塑性成形过程的数值模拟汇总

塑性成形过程的数值模拟汇总
塑性成形过程的数值模拟汇总

实验报告

塑性成型过程的数值模拟

班级:机自07

姓名:欧阳罗辉

学号:10011170

2012年12月

一、实验目的:

通过本实验的教学,使学生基本掌握有限元技术在板料塑性成形领域的应用情况,拓宽学生的知识面,开阔视野,使学生对塑性成形过程的数值模拟技术有深刻的理解,预测板料弯曲成形的性能。

二、教学基本要求:

学会使用Dynaform数值模拟软件进行板料弯曲成形过程的仿真模拟,对模拟结果具有一

定的分析和处理能力。

三、实验内容提要:

掌握前处理的关键参数设置,如零件定义、网格划分、模型检查、工具定义、坯料定义、

工具定位和移动、工具动画、运行分析。了解后处理模块对模拟结果的分析,如读入d3plot 文件、动画显示变形和生成动画文件、成形极限图分析、坯料厚度变化分析等。

四、软件操作过程:

1. 导入压边圈、板料、下模板、上模板图形文件

点击File —Import,出现Import File 对话框,找到“ L型弯曲零件图”

选中binder.igs,点击Import,如此,依次导入四个模型文件,最后点击“确定”确认

四个模型导入后,结果如图

2. 重命名文件

点击PartLEdit ,出现Edit Part 对话框,这里便要依次更改文件名

首先选用红色文件名“ cOOIvOOO 1 ”,在上面的Name 对话框中输入binder ,然后点击 Modify ,以此类推输入 banker 、die 、punch 。

Edit Part

3. 对各图形文件划分有限元网格

1. Binder

零件网格划分

n

点击口图标,出现Part Turn。。。对话框,依次单击banker 2, die 3, punch 4,它们都会被取消选中,只留下binder 1被显示,点击0K确定。然后点击右下角的Current Part,弹出Current Part对话框,选择binder 1,点击OK确定。

点击Preproces L Element,弹出Element对话框,选择Part Turn On/Off Select by Cursor

第四个图标(自动模式),将Max Size改为10,点击Select Surfaces点击Displayed Surf,点击OK,点击Apply,点击Yes,点击Exit,点击OK,于是第一个零件网格划分完

成。

2. Banker零件网格划分

n

点击i□图标,取消Binder 1零件的显示,添加Banker 2 Select Dy Name

All On |AllOfi

OK Undo F Only SeledOn

零件的显示,点击OK确定。然后点击右下角的Current Part图标,将当前零件选成Banker 2, 点击OK确定。

点击Preproces A Element,弹出Element对话框,选择第三个图标,弹出Control Keysto ne对话框,点击POINTS/NODES,弹出In put Coo。。。对话框,选中Poi nt,然后在绘图区沿顺时针或者逆时针方向依次选中Ba nker零件的四个顶点,如下图所示

4. 并选择冲压方向

点击图标,将所有零件显示。

点击Preproces p Model Check,弹出Model Check对话框,点击第一个图标,然后点击Punch零件(紫色),单击两次,便会显示Punch零件的法向,如果向右,贝U点击No,如果向左,则点击Yes。

单击右下角的Current Part,将当前文件选为蓝色的Die零件,单击图标,再点击蓝色的Die零件,单击两次,同样会显示Die零件的法向,应该是向上的,如果是对的就点击Yes,如果错了就点击No。

单击右下角的Current Part,将当前文件选为红色的binder零件,单击图标^^^,再点击红色的binder零件,单击两次,同样会显示Binder零件的法向,应该是向下的,如果是对的就点击Yes,如果错了就点击No。

最后点击0K确认

5. 定义坯料和成型工具

点击Tools—Define Tools,弹出Define Tools对话框。默认的Tool Name 是Die,点击Add 加载零件,弹出Select Part对话框选择零件,点击Die 3,点击OK,再点击OK。

点击Tools—Define Tools,弹出Define Tools对话框。默认的Tool Name是Die,将其改为Pun ch (左键点住之后下托),点击Add加载零件,弹出Select Part对话框选择零件,点击Punch4,点击OK,然后点击Define Load Curve添加载荷曲线,弹出ToolLoad。。。对话框,点击Auto,在弹出的Motion Curve对话框中输入速度值和位移值,速度值为2000,位移值为45,点击OK,点击OK,点击OK,再点击OK。

点击Tools—Define Tools,弹出Define Tools对话框。默认的Tool Name是Die,将其改为Binder (左键点住之后下托),点击Add加载零件,弹出Select Part对话框选择零件,点击Binder 1,点击OK,然后点击Define Load Curve添加载荷曲线,弹出ToolLoad。。。对话框,选中Force,再点击Auto,在弹出的Force/Tim。。。对话框中输入力值,力值为10000,点击OK,点击OK,点击OK,再点击OK。

点击Tools—Define Blank,弹出Define Blank对话框。点击Add加载零件,弹出Select Part 对话框选择零件,点击Banker 2,点击OK。点击Material后面的None定义材料,弹出Material 对话框,点击Material Library材料库进行选择,随便选一种材料(老师当时选的第三行最后一个ooo),点击OK,再点击OK。点击Property后面的None定义特性,弹出Property对话框,点击New,弹出的对话框不用管直接点OK,再点OK,再点OK。

input of data is conpleted

MemoriJ reaiiii*ed to hegrio so lut ion - 413614

Additional dynamically allocated memory- 88S5

TolLal= 419469

2526 t 2.7281E-03 dt 1.08E-06 Flush iZg buffers

dt 1.08E-06 w>*ite adapt iu ity stress

increase shells from

3031 t 3.2735E-03 dt 1.08E-06

3031 t 3.27351-03 dt l*08E-06

increase shells From

increase shells frum

file

Stl to

891 to

avi to

8?1

891

891

Ncnory required to process kej/uoi*d 407991

input: nF d^tJi is eonplntHd

Mtiiiiurij reyuli'Bd lu be yin sulut lun : 410614

Additional d^nanicallv allocated menary:9B89

fatal:419703

33^1 t 1.2735E-03 dt i f limb lz o buffer

in it la 丄completed

3247 t 3_5057E-03 dt 1.08E-06 d3plot File

6 ?定义零件位置

点击Tools T Position Tools 宀Auto Position ,弹出Auto Posi。。。对话框,上面的Master Tools 选择Blank,下面的Slave Tools 选择其他三个(注意三个都要选中),点击Apply,再点Close关闭。

