformer weight, dimensions and obtain reasonable technical and economic effect. The calculation results must meet the national standards and the relevant technical standards and the use of department. The 400KVA/10.5KV/0.4KV power transformer electromagnetic computation. The power transformer development history, basic characteristic and design method of simple exposition. In the electromagnetic calculation, most beginning is core selection, which is the starting point of transformer design is also a key point, and then is transformer winding material and type selection, calculation of winding of relevant data, the most important is the short circuit impedance, load loss, no load current, no load loss of transformer performance parameters are calculated, finally finished oil tank of transformer, transformer temperature rise, power transformer short circuit, the total oil volume and total quality determination and calculation. The calculation of short circuit impedance difficulty the biggest requires repeated calculation can reach the technical requirements. In the electromagnetic calculation of whole process detailed expounds the power transformer basic calculation formula and method, given a complete set of design scheme. Power transformer; electromagnetic computing; winding short-circuit force;

某电力变压器继电保护设计(继电保护)

1 继电保护相关理论知识 1.1 继电保护的概述 研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。 1.2.1 继电保护的任务 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 1.2.2继电保护基本原理和保护装置的组成 继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。依据反映的物理量的不同,保护装置可以构成下述各种原理的保护:(1)反映电气量的保护 电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗)和它们之间的相位角改变等现象。因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别.就可以构成各种不同原理的继电保护装置。 例如:反映电流增大构成过电流保护; 反映电压降低(或升高)构成低电压(或过电压)保护; 反映电流与电压间的相位角变化构成方向保护; 反映电压与电流的比值的变化构成距离保护。 除此以外.还可根据在被保护元件内部和外部短路时,被保护元件两端电流相位或功率方向的差别,分别构成差动保护、高频保护等。 同理,由于序分量保护灵敏度高,也得到广泛应用。 新出现的反映故障分量、突变量以及自适应原理的保护也在应用中。

变压器差动电流计算原理之变压器CT的接线方式

上一期我们和大家一起了解了变压器的接线组别,定量分析了变压器高低压侧一次电流的相位、幅值关系。我们的继电保护装置在进行差流计算时使用的是二次电流,因此需要经过电流互感器(CT)将一次电流转换为供保护使用的二次电流。本期我们和大家一起来讨论一下变压器CT的接线方式。 1、CT的极性 我们先来了解一下CT接线的极性问题。这就需要搞清楚几个名词:极性端、同名端、减极性。 极性端一般用“*”标记,在图中,一次侧P1为极性端,P2为非极性端,一般设计P1装于母线侧(或变压器侧),P2装于负荷侧。二次侧S1为极性端,S2为非极性端。P1和S1(P2和S2)互为同名端。 至于减极性,我们只需要简单的记住:若CT采用减极性,对于一次绕组电流从极性端流入,对于二次绕组电流从极性端流出。 如果将CT二次回路断开,将保护装置直接串联在一次回路中,流过装置的电流方向与CT减极性标注的二次电流方向相同。所以减极性标注对于判断二次电流的流向非常直观。

所以我国CT均采用减极性标注。 2、变压器两侧CT的接线方式 在模拟型变压器保护中,为了相位校正的需要CT有些情况下需要接成三角形。现在的微机型保护中,相位校正都在软件中实现,所以变压器两侧CT均使用Y接线。以下图所示的Yd-11变压器两侧CT的接线方式为例:

如图所示的CT接线形式,其高压侧及低压侧电流互感器二次绕组中,靠近变压器侧的端子连在一起,我们称为封CT的变压器侧。如果是靠近母线侧的二次绕组端子连在一起,则称为封CT的母线侧。 设高压侧电流互感器变比为nH,低压侧电流互感器变比为nL。分析流入保护装置的二次电流(Iha,Ihb,Ihc,Ila,Ilb,Ilc)与变压器一次电流(IHa,IHb,IHc,ILa,ILb,ILc)的对应关系。从图中可以看出高压侧二次电流从极性端流出,流入保护装置。低压侧二次电流从保护装置流出,从极性端流入CT二次绕组。若程序设定二次电流的方向以流入保护装置的(A,B,C)端为正方向,则有:

