生态毒理学中生物标志物研究进展

生态毒理学中生物标志物研究进展
生态毒理学中生物标志物研究进展

038 生态毒理学中生物标志物研究进展

万 斌

(中国预防医学科学院环境卫生与卫生工程研究所,北京 100050)

摘要: 生物标志物是生物体受到严重损害之前,在分子、细胞、个体或种群水平上因受环境污染物影响而产生异常变化的信号指标。对它的检测可为严重毒性伤害提供早期警报,因此受到国内外学者普遍关注。本文对生态毒理学领域中生物标志物的特性及其在行为、生理、生化方面的研究进展加以综述。关键词: 生物标志物;生态毒理学;生物标志物检测

中图分类号: X 17115 文献标识码: A 文章编号: 100121226(2000)022********

审校者:修瑞琴

收稿日期:1999205207;修回日期:1999209227

美国国家科学院生物标志物委员会于1987年对生物标志物(b i om arker )进行了系统论述[1]。目前,生物标志物已被许多学科发展运用,越来越受到人们关注。生态毒理学领域中,生物标志物也占有重要位置,其概念和检测研究均有所扩展,本文对这方面的研究情况进行了综述。

1 生态毒理学中的生物标志物

在美国国家环保局发表的有关生物标志

物的报告中,将生物标志物概括为:穿过机体屏障并进入人类组织或体液的环境污染物或其产生的生物效应。对它们的检测结果可作为生物体暴露、效应及易感性的指示物[2]。90年代初,D ep ledge 和Fo ssi 等[3,4]曾先后提出生态毒理范畴的生物标志物,认为生物标志物是生物体组织或体液样品中或在个体水平上所能检测到的生化、细胞、生理或行为变化,这种变化可阐明生物体暴露和产生生物效应的信息。Gok soyr 等[5]认为这些生物标志物系统是生物体暴露于亚致死剂量下的有毒化合物而发生异常变化的信号指标,这种指标不仅可为环境质量退化提供早期警报,而且可以特异性地检测到环境中致癌、致畸、致突变化合物的生物可利用性。

环境污染物首先必须进入生物体,到达靶位点后,才可能产生生物学变化。广义上说,从暴露到效应产生,其间的级联生物效应都可用适当的生物标志物进行检测,这些生物反应从分子相互作用到细胞损伤及至整个生物体的毒性显现都反映了生物系统与环境因子的相互作用,这些作用可发生在分子、细胞及个体水平上,使生物体产生功能、生理、生化变化。如果这些生物反应先于严重的结构损害,标志物就有助于确定生物体所处的污染状态及其潜在危害,为严重毒性伤害提供早期警报。2 生物标志物的特性

确定一个与各毒性终点相关的实用标志物需多学科的合作研究。污染导致的最初反应是从分子相互作用开始的,因此,基于分子机制的标志物研究也是十分必要的[6]。使用与毒性相关的标志物可加速环境污染危险评价进程,增大其可靠性。

一种标志物应能敏感有效地反映出生物体发生严重损伤之前的生物变化。在用动物模型研究低浓度污染物效应时,选择敏感的标志物尤为重要。有人曾用处于胚胎或幼体时期的生物体来检测生物的生理变化,如

En senbach 等[7]

发现斑马鱼在胚胎仔鱼阶

段,生长、发育和存活率对有机污染十分敏感,很低浓度的3,42二氯苯胺(40m g L )

高丙体六六六(2Λg L)的混合暴露即可明显减缓仔鱼的生长发育,80Λg L的林丹可降低仔鱼的存活率。

标志物要在生态系统现状研究中广泛运用,还应对一类污染而非针对某一种污染产生反应[5]。特异性标志物可反映特定污染物的不良效应,有助于建立暴露2效应关系。在混合暴露时,高特异性标志物可用以确定污染物的化学性质[8]。但非特异性标志物也可提供环境暴露的有关信息[9]。在实际应用中,所发生的标志物反应还应有一段稳定时间,而不是瞬间反应,从而可稳定地加以检测,同时要快速、技术易于掌握[9,10]。但一种标志物常难以同时具备这些特性。意大利V igana 等[11]提出同时用几种标志物进行检测,以减少结果的模糊性和误导性。在标志物选取时还应选择在标志物检测时对受试生物损害较小的标志物指标,称为非破坏性标志物[4,8,9]。

3 生物标志物检测

生物标志物是与环境污染的生物检测密不可分的,它是一种有效、前景广阔的环境危险评价工具。目前研究热点有行为、生理、生化等标志物。

311 行为标志物

行为标志物的检测可反映发生在较低生物水平(细胞或分子水平)所产生的综合效应。包括四种主要杀虫剂在内的许多毒物都可导致神经毒性,亚致死剂量下生物神经系统的生化变化将直接影响生物体的正常行为[9,12]。若行为的变化影响了生物的繁殖、行动、捕食、回避等行为,则将对生物的生长、发育乃至存活产生不利影响,从而间接导致种群水平的变化。如:美国的B ridges[13]研究发现315m g L西维因可降低蝌蚪90%的行动能力,且其冲刺游动速度和距离也显著降低,捕食能力、逃避天敌的能力受到影响。从而其生长率及适应环境的能力大大降低。有人报道用鱼的栖息地选择行为或游动行为来检测腐殖质变化对鱼的影响[14]。大型氵蚤(D ap hn ia

m ag na)由于具有敏感等优越性,也已用于行为测试。Hoof等[15]概述了大型氵蚤行为测试,包括趋光性分析和运动分析。此外还有用牡蛎壳运动反应,发光菌、藻尖荧光等进行标志物研究的报道。

近来,行为标志物检测已采用计算机辅

助生物测试系统。有人用这套系统研究了重

金属对一种海滩蟹(Ca rcirus m aenas)的行为影响,检测其活动时间、平移速度、运动距离等指标,但重金属暴露的行为变化指标的敏感性和特异性仍有待验证[3]。行为标志物检测的一大优点是对生物不产生损害。

312 生理标志物

生理标志物包括一些特异的生理反应终

点,如免疫学反应,也包括普通的生理现象,

如生长、繁殖、发育等。确认污染诱导的生理

变化首先要了解测试生物的正常生理状态。

近年技术发展已使人们可同时监测多个生物

体的生理指标。D ep ledge[3]曾报道同时监测

多个甲壳类动物的心脏活动,对其正常生理

活动和变化进行较全面、深入研究。这些监测

系统也可用于检测捕食率、尿量、粪量、生长

率等。对水生生物进行的连续检测有血循环、

分泌、渗透压调节、生长、繁殖等。有的生理指

标既是生理参数又是行为参数。如鱼的换气

行为是与耗氧率密切相关的,鱼鳃组织是首

先接触污染物的组织,故会产生明显生理变

化,影响鱼的呼吸,同时伴随相应行为变

化[12,15]。这些生理指标都涉及多个组织或系

统,对它们的损害将导致生存活力下降。31211 生长余能检测

生长余能(scope fo r grow th,SFG)是对生物能量状态的综合测试,它基于的理论是:生物体在保证正常状态所消耗的能量之外,剩余能将用于生长、发育和繁殖。生物体暴露于环境污染物时,其防御机制消耗能量,这样将减少用于生长、发育、繁殖的能量。从整个生态系统来看,这将对个体生物乃至整个种群产生不利影响[9]。Sm aal等[16]通过研究双

