空调出风口的结构设计

空调出风口的结构设计
空调出风口的结构设计

空调出风口的结构设计

1.出风口的总布置要求

1.1概述

空调出风口作为空调的输出的终端,应具备风量与风向的调节作用。通过调节出风口,应当能够满足整车的空气循环与制冷控制要求,并能够满足乘客的各种舒适性要求,从某种方面来讲,出风口的设计并非单独从属于内饰设计,而是应当在整车系统中考虑的。

从乘客的需求来说,每个人对于制冷制热的需求各有不同,有些人希望冷(热)风直接吹向身体,有些人希望风不要直接吹向人,而是通过改变整车温度,使自己达到一个舒适的状态,因此风向的调节范围,应当是能够覆盖人体,并能够达到人体外侧的空间,以满足不同人群的需求。一般来说,仪表板会布置4个出风口,靠近驾驶员侧的两个出风口用于满足驾驶员的需求,另一侧的两个满足副驾驶员的需求。四个出风口的吹风范围均应覆盖其所服务的对象。

出风口的布置,应当注意避免被其他零件阻挡,主要是仪表罩,方向盘的影响,同时也应当注意避免直吹驾驶员的手部,造成手部的不适影响驾驶。

1.2出风口对气流方向的控制

关于这一部分内容,基本采用了伟世通的设计要求和观点,通用对于吹风的要求与伟世通在个别地方是有区别的,我会加以说明。至于相关的设计要求是由于亚欧美市场客户需求不同还是欧标,美标等的标准不同而产生的,我目前没有得到相关信息也未作相应的研究,待获取相关信息并研究后,会对后文重新整理,当前还是以伟世通的要求为主进行说明。

1.2.1出风口对气流的纵向调节:

对于出风口气流的纵向调节范围要求,请见图1-1

图 1-1 侧视图,气流的纵向调节

1.2.1.1输入条件

如标记○5,○9,做分析的时候,h点位置应当取座椅最前置状态下的位置,因为在座椅前置时,出风口相对于人体的吹风范围是最小的,只有满足了前置座椅的要求,才可以同时满足其他状态下的要求。眼椭圆取99%的,这个与h点的要求原因是一样的,是为了使吹风的覆盖范围能够满足各种假人状态。

1.2.1.2向上吹风角度

中间出风口和侧出风口向上的最小吹风范围是相同的,都是要求能够吹向与眼椭圆上沿相切的切线(如标记○2),需要说明的是,这个仅仅是最小要求,事实上为了满足出风口能够吹向不直对人体位置的要求,推荐这个方向再向上转动5度。日产的要求和伟世通还有所不同(如标记○1),是要求其方向远离眼椭圆150mm。事实上这两个数值反应的客户需求都是相同的,即让风能够吹到不正对人体的方向。

1.2.1.3向下吹风角度

中间出风口和侧出风口向下的吹风范围要求有所不同。如标记○3所示,中间出风口向下应当吹到h点向上200mm的点位。如标记4所示,侧出风口向下应当吹到h点。之所以有不同,我的理解是中间区域由于需要布置的零件比较多,出风口能够摆放的位置范围是很小的,由于a面的形状及周边零件的影响,在很多情况下出风口向下的吹风角度是无法吹到h点的,因此放宽到向上200的位置。事实上在我们很多以前的车型中,都是难以满足向下吹到h点甚至200mm位置的,在吹风范围的纵向调节方面,我们需要优先考虑向上的吹风角度必须满足,向下如果无法满足,需要增加辅助出风口。

1.2.1.4Nominal位置

如标记○7所示,他表示的是出风口处于最大吹风量时的角度(即叶片与出风口壳体及风管导风段平行时的吹风角度),伟世通要求这个方向应当指向上下最小吹风范围的中点。

1.2.1.5通用体系中的纵向吹风要求

(如图1-2)通用体系对于上下的吹风范围要求是有所不同的,他的要求是从出风口做一个22度的锥形,出风口向上至少能够使锥形高于95%的乘员肩膀,向下要求能够达到第95百分位乘员的大腿前部。如果向上完全旋转的位置与向下完全旋转的位置之间夹角过大,出风口必须满足上述第一个要求,同时必须增加一个大腿制冷装置(补充出风口)以实现第二点要求。

图 1-2 侧视图, 气流方向的最小上下调节(通用)

1.2.2出风口对气流的横向调节

对于出风口气流的横向调节范围请见图1-3。

图 1-3 正视图,左右方向的气流调节

1.2.2.1输入条件

与风向的上下调节范围校核输入条件相同,同样需要采用99%眼椭圆与前置座椅的h点位置。

1.2.2.2横向调节要求

出风口对于气流的横向调节范围与纵向是类似的,其最小吹风角度范围同样需要覆盖人体的左右方向。

侧出风口要求向外侧能够吹到人体外的部分(图中○3所示的450mm是伟世通给出的建议,事实上根据不同的车型,这样一个要求是不适应的,较宽和较窄的车型向外的吹风角度会完全不同,我们需要按照实际情况来考虑,一般来说只要能够使吹风范围向外越过假人所在区域,并增加5度以上的余量即可)如果侧出风口兼有侧窗除雾要求,请按照实际情况,扩大吹风范围。

侧出风口向内要求能够吹过眼椭圆的内侧。中间出风口向外要求吹过眼椭圆的外侧,向内要求吹过整车中线。老的guildline中的左侧吹右肩,右侧吹左肩的说法事实上与这个要求基本是一致的,都是要求每个吹风口能够对其吹风对象实现覆盖,并能够各自吹到人体以外的区域。

1.2.2.3宽车的特殊性要求

有些车型尤其是车身较宽的重卡,在出风口风向的横向调节上与一般汽车要求是有所不同的,一般的轿车车宽在1米4左右,但是重卡往往要达到2米左右,由于造型原因,有些卡车的中央出风口仍然布置在靠近车宽中线的位置,导致中央出风口如果要按照前面所说的要求,叶片需要旋转相当大的一个角度才能够吹到上述的目标点,而此时风量的损失是非常大的,在这种情况下,我们的设计可以考虑适当放低要求,不再考虑让中央出风口吹过人的眼椭圆。如果有可能的话,在重卡的出风口设计中,我们尽可能要将中央出风口的位置向驾驶员(副驾驶员)方向靠拢,让中央出风口的吹风范围能够更多的覆盖人体区域。

1.2.3出风角度分析与实际情况相悖的情况。

关于具体的导风结构及相关要求,会在后文叶片的设计中加以阐述,在本节中将描述两种实际吹风状态与我们所作的简单角度分析情况不符的状况。

1.2.3.1窄口造成的吹风角度异常

请见下图1-4,这是一个出风口设计的实例,该出风口开口较窄,但从叶片角度来看,下层的三个叶片,应当能够导出50%以上的风量吹向叶片所指方向,但是事实上经过cae分析,发现叶片导向失效,如图1-4的右图,其右侧出风口导风叶片向左而实际风向向右。目前为止只发现窄口出风口有此现象,但尚不明确该现象发生的机理,个人怀疑与叶片在腔体内传出的风向经腔体内壁反弹引起。扩大出风口尺寸与将后层叶片前移均会改变这种情况。

对于窄口的出风口,需要规避开口处的阻挡,让出风口壳体尽可能与面板光顺连接,尽可能扩大出风面积。控制窄口方向风向的导风叶片,尽可能布置到上层,这样会更有利于导风。

图 1-4

1.2.3.2柯恩达效应

柯恩达效应是指沿物体表面的高速气流在拐角处能附于表面的现象,这种效应如果出现在我们的导风角度范围内,将使导风失效。如下图1-5,所示当出风口吹出的风向与拐角处的表面呈较小角度时,即会出现如图的附壁现象,当角度增大后,如图1-6,气流流向正常。

图1-5 图1-6

科恩达效应一般在51度以下发生,然而这个角度会有一定的波动,一般来说51度以下的角度是绝对不可取的,51-55也有一定的风险,我们尽可能选取55度以上的角度来进行设计。

事实上由于出风口型面与气流方向的关系,向上,向左右方向的气流均不会发生科恩达效应,只有向下的气流有可能产生,因此当出风口下沿出现与下吹风极限方向呈55度以内夹角的大平面时,我们需要特别关注,建议通过CFD 分析判断实际气流走向。