点击Tools T Positio n Tools T Move Tools,弹出MoveTools 对话框,点击Pu nch,选中Y Tran slation ,Dista nee 中输入101.2,点击Apply 应用。点击Bin der,选中Y Tran slation , Dista nee 中输入30,点击Apply应用,再点击OK确认。

7.分析

点击Analysis T Analysis,将上方的Analysis Type 改为Full Run Dyna ,然后点击OK。

DA 歳件'耐料成21 \D>‘门rm\DVNA FO-1 石J sdyn^, exe

8.处理结果

3331 t 3.2735E-03

五、实验小结:

Dynaform软件是用虚拟制造技术进行塑性加工的,在成型过程中的虚拟仿真,可以在模具加工之前,检测模具关键工作部分形状和尺寸设计的合理性,分析材料的流动规律,预测是否产生裂纹,此外还可以对其他工艺参数进行优化分析。

此次实验,在课堂上老师已经演示过一遍,而且又派了一名同学演示,但是回到宿舍自己开始做的时候,还是发现有些细节比较模糊,于是上网查了有关Dynaform软件的使用细则,再结合本实验,最终还是一步一步地完成了塑性加工的模拟仿真,经过几小时的使用,终于在最后看到了上面“处理结果”的仿真,点击“ run”,塑性材料就被加工了。

通过此次实验,首先学到了Dyn aform软件,这一款新的软件的使用,并会利用Dynaform 软件进行数值模拟,特别是对塑性加工的模拟更加熟练;然后,经过自己的亲手操作,更加熟悉软件的使用,虽然其中出现了一些小问题,但发现自己以前对软件、对塑性变形的性能还是了解不够,通过解决问题,对这些知识的了解更加深入;最后,通过实验将课本和工程实际的应用相联系起来了。今后应该更加多关注相关知识,并将课本知识和实践融合,放能更好地掌握知识。

基于DEFORM3D二次开发的塑性成形过程组织演化模拟

基于DEFORM3D 二次开发的塑性成形过程组织演化模拟 作者:曲周德 张伟红 摘要:金属热成形方法可以有效改善 产品的综合机械性能,利用有限元模拟可以为控制锻造和产品质量提供理论依据。在Deform3D 的热力耦合刚粘塑性有限元模拟技术的基础上,进行了微观组织演化的二次开发,可以扩展有限元软件的组织模拟能力,并利用该方法对20CrMnTi 钢镦锻热成形过程进行了计算机模拟,得到了热力参数的分布状况和内部晶粒度变化的规律。通过摇臂轴的镦锻成形模拟证明了组织模拟能够为工艺改进提供了理论依据。 关键词:刚粘塑性;有限元;晶粒尺寸;显微组织演化;热镦锻 0 引言 高温成形过程中,金属将发生动态和静态再结晶,产生新的晶粒。这种微观组织的演变在很大程度上决定了产品的宏观力学性能[1,2]。利用热加工过程控制晶粒大小,细化微观组织,是提高产品力学性能的重要手段。因此,研究材料在热成形过程中宏观力学行为和微观组织的变化,揭示其相互之间的关系,并依据优化工艺参数、设计塑性成形工艺和锻后冷却方案,这对解决目前的工艺问题,提高产品质量是很有意义的,同时也是变形过程全面模拟的前沿课题[3]。 有限元数值模拟技术是随着物理模拟设备的完善以及计算机技术的发展而发展起来的。鉴于有限元法是目前唯一能对塑性加工过程给出全面且较为精确数值解的分析方法,本文对材料组织性能所进行的数值模拟均采用该分析方法。 数值模拟软件是求解塑性加工问题的一个基本工具。现在市场上已有许多成熟的用于金属塑性加工的商业软件。如DEFORM ,MSC.MARC ,MSC.SUPERFORM ,Dynaform 等,但这些软件都只进行宏观变形和温度的分析计算,没有考虑宏观与微观耦合,不具备微观组织演化的模拟和预测功能,或者只具有简单的预测能力,其模型并不一定适合于所考察的问题。本文通过对Deform3D 二次开发,将适合于材料的组织模型与成形的热力耦合计算结合,模拟热成形过程中的组织演化。 1 模型建立

塑性成形方法

第五节其它塑性成形方法 随着工业的不断发展,人们对金属塑性成形加工生产提出了越来越高的要求,不仅要求生产各种毛坯,而且要求能直接生产出更多的具有较高精度与质量的成品零件。其它塑性成形方法在生产实践中也得到了迅速发展和广泛的应用,例如挤压、拉拔、辊轧、精密模锻、精密冲裁等。 一、挤压 挤压:指对挤压模具中的金属锭坯施加强大的压力作用,使其发生塑性变形从挤压模具的模口中流出,或充满凸、凹模型腔,而获得所需形状与尺寸制品的塑性成形方法。 挤压法的特点: (1)三向压应力状态,能充分提高金属坯料的塑性,不仅有铜、铝等塑性好的非铁金属,而且碳钢、合金结构钢、不锈钢及工业纯铁等也可以采用挤压工艺成形。在一定变形量下,某些高碳钢、轴承钢、甚至高速钢等也可以进行挤压成形。对于要进行轧制或锻造的塑性较差的材料,如钨和钼等,为了改善其组织和性能,也可采用挤压法对锭坯进行开坯。 (2)挤压法可以生产出断面极其复杂的或具有深孔、薄壁以及变断面的零件。 (3)可以实现少、无屑加工,一般尺寸精度为IT8~IT9,表面粗糙度为Ra3.2~0.4μ m,从而 (4)挤压变形后零件内部的纤维组织连续,基本沿零件外形分布而不被切断,从而提高了金属的力学性能。 (5)材料利用率、生产率高;生产方便灵活,易于实现生产过程的自动化。 挤压方法的分类: 1.根据金属流动方向和凸模运动方向的不同可分为以下四种方式:

(1)正挤压金属流动方向与凸模运动方向相同,如图2-69所示。 (2)反挤压金属流动方向与凸模运动方向相反,如图2-70所示。 (3)复合挤压金属坯料的一部分流动方向与凸模运动方向相同,另一部分流动方向与凸模运动方向相反,如图2-71所示。 (4)径向挤压金属流动方向与凸模运动方向成90°角,如图2-72所示。 图2-69 正挤压 图2-70 反挤压