壳类的SFG指标,认为它是生物检测的敏感标志物。还有报道认为对暴露生物生长的直接测定(如:体长、体重)及对能量贮备的间接测定(如:甘油三酯 总脂)都是较为可靠的生物标志物。B en ton等[1]测得一种鳉鱼(S a ilf in m olly)的体重增加百分比、脂类百分比、甘油三酯百分比等与DD T(o,p′2 DD T)的浓度呈负相关。尽管有许多研究成功地用RNA DNA为暴露指标,但大多情况下,对水生无脊椎动物是不适用的,而且对不同鱼类,其敏感性也不同[18]。对水生无脊椎动物来说,直接热量测定(如热损耗率)可反映细胞修复机制、生理性适应的后果,这种方法既可检测生物毒性效应,也可揭示毒物的代谢特征[19]。SFG检测的不足之处在于它忽略了污染物对能量利用率的影响,而且其假设的剩余能量全部用于生长、繁殖,仍有待证明。

31212 免疫毒理学标志物检测

水生生态毒理学的免疫标志物研究主要以鱼类为测试生物。鱼的特异性免疫反应包括T细胞和B细胞介导的免疫反应。

E lgendy等[20]曾利用尼罗罗非鱼(T ilap a n ilotica)的脾细胞增殖反应来评价有机磷化合物诱导的细胞免疫反应,发现免疫反应的抑制程度与污染(克瘟散和草甘磷)的浓度相关,血清抗体效价也随暴露不断下降。非特异性免疫反应则涉及细胞的防御机制,其中巨噬细胞功能测试有:趋化性、核噬作用、胞饮作用等。W ester等[21]论述了鱼类免疫毒理学标志物有:①结构性参数,如:细胞数、组织重量、形态、血清蛋白等。②免疫调节功能参数,如:对疾病的易感性。并指出有一些免疫参数有望成为有效的实用标志物。目前,免疫毒理学标志物的进一步确立和完善仍需对免疫机制进行深入探索。

31213 组织病理标志物

近年来,许多学者开始采用组织病理方法进行标志物检测。Hon rub ia[22]研究了抗蚜威(01002%,01014%)导致的一种蝌蚪

(R ana p erez i)的组织病理变化(包括鳃、肝、胆囊、心脏及脊索)和死亡率变化,发现存在直接的剂量2效应关系。组织病理变化一般不受生物体自身状态及正常环境影响(如季节变化、性别、年龄等),而大多与污染物或不良环境条件有关。

313 生化标志物

生化标志物是生物体中最早可测得的污染物诱导反应,因而可为更高生物水平可能产生的损害提供信息[11,23]。生化变化常涉及蛋白水平的变化、酶活性改变或DNA分子的变化。

应激蛋白是环境压力促使特定基因表达的产物,包括H SP(热休克蛋白)家族及相关蛋白(如葡糖调节蛋白),它是细胞保护机制的重要部分。污染物可诱导H SP60和H SP70浓度上升,通过对它们的测定可定量地检测环境污染物的不良生物效应,而且对H SP60和H SP70积累的检测有利于大范围调查监测的回顾性研究[24]。应激蛋白受到生物种类、年龄及外界环境影响,其产生是一种低剂量效应,可说明生物体及其所在生态系统的一般状态。对污染物和环境因子(冷、热)诱导的H SP70蛋白水平的检测可用H SP70广谱抗体通过W estern b lo tting进行[25]。Goering[23]还总结了用c DNA探针技术、代谢标记、蛋白染色等技术来检测生物体内应激蛋白的表达水平。

与细胞色素P450相关的混合功能氧化酶(M FO)系统已广泛用于污染物的标志物检测。P450活性对有机污染(如PA H s,PCB s 等)极为敏感,且许多有机物代谢早期都由M FO介导[20]。M FO活性不仅可在肝脏中和皮肤活组织中检测,也可通过检测转基因细胞株中P4501A1基因表达报告基因来评价污染物诱导的M FO系统成分活性[26,27]。M FO系统成分中的常用指标有羟乙基试卤灵2O2脱乙基酶(EROD)及芳香烃羟化酶(A HH)、氨基比林2N2脱甲基酶(A PDM)、尿苷二磷酸葡糖转移酶()

细胞色素还原酶、细胞色素b5、总细胞色素等。有报道EROD活性与有机污染并非呈简单线性关系,至少在比目鱼(P.f lesus)中是如此[5]。此外,加单氧酶活性变化也可以作为污染物检测的生物标志物[28,30]。

Co ssu等[31]发现抗氧化机制中,硒依赖型谷胱甘肽过氧化物酶(Se2GPx)、谷胱甘肽还原酶、谷胱甘肽均是污染物毒性的良好标志物。但在意大利Po河中却发现这些指标并不能明显反映鱼类所处的污染状态[11]。Gok soyr[5]也发现在比目鱼肝脏中GST并未产生污染物诱导的标志物反应。而有人报道牡蛎(M y tilus g a llp rou incia lis)中GPx活性与组织中污染物水平相关[26]。因此,对这些抗氧化酶在不同污染、不同测试生物中的反应差异有待深入研究。另外,超氧化物歧化酶和金属硫蛋白也被认为是重金属或有机污染的标志物,且有报道金属硫蛋白可随暴露顺序和成分不同而变化,因此可反映暴露情况[5]。

乙酰胆碱酯酶这一对特定类毒物敏感的标志物也可受到另一些物质的影响,如某些金属和M FO诱变剂等。研究证明除有机磷农药外,包括氯化烃在内的污染物也可抑制鳟鱼和比目鱼肌肉的乙酰胆碱酯酶活性,且伴随M FO酶系活性诱导[29]。

另一类分子生物标志物是DNA分子的诱导变异。有关遗传毒理标志物检测与毒性效应之间的关系尚不清楚,对水生无脊椎动物研究也很有限。目前主要标志物检测有:姊妹染色单体互换(SCE),染色体异常(CA)及微核(M N)等,其中微核被认为是水生生物检测诱变效应的有用标志物[32]。

在标志物研究中,常根据实际目的和要求采取多终点分析,以获得更多生物信息,其终点检测结果在污染物之间以及单体生物之间也更有可比性[33]。

4 结语

生物标志物检测能提供有毒化学污染物环境生物效应的信息,对生态毒理研究和环境危险评价具有重要意义。标志物早期检测可使人们采取措施预防或缓解污染物危害,因此加强生物标志物在生态危险性评价中的作用,充分发挥其预警优势是十分必要的。自然环境系统十分复杂,生物体常暴露于混合污染中,故实验室条件下联合毒性及长效应研究应受关注。同时仍需注意标志物研究的生态相关性应尽可能反映实际环境暴露情况。

参考文献

[1]T he comm ittee on bi o logical m arker of the

nati onal council.Environ H ealth Perspect,

1987,74:329.

[2]Fow le J r and Sexton K.Environ H ealth

Perspect,1992,98:2352241.

[3]D ep ledge M H et al.M ar Po llut Bull,1995,

31(123):19227.

[4]Fo ssi M C et al.M ar Po llut Bull,1992,24

(9):4592461.

[5]Gok soyr A et al.M ar Po llut Bull,1996,33

(126):36245.

[6]M ercier M J.Int A rch O ccup Environ

H ealth,1992,s72s107.

[7]Ensenbach U and N agel R.Eco toxico l

Environ Saf,1995,30:1512157.

[8]D ecap ri o A H.Environ Sci T echno l,1997,31

(7):183721847.

[9]W alker CH.Environ H ealth Perspect,1998,

106(supp l2):6132620.

[10]W HO:EHC155:bi om arkers and risk

assess m ent:concep ts and p rinci p les.

[11]V igano L et al.Environ Toxico l Chem,

1998,17(3):4042411.

[12]H eath A G.W ater Po lluti on and F ish

Physi o logy.2nd,V irginia:CRC P ress,1995:

3252342.

[13]B ridges C M.Environ Toxico l Chem,1997,

16(9):193521939.

[14]L o renz R et al.Chemo sphere,1996,33(11):

214522158.

[15]Hoof FV et al.W at Sci T ech,1994,30(10):

79286.