1.3风量要求

1.3.1.1有效出风面积的定义

如图1-7所示,我们需要注意的是有效出风面积的计算,不是出风口在a 表面的开口大小,而是实际出风方向垂直的平面上做开口处气流的投影面积(需要刨除上下层叶片及连杆的投影面积)。根据伟世通的要求,大中型车辆的有效出风面积需要达到3870-4516mm2,小型车则需要达到3225-3870mm2,长或宽的尺寸不能小于44.5mm。对于这样一个要求,我认为其是为了与空调自身的出风面积作匹配的,从管道中的流体特性来看,入口面积与出口面积相同的话,流体在管道内的压力及速度损失都会比较小。根据我们以往的设计经验,事实上很多车辆由于造型的关系,我们并不能达到这样一个尺寸要求,如果不会造成很大的压力损失,或者造成风速的大幅下降,尺寸方面是可以考虑让步接受的。当然如果能够通过CFD分析或实验,了解一下实际的出风量、风速,是否满足条件,是最为可靠的。

图 1-7

1.3.1.2极限位置下的有效出风面积要求

在本文1.3.1和1.3.2中提到了出风口横向和纵向的调节角度要求,当出风口吹向极限位置时,需要保证其有效出风面积达到最大出风面积的75%。如图1-13所示,这是伟世通给出的小面积的计算方法。我个人并不完全同意这种计算方法,按照这种计算方法,则如图1-8,如果在风道入口处加沿着的几片导向叶片,则所有的导向叶片导出的风都会出风口壳体遮挡,有效出风面积为0,这显然是不正确的。当叶片逐渐向水平方向旋转后,决定出风量更大程度的是叶片之间的间隙而非叶片导出风的遮挡量。对于有效出风量还是以CFD的计算为依据比较可靠,个人不建议用这种方法来进行计算。我们现有的CFD手段是可以根据二维线条来进行简化计算的,计算结果也是比较可靠的,如果有相应的出风量计算需求,不妨作出一些简单的断面,交给CFD进行简单计算。当然,如果进行了CFD计算,那么我们的有效出风面积也就没有必要再进行计算了,直接把CFD的计算结果与出风口的出风实验要求进行比较即可。

图 1-8

2运动机构设计

2.1概述

出风口由于其功能性要求,存在一些运动机构,但总体类型来说,大多数的机构属于简单机构,传动链都比较短,基本由连杆,带槽连杆,齿轮三种简单零件构成。出风口的功能体现在风向的调节,风门的开闭上,因此相应的机构基本上就是叶片调节机构与风门开闭机构两套,本节着重介绍一下拨轮-风门的控制机构,叶片控制机构由于涉及到的零件更少,往往就是两个零件之间的配合,将合并到叶片与拨钮的零件设计中阐述。

2.2铰链四杆机构的设计

铰链四杆机构(如图2-1)是最常见的拨轮-连杆-风门控制机构,其结构比较简单,应用最为广泛。

图2-1

2.2.1压力角与传动角

图 2-2

如图2-2所示,若不考虑构件的重力、惯性力和运动副中的摩擦力等影响,则主动件AB上的驱动力通过连杆BC传给输出件CD的力F是沿BC方向作用的。现将力沿受力点C的速度Vc方向和垂直于此方向分解,得到有效分力

F2和有害分力F1。因此,为使机构传力效果良好,显然应使F2愈大愈好,即要求角a愈小愈好.理想情况是a=0最坏的情况a=90。a是反映机构传力效果好坏的一个重要参数,一般称它为机构的压力角。

传动角:压力角的余角γ称为传动角,在平面四杆机构中用γ值来检验机构的传力效果更为方便。γ的值愈大愈好,由于机构在运转过程中,传动角γ值是随机构的位置不同而变化的,为保证机构的传力效果,应使传动角的最小值γ大于或等于其许用值[γ],一般机械中,推荐[γ ]=40一50。

2.2.2死点

图 2-3

如图2-2所示,假设AB为驱动杆,CD为被驱动杆,当连杆BC与被驱动杆呈一直线时,传动角为0,此时无论驱动杆AB上施加多大的力,CD都不会被驱动,此状态被称为死点,在设计中必须避免这个死点。需要注意的是,由于零件的制造精度及受力变形等因素,运动也需要避免接近死点5-10度的范围。如果在风门关闭或完全开启位置时,由于空间原因,连杆的布置必须很靠近死点

位置,则必须对此状态作限位,避免杆件由于惯性作用或变形进入死点作用范围,造成锁死。

对于出风口来说,风门在全开全闭状态下,应当有锁止机构防止其受气流或震动原因造成状态改变。我们可以利用死点来锁定其中的一个状态。即风门处的连杆当作驱动杆,拨轮作为被驱动杆,让拨轮轴心与连杆呈一直线,此时如果有外力推动风门,由于机构的传动角为0,机构锁死,达到保持状态的目的。而我们实际操作,拨动拨轮时,拨轮作为驱动杆,机构反向驱动,不再锁死。

2.2.3四铰链机构的布置

出风口的拨轮-连杆-风门传动机构采用四铰链机构的话,一般来说只要注意传动角和死点,采用较大的传动角,避免死点区域即可。我的布置方法是这样的。

1/ 确定输入条件,拨轮转轴与风门转轴的轴距,风门开闭的转动角度,拨轮的转动角度(如果拨轮上带有指示开闭状态的标记,需要注意拨轮的整个转动范围不得让此标记转到面板下)。本例假定轴距100,拨轮转动65度,风门转动范围80度。

2/ 见图2-4 在草图中作出转轴位置,并暂定驱动杆杆长为40(一般来说驱动杆的杆长基本与拨轮半径接近),暂定一个初始和最终的驱动杆位置。

图 2-4

3/ 见图2-5 假设连杆杆长65,以驱动杆的两个铰接点作半径为65的圆(黄圈),以风门转轴为圆心作任意圆与前两个圆相交。

图 2-5

4/ 见图2-6 作两线段(紫色线段)连接风门转轴与两个交点,并约束两线段间的角度关系。

5/ 见图2-7 更改两线段间的角度为我们实际的风门转动角度80度。作出连杆(红色险段)这个时候我们可以得到一个理论上可行的四铰链机构。检查一下是否有经过死点,行程是否会有连杆摆动范围过大超出出风口范围等。很显然下图的轨迹经过了死点,不可行。

图 2-7

6/ 调整:见图2-8,我们的调整手段主要有调整连杆长度,转动驱动杆的起始角度。在这里我将连杆长度调整到75(即黄色圆的半径调整到75)。这个时候在去检查发现基本符合要求。

7/ 优化:见图2-9,检查起点与终点的传动角,分别为22.5与49.5,最大压力角出现在运动过程中。虽然说作为传动力矩较小的机构,20度左右的传动角也是可以接受的,但是为了更优化整个传动过程,我们可以作进一步调整。方法是调整驱动杆原始位置角度,直到两压力角接近,如图2-10,即为调整到起始传动角均为36度的情况,整个机构的传动角范围在36-90-36的范围内波动。

图 2-9

图 2-10

8/ 再优化。一般来说,达到2-12的效果基本可以满足要求了,如果我们希望压力角全程大于40度,风门机构能够反向自锁,或者2-12压力角调整完毕后被驱动杆的长度过小需要加长时,可以进行进一步的调整。调整手段无外乎调整连杆长度(即之前黄圈的半径)或者调整驱动杆的半径(前面我们都没有对此进行调整,因为可调项比较多,一般来说不需要再更改初定得驱动杆半径,当然如果有需要也是可以调整的),然后再调整驱动杆的起始位置(如果需要风门反向自锁的话,将自锁位置的驱动杆与连杆调整到一直线即可)。

上面介绍的只是我采用的方法,我相信一定有更好的办法去计算和布置四铰链机构。

2.3摆动导杆机构的设计

摆动导杆机构也是一种非常常见的传动机构。它比四铰链机构少了一个中间零件,使它整个传动过程更为稳定简单,运动过程中没有锁死点,但是受到拨轮轴线与风门轴线的限制,当两轴线间距较大且转动角度较大时,会使其旋转轨迹占用较大的空间,往往会受到空间的影响,无法布置!