设计变压器的基本公式精编版

设计变压器的基本公式 为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T) Bm=(Up×104)/KfNpSc 式中:Up——变压器一次绕组上所加电压(V) f——脉冲变压器工作频率(Hz) Np——变压器一次绕组匝数(匝) Sc——磁心有效截面积(cm2) K——系数,对正弦波为4.44,对矩形波为4.0 一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。 变压器输出功率可由下式计算(单位:W) Po=1.16BmfjScSo×10-5 式中:j——导线电流密度(A/mm2) Sc——磁心的有效截面积(cm2) So——磁心的窗口面积(cm2) 3对功率变压器的要求 (1)漏感要小 图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。 图9双极性功率变换器波形 功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。 (2)避免瞬态饱和

一般工频电源变压器的工作磁通密度设计在B-H曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。它衰减得很快,持续时间一般只有几个周期。对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。所以一般在控制电路中都有软启动电路来解决这个问题。 (3)要考虑温度影响 开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特性。一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40℃考虑,磁心温度可达60~80℃,一般选择Bm=0.2~0.4T,即2000~4000GS。 (4)合理进行结构设计 从结构上看,有下列几个因素应当给予考虑: 漏磁要小,减小绕组的漏感; 便于绕制,引出线及变压器安装要方便,以利于生产和维护; 便于散热。 4磁心材料的选择 软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点,而被广泛应用于开关电源中。 软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列,锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体的组成部分是Fe2O3,NiO,ZnO 等,主要用于1MHz以上的各种调感绕组、抗干扰磁珠、共用天线匹配器等。 在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为高导磁率磁心,其材料牌号多为R4K~R10K,即相对磁导率为4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。 开关电源用铁氧体磁性材应满足以下要求:

电力变压器基本型号及参数知识

电力变压器基本型号及参数知识 干式变压器: 例如,(SCB10-1000KVA/10KV/0.4KV): S的意思表示此变压器为三相变压器,如果S换成D则表示此变压器为单相。 C的意思表示此变压器的绕组为树脂浇注成形固体。 B的意思就是箔式绕组,如果就是R则表示为缠绕式绕组,如果就是L则表示为铝绕组,如果就是Z则表示为有载调压(铜不标)。 10的意示就是设计序号,也叫技术序号。 1000KVA则表示此台变压器的额定容量(1000千伏安)。 10KV的意思就是一次额定电压,0.4KV意思就是二次额定电压。 电力变压器产品型号其它的字母排列顺序及涵义。 (1)绕组藕合方式,涵义分:独立(不标);自藕(O表示)。(2)相数,涵义分:单相(D);三相(S)。(3)绕

组外绝缘介质,涵义分;变压器油(不标);空气(G):气体(Q);成型固体浇注式(C):包绕式(CR):难燃液体(R)。(4)冷却装置种类,涵义分;自然循环冷却装置(不标):风冷却器(F):水冷却器(S)。(5)油循环方式,涵义:自然循环(不标);强迫油循环(P)。(6)绕组数,涵义分;双绕组(不标);三绕组(S);双分裂绕组(F)。(7)调压方式,涵义分;无励磁调压(不标):有载调压抑(Z)。(8)线圈导线材质,涵义分:铜(不标);铜箔(B);铝(L)铝箔(LB)。(9)铁心材质,涵义;电工钢片(不标);非晶合金(H)。(10)特殊用途或特殊结构,涵义分;密封式(M);串联用(C);起动用(Q);防雷保护用(B);调容用(T);高阻抗(K)地面站牵引用(QY);低噪音用(Z);电缆引出(L);隔离用(G);电容补偿用(RB);油田动力照明用(Y);厂用变压器(CY);全绝缘(J);同步电机励磁用(LC)。 变压器型号 一、电力变压器型号说明如下:

变压器差动保护的功能及定值计算

差动保护的功能及定值计算 1 微机变压器差动保护功能 1.1比率制动式差动保护 比率制动式差动保护作为变压器的主保护,能反映变压器内部相间短路故障,高压侧单相接地短路及匝间层间短路故障。当突变量大于0.25倍差动定值时投入,动作判据为; {Icd≥Icdset 当Izd≤Izdset时, Icd≥Icdset+K1(Izd-Izdset) 当Izd〉Izdset时, 电流方向以实际的功率方向为准。其中Icd为差电流: Icdset为差动保护整定计算值; Icdset为差动保护门槛计算值; Izd为保护制动电流 K1为比率制动系数(0.4~0.7)可选; H为变压器35kV侧流进差动保护实际电流; L为变压器10kV侧流进差动保护实际电流; 1. 2二次谐波闭锁功能 变压器投入时,励磁涌值为变压器额定电流的5~8倍,励磁涌中含有63%比率的二次谐波电流Im2。微机差动保护设置了二次谐波闭锁差动保护功能,来防止变压器空载投入时励磁涌流导致差动保护误动作。二次谐波制动功能的判据如下: Icd2≥K2Icd 式中,Icd为差动电流的基波分量; Icd2为差动电流中的二次谐波分量; K2为二次谐波制动系数(0.1~0.4)可选; 1.3差动速断保护 当变压器内部发生严重短路时,短路电流很大,由于铁芯饱和输出电压波形将发生畸变,为提高保护的可靠性和动作速度,差速断保护不受二次谐波闭锁条件限制直接动作,此功能由软件控制投入或退出。 1.4差流过大告警 动作判据为: Icd≥Icdset/2 式中,Icd为任一相的差动电流; Icdset为差动保护最小定值; 任一相差动电流大于差动电流定值一半时,运行超过3S后,发出差流过大告警信号。此功能由软件控制投入或退出。 1.5电流互感器二次回路断线监视功能 微机差动保护与传统常规差动保护在接线不同之处是: 为了判断电流互感器TA二次断线,差保高压侧TA必须接成星形接线,保护装置给出以下判据为: | a+ b+ c|>0.5A时,保护会发出断线警告信号,并由微机软件控制是否闭锁差动保护。此项功能均由自适应的门槛值控制,无需整定定值。 1.6变压器高压侧相位差与平衡补偿 Y,d——11组双绕组变压器,Y侧电流相位需要校正相位,常规接线高压侧TA的二次侧接成d型接线,而微机差动保护具有软件校正功能,只要投入Y/d功能即可,就校正了相位,相当于把二次接成了d型接线,TA二次输出线电流。 1.7变压器低压侧电流平衡系数 差保接线,变压器低压侧TA与高压侧TA二次电流平衡补偿,常规差保接线靠适当选择变压器两侧TA变比来实现,而微机差动保护是靠软件功能来完成,以高压侧二次电流为基