[16]Sm aal A C et al.B i omonit Coastal W aters

E stuaries,1994,2452247.

[17]Benton M J et al.Eco toxico l Environ Saf,

1994,29:122.

[18]H eath A G et al.A rch Environ Contam

Toxico l,1993,25:4852491.

[19]Penttinen O P and Kukkonen J.Environ

Toxico l Chem,1998,17(5):8832890.

[20]E lgendy KS et al.Environ Sci H ealth,1998,

B33(2):1352149.

[21]W ester P W et al.Toxico logy,1994,86:2132

232.

[22]Honrubia M P et al.A rch Environ Contam

Toxico l,1993,25(2):1842191.

[23]Goering PL.I N:Butter w o rth FM eds.

B i omonito rs and bi om arkers as indicato rs of

environm ental change.N ew Yo rk:P lenum

P ress,1995:2172226.

[24]Sanders BM and M artin L S.Sci To tal

Environ,1993,139 140:4592470.

[25]D unlap D Y and M atsum ura F.Eco toxico l

Environ Saf,1997,37:2382244.[26]So le M et al.Sci To tal Environ,1995,159:

1472153.

[27]A nderson JW et al.Environ Toxico l Chem,

1995,14(7):115921169

[28]R attner BA et al.Environ Toxico l Chem,

1994,13(11):180521812

[29]Payne JF et al.M ar Po llut Bull,1996,32

(2):2252231.

[30]A ddison R F et al.NA TO A S I SER H,

1995,90:5492565.

[31]Co ssu C et al.Eco toxico l Environ Saf,

1997,38:1222131.

[32]D eflo ra S et al.M ut R es,1993,319:1672

177.

[33]Butter w o rth FM.In:Butter w o rth FM eds.

B i omonito rs and B i om arkers as indicato rs of

environm ental change.N ew Yo rk:P lenum

P ress,1995:128.

(上接第109页)

参考文献

[1]Stacpoo le P W et al.D rug M etab R ev,1998,

30:4992539.

[2]K rasner S W et al.J Am W ater W o rk

A ssoc,1989,81:41253.

[3]W HO.Guidelines fo r drink ing2w ater

quality.second editi on.V o l2,Geneva:

W HO1996:8732878.

[4]Jack son VN et al.J B i o l Chem,1996,271:

8612868.

[5]L arson JL et al.Toxico l A pp l Phar m aco l,

1992,115:2682277.

[6]严子梦.国外医学合成药、生化药、制剂分

册,1992,18:2022205.

[7]D avis M E et al.Environ H ealth Perspect,

1986,69:2092214.

[8]Katz R et al.Toxico l A pp l Phar m aco l,

1981,57:2732287.

[9]D eA ngelo AB et al.Fundam A pp l Toxico l,

1992,19:1592168.

[10]D eA ngelo AB et al.Toxico logy,1996,114:

2072221.

[11]D e M arini DM et al.M utagen,1994,9:4292

437.[12]Fusco JC et al.Environ M o lec M utagen,

1996,27:129.

[13]Fox AW et al.Fundam A pp l Toxico l,1996,

32:87295.

[14]Ferreira2Gonzalez A et al.Carcinogenesis,

1995,16:4952500.

[15]Sch roeder M et al.Carcinogenesis,1997,

18:167521678.

[16]John P et al.Toxico l Sci,1999,47:128.

[17]Stauber A J et al.Toxico l A pp l Phar m aco l,

1998,150:2872294.

[18]Snyder RD et al.Cancer R es,1995,55:

370223705.

[19]Bull RJ et al.Fundam A pp l Toxico l,1995,

28:1552166.

[20]Kato2W einstein J et al.Toxico logy,1998,

130:1412154.

[21]Scanchez I M et al.Toxico logy,1990,64:332

46.

[22]Benane SG et al.J Toxico l Environ H ealth,

1996,48:4272437.

[23]T ao L ianhui et al.Toxico l Sci,1998,43:

1392144.

第三章 第一节 饱和烃生物标志物组合类型及地化特征(1)

第三章烃源岩可溶有机质生物标志物组成特征 第一节饱和烃生物标志物组合类型及地球化学特征 饱和烃生物标志物组成比较复杂,在原油和烃源岩中分布比较广的主要有正构烷烃、类异戊(间)二烯烷烃、环烷烃(甾、萜类化合物)等。这些化合物的相对组成及分布特征取决于烃源岩有机组分的生源母质、沉积环境和成熟度等多种地质和地球化学因素。因此,烃源岩中饱和烃生物标志物组合特征可以反映烃源岩中有机质的原始母质、沉积环境及演化程度。不同层位或同一层位的泥岩,由于沉积环境的差别,地球化学特征也存在一定的差别,为了便于讨论不同层位或同一层位不同岩性组合的烃源岩的油源贡献,根据烃源岩的生物标志物组合特征,可将其划分为三大类型(MA、MB、MC)。 一、烃源岩生物标志物组合类型 1.MA类 MA类烃源岩正构烷烃碳数分布特征呈单峰态前峰型(或正态型,个别为双峰态前峰型),植烷(Ph)相对含量大于姥鲛烷(Pr)的相对含量,β-胡萝卜烷和伽马蜡烷相对含量中等~很高;ααα20RC27、C28、C29甾烷呈“V”型分布,部分样品中ααα20RC27甾烷含量接近于甚至大于ααα20RC29甾烷的含量。表明烃源岩形成于湖水盐度较高的还原环境,有机质生源以低等水生藻类为主,有高等陆源植物生源贡献。这类烃源岩中代表来源于藻类生物的规则甾烷与来源于原核生物细菌的藿烷系列化合物相比,具有一定的优势,这也反映了藻类生物生源的有机质占优势。 根据β-胡萝卜烷和伽马蜡烷的相对含量,MA类烃源岩可进一步划分为MA-I和MA-II 两亚类。MA-I烃源岩中β-胡萝卜烷含量较高,伽马蜡烷含量中等~很高,主要分布在阜二段中部、阜四段上部和泰州组,以黑色、灰黑色和深灰色泥岩为主。不同层段MA-I类烃源岩的主要差别在于,阜二段、泰州组烃源岩样品的C20、C21、C23三环萜烷含量较高,β-胡萝卜烷含量较高,而阜四段烃源岩样品的C20、C21、C23三环萜烷含量较低,β-胡萝卜烷含量相对较低。MA-II类烃源岩中β-胡萝卜烷和伽马蜡烷含量中等,主要分布在阜四段,阜二段也有分布。 2.MB类 MB类烃源岩正构烷烃碳数分布特征为单峰态后峰型或双峰态后峰型,低碳数正构烷烃中不可分辨化合物含量较高,鼓包比较明显。低碳数部分与低等水生生物母质有关,高碳数部分主要来源于高等植物蜡,C27、C28、C29ααα20R甾烷呈上升型或“V”型分布,且ααα20RC27甾烷<ααα20RC29甾烷,表明这类烃源岩中沉积有机质来源以陆源高等植物为主,这类烃源岩中来源于原核生物细菌的藿烷系列化合物与代表来源于藻类生物的规则甾烷相比,具有一