金属塑性成形原理课标Word版

金属塑性成形原理课程标准 (78学时) 一.课程性质和任务 本课程是高等职业技术学校材料成形专业的一门专业基础课程。通过本课程的学习,使学生了解有关塑性成形原理的专业知识;掌握塑性成形方法及简单工艺流程,应力.应变和塑性变形的相关知识;变形力计算方法;塑性成形件质量的一般分析方法;掌握压力加工模拟及其成立条件。 二.课程教学目标 本课程的教学目标是:使学生掌握塑性.塑性加工方法.塑性加工变形力计算等相关概念,包括晶体缺陷.晶格类型.塑性成形件质量分析.各种计算变形力的方法等。并且使学生掌握塑性相关概念,质量分析方法及变形力的理论计算;培养学生动手分析计算解决实际问题的能力。 (一) 知识教学目标 1.掌握塑性.塑性加工的相关基础知识。 2.掌握热加工.冷加工的区别及各自的优缺点。 3. 掌握金属变形区域的应力.应变分析方法。 4.熟悉塑性成形件的质量分析方法。 5.掌握变形力计算相关理论推导公式。 6.掌握主应力法.上限法的计算方法。 7.掌握塑性成形中的摩擦及其影响因素。 8.了解刚塑性有限元法的基本原理。 9. 了解压力加工模拟的条件及意义. (二) 能力培养目标 1.对本专业的发展历史.发展趋势有所了解。 2.能对塑性成形中质量影响因素进行分析。 3.具有对实际成形计算其变形力的能力。 (三) 思想教育目标 1.具有热爱科学.实事求是的学风和勇于实践.勇于创新的意识和精神。 2.具有良好的职业道德。

三.教学内容和要求 基础模块 (一)绪论 1.金属塑性成形特点及分类 掌握塑性成形的优点及局限性。 2.金属塑性成形原理课程的目的和任务 了解本课程的学习目的和任务,掌握学习方法。 3.金属塑性成形理论的发展概况 了解塑性理论的发展历史及今后发展趋势。 (二) 金属塑料变形的物理基础 1.金属冷态下的塑性变形 掌握冷加工的优缺点; 了解冷加工的适用范围。 2.金属热态下的塑性变形 掌握热加工的优缺点; 了解热加工的适用范围。 3. 金属的超塑性变形 了解超塑性的概念; 掌握超塑性原; 了解超塑性的应用前景。 4. 金属在塑性加工过程中的塑性行为 了解常见的金属塑性行为及其影响因素 (三) 金属塑性变形的力学基础 1.应力分析 理解内力.外力.面力.体积力的概念; 掌握塑性变形中应力分析的方法。 2.应变分析 理解应变的相关概念; 掌握塑性变形中应变分析的方法。 3.平面问题和轴对称问题 了解平面问题和轴对称问题的基本概念; 掌握平面问题和轴对称问题的常见处理方法。 4.屈服准则 理解材料的屈服现象; 掌握屈雷斯加屈服准则及米塞斯准则的使用原则和范围;了解影响材料屈服强度的相关因素。 5.塑性变形时的应力应变关系 掌握本构关系满足的条件; 掌握应力应变关系的应用条件和场合。 6.真实应力—应变曲线

金属塑性成形原理习题集

《金属塑性成形原理》习题集 运新兵编 模具培训中心 二OO九年四月

第一章 金属的塑性和塑性变形 1.什么是金属的塑性?什么是变形抗力? 2.简述变形速度、变形温度、应力状态对金属塑性和变形抗力的影响。如何提高金属的塑性? 3.什么是附加应力? 附加应力分几类?试分析在凸形轧辊间轧制矩形板坯时产生的附加应力? 4.什么是最小阻力定律?最小阻力定律对分析塑性成形时的金属流动有何意义? 5.塑性成形时,影响金属变形和流动的因素有哪些?各产生什么影响? 6.为什么说塑性成形时金属的变形都是不均匀的?不均匀变形会产生什么后果? 7.什么是残余应力?残余应力有哪几类?会产生什么后果?如何消除工件中的残余应力? 8.摩擦在金属塑性成形中有哪些消极和积极的作用?塑性成形中的摩擦有什么特点? 9.塑性成形中的摩擦机理是什么? 10. 塑性成形时接触面上的摩擦条件有哪几种?各适用于什么情况? 11. 塑性成形中对润滑剂有何要求? 12. 塑性成形中常用的液体润滑剂和固体润滑剂各有哪些?石墨和二硫化钼 如何 起润滑作用? 第二章 应力应变分析 1.什么是求和约定?张量有哪些基本性质? 2.什么是点的应力状态?表示点的应力状态有哪些方法? 3.什么是应力张量、应力球张量、应力偏张量和应力张量不变量? 4.什么是主应力、主剪应力、八面体应力? 5.什么是等效应力?有何物理意义? 6.什么是平面应力状态、平面应变的应力状态? 7.什么是点的应变状态?如何表示点的应变状态? 8.什么是应变球张量、应变偏张量和应变张量不变量? 9.什么是主应变、主剪应变、八面体应变和等效应变? 10. 说明应变偏张量和应变球张量的物理意义? 11. 塑性变形时应变张量和应变偏张量有和关系?其原因何在? 12. 平面应变状态和轴对称状态各有什么特点? 13. 已知物体中一点的应力分量为???? ??????---=30758075050805050ij σ,试求方向余弦为21==m l ,2 1=n 的斜面上的全应力、正应力和剪应力。 14. 已知物体中一点的应力分量为???? ??????---=10010010010010ij σ,求其主应力、主剪应力、八面体应力、应力球张量及应力偏张量。 15. 设某物体内的应力场为