电力变压器设计与计算_1_刘传彝

电力变压器设计与计算(1) 刘传彝,侯世勇,许长华 (山东达驰电气有限公司,山东成武274200) 学习之友 1电力变压器设计与计算基础知识 1.1 变压器的分类 变压器是一种静止的电磁感应设备,在其匝链于一个铁心上的两个或几个绕组回路之间可以进行电磁能量的交换与传递。根据不同用途,变压器可以分为许多类型。 1.1.1电力变压器 电力变压器在电力系统中属于量大面广的产 品。二次侧电压高于一次侧电压的变压器称为升压变压器;反之,称为降压变压器。直接接发电机组的升压变压器,又称为发电机用变压器。二次侧直接接用户的变压器,称为配电变压器。把两个或三个网络连接起来,使其间可以有潮流往来、能量交换的变压器,称为联络变压器。联络变压器也可制作成自耦变压器。 1.1.2电炉变压器 工业上使用的金属材料和化工原材料很多是用 电炉冶炼生产出来的。而电炉所需的电源是由电炉变压器供给的。电炉变压器的特点是二次电压很低(一般由几十伏到几百伏),但电流却很大。电炉变压器种类很多,根据冶炼原材料的不同,电炉变压器可分为炼钢电弧炉变压器、矿热炉变压器、电阻炉变压器、盐浴炉变压器以及工频感应炉和电渣炉变压器等。我国电炉变压器一次侧的电压多为10kV 或 35kV ,个别的为110kV 。1.1.3 整流变压器 很多工业电气设备需要直流供电,如城市主要交通工具之一的电车、电机车、钢厂的轧机、冶炼厂及化工厂的电解槽等。把交流电变成直流电是需要经过整流器(水银整流器、硅整流器)进行整流的,供工业整流器用的电源变压器称作整流变压器。为了提高整流效率,整流变压器二次绕组要接成六相或十二相。整流变压器的共同特点是二次电压低,电流大。为了提高效率,二次侧相数一般不少于三相,有时采用六相、十二相或加移相绕组。另外,由于整流 的作用,整流变压器绕组中的工作电流波形是不规则的非正弦波。 1.1.4牵引变压器 给铁路牵引线路供电的变压器称为牵引变压 器。近年来我国现代电气化高速铁路发展很快,需要的牵引变压器逐年增加,牵引变压器同普通电力变压器相比,主要区别有以下几点:(1)单相负载。(2)变动负载。(3)轨道回路。(4)会有高次谐波的负载。目前变压器生产厂根据以上特点能生产出满足需要的牵引变压器。牵引变压器将电能从110kV 或 220kV 三相电力系统传输给二条27.5kV 的单相牵 引回路。110kV 多采用V/V 接牵引变压器,220kV 采用单相,低压通过中间抽头实现2×27.5kV 。1.1.5 工频试验变压器 工频试验变压器也称高压试验变压器。工频试验变压器在电气工厂、发电站、电业部门和科研等单位应用十分广泛,是不可缺少的试验设备。通过采用工频试验变压器可以对各种电工产品、电气元件、绝缘子、套管和绝缘材料等进行工频电压下绝缘强度试验。 工频试验变压器特点是一、二次绕组具有很大的电压比。一次电压通常为0.22kV 、0.38kV 、3kV 、 6kV 和10kV 等,二次电压为50kV ~2200kV 或更高。试验变压器运行持续时间都在1h 以下。也可由 几台试验变压器串联成串接试验变压器装置。 1.1.6电抗器 具有一定电感值的电器,统称为电抗器。现代的 电抗器种类很多,应用也十分广泛。总的来说,电抗器按结构可以分为两类:一类为空心抗器;另一类为铁心电抗器。用于限制短路电流的电抗器称为限流电抗器。例如,电力系统中用于限流的限流电抗器,电炉炼钢炉变压器用的串联电抗器,电动机起动用的起动电抗器等。限流电抗器通常是串联连接在电路中。用于补偿电容电流的电抗器称为补偿电抗器。例如,电力系统中用的并联电抗器,中性点接地用的消弧线圈,串联谐振试验装置中用的试验电抗器等。 TRANSFORMER 第48卷第2期2011年2月Vol.48February No.22011

电力变压器课程设计

1 前言 随着工农业生产和城市的发展,电能的需要量迅速增加。为了解决热能资源(如煤田)和水能资源丰富的地区远离用电比较集中的城市和工矿区这个矛盾,需要在动力资源丰富的地区建立大型发电站,然后将电能远距离输送给电力用户。同时,为了提高供电可靠性以及资源利用的综合经济性,又把许多分散的各种形式的发电站,通过送电线路和变电所联系起来。这种由发电机、升压和降压变电所,送电线路以及用电设备有机连接起来的整体,即称为电力系统。 电力系统是有各种电力系统元件组成的,它们包括发电、输变电、负荷等机械、电气主设备以及控制、保护等二次辅助设备。WDT-Ⅲ型电力系统综合自动化试验系统是一个完整的电力系统典型模型,它为我们提供了一个自动化程度很高的多功能实验平台,是为了适应现代化电力系统对宽口径“复合型”高级技术人才的需要而研制的电力类专业新型教学试验系统。 本设计所要完成的工作是利用VC语言开发WDT电力系统综合自动化实验台监控软件,主要是完成准同期控制器监控软件的编写,它要求能显示发电机及无穷大系统的相关参数,如电压、频率和相位角,并能发送准同期合闸命令。