群落生态学研究新进展_裴男才

论文 34Skamarock W C, Klemo J B, Dudhia J, et al. A Description of the Advanced Research WRF Version 3. Technical Note, NCAR/TN-475+STR, 2008. 125 35Hong S Y, Lim J O J. The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteorol Soc, 2006, 42: 129–151 36Kain J. The kain-Fritsch convective parameterization: An update. J Appl Meteorol, 2004, 43: 170–181 37Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explict treatment of entrainment processes. Mon Weather Rev, 2006, 134: 2318–2341 38Collins W D, Rasch P J, Boville B A, et al. The formulation and atmospheric simulation of the Commumity Atmosphere Model version 3 (CAM3). J Clim, 2006, 19: 2144–2161 39Chen F, Dudhia J. Coupling and advanced land surface–hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon Weather Rev, 2001, 129: 569–585 40Kanamitsu M, Ebisuzaki W, Woollen J, et al. NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc, 2002, 83: 1631–1643 41Xu Y, Gao X, Shen Y, et al. A daily temperature dataset over China and its application in validating a RCM simulation. Adv Atmos Sci, 2009, 26: 763–772 42Yuan Y, Yang H, Zhou W, et al. Influences of the Indian Ocean dipole on the Asian summer monsoon in the following year. Int J Climatol, 2008, 28: 1849–1859 ·动 态· 群落生态学研究新进展 探索群落构建机制的生态和进化过程是群落生态学领域的一大中心任务. 在局部森林群落水平上, 运用系统发育分析方法探讨群落构建规则是群落生态学的研究热点. 中国科学院华南植物园分子生态学研究组葛学军研究员等人采用植物条形码通用的3个片段(rbcL, matK和psbA-trnH), 利用植物DNA条形码和Phylomatic方法构建了鼎湖山20 hm2森林大样地183种木本植物(隶属于24目52科110属)的群落系统发育关系, 并结合大样地5种生境类型分析了该群落的构建方式. 两种方法的研究结果均发现, 山谷(valley)和低坡(low slope)生境为系统发育聚集分布格局(phylogenetically clustered), 表明近缘物种共存于这些低海拔生境, 生境过滤(environmental filtering)可能起主导作用; 而且, 两者均表明, 高坡(high slope)和山脊(ridge top)生境为系统发育扩散分布(phylogenetically over-dispersed), 说明远缘物种共存于这些高海拔生境, 竞争排 斥(competitive exclusion)可能起主导作用. 然而, 对于高 谷(high gully)生境, Phylomatic方法得到的结果为系统发育 扩散分布, 而条形码方法得到的结果为系统发育随机分布 (phylogenetically random), 表明与系统发育有关的作用可 能在这种生境类型下不起作用或者作用不明显. 生境随机 化检测结果发现, 495对物种-生境组合(5种生境类型×95 个常见物种)中有52对存在显著物种-生境关联, 表明在物 种水平上非随机生境关联可能在局部群落构建时起到重要 作用. 相关研究结果已在线发表在国际知名综合性期刊 PLoS ONE上(doi: 10.1371/journal.pone.0021273). 裴男才 中国科学院华南植物园 1909

生物标志物

生物标志物 科技名词定义 中文名称:生物标志物 英文名称:biomarker 定义:用于监测和评价能够导致生物有机体的生物化学和生理学改变的化学污染物。 所属学科:海洋科技(一级学科);海洋科学(二级学科);环境海洋学(三级学科) 本内容由全国科学技术名词审定委员会审定公布 生物标志物:在亚个体和个体水平上既可以测定污染物暴露水平,也可以测定污染物效应的生理和生化指标。 对于疾病研究,生物标志物一般是指可供客观测定和评价的一个普通生理或病理或治疗过程中的某种特征性的生化指标,通过对它的测定可以获知机体当前所处的生物学过程中的进程。检查一种疾病特异性的生物标志物,对于疾病的鉴定、早期诊断及预防、治疗过程中的监控可能起到帮助作用。寻找和发现有价值的生物标志物已经成为目前研究的一个重要热点。 自1994年蛋白质组概念提出,定量蛋白质组学已经成为蛋白质组学研究的热点和中心。定量蛋白质组学便是检测正常与疾病状态下组织全部表达蛋白质在量上的差别。 定量蛋白质组学中的蛋白质定量技术也成为发现生物标志物的重要途径。 生物标志物是生物体受到严重损害之前,在不同生物学水平(分子、细胞、个体等)上因受环境污染物影响而异常化的信号指标。它可以对严重毒性伤害提供早期警报。 这种信号指标可以是细胞分子结构和功能的变化、可以是某一生化代谢过程的变化或生成异常的代谢产物或其含量,可以是某一生理活动或某一生理活性物质的异常表现,可以是个体表现出的异常现象,可以是种群或群落的异常变化,可以是生态系统的异常变化。 生物标志物分类 从功能上一般分为: 接触(暴露)生物标志物 (biomarker of exposure); 效应生物标志物

生物标志物

泥炭沉积的类脂化合物(正构烷烃、脂肪醇、脂肪酸、甾酮、三萜类化合物和类异戊二烯、直链酯类等)、纤维素中C,H,O 同位素,以及泥炭腐殖化度和孢粉、生物化石等都是恢复古环境的良好指标。虽然泥炭的这些气候代用指标能够反演古环境的相对干湿、冷暖,但并不能定量地给出温度值的大小。 1、GDGTs(甘油二烷基甘油四醚脂) 研究较多的GDGTs化合物主要包括类异戊二烯类(GDGT-0~GDGT-4)和支链类(I~III)两大类,类异戊二烯GDGTs被认为是古菌细胞质膜中所特有,是古菌存在的生物标志化合物。 与该指标的相关内容: (1)CBT:环化指数(the Cyclisation ratio of Branched Tetraethers) (2)MBT:甲基化指数(the Methylation index of Branched Tetraethers (3)研究发现支链GDGTs 结构中甲基个数(MBT指数)主要受当地年平均大气温度(MAAT)影响,其次受环境pH影响;支链GDGTs结构中环戊烷个数(CBT指数)主要受环境pH控制。 (4)环化指数(CBT)/甲基化指数(MBT)是近年来根据支链四醚膜类脂(GDGTs)提出的定量化重建土壤pH和陆地年平均大气温度(MAAT)的生物标志物指标。 (5)Weijers等人提出的MBT/CBT 指标在近海、湖泊沉积中都得到了较好应用,并依此将MBT/CBT 指标应用到泥炭沉积中,讨论了指标在泥炭沉积中的适用性和应用潜力。文章发表在2007年的《Geochimica et Cosmochimica Acta》上。 (6)许云平等利用GDGTs来重建全新世渤海湾有机碳的来源及沉积能量(2010年国家自然科学基金项目)。由GDGTS衍生出的指标BIT比值可用作湖相、河口、滨浅海环境沉积物中判识有机质来源的重要指标。 (7)高效液相色谱-质谱仪(HPLC-MS)进行GDGTs分析(当前存在的主要问题)。 2、脱-A-三萜烯系列化合物(属脂肪族) 脱-A-三萜类是地质体中重要的生物标志化合物,已在石油和各种沉积物中多有报道,认为是高等植物三萜类经光化学和/或微生物氧化使得A环丢失的降解产物。该系列化合物在沉积物中的出现一方面说明被子植物的输入,另一方面显示A环的丢失是高等植物五环三萜类较为普遍的转换途径。 与该指标的相关内容 (1)可反映气候的干湿、温度高低以及沼泽水位的高低; (2)研究发现,该指标在泥炭中的积累与沼泽发育期生物群落结构组成差异密不可分;(3)脱-A-三萜烯变化序列与植被群落结构演替具有相关性(可以与孢粉、植物大化石的结果相互验证) (4)GC-MS分析采用惠普6890气相色谱与HP5973质谱联用仪

中国土壤微生物生态学研究进展汇总

第1章绪论 由来土壤微生物因其数量庞大、种类繁多而被称为丰富的生物资源库。土壤微生物包括蓝细菌、细菌、放线菌等原核微生物,还有真菌、蓝藻除外的藻类真核生物,地衣以及原生动物等,是一种形体微小,结构较简单的生物。广泛活跃于土壤中,土壤微生物对生物地球化学循环贡献着不可估量的力量,在土壤形成、有机质代谢、污染物降解、植物养分循环转化等过程中具有不可替代的作用,同时也是评价该地土壤肥力的重要指标之一,因此,对土壤微生物的生态学研究,有着非常深远的意义[1 -3]。