塑性成形重要知识点总结

塑性变形:材料在一定外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法。塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。 滑移:晶体在力的作用下,晶体的一部分沿一定的晶面和晶向相对于晶体的另一部分发生相对移动或切变。 滑移面:滑移中,晶体沿着相对滑动的晶面。滑移方向:滑移中,晶体沿着相对滑动的晶向。孪生:晶体在切应力作用下,晶体一部分沿着一定的晶面和一定的晶向发生均匀切变。 张量:由若干个当坐标改变时,满足转换关系的分量所组成的集合。 晶粒度:金属材料晶粒大小的程度。 变形织构:在塑性变形时,当变形量很大,多晶体中原为任意取向的各个晶粒,会逐渐调整其取向而彼此趋于一致。这种由于塑性变形的结果而使晶粒具有择优取向的组织。 动态再结晶:在热塑性变形过程中发生的再结晶。 主应力:切应力为0的微分面上的正应力。 主方向:主应力方向,主平面法线方向。 主应力空间:由三个主方向组成的空间 主切应力:切应力达到极值的平面上作用得切应力。 主切应力平面:切应力达到极值的平面。 主平面:应力空间中,可以找到三个互相垂直的面,其上均只有正应力,无切应力,此面就称为主平面。 平面应力状态:变形体内与某方向轴垂直的平面上无应力存在,并所有应力分量与该方向轴无关的应力状态。 平面应变状态:物体内所有质点都只在同一个坐平面内发生变形,而该平面的法线方向没有变形的变形状态。 理想刚塑性材料:研究塑性变形时,既不考虑弹性变形,又不考虑变形过程中的加工硬化的材料。 理想弹塑性材料:塑性变形时,需考虑塑性变形之前的弹性变形,而不考虑硬化的材料。 弹塑性硬化材料:塑性变形时,既要考虑塑性变形前的弹性变形,又要考虑加工硬化的材料。刚塑性硬化材料:研究塑性变形时,不考虑塑性变形之前的弹性变形,需考虑变形过程中的加工硬化的材料。 屈服轨迹:两相应力状态下屈服准则的表达式在主应力坐标平面上的几何图形,一条封闭的曲线。 屈服表面:屈服准则的数学表达式在主应力空间中的几何图形是一个封闭的空间曲面称为屈服表面。 应变增量:以物体在变形过程中某瞬时的形状尺寸为原始状态,在此基础上发生的无限小应变。全量应变:反映张量在某一变形过程或变形过程中的某个阶段结束时的应变。 比例加载:在加载过程中,所有的外力一开始就按同一比例加载。 干摩擦:当变形金属与工具之间的接触表面上不存在任何外来的介质,即直接接触时所产生的摩擦。 流体摩擦:当变形金属与工具表面之间的润滑剂层较厚,两者表面完全被润滑剂隔开,这种状态下的摩擦称为。 磷化:塑性成形时润滑前在坯料表面上用化学方法制成一层磷酸盐或草酸盐薄膜,呈多孔吸附润滑剂。

浅谈铸造成型与塑性成形的新发展

浅谈铸造成型与塑性成形的新发展摘要:经过了三个多月的金属工艺学学习,课程也将要接近尾声了,在杨老师的课程中,我学到了很多关于金属铸造、成型的各种原理和发展过程和发展前景,随着我国的科学技术和工业化的发展,也大大的促进了制造业和制造工艺的发展,推动了铸造成型和塑性成形的新工艺的开发和创新,使得铸造成型和塑性成形的工艺朝着批量化、工艺化、精细化、轻量化的方向有了长足的进步,接下来我就铸造成型和塑性成形的一些了解的进行一下简单的论述。 关键词:铸造成型铸造工艺新工艺塑性成形缺点技术发展 随着科学技术在各个领域的突破,尤其是计算机的广泛应用,促进了铸造技术塑性成形的飞速发展,各种工艺技术与铸造技术的相互渗透和结合,也促进了铸造新工艺、新方法的发展。通过与计算机的紧密结合,数控加工、激光成型、人工智能、材料科学和集成制造等一系列与塑性成形相关联的技术的发展大大的促进了塑性成形的飞速发展。 一、铸造成型 铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。 铸造工艺通常包括: ①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素; ②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金; ③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。 近年来基于汽车轻量化的要求,越来越多的汽车零件正逐步由钢、铁改为铝、镁、塑料等轻质材料,其中以铝代钢铁是当前汽车轻量化的主要发展方向。而由于效率、成本、性能的综合考虑,目前采用压铸成形的零件越来越多,零件结构越来越复杂。 压铸合金材料也从常规的亚共晶Al-Si-Cu系(ADC12,A380)或共晶Al-Si系(YL102)合金向特殊的合金材料发展,如过共晶的Al-Si-Cu系合(ADC14A390)、亚共晶的Al-Si-Mg 系(AlSi10MgFe)以及Al-Mg系(AlMg5)合金等也正逐步大量应用于压铸零件中。过共晶Al-Si合金由于具有热膨胀系数小、密度小、耐磨及高温性能好、铸造性能优良等特点,是高强度、耐磨、低膨胀零件如汽车活塞汽缸体、斜盘、离合器齿轮等的理想材料但是目前国内外有关Al-Si合金的压铸件开发及应用的报道很少。 铸造成型的新工艺主要有三个方向 一是凝固理论推动的铸造技术的发展,主要的成就是定向凝固和单晶、细晶铸造、半固态铸造、快速凝固铸造和其他凝固铸造、差压铸造等通过控制凝固过程而提高材料性能,减少缩松缩孔,从而获得优质的铸件。 二是造型技术的新发展,主要有气体冲压造型,静压造型,真空密封造型,冷冻造型。 三是计算机技术推动的铸造新发展,计算机技术是21世纪的核心技术,是改造传统铸造产业的必由之路。运用计算机对铸造生产过程进行设计、仿真、模拟,可以帮助工程技术人员优化工艺设计,缩短产品制造周期,降低生产成本,确保铸件质量。现代的计算机技术在铸造方面的应用主要有铸造过程的数值模拟和制造工艺CAD两方面。

《金属塑性成形原理》习题答案

《金属塑性成形原理》 习题答案 一、填空题 1.衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率。 2.所谓金属的再结晶是指冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。 3.金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。 4.请将以下应力张量分解为应力球张量和应力偏张量 =+ 5.对应变张量,请写出其八面体线变与八面体切应变的表达式。 =; =。 6.1864年法国工程师屈雷斯加(H.Tresca)根据库伦在土力学中研究成果,并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果采用数学的方式,屈雷斯加屈服条件可表述为 。

7.金属塑性成形过程中影响摩擦系数的因素有很多,归结起来主要有金属的种类和化学成分、工具的表面状态、接触面上的单位压力、变形温度、变形速度等几方面的因素。 8.变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切线方向即为该点的最大切应力方向。对于理想刚塑性材料处于平面应变状态下,塑性区内各点的应力状态不同其实质只是平均应力 不同,而各点处的最大切应力为材料常数。 9.在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应的速度场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场,称之为真实应力场和真实速度场,由此导出的载荷,即为真实载荷,它是唯一的。 10.设平面三角形单元内部任意点的位移采用如下的线性多项式来表示: ,则单元内任一点外的应变可表示为=。 11、金属塑性成形有如下特 点:、、、。 12、按照成形的特点,一般将塑性成形分为和两大类,按照成形时工件的温度还可以分为、和 三类。 13、金属的超塑性分为和两大类。 14、晶内变形的主要方式和单晶体一样分为和。其中变形是主要的,而变形是次要的,一般仅起调节作用。