图 2-11

2.3.1摆动导杆机构的布置

摆动导杆机构的布置比较简单,不需要考虑死点等问题,只要注意导杆的有效区域(对应在零件中即为连杆中的开槽)满足拨轮与风门连杆的行程即可。

对于摆动导杆机构来说,随着驱动杆角度的变化,驱动杆运动所需的操作力是不断变化的,为了让操作力的变化不是很剧烈,建议风门与壳体的配合处摩擦力要尽可能减小,这样可以使驱动杆所需的操作力绝大部分由拨轮与壳体配合的摩擦力提供,这样会使整个操作过程感觉施力更加均匀,手感更好。

事实上任何四连杆传动机构,都推荐尽可能将驱动件以外的提供反作用力的环节造成的效果尽可能削弱,对驱动力形成阻滞的因素绝大部分做在驱动杆上,这样才能够获得稳定的操作力效果。

2.3.2制造死点

摆动导杆机构在行程内是没有死点的,但是可以通过改变滑槽的曲线,人为的制造一个死点,用于风门的锁止。

如图2-12所示,AC杆逆时针运动可以顺利的进入BC段,到达B点后,滑槽结束,进入风门锁止状态,AC杆无法再逆时针运动,这个时候如果风门受到逆向力,试图让CD杆逆时针旋转,滑块对AB杆施加的力会将AB杆向逆时针方向推动,造成锁死,达到效果。

图2-12

2.4齿轮机构的设计

齿轮啮合是最平稳的传动机构,在整个运动过程中都可以保证力的均匀性,能够获得最佳的手感!缺点是可能会造成成本的上升,其制造精度要求也会比较大。

图2-13

2.4.1圆柱直齿轮机构的初步设计

一般来说,应用在出风口上的齿轮结构均为圆柱直齿轮,如图2-14。从设计角度来说,先确定拨轮与风门的转动角度范围,即为两齿轮的转动角度。

AO

1B与CO

2

D两角度与两齿轮的半径O

1

B、O

2

D成反比,O

1

A、O

2

C之和为风门转轴

与拨轮转轴的间距。从而可以推出两齿轮的半径,这个时候只要再选定一个标准模数就可以完成初步设计了。

图 2-14

2.4.2模数的选择

从理论上来说,我们选择任意的模数都可以完成齿轮的传动,但是事实上由于我们出风口的齿轮传动范围并非全齿旋转,一般希望齿轮传动在两个终点位置时啮合处的状态是一个齿高刚好插入到对手齿轮的齿根处,而不是某个中间状态。因此需要将模数与出风口拨轮与风门的旋转行程进行重新配比。

从理论上来说模数选的越小,单齿转动角度越小,配比将更为容易。但是过小的模数会造成对制造精度的要求更高,机构容易失效,因此这个数值是需要进行公差分析后再定义的。

2.4.3柔性结构

齿轮啮合是高精度的传动方式,零件如果尺寸偏差过大,很容易造成脱齿,卡死等不良结果。在出风口中,我们不可能采用高精度的金属齿轮,一般都采用塑料注塑成型的齿轮,因此为了防止精度不够造成的机构失效,推荐在齿轮上做出一定的柔性弱化结构,图2-13的实例即为两齿轮均作了柔性结构,如果采用齿轮传动,建议至少在一处齿轮上做出类似结构。

2.5双风门控制机构

在出风口壳体形状比较狭长的情况下,如果拨轮刚好布置在较长边的一侧,这时风门有两种布置方法,一是传统的将风门转轴同样布置在垂直于较长边的方向,一是布置在较窄一侧。如果是第一种情况,风门的打开状态将占用非常大的空间,这个时候我们可以考虑采用双风门,本节将介绍一下控制双风门的机构如图2-15。如果是第二种情况,由于拨轮与风门不再同轴,需要采用空间传动机构来进行传动,这部分内容将放在下一节进行介绍。

图2-15

2.5.1双风门机构的基本形态

图2-16

如图2-16,双风门机构是一套四铰链机构与摆动导杆机构的组合,导杆EF与连杆BC为一体,驱动摆杆OG,通过滑块传递力给连杆BC,再通过连杆BC 驱动AB与CD杆,完成整个传动过程。

2.5.2双风门控制机构的设计

有了四铰链机构和摆动导杆机构的设计经验,设计双风门控制机构就非常简单了。

1/ 首先布置ABCD这套铰链机构,虽然说理论上来说只要任意布置AB,BC,CD三杆的长度都可以实现机构的运转,但是为了获得更稳定的传动效果,建议布置成如图2-16所示意的平行四边形,这样一个状态下,两个被驱动杆,AB、CD的传动角始终是一致的。

2/ 为了获得最佳的传动效果,我们可以把风门转过一半角度时的AB、CD 杆与连杆BC垂直,获取最大的传动角90度,然后根据周边零件对两杆转动范围的限制,暂定一个杆长。

3/ AB CD杆长确定后,导杆EF的左右运动行程也已经确定,在草图上作出EF杆的两个极限位置(黄色与紫色铅垂线),过拨轮的圆心作任意圆与两线相交,做圆心到交点的连线(红线)并约束两线段间的夹角。

图 2-17

4/ 更改夹角的值为拨轮实际转动角度,我们可以获取一个理论上的OE杆长度,如下图2-18所示,机构虽然理论上可行,但是导杆区域太长,不满足要求。

图 2-18

5/ 优化:类似于前面的四铰链机构布置,我们对AB、CD杆的杆长重新进行调整,很快就可以获得合适的机构。

产品结构设计案例

一个完整产品的结构设计过程 1.ID造型; a.ID草绘............ b.ID外形图............ c.MD外形图............ 2.建模; a.资料核对............ b.绘制一个基本形状............ c.初步拆画零部件............ 1.ID造型; 一个完整产品的设计过程,是从ID造型开始的,收到客户的原始资料(可以是草图,也可以是文字说明),ID即开始外形的设计;ID绘制满足客户要求的外形图方案,交客户确认,逐步修改直至客户认同;也有的公司是ID绘制几种草案,由客户选定一种,ID再在此草案基础上绘制外形图;外形图的类型,可以是2D 的工程图,含必要的投影视图;也可以是JPG彩图;不管是哪一种,一般需注名整体尺寸,至于表面工艺的要求则根据实际情况,尽量完整;外形图确定以后,接下来的工作就是结构设计工程师(以下简称MD)的了; 顺便提一下,如果客户的创意比较完整,有的公司就不用ID直接用MD做外形图; 如果产品对内部结构有明确的要求,有的公司在ID绘制外形图同时MD就要参与进来协助外形的调整; MD开始启动,先是资料核对,ID给MD的资料可以是JPG彩图,MD将彩图导入PROE后描线;ID给MD的资料还可以是IGES线画图,MD将IGES线画图导入PROE后描线,这种方法精度较高;此外,如果是手机设计,还需要客户提供完整的电子方案,甚至实物;

2。建摸阶段, 以我的工作方法为例,MD根据ID提供的资料,先绘制一个基本形状(我习惯用BASE作为文件名);BASE就象大楼的基石,所有的表面元件都要以BASE 的曲面作为参考依据; 所以MD做3D的BASE和ID做的有所不同,ID侧重造型,不必理会拔模角度,而MD不但要在BASE里做出拔模角度,还要清楚各个零件的装配关系,建议结构部的同事之间做一下小范围的沟通,交换一下意见,以免走弯路; 具体做法是先导入ID提供的文件,要尊重ID的设计意图,不能随意更改; 描线,PROE是参数化的设计工具,描线的目的在于方便测量和修改; 绘制曲面,曲面要和实体尽量一致,也是后续拆图的依据,可以的话尽量整合成封闭曲面局部不顺畅的曲面还可以用曲面造型来修补; BASE完成,请ID确认一下,这一步不要省略建摸阶段第二步,在BASE的基础上取面,拆画出各个零部件,拆分方式以ID的外形图为依据; 面/底壳,电池门只需做初步外形,里面掏完薄壳即可; 我做MP3,MP4的面/底壳壁厚取1.50mm,手机面/底壳壁厚取2.00mm,挂墙钟面/底壳壁厚取2.50mm,防水产品面/底壳壁厚可以取3.00mm; 另外面/底壳壁厚4.00mm的医疗器械我也做过,是客人担心强度一再坚持的,其实3.00mm 已经非常保险了,壁厚太厚很容易缩水,也容易产生内应力引起变形,担心强度不足完全 可以通过在内部拉加强筋解决,效果远好过单一的增加壁厚; 建摸阶段第三步,制作装配图,将拆画出各个零部件按装配顺序分别引入,选择参考中心 重合的对齐方式;放入电子方案,如LCD,LED,BATTERY,COB。。。将各个零部件引入装配图时,根据需要将有些零部件先做成一个组件,然后再把组件引入装配图时。 例如做翻盖手机时,总装配图里只有两个组件,上盖是一个组件,下盖是一个组件。上盖组件里面又分为A壳组件,B壳组件和LCD组件。下盖组件里面又分为C壳组件,D壳组件,主板组件和电池组件等。还可以再往下分