第2章草地土壤微生物生态研究概况 草地土壤微生物是土壤有机复合体以及草地生态系统的重要组成部分[4]。通过对土壤中微生物的活动和分布进行详细研究,可以了解对微生物特性、分布、功能等的影响的因素有哪些,同时可以知晓微生物对植物生长发育、土壤肥力以及土壤中能量流动与物质循环的影响和作用。 气候变化与季节更替对草地土壤微生物的数量与分布具有一定影响。微生物总生物量在春夏季节较高,秋季较低,冬季最少。不同类群的微生物量有各自不同的特点,但是随季节变化的总体趋势与上述相似。杨成德等[5]对东祁连山高寒草本草地土壤微生物量及酶的季节动态研究中发现,土壤微生物量碳随季节变化呈先升高后降低再升高的趋势,其中7月达到最大值,9月下降到最小值,但土壤微生物量氮、磷的季节变化与土壤微生物量碳有所不同,土壤酶活性也呈现季节性变化。金风霞等[6]在对不同种植年限苜蓿地土壤环境效应的研究中指出,各种植年限苜蓿草地土壤微生物群落以细菌占优势,而真菌的变化规律不明显,随着种植年限的变化,细菌和放线菌的数量呈现逐年递增的趋势。高雪峰等[7]研究了草原土壤微生物受放牧影响后的季节变化规律,研究结果表明,土壤中的细菌数量最低,从3月份开始逐渐增加,8月份达到最高值,8月到10月降低; 真菌数量3月份最高,5月份最低,而5月8月呈增加趋势,8月到10呈降低趋势; 放线菌数量5月份最少,5月到10月逐渐增加,10月份最高,之后又逐渐降低; 三大微生物类群的季节变化趋势不一致。任佐华等[8]研究了青藏高原腹地中,三江源自然保护区中的高寒草原土壤,分析了土壤微生物受气候变化的影响,结果表明,该区域微生物数量细菌最多,放线菌的数量次之,真菌的数量较少; 并且发现主要功能微生物菌群数量从多到少依次为氨化细菌、好气性固氮菌、硝化细菌、亚硝化细菌; 所研究区域的微生物生物量碳、氮含量差异显著; 对三江源地区高寒草原的土壤微生物活性影响明显的因素是温度的升高。

生态毒理学中生物标志物研究进展

038 生态毒理学中生物标志物研究进展 万 斌 (中国预防医学科学院环境卫生与卫生工程研究所,北京 100050) 摘要: 生物标志物是生物体受到严重损害之前,在分子、细胞、个体或种群水平上因受环境污染物影响而产生异常变化的信号指标。对它的检测可为严重毒性伤害提供早期警报,因此受到国内外学者普遍关注。本文对生态毒理学领域中生物标志物的特性及其在行为、生理、生化方面的研究进展加以综述。关键词: 生物标志物;生态毒理学;生物标志物检测 中图分类号: X 17115 文献标识码: A 文章编号: 100121226(2000)022******** 审校者:修瑞琴 收稿日期:1999205207;修回日期:1999209227 美国国家科学院生物标志物委员会于1987年对生物标志物(b i om arker )进行了系统论述[1]。目前,生物标志物已被许多学科发展运用,越来越受到人们关注。生态毒理学领域中,生物标志物也占有重要位置,其概念和检测研究均有所扩展,本文对这方面的研究情况进行了综述。 1 生态毒理学中的生物标志物 在美国国家环保局发表的有关生物标志 物的报告中,将生物标志物概括为:穿过机体屏障并进入人类组织或体液的环境污染物或其产生的生物效应。对它们的检测结果可作为生物体暴露、效应及易感性的指示物[2]。90年代初,D ep ledge 和Fo ssi 等[3,4]曾先后提出生态毒理范畴的生物标志物,认为生物标志物是生物体组织或体液样品中或在个体水平上所能检测到的生化、细胞、生理或行为变化,这种变化可阐明生物体暴露和产生生物效应的信息。Gok soyr 等[5]认为这些生物标志物系统是生物体暴露于亚致死剂量下的有毒化合物而发生异常变化的信号指标,这种指标不仅可为环境质量退化提供早期警报,而且可以特异性地检测到环境中致癌、致畸、致突变化合物的生物可利用性。 环境污染物首先必须进入生物体,到达靶位点后,才可能产生生物学变化。广义上说,从暴露到效应产生,其间的级联生物效应都可用适当的生物标志物进行检测,这些生物反应从分子相互作用到细胞损伤及至整个生物体的毒性显现都反映了生物系统与环境因子的相互作用,这些作用可发生在分子、细胞及个体水平上,使生物体产生功能、生理、生化变化。如果这些生物反应先于严重的结构损害,标志物就有助于确定生物体所处的污染状态及其潜在危害,为严重毒性伤害提供早期警报。2 生物标志物的特性 确定一个与各毒性终点相关的实用标志物需多学科的合作研究。污染导致的最初反应是从分子相互作用开始的,因此,基于分子机制的标志物研究也是十分必要的[6]。使用与毒性相关的标志物可加速环境污染危险评价进程,增大其可靠性。 一种标志物应能敏感有效地反映出生物体发生严重损伤之前的生物变化。在用动物模型研究低浓度污染物效应时,选择敏感的标志物尤为重要。有人曾用处于胚胎或幼体时期的生物体来检测生物的生理变化,如 En senbach 等[7] 发现斑马鱼在胚胎仔鱼阶 段,生长、发育和存活率对有机污染十分敏感,很低浓度的3,42二氯苯胺(40m g L )

当代微生物学的发展趋势

当代微生物学的发展趋势Prepared on 21 November 2021

当代微生物学的发展趋势 当代微生物学的发展趋势 当代微生物学的发展趋势,一方面是由于分子生物学新技术不断出现,使得微生物学研究得以迅速向纵深发展,已从细胞水平、酶学水平逐渐进入到基因水平、分子水平和后基因组水平。另一方面是大大拓宽了微生物学的宏观研究领域,与其他生命科学和技术、其他学科交叉、综合形成许多新的学科发展点甚至孕育新的分支学科。近20~30年来,微生物学研究中分子生物技术与方法的运用,已使微生物学迅速丰富着新理论、新发现、新技术和新成果。C.Woese1977年提出并建立了细菌(bacteria)、古菌(archaea)和真核生物(eucarya)并列的生命三域的理论,揭示了古细菌在生物系统发育中的地位,创立了利用分子生物学技术进行在分子和基因水平上进行分类鉴定的理论与技术。微生物细胞结构与功能、生理生化与遗传学研究的结合,已经进入到基因和分子水平,即在基因和分子水平上研究了微生物分化的基因调控,分子信号物质及其作用机制,生物大分子物质装配成细胞器过程的基因调控,催化各种生理生化反应的酶的基因及其组成、表达和调控,阐明了蛋白质生物合成机制,建立了酶生物合成和活性调节模式,探查了许多核酸序列,构建了100多种微生物的基因核酸序列图谱。如大肠杆菌(Escheriachiacoli)的基因图谱早已绘出,1/3多的基因产物已完成了生化研究,80%的代谢途径已有了解,染色体复制模式及调控方式已基本阐明,对许多操纵子的主要特征已有描述,对大肠杆菌细胞高分子的合成已探明,并可以在试管中模拟,即进入了后基因组时期。对固氮酶