金属塑性成型原理

第一章 1.什么是金属的塑性什么是塑性成形塑性成形有何特点 塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力; 塑性变形----当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能 的加工方法,也称塑性加工或压力加工; 塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高 2.试述塑性成形的一般分类。 Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类 1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。可分为一次成型和二次加工。一次加工: ①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。分纵轧、横轧、斜轧;用于生产型材、板材和管材。 ②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。 ③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。生产棒材、管材和线材。 二次加工: ①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形 状和尺寸的加工方法。精度低,生产率不高,用于单件小批量或大锻件。 ②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从 而获得与模腔形状、尺寸相同的坯料或零件的加工方法。分开式模锻和闭式模锻。 2)板料成型一般称为冲压。分为分离工序和成形工序。 分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;

塑性成形过程中相场法及其应用

塑性成形过程中相场法及其应用 学生姓名: 学号: 学生所在院(系):

第1章相场法的特点 1.1 相场法的概念 相场法是一种基于经典热力学和动力学理论的半唯象方法[1]。该方法具有以下优点: 可以通过场变量简单明了地表征出任何一种复杂组织的几何形貌,包括单个区域或晶粒的几何形状,区域或晶粒的空间分布、体积分数等;可以考虑内部场和外加场(如应变场、电场和磁场) 对组织变化的影响;并且在2维和3维系统的应用并不增加模型的复杂性[2]。相场法已经十分成熟地应用于模拟凝固过程[1,3,4],但是在固相-固相转变模拟的应用正处在活跃发展的阶段[5]。 1.2 相场法的特点 微观组织演化的经典动力学通过将有着固定结构和成分的晶粒严格区分的尖锐界面的几何形状来描述多相微观组织。然后微观组织的演化可以通过求解一系列非线性偏微分方程获得,其中移动界面满足自相容边界条件[6]。然而,对于复杂的微观组织,利用传统方法无法求出移动或自由界面的解析解,即使是其数值解也很难求出[7]。因此有关粒子形状、粒子数量的问题无法利用传统方法解决。为了解决大部分传统方法面临的困难,最近人们越来越有兴趣利用场动力学理论描述任意介观和微观组织以及其随时间的演化,其主要原因就是与其它模拟方法相比相场法具有一些其它模拟方法所不具备的独特之处:首先,相场法通过场变量可以简单明了地表征出任何一种复杂组织的几何形貌,而且包括单个区域或晶粒的几何形状,区域或晶粒的空间分布、体积分数、局部表面曲率(如表面的坡口角和二面角)和内界面这样的细节在内[8]。 其次,相场法可以对与长程和短程相互作用有关的各种热力学驱动力加以考虑,所以利用相场法可以研究内部场和外加场(如应变场、电场和磁场)对组织变化的影响。 第三,相场法可以在相同的物理和数学模型下模拟诸如:形核、长大、粗化和外场诱发的组织变化等不同的现象。 第四,相场法中的时间,尺寸和温度的标度可以根据卡恩一希利阿德扩散方程和金兹博格一朗道方程中采用的半唯象常数来确定。从原理上来说,这些标度可以和所研究系统的实验测量数据或者更基本的模拟数据相对应。 第五,相场法是一种相对简单的方法而且它在二维和三维系统的应用并不增加模型的复杂性。

塑性成形过程的数值模拟汇总

实验报告 塑性成型过程的数值模拟 班级:机自07 姓名:欧阳罗辉 学号:10011170 2012年12月

一、实验目的: 通过本实验的教学,使学生基本掌握有限元技术在板料塑性成形领域的应用情况,拓宽学生的知识面,开阔视野,使学生对塑性成形过程的数值模拟技术有深刻的理解,预测板料弯曲成形的性能。 二、教学基本要求: 学会使用Dynaform数值模拟软件进行板料弯曲成形过程的仿真模拟,对模拟结果具有一 定的分析和处理能力。 三、实验内容提要: 掌握前处理的关键参数设置,如零件定义、网格划分、模型检查、工具定义、坯料定义、 工具定位和移动、工具动画、运行分析。了解后处理模块对模拟结果的分析,如读入d3plot 文件、动画显示变形和生成动画文件、成形极限图分析、坯料厚度变化分析等。 四、软件操作过程: 1. 导入压边圈、板料、下模板、上模板图形文件 点击File —Import,出现Import File 对话框,找到“ L型弯曲零件图” 选中binder.igs,点击Import,如此,依次导入四个模型文件,最后点击“确定”确认

四个模型导入后,结果如图 2. 重命名文件 点击PartLEdit ,出现Edit Part 对话框,这里便要依次更改文件名 首先选用红色文件名“ cOOIvOOO 1 ”,在上面的Name 对话框中输入binder ,然后点击 Modify ,以此类推输入 banker 、die 、punch 。 Edit Part 3. 对各图形文件划分有限元网格 1. Binder 零件网格划分

n 点击口图标,出现Part Turn。。。对话框,依次单击banker 2, die 3, punch 4,它们都会被取消选中,只留下binder 1被显示,点击0K确定。然后点击右下角的Current Part,弹出Current Part对话框,选择binder 1,点击OK确定。 点击Preproces L Element,弹出Element对话框,选择Part Turn On/Off Select by Cursor 第四个图标(自动模式),将Max Size改为10,点击Select Surfaces点击Displayed Surf,点击OK,点击Apply,点击Yes,点击Exit,点击OK,于是第一个零件网格划分完 成。 2. Banker零件网格划分 n 点击i□图标,取消Binder 1零件的显示,添加Banker 2 Select Dy Name All On |AllOfi OK Undo F Only SeledOn 零件的显示,点击OK确定。然后点击右下角的Current Part图标,将当前零件选成Banker 2, 点击OK确定。 点击Preproces A Element,弹出Element对话框,选择第三个图标,弹出Control Keysto ne对话框,点击POINTS/NODES,弹出In put Coo。。。对话框,选中Poi nt,然后在绘图区沿顺时针或者逆时针方向依次选中Ba nker零件的四个顶点,如下图所示