空调风管清洗设备

中央空调隐蔽式安装,管道和室内机隐藏在吊顶中,室内只留出风口,据快益修专业空调维修师傅了解,不仅符合人们对于室内装修风格的美观及统一要求,更能让置身其中的人享受到舒适的温度。 中央空调风口是中央空调系统中用于送风和回风的末端设备,是一种空气分配设备,中央空调的出风口尺寸材质都是有要求的。 出风口的大小选择 出风口的大小取决于室内机容量的大小,如果出风口过大,风管过长,则气流速度就会下降,从而影响空调使用效果;如果出风口选择过小,则气流速度会变大,从而导致风直吹人体上引起的不适感,还有可能导致噪音过大。 由于风盘出口风速一般大于进口,故风量一定时,进风口面积要比出风口的大。若进出风口装反了,风量会降低,但出风温度会升高。制热效果差,可能风盘选型有问题,更可能水流量出现问题,如过滤器堵塞、管道积气,流经盘管的水量少于额定量,都会导致制热效果差。

中央空调出/回风口尺寸是没有明确的规定的,可以根据家居装饰,进行灵活的变通,出/回风口的大小取决于室内机容量的大小。出风、回风的宽度基本能定,但长度要根据室内机的长度和装修环境定。 出风口的材质选择 中央空调出风口材质主要有木质材料、铝合金材料、ABS材料几种,各有优缺点,可以根据自身需要进行选择。一般家庭选用铝合金材质风口的较多性价比高,比较注重装修风格的家庭可以选择木质风口或ABS材料风口。 铝合金材料的风口,性价比高,价格适中,在大部分中央空调工程都是采用铝合金材料的风口。需要注意的是在夏天制冷时,送风温度过低、施工时保温没有做好、风量太小等,铝合金材料风口容易产生结露的现象,不过施工严格按照规范进行一般不会出现这种情况。 木质材料风口美观大方,比较有质感,可以配合整体木质装修风格,装修档次高,它的不足是在冬天制热时,由于风口在使用和不使用空调时温差较大,容易变形、开裂。 ABS材料一种新兴的树脂材料聚氯乙烯(PVC)为主要原料,经特殊的发泡工艺制成,产品具有防潮、难燃(自熄)、不变型、无毒、美观、抗老化能力强等优点,并有极好的耐腐蚀性,耐候

仪表板出风口结构设计规范

出风口的结构设计 目录 1. 出风口的总布置要求 (3) 1.1 概述 (3) 1.2 出风口对气流方向的控制 (3) 1.2.1 出风口对气流的纵向调节: (4) 1.2.1.1 输入条件 (4) 1.2.1.2 向上吹风角度 (4) 1.2.1.3 向下吹风角度 (5) 1.2.1.4 Nominal 位置 (5) 1.2.1.5 通用体系中的纵向吹风要求 (5) 1.2.2 出风口对气流的横向调节 (6) 1.2.2.1 输入条件 (6) 1.2.2.2 横向调节要求 (6) 1.2.2.3 宽车的特殊性要求 (7) 1.2.3 出风角度分析与实际情况相悖的情况。 (7) 1.2.3.1 窄口造成的吹风角度异常 (7) 1.2.3.2 柯恩达效应 (8) 1.3 风量要求 (8) 1.3.1.1 有效出风面积的定义 (8) 1.3.1.2 极限位置下的有效出风面积要求 (9) 2 运动机构设计 (10) 2.1 概述 (10) 2.2 铰链四杆机构的设计 (10) 2.2.1 压力角与传动角 (11) 2.2.2 死点 (11) 2.2.3 四铰链机构的布置 (12) 2.3 摆动导杆机构的设计 (16) 2.3.1 摆动导杆机构的布置 (17) 2.3.2 制造死点 (17) 2.4 齿轮机构的设计 (18) 2.4.1 圆柱直齿轮机构的初步设计 (18) 2.4.2 模数的选择 (19) 2.4.3 柔性结构 (19) 2.5 双风门控制机构 (19) 2.5.1 双风门机构的基本形态 (20) 2.5.2 双风门控制机构的设计 (20) 2.6 拨轮转轴与风门转轴呈角度时的机构设计 (22)

中央空调安装规范标准设计

中央空调安装规范 第一章施工前的准备 1.1.技术准备 技术准备是施工准备的核心,任何技术的差错或隐患都可能引起人身安全和质量事故,造成人、财、物的损失,因此必须认真细致地做好技术准备工作。 1.1.1.施工图纸会审:组织技术人员认真学习设计施工图,掌握施工图纸的全部内容,熟悉设计目的、设计意图、领会设计效果。凡发现施工设计图中存在的问题,必须做出专项记录,向设计部门联系,同时请设计者做出解释;若施工图确实存在一些问题,应由设计部门做出设计变更。 1.1. 2.会同有关单位搞好现场接收工作:现场交接的重点是施工测量与有关资料的移交,熟悉场地情况,包括场地构筑物、管线埋设条件等。 1.1.3.编制施工图预算:依据设计施工图、招投标文件、合同条款编写详细施工

图预算。它是签订合同、工程结算、进度拨款、成本核算、材料计划编制、加强经营管理的重要依据。 1.1.4.技术交底:在工程开工前,工程技术负责人应组织参加施工的人员进行技术交底,应结合具体工程内容、施工现场、关键工序和施工难点的质量要求、操作要点及注意事项,验收标准等进行交底。 1.2.物质准备 物资准备工作包括材料准备、施工机具准备和安全防护用品的准备。 1.2.1.材料准备:工程所用材料都必须符合国家标准。根据工程内容确定需用量,确定好货源,签订购买合同。根据进度要求制订进场计划,组织好运输。对主要材料,应根据实际情况做好材料采购计划,分批进场。 1.2.2.必须在工程现场设置临时材料仓库,对各种材料的入库、检验、保管和出库应严格做好记录,同时加强防盗、防火的管理。 1.2.3.施工机具准备:根据施工工艺的需要,对公司自有的机械设备,提前检修保养好,对不够的机械设备须提前做好计划。 1.3.施工准备

仪表板设计指南

仪表板设计指南 编制: 审核: 批准:

1. 适用范围 本设计指南适用于注塑仪表板、吸塑仪表板、搪塑仪表板。 2.简要说明 2.1 简介 仪表板是汽车中非常独特的部件,集安全性、功能性、舒适性与装饰性于一身。除了要求有良好的刚性及吸能性,人们对其手感、皮纹、色泽、色调的要求也愈来愈高。 仪表板因其得天独厚的空间位置,使愈来愈多的操作功能分布于其中,除反映车辆行驶基本状态外,对风口、音响、空调、灯光等控制也给予行车更多的安全和驾驶乐趣。因此,在汽车中,仪表板是非常独特的集安全性、功能性、舒适性与装饰性于一身的部件。首先,它需要有一定的刚性以支撑其所附的零件在高速和振动的状态下保证正常工作;同时又需要有较好的吸能性使其在发生意外时减少外力对正、副驾驶员的冲击。随着人们对车的理解愈来愈超出其功能,对仪表板的手感、皮纹、色泽、色调也逐渐成为评判整车层级的重要标准。 仪表板通常包含仪表板本体(壳体)、仪表、空调控制系统、风道/风管、出风口、操作面板、开关、音响控制系统、除霜风口、除雾风口、手套箱、左盖板、装饰板等零件。大部分仪表板还包含:储物盒、驾驶员侧手套箱、扬声器等饰件和时钟、金属加强件、烟灰盒、点烟器、杯托等功能性零件;部分中高档汽车设计有卫星导航系统、手机对讲系统、温度传感系统,USB-SD卡接口等高端产品。 仪表板简称IP(Instrument panel),是汽车内饰的重要组成部分。 2.2 仪表板的分类 仪表板按安全性可分为无气囊仪表板和副气囊仪表板。随着人们对安全性的重视,客户对带PAB仪表板需求加大,主机厂也将此作为卖点之一。但是气囊打开在保护乘客的同时,也可能伤害乘客,尤其是儿童。因此,现在设计仪表板气囊已开始加装PAB屏蔽开关。为气囊的正常开启,在气囊上方多设计有气囊盖板,在其打开时释放气囊。但其与仪表板匹配处存在可视装接线,影响整车美观。为此,近年愈来愈多车型的仪表板设计为无缝气囊仪表板。既能保证气囊正常开启,又无可视装接线。

中央空调风口尺寸如何选择

-中央空调风口选型 中央空调的出风口,可以说是在中央空调的运行中,起着很大作用的一个组成部分。然而,由于户型条件的不一样,对于出风口的尺寸也都有着不一样的需求。那么,对于中央空调出风口的选型,也就变得很重要了。选型的手法,一般由计算、设计两部分组成,分别是要依靠出风量以及户型大小来进行,下面我们就来详细的介绍关于这方面相关内容。 中央空调风口尺寸如何选择-中央空调风口尺寸基本标准 中央空调出风口尺寸的大小取决于室内机容量的大小,如果中央空调出风口尺寸过大,风管过长,则气流速度就会下降,从而影响空调使用效果;如果中央空调出风口尺寸选择过小,则气流速度会变大,从而导致风直吹人体上引起的不适感,还有可能导致噪音过大。中央空调送回风方式主要有侧送下回、下送下回、侧送侧回三种,由于中央空调回风口的风速一般大于出风口,所以风量一定时,回风口面积要比出风口的大。另外,中央空调出风口处最好不要设置灯槽,很容易阻挡热气流到达人员活动区域,影响制热效果。 中央空调风口尺寸如何选择-不同房间出风口选型 方形的不同,出风口的选型设计也各不相同,再加上屋内各个房间功能也不一,所以在进行出风口设计的时候需要考虑很多方面的问题。首现客厅是机体娱乐交流的地方,也是宴请宾朋好友吃饭的主要地点,而在这一出所在,中央空调出风口尺寸上,应该选用下送下回的送回风方式,这样既节约空间,装潢又简洁大方。而卧室使人们起居场所,舒适度要求甚高,所以适合采用侧送下回,这是目前最常见的中央空调送回风方式,我们还可以利用了过道处的吊顶空间,从气流组织、静音等方面考虑,室内明显感觉更舒适,彻底远离了传统空调直吹风的忽冷忽热现象。 结语: 对于中央空调而言,能够平稳运行,给予消费者们舒适的体验,与风口的选型脱不了干系。所以说,做好风口尺寸的计算与选型,可以让消费者们的体

中央空调出风口材料哪种好

中央空调出风口材料哪种好 中央空调隐藏为美,室内只留出出风口,不会破坏家居装修,那么,在安装中央空调的时候要选择怎样的出风口材质。平舆县长河塑业有限公司小编下面就来跟你说说中央空调风口材质哪种好? 中央空调风口是中央空调系统中用于送风和回风的末端设备,是一种空气分配设备,中央空调的出风口尺寸材质都是有要求的,下面长河塑业小编就详细的跟你来说说。 1、中央空调出风口的尺寸标准 出风口的大小取决于室内机容量的大小,如果出风口过大,风管过长,则气流速度就会下降,从而影响空调使用效果;如果出风口选择过小,则气流速度会变大,从而导致风直吹人体上引起的不适感,还有可能导致噪音过大。 2、中央空调出风口材质分类: 中央空调出风口材质目前市面上主要有三种,铝合金材质,木质

材质,ABS材质,三种材质各有长短处,平舆县长河塑业有限公司小编下面就来介绍中央空调出风口三种材质的长短: 铝合金材料:铝合金材料的风口,性价比高,价格适中,大部分中央空调工程都是采用铝合金材料的风口。需要注意的是在夏天制冷时,送风温度过低、施工时保温没有做好、风量太小等,铝合金材料风口容易产生结露的现象,不过施工严格按照规范进行一般不会出现这种情况。 木质材质:木质材料风口美观大方,比较有质感,可以配合整体木质装修风格,装修档次高,它的不足是在冬天制热时,由于风口在使用和不使用空调时温差较大,容易变形、开裂。 ABS材料:ABS材料一种新兴的树脂材料,较少出现变形、结露的情况,而且有很多种颜色可以给各位设计师进行选择。不过价格较贵,一般家庭选用的比较少。 以上就是中央空调的出风口的标准和材质分析,三种材质各有长

出风口的结构设计

出风口的结构设计 目录 1.出风口的总布置要求 (2) 1.1概述 (2) 1.2出风口对气流方向的控制 (2) 1.2.1出风口对气流的纵向调节: (3) 1.2.1.1输入条件 (3) 1.2.1.2向上吹风角度 (3) 1.2.1.3向下吹风角度 (4) 1.2.1.4Nominal位置 (4) 1.2.1.5通用体系中的纵向吹风要求 (4) 1.2.2出风口对气流的横向调节 (5) 1.2.2.1输入条件 (5) 1.2.2.2横向调节要求 (5) 1.2.2.3宽车的特殊性要求 (6) 1.2.3出风角度分析与实际情况相悖的情况。 (6) 1.2.3.1窄口造成的吹风角度异常 (6) 1.2.3.2柯恩达效应 (7) 1.3风量要求 (7) 1.3.1.1有效出风面积的定义 (7) 1.3.1.2极限位置下的有效出风面积要求 (8) 2运动机构设计 (9) 2.1概述 (9) 2.2铰链四杆机构的设计 (9) 2.2.1压力角与传动角 (10) 2.2.2死点 (10) 2.2.3四铰链机构的布置 (11) 2.3摆动导杆机构的设计 (15) 2.3.1摆动导杆机构的布置 (16) 2.3.2制造死点 (16) 2.4齿轮机构的设计 (17) 2.4.1圆柱直齿轮机构的初步设计 (17) 2.4.2模数的选择 (18) 2.4.3柔性结构 (18) 2.5双风门控制机构 (18) 2.5.1双风门机构的基本形态 (19) 2.5.2双风门控制机构的设计 (19) 2.6拨轮转轴与风门转轴呈角度时的机构设计 (21) 2.6.1拨轮转轴与风门转轴同平面呈角度 (21) 2.6.2拨轮转轴与风门转轴异面呈角度 (21)

中央空调室内风机装修做法_风机及风口尺寸

一、风机盘管大样图 (2) 风口与风机盘管连接示意图 (3) 4 二、风机盘管风口外形尺寸表 (4) 四、中央空调运行经济指标说明 (5) 1、小区供冷、供热一年两季综合计算收费。 (5) 2、小区內入住并开通中央空调达到70%以上,所收费用才能基本满足中央空调主机开启费用(电费)。 (5) 3、以单元为单位入住并开通中央空调达到90%以上。 (5) 4、满足以上1、2、3项条件开启中央空调管理部门不用承担中央空调开启的超额费用(收入支出可平衡),否则开启管理部门要承担中央空调开启的超额费用。 (5)

附件: 业主装修中央空调导引手册 目录 一、风机盘管大样图、装修效果图、风口与风机盘管连接示意图 二、风机盘管风口外形尺寸与装修开口尺寸对照表 三、特别提示 四、中央空调开通相关要求 一、风机盘管大样图