生物标志物_biologicalmarker_

倍,经χ2检验,差异均有显著性;二项分布拟合与Edward检验均显示,扬中胃癌的发病存在明显的家庭聚集性,符合多基因遗传方式;先证者家庭成员发生胃癌的危险性显著高于均衡可比的对照家庭成员,核心家系成员间患病率的差异,可能与胃癌遗传易感性和家庭内环境因素暴露的差异有关[5,6]。 分析胃癌家族史在家庭聚集性中的作用,结果显示(资料未列出):先证者家系有胃癌家族史的比例为28134%(761/2685),对照家系胃癌家族史的比例为2170%(69/2557),两者差异有极显著性,χ2 =64612,P=01001;同样,胃癌病例有家族史的比例为41175%(291/697),也显著高于非胃癌对照家族史的比例11186%(539/4545),表明遗传易感性因素在胃癌发生中有重要地位。 同时,也应该看到,以肿瘤发病率为观察研究的终点指标,对遗传易感性作用相对较弱的散发性肿瘤而言,敏感性较低,出现一些难于解释的阴性结果,需要借助分子遗传学、分子生物学技术,准确判断肿瘤早期生物学表型与遗传易感性(基因型)之间的关系。根据国内外现有流行病学资料:胃癌是在多种环境和遗传因素长时间、多步骤、交互作用下的结果[2,7],无论是外源性致癌物,或是机体产生的内源性致癌物,都要通过宿主遗传易感性因素(研究比较成熟的是各种代谢酶基因多态性)的作用,才能最终导致癌变,因此,有必要采用分子流行病学方法,进一步阐明在致癌物代谢的各条通路中,易感基因及其多态性所起的作用[8212],我们已经利用在扬中胃癌高发区获得的环境暴露与基因多态性资料,对此进行了探讨。有关结果将另文报道。 参考文献 1李茂森,耿昌友,朱阳春,等.扬中市1991~1995年恶性肿瘤发病及死亡情况调查研究1肿瘤,1997,17:47724781 2C orrea P1Human gastric carcinogenesis:a multistep and multifactorial process2first American cancer s ociety award lecture on cancer epidemiology and prevention1Cancer Res,1992,52:6735267401 3Perera FP1Environment and cancer:who are susceptible?Science, 1997,278:1068210731 4S tadtlander CT,W aterbor JW1M olecular epidemiology,pathogenesis and prevention of gastric cancer1Carcinogenesis,1999,20:2195222081 5Nagase H,Ogino K,Y oshida I,et al1Family history2related risk of gastric cancer in Japan:a hospital2based case2control study1Jpn J Cancer Res,1996,87:1025210281 6La Vacchia C,Negri E,Franceschi S,et al1Family history and the risk of stomach and colorectal cancer1Cancer,1992,70:502551 7T oy oshima H,Hayashi S,Hashim oto S,et al1Familial aggregation and covariation of diseases in a Japanese rural community:com paris on of stomach cancer with other diseases1Ann E pidemiol,1997,7:44624511 8K ato S,Onda M,M atsukura N,et al1G enetic polym orphisms of the cancer related gene and Helicobacter pylori in fection in Japanese gastric cancer patients1An age and gender matched case2control study1Cancer, 1996,77:1654216611 9K ato S,Onda M,M atsukura N,et al1Helicobacter pylori in fection and genetic polym orphisms for cancer2related genes in gastric carcinogenesis1 Biomed Pharmacother,1997,51:14521491 10Ng EK,Sung JJ,Ling TK,et al1Helicobacter pylori and the null genotype of glutathione2S2trans ferase2mu in patients with gastric adenocarcinoma1Cancer,1998,82:26822731 11National Institute of Environmental Health Science.Research on environment2related disease1Environmental G enome Project119981 Available from:http://w w w1niehs1nih1g ov/envgenom1 12沈靖.人类基因组计划与肿瘤预防研究面临的机遇.肿瘤,2000, 20:682721 (收稿日期:2000202220) (本文编辑:邵隽一) ?名词小词典? 生物标志物(biological marker) 能够反映致病因素或毒物从暴露到效应过程各个环节性质的特异性生物分子,如DNA、蛋白质、酶、脂质、糖类等。生物标志物的确定和检测是流行病学研究中的关键问题,因为这种确定和检测可被用来进行病因探讨、危险因素的评价、致病因子致病机理的研究、人群易感性评估、疾病流行规律的掌握、疾病防治措施的研究和评估等。 生物标志物大致上可分为两大类,一类是根据表型和基因型的特点分为表型生物标志物和基因型生物标志物,前者包括蛋白质、多肽、脂质、糖类和其他在血清和体液中可检测到的特异性分子,后者主要包括基因类型及突变型、DNA加合物、DNA多态性等;另一类是根据致病因子作用机体的过程,可划分为暴露生物标志物、作用生物标志物、效应生物标志物等。 随着分子生物学理论和技术的深入发展,研究生物标志物的技术手段日趋先进、完善。现可用先进的核酸研究技术、蛋白质研究技术、酶学研究技术、免疫学研究技术等检测和研究生物标志物。 (方福德100005北京市中国医学科学院基础医学研究所) (收稿日期:2000209219) (本文编辑:邵隽一) ? 6 3 ?中华预防医学杂志2001年1月第35卷第1期 Chin J Prev M ed,January2001,V ol35,N o. 1

分子生态学的兴起及其研究进展

成绩: 中南林业科技大学《分子生态学》课程论文分子生态学的兴起及其研究进展 学生夏伊静 专业生态学 班级 07级 学号 20070346 学院生命科学与技术学院 2010年 10月 31日

分子生态学的兴起及其研究进展 摘要:分子生态学的产生给整个生态学领域带来了巨大的冲击, 其研究的问题、研究的方法是全新的, 它一产生就引起了广大生物学家的高度重视。本文着重论述了分子生态学的兴起及其研究进展。 关键字:分子生态学、研究方法、研究热点、研究进展 1、分子生态学的概念1 分子生态学由于发展时间短,不同学者从各自的研究背景出发对它的定义有着不同的理解。Burke等在《分子生态学》杂志的发刊词中对分子生态学的定义是:分子生态学是生态学和种群生态学的交叉,它利用分子生物学的方法研究自然人工种群与其环境的关系以及转基因生物(或其产物释放)所带来的一系列潜在的生态问题。Bachman在“植物分子生态学中的分子标记”综述中定义分子生态学为应用分子生物学方法研究生态和种群生物学的新兴学科,引用了156篇论文,每一篇都谈及DNA水平的工作。文中把等位酶标记作为DNA标记的参照物,讨论了DNA标记的优点。Moritz把分子生态学定义为:用遗传物质,如线粒体DNA (mtDNA)的变化来帮助指导种群生物学的研究。在国内,2向近敏等认为:分子生态学是研究细胞内的生物活性分子特别是核酸分子与其分子环境的关系。我国学者黄勇平和朱湘雄认为分子生态学是应用分子生物学的原理和方法来研究生命系统与环境系统相互作用的机理及其分子机制的科学。它是生态学与分子生物学相互渗透而形成的一门新兴交叉学科,也是生态学分支学科之一。张德兴则认为分子生态学是多学科交叉的复合学科,从研究角度概括而说,就是运用分子进化和群体遗传学的理论、分子生物学的技术手段、系统发生学和数学的分析方法以及其他学科的知识(如地学、古气候学等)去研究种群、进化、生态、行为、分类、生物地理演化、生物保护等学科领域的各种问题。分子生态学研究的最典型特色是运用分子遗传标记来检测研究对象的遗传变异特征,以揭示事物所隐含的演化规律。由此可见,分子生态学研究是围绕着生态现象的分子活动规律这个中心进行的。主要研究手段是用分子标记、核酸指纹图谱等分子手段研究生物进化、遗传和物种多样性、生物对环境变化的相应对策、转基因生物的环境释放等问题。在研究方法、研究结论和研究意义等方面都有别于以往用数学语言或其他语言对生态现象机理的解释,也不同于用生物学中诸如生理学、分类学等学科的语言对生态问题所作的解释。因此,分子生态学是一个相对独立的、新兴的、正在逐渐完善的生态学研究领域。 2、分子生态学的研究对象、研究领域与研究任务 分子生态学是生态学的微观研究层次与领域,它主要涉及生态现象与生态规律的发生、演化