第三章 塑性成型习题作业

一、填空 1.金属的加工硬化是指塑性变形后其机械性能中强度和硬度(升高),而塑性和韧性(降低)的现象。 2.金属经塑性变形后,强度升高塑性下降的现象称为(加工硬化),它可以通过(加热)方法消除。 3.金属产生加工硬化后的回复温度T回=(0.2----0.3)T熔(金属熔化的绝对温度);再结晶温度T 再=( 0.4)T熔。 4.锻造时对金属加热的目的是(提高塑性)和(减小变形抗力)。 7.衡量金属可锻性的两个指标是(塑性)和(变形抗力)。 9.金属在塑性变形过程中三个方向承受的(压应力)数目越多,则金属的塑性越好,(拉应力)的数目越多,则金属的塑性越差。 11.模锻件的分模面即上下模在锻件上的(),为了便于模锻件从模膛中取出,锻件沿锤击方向的表面要有一定的(斜度)。 12.板料冲压的基本工序可分为(分离)和(成形)两大类。 13.板料落料时,凹模的尺寸(大于)落料件的尺寸,而凸模的尺寸小于落料件的尺寸;板料冲孔时,凸模的尺寸(小于)孔的尺寸,而凹模的尺寸大于孔的尺寸。 15.为使弯曲后角度准确,设计板料弯曲模时考虑到(回弹)现象,应使模具的角度比需要的角度(小)。 17.板料冲压基本工序冲孔和落料是属于(分离)工序;而拉深和弯曲则属于(成形)工序。 18.按照挤压时金属流动方向和凸模运动方向之间的关系,挤压可分为(正挤压)、(反挤压)、(复合挤压)和(径向挤压)。 二、判断 1.滑移是金属塑性变形的主要方式。 F 2.变形金属经再结晶后不仅可以改变晶粒形状,而且可以改变晶体结构。F 3.钨的熔点为3380℃,当钨在1200℃变形时,属于冷变形。 F 4.金属存在纤维组织时,沿纤维方向较垂直纎维方向具有较高的强度,较低的塑性。F 5.锻造纤维组织的稳定性很高,故只能用热处理的方法加以消除。F 6.金属材料凡在加热条件下的加工变形称为热变形,而在室温下的加工变形称为冷变形。F 7.钢料经冷变形后产生加工硬化而提高强度,钢锭经锻造热变形后因无加工硬化,故机械性能没有改善。F 8.自由锻不但适用于单件,小批生产中锻造形状简单的锻件,而且是锻造中型锻件唯一的方法。 F 9.模型锻造比自由锻造有许多优点,所以模锻生产适合于小型锻件的大批大量生产。T 10.胎膜锻造比自由锻造提高了质量和生产率,故适用于大件,大批量的生产。F 11.带孔的锻件在空气锤上自由锻造时,孔中都要预留有冲孔连皮,而于锻后冲去。T 12.自由锻造可以锻造内腔形状复杂的锻件。F 13.锤上模锻可以直接锻出有通孔的锻件。F 14.自由锻件上不应设计出锥体或斜面的结构,也不应设计出加强筋,凸台,工字型截面或空间曲线型截面,这些结构难以用自由锻方法获得。T 15.锤上模锻时,终锻模膛必须要有飞边槽。T 16.锻造时对坯料加热的目的是提高塑性和降低变形抗力,所以,加热温度越高越好。F 17.制定锻件图时,添加敷料是为了便于切削加工。T 19.在空气锤上自由锻造有孔的锻件时,都不能锻出通孔,而必须留有冲孔连皮,待锻后

数值模拟技术及其在金属塑性成形中的应用

《材加专业前沿讲座》前沿调研报告数值模拟技术及其在金属塑性成形中的应用 学院:机械工程学院 班级:xxxxx 姓名:南京小诸葛 学号:xxxxx

目录 一、摘要 (1) 二、正文 (1) 2.1数值模拟技术 (1) 2.1.1数值模拟技术简介 (1) 2.1.2数值模拟技术的优势 (1) 2.1.3有限元法发展历史 (2) 2.1.4有限元法的发展现状 (2) 2.1.5有限元法在机械中的应用 (2) 2.2数值模拟技术在金属塑性成形中的应用 (2) 2.3数值模拟技术的应用举例 (3) 三、参考文献 (4)

一、摘要 在本次材加专业学科前沿体验课金淼老师关于数值模拟技术及其在金属塑形成型中的应用,我学到了很多先进前沿的知识。数值模拟技术是一项新型的求解数学模型的方法,尤其是数值法中的有限元法,在机械行业运用广泛,在金属塑性成形过程中更是有着很大的实用价值,是一项值得我们认真研究的科学处理方法。 关键字:数值模拟塑性成形有限元法 二、正文 在材加专业学科前沿体验课中,我们都听了很多老师在不同方面的专业知识的讲座,但让我留下最深印象的就是金淼老师讲授的“数值模拟技术及其在金属塑性成形中的应用”的讲座。数值模拟技术是一种新型的模拟分析的技术,在现实生产应用十分广泛,对我们专业的未来生产生活中的应用也是颇有价值,所以我对数值模拟技术做了下面的前沿调研报告。 该调研报告分为三个部分来讲:首先讲什么是数值模拟技术,然后讲数值模拟技术在金属塑性成形中的应用,最后会列举一个数值模拟技术实际生产中的例子。 2.1数值模拟技术 2.1.1数值模拟技术简介 求解数学模型通常有两种方法:一种是解析法,它通过严格的数学推导求出问题的精确解,或称解析解;另一种是数值法,它通过一定的算法和程序,利用计算机计算出问题的近似解,又称数值解。 常见的数值法有差分法,变分法和有限元法等。我们接下来主要讲解集成差分法和变分法二者数值模拟优点的有限元法。 有限元法是求解各种复杂数理方程的一种数值计算方法,是弹性/塑性理论、计算数学、计算机软硬件有机结合在一起的一种数值分析技术,是解决工程实际问题的一种有力的数值计算工具。 2.1.2数值模拟技术的优势 近年来,在计算机技术和数值分析方法的支持下,数值模拟技术在国防、航空航天、交通运输、电力、机械、工程建筑等领域得到了广泛的应用,从结构合理性设计到结构承载能力和工件寿命预测、从结构的稳定性到工件开裂预测等,各个领域都渗透者数值模拟技术的身影。例如,分析叶片成形过程,研究其缺陷产生原因,以期为实际锻造过程作知道,有效地改进叶片成型质量;模拟不同形状工件、不同变形条件下缺陷产生的过程,以便能更好地了解缺陷的成因及改进措施等。数值模拟以其低成本、高价值的优势成为越来越普通的工程计算和科学研究的手段,被越来越多的科研人员所接受和使用。因此,数值模拟技术也是降低制造成本、缩短研发周期、搞笑而实用地预测研究缺陷的方法和手段。 数值模拟技术已从一个单纯的分析工具转变为一种设计手段,成为快速发展的一个相对独立的科学领域,在理论和应用方面都具有学科的特色。其优势主要体现在:①有效缩短新产品的开发研究周期,大幅度降低产品研发成本;②以精确的分析结果为知道,制造出高质量的产品;③快速进行方案设计和改进,增加产品和工程的可靠性;④精确预测产品性能;⑤实现优化设计,降低材料的消耗和成本;⑥预先发现产品制造或工程设施中可能潜在的问题,减少经济损失和时