2 电力系统实验台 WDT-Ⅲ型电力系统综合自动化实验教学系统主要由发电机组、试验操作台、无穷大系统等三大部分组成(如图2.1所示)。 图 2.1 WDT-Ⅲ型电力系统综合自动化试验系统 2.1 发电机组 该系统的发电机组主要由原动机和发电机两部分构成,另外,它还包括了测速装置和功率角指示器(用于测量发电机电势与系统电压之间的相角 ,即发电机转子相对位置角),测得的发电机的相关数据传输回实验操作台,与无穷大系统的相关参数进行比较,从而确定系统是否满足了发电机并网条件。 2.1.1 原动机 在实际的发电厂中,原动机一般用的是水轮机、气轮机、柴油机或者其他形式的动力机械,将水流,气流,燃料燃烧或原子核裂变产生的能量转换为带动发电机轴旋转的机械能,从而带动发电机转子的旋转。 在WDT-Ⅲ型电力系统综合自动化试验台的发电机组中,原动机是由直流发电机(P N=2.2kW,U N=220V)模拟实现其功能的。直流电动机(模拟原动机)与发电机的结

变压器差动保护的平衡系数

变压器微机差动保护平衡系数说明 1、影响变压器差动保护差流计算的因素 1)、变压器高低压侧电流幅值不同造成的不平衡。由于变压器高低压侧电压等级不同,所以变压器高低压侧的电流幅值不同。 2)、变压器高低压侧电流相位不同造成的不平衡。由于变压器接线方式导致高低压侧电压的相位不同,所以变压器高低压侧的电流相位也不同。 3)、变压器高低压侧电流互感器的不匹配造成的不平衡。由于电流互感器的变比是一个标准的数值,而变压器虽然容量是一个标准值,但其额定电流是一个不规则的数,所以,电流互感器的选择并不考虑其对差流的影响。 2、消除电流不平衡的方法 1)、通过引入平衡系数消除高低压侧电流幅值不同及高低压侧电流互感器不匹配造成的不平衡。 2)、根据变压器高低压侧电流的相位关系,通过数学公式的计算,消除变压器高低压侧电流相位不同造成的不平衡。 3、平衡系数概念和计算方法 1)、概念:两个不同单位或相同单位而基准不同的物量归算到同一单位或同一基准时所用到的比例系数就是平衡系数。举例如下: a、一斤大米3元,一斤白面2元,归算到大米侧,白面的平衡系数为2/3。 b、一斤大米3元,一斤白面2元,归算到白面侧,大米的平衡系数为3/2。 c、一斤大米3元,一斤白面2元,一斤鸡蛋4元,归算到鸡蛋侧,大米的平衡系数为3/4,白面的平衡系数为1/2。 2)、计算方法

主变的型号为100000kVA-110kV/35kV,高压侧一次额定电流:Ieg1=524.9A,低压侧一次额定电流:Ie d1=1649.6A,高压侧电流互感器变比:800/5,低压侧电流互感器变比:2000/1。 a、以高压侧电流互感器为基准,把高压侧电流互感器折算到低压侧。 I12=800*110/35=2514.3A,K ph2=2000/ I12=2000/2514.3=0.80。 b、以低压侧电流互感器为基准,把低压侧电流互感器折算到高压侧。 I21=2000*35/110=636.4A,K ph1=800/ I21=800/636.4=1.26。 c、以变压器额定电流为基准,把高低压侧电流互感器折算到额定电流侧。 K ph1=800/Ieg1=800/524.9=1.52, K ph2=2000/Ie d1=2000/1649.6=1.21。 举例验证: 高压侧一次电流Ig1=450A,低压侧一次电流Id2=1414.3A。 高压侧二次电流实际采样为:Ig2=Ig1/800=450/800=0.5625; 低压侧二次电流实际采样为:I d2=I d1/2000=1414.3/2000=0.7072; a、以高压侧电流互感器为基准,把高压侧电流互感器折算到低压侧,K ph2=0.80。 I12=800*110/35=2514.3A,K ph1=2000/ I12=2000/2514.3=0.80 差流I d= Ig2*1-I d1* K ph2=0.5625*1-0.7072*0.80=0.00326≈0。 b、以低压侧电流互感器为基准,把低压侧电流互感器折算到高压侧,K ph1=1.26。 I21=2000*35/110=636.4A,K ph1=800/ I21=800/636.4=1.26 差流I d= Ig2* K ph1-I d1*1 =0.5625*1.26-0.7072*1=0.00326≈0。 c、以变压器额定电流为基准,把高低压侧电流互感器折算到额定电流侧。 差流I d= Ig2*K ph1-I d2*K ph2=0.5625*1.52-0.7072*1.21=0.000712≈0。 4、数学公式的计算方法

相关文档
最新文档