阿尔茨海默病的生物标志物研究进展_胡轶虹

文章编号:1003- 2754(2016)01-0090-03中图分类号:R749.1+ 6 阿尔茨海默病的生物标志物研究进展 胡轶虹,白春艳,周 艳综述,孙宏侠审校 收稿日期:2015-11-14;修订日期:2015-12-28作者单位:(吉林省人民医院神经内科,吉林长春130021)通讯作者:孙宏侠, E-mail :huyihong76@163.com 阿尔茨海默病(AD )是老年痴呆的最常见的类型, 老年人在出现症状后3 9y 内可导致死亡[1] 。世界上超过350 万人患有AD ,在超过85岁的老年人诊断AD 的比例超过1/3[2]。在AD 中检测出许多分子病变:由有毒amyloid β(A β)聚集形成的细胞外淀粉样斑块和由过磷酸化tau 蛋白形成的细胞内的神经元纤维缠结是典型的AD 病变。 AD 通常根据发病时间分为两型[3]。早发性AD :在65岁前发病,是一种非常少见的(<1%),常染色体显性家族性疾病,是由APP 及早老素基因突变引起,与γ-分泌酶复合物对A β的作用有关。晚发性AD :绝大多数的AD 患者都是此类型,发病年龄晚(>65岁),呈散发和不均匀性,由年老、遗传和环境危险因素等引发。虽然晚发性AD 病因是未知的,A β的清除下降可能是疾病发展的主要因素[4]。许多家族研究及遗传学分析显示载脂蛋白E (APOE )基因的ε4等位基因是晚发AD 的主要危险因素 [5] 。 AD 诊断学标志物的许多研究显示:循环生物标志物包括A β肽(A β40和A β42)和tau /磷酸化-tau 可用于AD 的诊断, APOE 基因的多态等位基因的基因型分析也用作晚发性AD 的预测性标志物。尽管关于AD 的诊断标志物研究处于不断进展中,在各个研究中存在大的可变性和不一致性,拖延了各种AD 标志物作为诊断工具在临床中使用 [6] 。另 外,几个研究表明,循环小分子核糖核酸(miRNAs )在AD 患者的血清及脑脊液中有特异性的变化,提示miRNAs 可用于 AD 的诊断,单独或与其他AD 生物标志物联合使用[7] 。本 文将就AD 相关的几种生物学标志物作一综述。 1 APP A β斑,由细胞外A β蛋白在脑中沉积及聚集而成,是AD 的主要神经病理标志物。A β第一次于1984年由Glenner 和Wong [8]从脑血管淀粉样变和AD 相关的淀粉样蛋白斑块的纤维中分离出来。APP 由两个独立的蛋白水解途径裂解。非淀粉样蛋白途径是由α-分泌酶控制,α-分泌酶裂解APP 并释放出APP 的细胞外氨基端,形成分泌的淀粉样前体蛋白-α(sAPP α)。其后,一个83残基的C-端片段(C83)被γ-分泌酶消化,释放细胞外p3和淀粉样蛋白胞内区域(AICD )。淀粉样途径结合了β-和γ-分泌酶的顺序动作,在细胞内位置如内质网或高尔基体形成了A β肽。β-分泌酶,也称为β-位点淀粉样前体蛋白裂解酶-1(BACE-1),裂解APP ,生成N-端sAPP β和C-端C99肽。C99肽由γ-分泌酶裂解,形成A β,A β可错误折叠形成细胞外纤维,是AD 脑中淀粉样斑的主要成分。在人类A β的主要形式包括40个氨基酸(A β40),但是A β的长的形式(A β42),在C-端另外增加了两个氨基酸,被发现与AD 有关。 Goate 等[9]于1991年首先报告了在AD 家族中APP 的 错义突变的分离,其后又报告了两个突变,包括单一氨基酸在跨膜区及密码子717的替换。如今,超过30种APP 错义突变已经得到证实,大约有25种是致病的,在多数病例中导致常染色体显性遗传,早发性AD [10] 。尽管APP 基因突变通 常是常染色体显性, A673V 突变导致AD 却是常染色体隐性的方式 [11] 。 2 早老素和γ-分泌酶复合物 Schellenberg 等[12]于1992年发现的第一个遗传连锁的家族AD ,位于14号染色体上。随后,其他团队通过遗传连锁的研究揭示染色体14q24.3的图谱位点(AD3)与AD 进展型有极高的敏感性。他们分离出一个最小的共分离区域,包含AD3基因和一个新基因(S182)的转录,这个新基因的产物被认为包含多个跨膜域,就像一个完整的膜蛋白。这种蛋白质包含5个不同错义突变保守域,和早发性家族性AD 高度相关。这个蛋白质被命名为早老素1(PSEN1),应用一个克隆定位方法证实PSEN1位于14q24.3, PSEN2位于1q31-q42。PSEN1是γ-分泌酶与呆蛋白、前咽缺陷1(Aph-1)和早老素增强子2(PEN-2)复合物的一个主要组成部分。PSEN1是一个多面体膜蛋白,它构成了γ-分泌酶复合物的催化核心。已经报道的PSEN1突变超过180种,大多数是错义突变引起氨基酸替换。PSEN1突变是早发性AD 最常见的病因,占18% 50%的常染色体显性遗传早发性AD 。PSEN1突变能引起伴有完全外显率的非常严重形式的AD ,发生在58岁左右,而不完全外显率也曾经报道过。许多研究已经证实不同种族有不同的PSEN-1突变型。在一个不相关的加勒比裔家庭中报告了一个导致早发性AD 的PSEN-1基础突变 [13] ,表明A431E 突变在墨西哥家庭导致早发性 AD 。回顾性队列研究449例受试者[14],他们是PSEN1E280A 携带者,已经完成临床随访,显示出AD 痴呆不同阶段的临床进展。研究显示在35岁、 38岁、44岁、49岁、59岁可以分别识别出无症状前-轻度认知障碍(pre-MCI ),有症状pre-MCI 、MCI 、痴呆、或者死亡。 早老素2(PSEN2)的识别是由于其与PSEN1高序列同源性,它的位置在连锁分析定义的候选区域内。PSEN2基因错义突变导致早发性AD 非常罕见,发病的年龄相比PSEN1要晚。PSEN2突变患者的发病年龄变化很大,外显率在感染的家庭成员间也比PSEN1低。PSEN2在早发性AD 的作用仍然是未知的,但最近的一项研究显示突变PSEN2通过氧生物活化的细胞外信号调节激酶增加β-分泌酶活性 [15] 。 ·09·J Apoplexy and Nervous Diseases ,January 2016,Vol 33,No.1