风口与风机盘管连接示意图

二、风机盘管风口外形尺寸表 装修开风口尺寸与风机盘管风口外型尺寸对照表 三、特别提示: 1、装修时风口开口尺寸请务必参照上表,以上尺寸均为内径尺寸。

2、出风口开口尺寸应与风机风口位置正对、上下左右偏差不大于20mm。 3、装修封板位置距风机口不小于150mm不大于250mm 。 4、回风口开口位于风机盘管电机下方装修封板底面居中位置,与出风口对称。 5、所有检修口开口尺寸均为500*500 、且位于风机水管路阀门部位开口以利于检修。 6、所有风口开口外缘每边均要留30mm的风口边框镶嵌位置。 6、卫生间的中央空调冷凝水回水管装修时接入下水地漏。 四、中央空调运行经济指标说明 1、小区供冷、供热一年两季综合计算收费。 2、小区內入住并开通中央空调达到70%以上,所收费用才能基本满足中央空调主机开启费用(电费)。 3、以单元为单位入住并开通中央空调达到90%以上。 4、满足以上1、2、3项条件开启中央空调管理部门不用承担中央空调开启的超额费用(收入支出可平衡),否则开启管理部门要承担中央空调开启的超额费用。

汽车空调出风口及风道设计规范标准

汽车空调出风口及风道设计 作者:胡成台 单位:一汽轿车股份

目录 第1章风道及出风口介绍 (4) 1.1 风道介绍 (4) 1.2 出风口介绍 (4) 1.3 相关法规/标准要求 (5) 1.3.1 国家/政府/行业法规要求 (6) 1.3.2 FCC相关标准要求 (6) 第2章风道及出风口设计规 (7) 2.1风道及出风口结构 (7) 2.1.1风道结构 (7) 2.1.2出风口结构 (7) 2.1.3出风口及风道实例 (8) 2.1.4材料 (8) 2.2风道及出风口整车布置 (8) 2.2.1风道整车布置 (8) 2.2.2出风口整车布置 (9) 2.3通风性能 (10) 2.3.1 风道中的压力损失 (10) 2.3.2出风量 (10) 2.3.3通风有效面积 (10) 2.4 出风口水平叶片布置方式 (11) 2.4.1叶片数量 (11) 2.4.2叶片尺寸要求 (11) 2.5.3叶片间距 (13) 2.5 出风口垂直叶片布置方式 (13) 2.5.1叶片数量 (13) 2.5.2叶片尺寸要求 (13) 2.5.3叶片间距 (13) 2.6 气流性能 (13) 2.6.1气流方向性 (13) 2.6.2泄漏量 (17) 2.7 出风口手感 (17) 2.7.1拨钮操作力 (17) 2.7.2拨轮操作力 (17) 第3章试验验证与评估 (18) 3.1 设计验证流程 (18) 3.2 设计验证的容与方法 (18) 第4章附录 (19)

4.1 术语和缩写 (19) 4.2 设计工具 (19) 4.3 参考 (19)

第1章风道及出风口介绍 在整个汽车空调系统中,风道和出风口组成空调的通风系统,担负着将经过处理(温度调节,湿度调节,净化)的气流送到汽车驾驶舱,以完成驾驶舱通风,制冷,加热,除霜除雾,净化空气等的功能。 图 1 某车型空调通风系统及周围环境结构爆炸图 1.1 风道介绍 风道连接空调器与出风口,是空调系统中制冷和制热空气的通道。目前空调系统由空调厂商提供,作为空调系统一部分的风道设计,需汽车整车设计部门做匹配设计,车厢的空气流场与温度场不仅与车厢结构以及空调制冷系统有关,还与空调风道的结构形状密切相关。风道的布置走向、风道占用空间(截面积)以及风道中空气的流速等均影响车厢的制冷效果,影响系统的经济性和外观造型。 图 2 奔腾B90通风风道 1.2 出风口介绍

家用分体空调及中央空调安装尺寸参照

1空调机 2说明: (1)所有空调机室外机均需放入设计预留机位,并用百页或金属栏杆围蔽,(2)采用小型中央空调和分体式空调两大类: 一二线城市选用进口或合资品牌,三线及一下城市选用国产品牌。小型中央空调及配送的分体式空调机配置方案需报集团审批。 (3)本节附图尺寸均为完成面净尺寸。 小型中央空调系统: 6.1.1适用围: (1)户部分:别墅、叠式别墅、高层空中花园洋房、复式花园洋房及情景 洋房; (2)首层大堂:豪华户型及夏热冬暖、夏热冬冷地区的中端户型。 6.1.2空调室外机位的技术要求: (1)附表一中“空调适用面积”为:不包括公摊面积、卫生间、阳台、空 中花园等的户面积。该项数据以夏热冬暖、夏热冬冷地区为参照,其 余气候区根据具体情况由暖通专业技术人员核算为准。 (2)室外机需预留人员检修通道300mm宽,检修位不小于400mm宽,并应 预留安装通道(见附图一)。 (3)小型中央空调室外机的机位布置方式举例(见附图一): (4)附图一中第2种两侧封闭的布置方式因上方采光有限制,不宜设排风管(见 附图二)。 (5)正面进风口有阻挡的,反起高度不应大于900mm,并由暖通专业技术人员 核算。(见附图二.2B) 附图一:

两侧封闭剖面图二 2B.两侧封闭剖面图一 2A. 附图二:机位两侧封闭布置方式剖面示意图 附图三:机位尺寸与外观尺寸示意图

附表一:小型中央空调机制冷量及外观尺寸、机位尺寸一览表(1~5为布置方式)

6.1.3设计原则 (1)空调室外机位置应考虑必要的维修及进、出风空间。(参见附图一) (2)配有冷凝水泵的空调室机的冷凝水管原则上穿梁铺设;局部位置梁高尺 寸较小时,难以满足预留穿梁套管的要求,在不影响装修高度时,可在 梁下铺设。 (3)不配有冷凝水泵的空调室机冷凝水管在梁下铺设。冷凝水管的走向应 配合装修,局部位置如梁下净空较低,满足不了装修要求,应考虑穿 梁或剪力墙。 (4)空调冷媒管穿梁铺设,管中心距板底100mm。 (5)冷媒管、冷凝水管均应定位,穿梁、墙和剪力墙的套管均应标注标高。 (6)空调室机出风型式宜采用侧出风。餐厅、客厅的空调室机应避开中间 天花凹池位置布置;卧室空调室机宜布置在入门口处,回风口注意避 开衣柜;如有两层通高的客厅(如别墅、复式住宅),空调室机宜布 置在下层。 (7)应考虑冷凝水的排放。 6.2 分体式空调(含柜机和壁挂机) 6.2.1适用围:分体式空调系统主要用于除采用小型中央空调以外的住宅。 分体式空调机制冷量、适用面积及室、外机外观尺寸见附表二:附表二:

空调送回风口距离规范

空调送回风口距离规范 篇一:风机盘管及风口布置间距 一.机盘管加新风空调系统 风机盘管加新风空调系统包括风机盘管;风机盘管的送风口和回风口(有的习题风机盘管带回风口,设计中不再画回风口)、新风的送风口和排风口(有的习题没要求布置排风口,设计中不再画排风口),共四种风口和相应的风管;风机盘管的供水管、回水管、凝水管,两管制时(一般试题为两管制)共三种水管。 1)风机盘管布置:题目对台数有要求时,按题目的要求布置。题目无要求时,一般15,30平方米设一台。小于15平方米独立房间也要设一台。 2)风机盘管的送风口、回风口和送风管、回风管布置:一台风机盘管一般设一个送风口;送、回风口距离超过7m但小于10m时,可一台风机盘管设两个送风口;超过10m时宜设两排及以上风机盘管。一台风机盘管一般设一个回风口。送风管就是风机盘管与送风口的连接管。回风管就是风机盘管与回风口的连接管(有的习题风机盘管带回风口,也就带了回风管)。风机盘管的送风口与回风口不在同一水平 1 面时(如送风口为上侧送、回风口为上回),送风口与回风口距离可相对近一些。风机盘管的送风口与回风口在同一水平面时(如送风口为上侧送、回风口为上侧回;送风口为上送、回风口为上回等),送风口与回风口不宜太近,尽量远一些。送风口中心距墙不宜小于1m,因送风口一般为散流器,从风口向斜下方吹的气流遇到墙后向下,会使向下的气流过大。 3)新风口、排风口和新风管、排风管布置:为使室内维持一定的新鲜空气量,要根据人员多少、停留时间、污染程度等因素把室外空气经过加热、冷却、加湿、过滤等处理后单独送入房间。习题对新风管的连接有要求时,如:新风接风机盘管