《金属塑性成型原理》复习资料

第一章绪论 1. 什么是金属的塑性什么是塑性成形塑性成形有何特点塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;塑性成形:金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法,也称塑性加工或压力加工;塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高 2. 试述塑性成形的一般分类。 Ⅰ. 按成型特点可分为块料成形(也称体积成形)和板料成型两大类 1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。可分为一次加工和二次加工。 一次加工: ① ---------- 轧制是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。分纵轧、横轧、斜轧;用于生产型材、板材和管材。 ② ---------- 挤压是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。 ③ ---------- 拉拔是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。生产棒材、管材和线材。 二次加工: ①自由锻 --- 是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需 的形状和尺寸的加工方法。精度低,生产率不高,用于单件小批量或大锻件。 ②模锻 -- 是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变 形,从而获得与模腔形状、尺寸相同的坯料或零件的加工方法。分开式模锻和闭式模锻。2)板料成型一般称为冲压。分为分离工序和成形工序。分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。

塑性成形新技术的发展趋势

塑性成形新技术的发展趋势 班级:机制学号:姓名:周祯 张涛 朱越 一、历史沿革 从人类社会的发展和历史进程的宏观来看,材料是人类赖以生存和发展的物质基础,也是社会现代化的物质基础和先导。而材料和材料技术的进步和发展,首先应归功于金属材料制备和成型加工技术的发展。人类从漫长的石器时代进化到青铜时代(有学者称之为“第一次材料技术革命”),首先得益于铜的熔炼以及铸造技术进步和发展,而由铜器时代进入到铁器时代,得益于铁的规模冶炼技术、锻造技术的进步和发展(所谓“第二次材料技术革命”)。直到世纪中叶,冶金(金属材料的制备与成型加工)才由“技艺”逐渐发展成为“冶金学”,人类开始注重从“科学”的角度来研究金属材料的组成、制备与加工工艺、性能之间的关系,迎来了所谓的“第三次材料技术革命”——人类从较为单一的青铜、铸铁时代进入到合金化时代,催生了人类历史的第一次工业革命,推动了近代工业的快速发展。 进入世纪以后,材料合成技术、符合技术的出现和发展,推动了现代工业的快速发展,而电子信息、航天航空等尖端技术的发展,反过来对高性能先进材料的研究开发提出了更高的要求,起到了强大的促进作用,促成了一系列新材料和新材料技术的出现和发展。 一般而言,材料需要经历制备、成型加工、零件或结构的后处理等工序才能进入实际应用,因此,材料制备与成型加工技术,与材料的成分和结构、材料的性质一起,构成了决定材料使用性能的最基本的三大要素。 先进工业国家对材料制备与成型加工技术的研究开发十分重视。美国制定了“为了工业材料发展计划”,其核心是开放先进的制备与成型加工技术,提高材料性能,降低生产成本,满足未来工业发展对材料的需求。德国开展的“世纪新材料研究计划”将材料制备与成型加工技术列为六个重点内容之一。在欧盟的“第六框架”计划中,先进制备技术时新材料领域的研究重点之一。日本在世纪年代后期,先后实施了“超级金属”、“超钢铁”计划,重点是发展先进的制备加工技术,精确控制组织,大幅度提高材料的性能,达到减少材料用量、节省资源和能源的目的。 新材料的研究、开发与应用,综合反应了一个国家的科学技术与工业化水平,而先进制备与成型加工技术的发展,对于新材料的研制、应用和产业化具有决定性的作用。先进制备与成型加工技术的出现与应用,加上了新材料的研究开发、生产和应用进程,促成了诸如微电子和生物医用材料等新兴产业的形成,促进了现代航天航空,交通运输,能源环保等高技术产业的发展。 传统结构材料向高性能“,复合化,结构功能一体化发展,尤其需要先进制备与成型加工技术及装备,可使材料的生产过程更加高效,节能和洁净,从而提高传统材料产业的国际竞争力。 另一方面,开展本科学领域色前沿和基础研究,并综合利用相关学科基础理论和科技发展成果,提供预备新材料的新原理新方法,也是材料科学与工程学科自身发展的需求。 因此,材料先进制备与成型加工技术发展,对提高国家综合实力,突破先进工业国家的技术

塑性成形原理知识点

1、塑性的概念:在外力作用下使固体金属发生永久变形而不破坏其完整性的能力。 2、塑性加工的特点:组织、性能好;材料利用率高;尺寸精度高;生产效率高。 3、塑性成形的分类:按工艺方法→体积(块料)成形{锻造、轧制、挤压、拉拔等},板料成形{弯曲、拉深、冲裁、剪切等};按成形温度→热成形、温成形、冷成型。 4、多晶体的塑性变形包括晶内变形和晶间变形。晶内变形的主要方式为滑移和孪生,其中以滑移变形为主。 5、体心立方:α-Fe、Cr、W、V、Mo;面心立方:Al、Cu、Ag、Ni、γ-Fe;密排六方:Mg、Zn、Cd、α-Ti 6、滑移的特点:滑移系越多,金属变形协调性好,塑性高。滑移方向的作用大于滑移面的作用。 7、单位面积上的内力称为应力。 8、* 9、 10、当滑移面上的剪切应力达到某一个值时,晶体产生滑移,改应力值即为临界剪切应力值。 11、滑移方向上的切应力分量为:τ=σcosυcosλ。 12、位错理论是指:滑移过程不是所有原子沿着滑移面同时产生刚性滑动,而是在某些局部区域先产生滑移,并逐步扩大。 13、晶体的滑移的主要方式是位错的移动和增值。 14、晶间变形是微量且困难的,其主要方式是晶粒间的相互滑动和转动。 15、塑性变形的特点是:具有不同时性、不均匀性和相互协调性。 16、晶粒大小对金属塑性变形的影响:当晶粒越小时,金属变形抗力越大、塑性越好、表面质量越好。