生物标志物监测环境污染研究新进展

广东化工 2010年第4期· 150 · https://www.360docs.net/doc/4d14879246.html, 第37卷总第204期 生物标志物监测环境污染研究新进展 姜元臻 (中山市环境监测站,广东中山 528400) [摘 要]生物标志物在环境污染监测方面的应用日益重要,文章侧重于对生物标志物在此方面的应用进行全面阐述,包括:生物标志物的定义及分类,生物标志物的特征及优势,生物标志物在检测环境污染的应用,最后还提出了生物标志物在环境监测方向的展望。 [关键词]生物标志物;环境污染;生物监测 [中图分类号]O65 [文献标识码]A [文章编号]1007-1865(2010)04-0150-03 New Advances of Study on Monitoring Environmental Pollution by Biomarkers Jiang Yuanzhen (Zhongshan Environmental Monitoring Station, Zhongshan 528400, China) Abstract: Biomarkers is becoming more and more important in the application of environmental monitoring. The article focased on a comprehensive exposition of biomarker application in this regard, which included definition and classification of biomarker, characteristics and advantages of biomarker, biomarker’s application in the detection of environmental pollution, finally made an outlook of biomarker in the direction of environmental monitoring. Keywords: biomarker;environmental pollution;biomonitoring 1 生物标志物概述 1.1 生物标志物的定义 目前,中国的环境监测工作还主要是针对环境中化学成分的存在量进行检测。物理化学监测虽然能清楚地知道环境中各化学成分的具体含量及其变化,但却不能直接反应环境对生物所造成的毒害作用。另外,由于环境中的许多污染物含量很低,相互混合,体系复杂,仅用化学因子监测的手段往往不能够全面的反映环境的污染状况。在环保观念日益增强的今天,社会对环境评价的全面性和准确性的要求也日益增高,这就要求建立一个综合的、多手段的、多参数的环境监测体系以实现快速、高效、准确地对环境状况作出全面的评价。而生物监测正好补充了理化监测的不足。 生物标志物是生物体受到严重损害之前,在分子、细胞、个体或种群水平上因受环境污染物影响而产生异常变化的信号指标。一种标志物应能敏感有效地反映出生物体发生严重损伤之前的生物变化,并能准确评估生物体所处的污染状态及其潜在危害,为环境污染提供早期警报。随着分子生物学理论和技术的迅速发展,生物标志物(biomaker)的研究作为一个崭新的领域逐渐引起了国内外共同关注[1]。1987年美国国家科学院首先将生物标志物定义为由生物体或样品可测出由外来化合物导致的细胞学或生物化学组份或过程、以及结构或功能的变化[2]。Benson和DiGiulo[3]认为生物标志物是在生物个体所测得的生物化学、生理学或病理学反应,而这些生物学反应能给出环境污染物的暴露,或由暴露所引起的亚致死效应资料。 生物指示物(Bioindicators)自上世纪70年代污染生态学中出现并一直沿用至今。最初只是将耐污的生物物种称为指示生物(Indicator species或Bioindicator),随着污染生态学的野外研究和实验室毒性试验研究,逐渐将生物指示物的应用范围扩大至污染生态学的不同生物学组织层次,小至分子水平,大至生态系统结构与功能,包括发生在分子、生物化学、生理、病理组织、生物个体、种群、群落和生态系统等不同生物学组织水平上的生物学效应,从生物学的角度为环境质量的监测和评价提供依据。简单地讲,生物标志物就是可衡量环境污染物的暴露及效应的生物反应。一个理想的生物标志物应具备化学特异性,能够微量鉴定、试验费用低廉、检验快速,与环境样品中污染物有量的相关性等。寻找理想的生物标志物一直是环境监侧、环境毒理学及环境医学领域研究的重要内容。 1.2 生物标志物的分类和各种类型的生物标志物 从功能上看,生物标志物一般可分为三类[4],即暴露生物标志物(Biomarkers of exposure),反应或毒性效应生物标志物(Biomarkers of responser or toxic effect),易感性生物标志(Biomarkers of susceptibility)。 1.2.1 暴露生物标志物 暴露生物标志物指示机体经化学品的暴露,即污染物引起的物体的反应,如指示对重金属暴露的金属硫蛋白(MTs),但此类标志物不能指示污染物的毒性效应,有助于研究生物对化学分析方法很难检测到的的环境中的不稳定化合物的暴露。暴露生物标志物一般依靠测定体液和组织中特定化学物质或者其代谢物,或者与生物分子相互作用形成的产物。 1.2.2 反应或毒性效应生物标志物 效应标志物是指在一定的环境暴露作用下,生物体产生相应的可测定的生理生化变化或其它病理方面的改变,即指示污染物对生物体健康状况的损害效应,如指示DNA损伤的DNA 加合物(DNA-adducts),它可能是生物机体中某一内源性成分或测定机体功能容量,产生疾病或障碍的改变等。确定化学物质的生物学效应的生物标志物很多,从最简单的标志物如监测体重变化至复杂的标志物如采用免疫化学技术测定特定同功酶[5]。酶活性抑制持久,因此,可作为重要的效应生物标志物。如血细胞数和血细胞损伤的检测可提供各种资料,出现姊妹染色单体交换指示染色体潜在损伤,可由环氧乙烯暴露引起;缺乏特有淋巴细胞指示免疫抑制,可由二恶英(TCDD)等化学物质引起。HSP70家族是序列最保守并且对污染物的应激反应最为显著的一类应激蛋白。沈骅等[6]以鲫鱼为实验动物,Cu,EDAT-Cu,Zn,Pb,Cd,染料橙(HC Orange 1)及两种金属同时进行长期低浓度暴露,在不同浓度下,应激蛋白HSP70被不同程度地诱导,并有明显的剂量效应关系。研究发现,在低于国家渔业水质标准的浓度下,HSP70仍然有显著的诱导表达,说明水体中污染物在低于现行渔业水质标准的浓度下,长期暴露仍然会对鱼类产生一定的损伤。HSP70比传统的生长、繁殖等生物指标更为敏感。 1.2.3 易感性生物标志物 易感性标志物是指当生物体暴露于某种特定的外源化合物时,由于其先天遗传性或后天获得性缺陷而反映出其反应能 [收稿日期] 2009-07-31 [作者简介]姜元臻(1982-),男,山东人,硕士,主要从事环境监测方面的工作。

检测严重细菌感染的有效生物标志物

什么是降钙素原? 结构与合成 降钙素原(PCT)是降钙素(calcitonin,CT)前驱物质,由位于11号染色体上的CALC- 1基因所表现。 图1: 改编自Moullec等人的PCT结构 然而降钙素在受到荷尔蒙刺激后仅由甲状腺的C细胞分泌。而在促炎症刺激下特别是在受到细菌感染是PCT由大量各类细胞核组织产生。 在健康个体的PCT水平低于0.05 ng/mL,但是患有严重脓毒症或脓毒性休克的患者体内PCT数值可以上升到1000 ng/mL。 图2: 改编自Meisner等人 在感染刺激下3-6小时内,可以观察到上升的PCT数值,而且随着感染的加重而持续上升,使PCT成为严重全身性细菌感染和脓毒症的早期及高专一性的标志物。 图3: 改编自Meisner等人 当严重细菌感染缓解后24小时半衰期内,PCT会重新回到正常值<0.05ng/mL PCT是有效证明您可以安全减少LRTI抗生素用量的唯一生物标志物 在急部部日常工作中如何使用PCT测试? 我们在急诊中怀疑有下呼吸道感染(LRTI)的患者中使用PCI测试。我们会根据临床表征、病情的严重度及基本临床诊断(慢性阻塞性肺病(COPD),支气管炎或肺炎)以及PCT值的高低来决定是否使用抗生素。如果开始使用抗生素,那么3、5和7天后将重新检测PCT,以便于能及早停止治疗。我们同时在严重脓毒症治疗中使用PCT监测抗生素的治疗。PCT是否提高了诊断的准确性? 是的,比起其它感染标志物.PCT确实提高了诊断的准确性.例如,C-反应蛋白(CRP)水平的增高其特异性较低,并且在病毒与细菌疾病中均会出现。 PCT同时让我们对自己的临床工作更加放心,还提供了排除严重细菌感染的安全界限,使我们可以决定何时开始或结束抗生素治疗。 在急诊部设置中,斜对脓毒症诊断使用什么样的临床PCT临界值? 在巴塞尔和其它瑞士医院,我们使用的急诊流程中包含PCT检测。 我们不使用严格的PCT临界值,而是采用临界值范围,因为这更符合生理学,且感染生物学并不是单纯的黑或白。通常对于PCT值<0.1ng/mL患者,仅当儿属于高风险患者,

相关文档
最新文档