中央空调出风口材质分类和选择注意事项

中央空调出风口,中央空调出风口尺寸标准出风口的大小取决于室内机容量的大小,如果出风口过大,风管过长,则气流速度就会下降,从而影响空调使用效果;如果出风口选择过小,则气流速度会变大,从而导致风直吹人体上引起的不适感,还有可能导致噪音过大。芜湖空调清洗专家介绍,中央空调出风口材质一般市面上出风口主要为ABS塑料和铝合金风口,有时为了装潢的效果需要,有定制的木质风口。 中央空调出风口尺寸 出风口的大小取决于室内机容量的大小,如果出风口过大,风管过长,则气流速度就会下降,从而影响空调使用效果;如果出风口选择过小,则气流速度会变大,从而导致风直吹人体上引起的不适感,还有可能导致噪音过大。 中央空调出风口位置 出风口和回风口的尺寸是根据风机出风口和回风口的尺寸决定的,一般是大一圈。位置以房间中心位置,布置在中心位置的两边,风口在两边的中心位置。是房间的空间分成约为三等分。 中央空调出风口种类 出风口主要有条型风口和散流气风口两种,一般家庭用户多为条型风口;散流器风口多用于商场和办公场所。 中央空调出风口材质:ABS材料 ABS材料一种新兴的树脂材料,较少出现变形、结露的情况,而且有很多种颜色可以给各位设计师进行选择。不过价格较贵,一般家庭选用的比较少。

中央空调出风口材质:木质材料 木质材料风口美观大方,比较有质感,可以配合整体木质装修风格,装修档次高,它的不足是在冬天制热时,由于风口在使用和不使用空调时温差较大,容易变形、开裂。 中央空调出风口材质:铝合金材料 铝合金材料的风口,性价比高,价格适中,大部分中央空调工程都是采用铝合金材料的风口。需要注意的是在夏天制冷时,送风温度过低、施工时保温没有做好、风量太小等,铝合金材料风口容易产生结露的现象,不过施工严格按照规范进行一般不会出现这种情况。 中央空调出风口注意事项:

空调出风口的结构设计

空调出风口的结构设计 1.出风口的总布置要求 1.1概述 空调出风口作为空调的输出的终端,应具备风量与风向的调节作用。通过调节出风口,应当能够满足整车的空气循环与制冷控制要求,并能够满足乘客的各种舒适性要求,从某种方面来讲,出风口的设计并非单独从属于内饰设计,而是应当在整车系统中考虑的。 从乘客的需求来说,每个人对于制冷制热的需求各有不同,有些人希望冷(热)风直接吹向身体,有些人希望风不要直接吹向人,而是通过改变整车温度,使自己达到一个舒适的状态,因此风向的调节范围,应当是能够覆盖人体,并能够达到人体外侧的空间,以满足不同人群的需求。一般来说,仪表板会布置4个出风口,靠近驾驶员侧的两个出风口用于满足驾驶员的需求,另一侧的两个满足副驾驶员的需求。四个出风口的吹风范围均应覆盖其所服务的对象。 出风口的布置,应当注意避免被其他零件阻挡,主要是仪表罩,方向盘的影响,同时也应当注意避免直吹驾驶员的手部,造成手部的不适影响驾驶。 1.2出风口对气流方向的控制 关于这一部分内容,基本采用了伟世通的设计要求和观点,通用对于吹风的要求与伟世通在个别地方是有区别的,我会加以说明。至于相关的设计要求是由于亚欧美市场客户需求不同还是欧标,美标等的标准不同而产生的,我目前没有得到相关信息也未作相应的研究,待获取相关信息并研究后,会对后文重新整理,当前还是以伟世通的要求为主进行说明。

1.2.1出风口对气流的纵向调节: 对于出风口气流的纵向调节范围要求,请见图1-1 图 1-1 侧视图,气流的纵向调节 1.2.1.1输入条件 如标记○5,○9,做分析的时候,h点位置应当取座椅最前置状态下的位置,因为在座椅前置时,出风口相对于人体的吹风范围是最小的,只有满足了前置座椅的要求,才可以同时满足其他状态下的要求。眼椭圆取99%的,这个与h点的要求原因是一样的,是为了使吹风的覆盖范围能够满足各种假人状态。

仪表板设计规范

汽车仪表板设计方法仪表板是汽车内饰中结构最为复杂 , 零部件数量最多的总 成零件。仪表板的外观质量和风格决定了客户对整车内饰的 评价,它包括了许多功能性的零件,如组合仪表、音响娱乐系 统、各种电器开关、空调控制器等等零件,同时在仪表板设计 上还涉及到许多安全法规的要求,如驾驶员可视区域的要求、 头部撞击的要求、膝部撞击的要求等。所以仪表板的设计有 着较高的设计难度。 1、仪表板零件简介 仪表板总成是汽车座舱系统(COCKPIT) 的重要组成部分,它 包含的零部件种类和数量要看座舱系统的具体结构和对它 如何划分,一般而言,仪表板总成由以下几部分组成: 1.仪表板本体,它是座舱系统的载体和框架。从触感上 可分为硬塑仪表板和软化仪表板。硬塑仪表板一般用 于低价的家庭用车,如CORSA 仪表板和秦川仪表板。为 了提高仪表板的外观质量(大型注塑件上易产生注塑 缺陷)和触感,常常在仪表板的表面喷涂软触漆。另一 类是软化的仪表板,可以通过发泡材料在表皮和骨架 之间发泡,或是将带有泡沫背基的表皮复合到仪表板 骨架上来达到软化的效果。第一种方式可以制造形状 复杂的仪表板,外观和触感较好,但模具、设备的投入 较大;第二种方式只适应于较平坦的仪表板,泡沫的背 基一般为3-4 毫米,但工艺简单,投入较少。 2.各种电器仪表、开关及音响娱乐系统。这些都是一些 功能性的零件,如组合仪表、车灯开关、收音机、保险 盒、继电器盒等

3. 通 风 系 统, 主 要 由 空 调 机、 空 调 控 制 器、 各 种 风 道 和 出 风 口 组 成, 提 供 汽 车 除 霜 除 雾 功 能 及 车 内 环 境 温 度 控 制。 4. 副 驾 驶 侧 安 全 气 囊, 它 是 现 代 汽 车 必 备 的 安 全 设 备, 通 常 气 囊 系 统 由 气 体 发 生 器、 气 袋、 安 装 金 属 框 架、 气 囊 导 向 框 架 和 气 囊 盖 板 组 成。 现 流 行 没 有 气 囊 盖 板 的 气 囊, 它 是 用 激 光 切 割 仪 表 板 的 背 面,POLO 和AUDI A6 的 仪 表 板 就 是 无 缝 气 囊。 5. 手 套 箱 和 各 种 储 物 盒 6. 各 种 各 样 的 装 饰 面 板 7. 金 属 加 强 粱, 加 强 粱 承 受 了 座 舱 系 统 各 个 零 件 的 载 荷, 包 括 气 囊 发 射 的 动 载 荷 及 转 向 管 柱、 方 向 盘、 收 音 机、 组 合 仪 表 、 手 套 箱 等 的 静 载 荷。 所 以COCKPIT 都 有 强 大 的 加 强 粱。 8. 各 种 各 样 的 电 子 线 束. 以 上8 部 分 零 件 再 加 上 方 向 盘 和 转 向 结 构, 就 是 一 个 完 整 的COCKPIT 系 统 了。COCKPIT 可 以 在 仪 表 板 生 产 厂 家 进 行 预 装 配, 然 后 以 模 块 的 形 式 安 装 到 整 车 上, 可 以 减 少 整 车 厂 装 配 线 的 长 度, 提 高 效 率, 降 低 成 本, 是 目 前 国 际 上 流 行 的 生 产 方 式。 二、仪 表 板 的 设 计 流 程 Styling design Engineering & packaging Modeling & make engineering 1.市 场 调 查、 客 户 需 2.设 计 风 格 定 位 3.造 型 方 案 初 始 效 果 图 4. 最 终 完 善 效 果 图 5. TAPE DRAWING 6. 完 成rough surface 7. 制 作sitting buck & 8. 扫 描clay 模 型 11.假 人 布 置 12.人 体 工 程 学 研 究 13.仪 表 板 结 构 布 置(5 个 主 断 面) 14.产 品 结 构 设 计(BAP 设 计) 15.产 品 零 件 造 型 16.产 品 工 程 图 纸 输出信息 输出信息