17、? 18、固溶体晶体中的异类原子(溶质原子)会阻碍位错的运动,从而对金属的塑性变形产生影响,表现为变形抗力和加工硬化率有所增加,塑性下降。这种现象称为固溶强化。 19、 20、当金属变形量恰好处在屈服延伸范围时,金属表面会出现粗糙不平、变形不均的痕迹,称为吕德斯带。为防止吕德斯带的产生,通常在薄板拉延前进行一道微量冷轧工序,使被溶质气团钉扎的错位大部分脱钉,再进行后续加工。 21、塑性变形对金属组织结构的影响:产生纤维组织、产生变形织构、产生亚结构。 22、当金属塑性变形程度增大时,金属的刚度及硬度升高,而塑性和韧性下降,这种现象称为加工硬化。 23、加工硬化可以改善一些冷加工工艺的工艺性、作为强化金属的手段,但是会降低金属塑性,使后续变形变得困难。加工硬化可以通过去应力退火得以消除。 24、金属热塑性变形的机理主要有:晶内滑移、晶内孪生(合称晶内变形),晶界滑移和扩散蠕变。 25、热塑性变形对金属组织性能的影响:改善晶粒组织;锻合内部缺陷;破碎并改善碳化物和非金属夹杂物在钢中的分布;形成纤维组织;改善偏析。 26、' 27、金属超塑性成型的种类分为:细晶超塑性和相变超塑性。 28、金属超塑性成型的特点有:大伸长率;无颈缩;低流动应力,易于成形;变形过程中基本无加工硬化;具有极好的流动性和充填性。 29、 30、金属超塑性成型对金属微观组织的影响:几乎看不到位错;没有晶内滑移;不形成亚结构。 31、金属超塑性成型对金属力学性能的影响:不产生织构、没有各向异性;具有较高的抗应力腐蚀能力;变形后没有残余应力;存在加工软化现象。 32、金属的塑性指标主要有:拉伸试验;镦粗实验;扭转试验。 33、化学成分对金属塑性的影响:磷→冷脆;硫→热脆;氮→兰脆;氢→氢脆。 34、变形温度对金属塑性的影响:总的趋势是随着温度升高,塑性增加,但在某些温度区间内,由于相态或晶粒边界的变化而出现脆性区,使金属的塑性降低。 35、, 36、变形力学条件对金属塑性的影响:当静水压力越大,即在主应力状态下压应力个数越多、

塑性成形新技术概况

材料成形设备小论文 塑性成形新技术概况 系名 专 学号 学生姓名 指导教师 2016年 4 月12 日

摘要:文章介绍了当前塑性成形加工中的微成形、超塑成型、柔性加工、半固态加工等各种新技术,并分别阐述了各新技术的相关概念、特点、发展趋势等。这些相关介绍及发展概况对理解塑性成形技术及推广和运用高新技术,推动塑性成形的进一步发展具有一定参考意义。 关键词:塑性成形;新技术;发展概况 1 引言 塑性成形就是利用材料的塑性,在工具及模具的外力作用下来加工制件的少切削或无切削的工艺方法。塑性成形技术可分为板材成形和体积成形两大类。板材成形是使用成型设备通过模具对金属板料在室温下加压以获得所需形状和尺寸零件的成形方法,习惯上也称为冲压或冷冲压。板料成形可分为分离工序和成形工序。分离工序俗称冲裁,包括落料、冲孔、修边等。成形工序包括弯曲、拉伸、胀形、翻边等。体积成形是指对金属块料、棒料或厚板在高温或室温下进行成形加工的方法,主要包括锻造、轧制、挤压或拉拔等。 塑性成形技术具有高产、优质、低耗等显著特点,已成为当今先进制造技术的重要发展方向。据国际生产技术协会预测,到21世纪,机械制造工业零件粗加工的75%和精加工的50%都采用塑性成形的方式实现。工业部门的广泛需求为塑性成形新技术的发展提供了原动力和空前的机遇。[1] 2 塑性成形新技术 随着科学技术的迅速发展,通过与计算机的紧密结合,数控加工、激光成型、人工智能、材料科学和集成制造等一系列与塑性成形相关联的技术发展速度之快,学科领域交叉之广泛是过去任何时代无法比拟的,塑性成形新工艺和新设备不断地涌现,出现了高速高能成形、少无切削、超塑成型、柔性加工、半固态加工等多种塑性加工新技术。掌握塑性成形技术的现状和发展趋势,有助于及时研究、推广和应用高新技术,推动塑性成形技术的持续发展。 3.1 高速高能成形 高速高能成形是一种在极短时间内释放高能量而使金属变形的成形方法。 高速高能成形的历史可追溯到一百多年前。但由于成本太高及当时工业发展的局限,该工艺并未得到应用。随着航空及导弹技术的发展,高速高能成形方法才进入到实际应用。 与常规成形方法相比,高速高能成形具有以下特点: 1)模具简单:仅需要凹模即可成形。可节省模具材料,缩短模具制造周期,

金属塑性_知识点汇总

金属塑性成形原理复习指南 第一章绪论 1、基本概念 塑性:在外力作用下材料发生永久性变形,并保持其完整性的能力。 塑性变形:作用在物体上的外力取消后,物体的变形不能完全恢复而产生的永久变形成为塑性变形。 塑性成型:材料在一定的外力作用下,利用其塑性而使其成形并获得一定的力学性能的加工方法。 2、塑性成形的特点 1)其组织、性能都能得到改善和提高。 2)材料利用率高。 3)用塑性成形方法得到的工件可以达到较高的精度。 4)塑性成形方法具有很高的生产率。 3、塑性成形的典型工艺 一次成形(轧制、拉拔、挤压) 体积成形 塑性成型 分离成形(落料、冲孔) 板料成形 变形成形(拉深、翻边、张形) 第二章金属塑性成形的物理基础 1、冷塑性成形 晶内:滑移和孪晶(滑移为主)滑移性能(面心>体心>密排六方) 晶间:转动和滑动 滑移的方向:原子密度最大的方向。 塑性变形的特点: ① 各晶粒变形的不同时性; ② 各晶粒变形的相互协调性; ③ 晶粒与晶粒之间和晶粒内部与晶界附近区域之间变形的不均匀性。 合金使塑性下降。 2、热塑性成形 软化方式可分为以下几种:动态回复,动态再结晶,静态回复,静态再结晶等。 金属热塑性变形机理主要有:晶内滑移,晶内孪生,晶界滑移和扩散蠕变等。 3、金属的塑性 金属塑性表示方法:延伸率、断面收缩率、最大压缩率、扭转角(或扭转数) 塑性指标实验:拉伸试验、镦粗试验、扭转试验、杯突试验。 非金属的影响:P冷脆性 S、O 热脆性 N 蓝脆性 H 氢脆 应力状态的影响:三相应力状态塑性好。 超塑性工艺方法:细晶超塑性、相变超塑性 第三章金属塑性成形的力学基础 第一节应力分析 1、塑性力学基本假设:连续性假设、匀质性假设、各向同性假设、初应力为零、体积力为零、体积不变假设。

相关文档
最新文档