汽车空调出风口及风道设计规范

汽车空调出风口及风道设计规 范(总19页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

汽车空调出风口及风道设计 作者:胡成台 单位:一汽轿车股份有限公司

目录 第1章风道及出风口介绍......................... 错误!未定义书签。 风道介绍................................................ 错误!未定义书签。 出风口介绍.............................................. 错误!未定义书签。 相关法规/标准要求 ....................................... 错误!未定义书签。 国家/政府/行业法规要求................................ 错误!未定义书签。 FCC相关标准要求 ...................................... 错误!未定义书签。第2章风道及出风口设计规范 .................... 错误!未定义书签。 风道及出风口结构 ......................................... 错误!未定义书签。 风道结构............................................... 错误!未定义书签。 出风口结构............................................. 错误!未定义书签。 出风口及风道实例....................................... 错误!未定义书签。 材料................................................... 错误!未定义书签。 风道及出风口整车布置 ..................................... 错误!未定义书签。 风道整车布置........................................... 错误!未定义书签。 出风口整车布置......................................... 错误!未定义书签。 通风性能................................................. 错误!未定义书签。 风道中的压力损失...................................... 错误!未定义书签。 出风量................................................. 错误!未定义书签。 通风有效面积........................................... 错误!未定义书签。 出风口水平叶片布置方式 .................................. 错误!未定义书签。 叶片数量............................................... 错误!未定义书签。 叶片尺寸要求........................................... 错误!未定义书签。 叶片间距............................................... 错误!未定义书签。 出风口垂直叶片布置方式 .................................. 错误!未定义书签。 叶片数量............................................... 错误!未定义书签。 叶片尺寸要求........................................... 错误!未定义书签。 叶片间距............................................... 错误!未定义书签。 气流性能................................................ 错误!未定义书签。 气流方向性............................................. 错误!未定义书签。 泄漏量................................................. 错误!未定义书签。 出风口手感.............................................. 错误!未定义书签。 拨钮操作力............................................. 错误!未定义书签。 拨轮操作力............................................. 错误!未定义书签。第3章试验验证与评估.......................... 错误!未定义书签。 设计验证流程............................................ 错误!未定义书签。 设计验证的内容与方法 .................................... 错误!未定义书签。第4章附录.................................... 错误!未定义书签。

仪表板法规和设计规范要求

法规和设计规范要求 一:需要检查副仪表板本体和内部功能件,副仪表板本体和内部功能件满足人机 工程要求,包括手部空间,头部空间,脚膝空间等。 参考布置要求: 1.操纵件尽可能布置在人手易于触摸区域 2.乘客头部和脚,膝部有足够的运动空间. 二副仪表板内部突出物符合国标关于轿车内部凸出物的要求 三扶手(Armrest) "参考布置要求:尽可能布置在人手易于触摸区域 四副仪表板总成定位安装和拆卸考虑副仪表板总成安装及拆卸的合理性和可行 性。 五副仪表板总成的零件分割:考虑副仪表板总成的制造工艺性, 以及总价. 六:副仪表板总成的A表面考虑各个零件之间的定义的合理性 八:副仪表板总成的刚度副仪表板总成的刚度需满足相关的要求 九:副仪表板总成的固有频率副仪表板总成的固有频率需大于等于25Hz 十:副仪表板总成能承受的静态载荷副仪表板总成能承受的静态载荷需满足。 十一:副仪表板子系统的固有频率副仪表板子系统的固有频率需大于等于 45Hz。 十二:烟灰缸最小开口面积及容积 1、前烟灰缸(主烟灰缸):长方形宽度100毫米,圆形直径80毫米,开口面积 5000平方毫米,容积200立方厘米 2、后烟灰缸(辅助烟灰缸):长方形宽度75毫米,圆形直径50毫米,开口面 积2000平方毫米,容积80立方厘米 3、烟灰缸刚度烟灰缸在完全打开状态下,盖板中点受力11N,烟灰缸Y向的变 形最大5mm, Z向的变形最大3mm 4、关于倒烟灰要求烟灰缸缸体可以在车内不使用任何工具从烟灰缸中取出, 取出时手不碰到灭烟处,并倾斜小于10度 5、杯托尺寸驾驶员使用的杯托可以放入直径90毫米到110毫米的容器, 设计目标值为90毫米,放入深度为75到100毫米,设计目标为80毫米。日本 车要求可放入直径52.5毫米,放入深度为104毫米。 6、杯托刚度在完全打开状态下,杯托盖板中点Y向受力11N的杯托最大Y 向变形.5mm, 盖板中点Z向受力22N的杯托最大Z向变形6mm 7、硬币的尺寸 "需要3种中国硬币,尺寸如下: 1元直径25毫米厚度1.8毫米 5角直径20.5毫米厚度1.6毫米 1角直径19毫米厚度1.8毫米" 8、CD盒参考CD尺寸: 125X132X11 1、空调出风口尺寸仪表板必须提供最少4个空调出风口,有效面积要求在 SDS Detail25014中定义,最大和最小出风口面积不能超过10%。有效面积是指 在叶片平行于气流方向时,未被出风口零件(叶片,关闭阀门,运动连接件…) 阻挡的面积。 9、空调出风口布置出风口的布置和吹风方向的规定 10.变速杆与上面板间隙最小为4至6毫米 11、线束需在副仪表板内或铁件上增加适当的RIB和HOLE用于线束的连接固定. 12、风道最大限度的保证等横面积,内部表面需二阶连续.

中央空调风口知识介绍

中央空调风口知识介绍 中央空调风口是中央空调系统中用于送风和回风的末端设备,是一种空气分配设备。送风口将制冷或者加热后的空气送到室内,而回风口则将室内污浊的空气吸回去,两者形成一整个空气循环,在保证室内制冷采暖效果的同时,也保证了室内空气的制冷及舒适度。 中央空调风口的种类及作用 1、双层百页风口,双层百页风口一般作为送风口,也可直接与风机盘管配套使用,广泛用于集中空调系统的末端,还可以与对开多叶调节阀,用以调整风量。 2、单层百叶风口,单层百叶风口可调上下风向,回风口可与风口过滤网合用,节片角度可以调节,叶片间有ABS塑料固定支架。 3、固定条形风口,固定条形风口用在供热及供冷的空调系统中,可安装在侧墙上或天花板上。 4、自垂百叶式风口,自垂百叶式风口具有正压的空调房间自动排气。通常情况下靠风口的百叶自重而自然下垂,隔绝室内外的空气交换,当室内气压大于室外气压时,气流将百叶吹开而向外排气,反之室内气压小于室外气压时,气流不能反向流入室内,该风口有单向止回作用。 5、散流器,散流器是空调系统中常用的送风口,可根据使用要求制成正方形或长方形,能配合任何天花板的装修要求。散流器的内芯部分可从外框拆离,方便安装及清洗。后面可配风口调节阀以控制调整风量。适用于播音室、医院、剧场、教室、音乐厅、图书馆、游艺厅、剧场休息厅、一般办公室、商店、旅馆、饭店、及体育馆等。 6、球形可调风口,球形可调风口是一种喷口型送风口。高速气流在经过阀体喷口中对指定方向送风,气流喷射方向可在顶角为35°的圆锥形空间内前后左右方便地调节,气体流量也可通过阀门开合程度来调节。多用于高大层顶高速送风或局部供冷的场合,如机场候机大厅,室内体育场,宾馆厨房等场合。 7、旋流风口,旋流风口送出旋转射流,具有诱导比大,风速衰减快的特点,在空调通风系统中可用作大风量,大温差送风以减少风口数量,安装在天花板或

相关文档
最新文档