污泥干化系统方案市政污泥造粒循环冷却

污泥干化系统方案市政污泥造粒循环冷却
污泥干化系统方案市政污泥造粒循环冷却

污泥干化系统方案市政污

泥造粒循环冷却

The following text is amended on 12 November 2020.

北控环保工程技术有限公司污泥干化项目

初步技术方案

Turbo Thin Film Technology For Waste Treatment 世界领先的涡轮薄层干燥技术应用于环境废弃物处置

目录

1.项目概况.............................................. 错误!未定义书签。设计目的....................................................... 错误!未定义书签。

主要设计条件................................................... 错误!未定义书签。

2.设计数据................................................ 错误!未定义书签。供应方工作范围................................................. 错误!未定义书签。

工艺设计数据................................................... 错误!未定义书签。

辅助设施可用性................................................. 错误!未定义书签。

预期消耗....................................................... 错误!未定义书签。

排放........................................................... 错误!未定义书签。

3.方案工艺描述............................................ 错误!未定义书签。污泥处置系统工艺选择........................................... 错误!未定义书签。

工艺介绍和描述................................................ 错误!未定义书签。

工艺系统的特点................................................ 错误!未定义书签。

4 方案系统设计............................................ 错误!未定义书签。主要工艺设备清单............................................... 错误!未定义书签。

电气和自动化系统............................................... 错误!未定义书签。

仪器仪表....................................................... 错误!未定义书签。

管线系统....................................................... 错误!未定义书签。

系统平面布置................................................... 错误!未定义书签。

5.系统设备投资估算和活性污泥减量处置经济测算.............. 错误!未定义书签。

6.供应商简介.............................................. 错误!未定义书签。

7. 全球部分环保污泥处置业绩表............................. 错误!未定义书签。

8. 国内部分项目应用情况简介............................... 错误!未定义书签。

1.项目概况

设计目的

非常感谢贵方对我方污泥处置系统的询问,针对贵方提出的污泥干化项目项目需求,我们提供的系统将脱水处理后污泥,干燥处理至含固率80%并造粒,输送至垃圾焚烧炉入料口:

污泥干化处理:将脱水污泥经涡轮薄层干化系统处理至含固率80%,直接造粒成直径12-14mm,长度15-45mm的干污泥颗粒,经干污泥料仓储存并输送至垃圾焚烧系统的入料口。

根据类似项目的实际运行情况,考虑到污泥粉尘化对系统安全的影响,必须实现严格的惰性化,系统被设计为在干燥器和气体回路内任何最不利的工况条件下,实现含氧量<4%,以保证生产的安全。

方案设计范围:污泥干化工艺系统设计及经济估算。

主要设计条件

项目设计采用的基本参数如下:

污泥参数单位额定值极限值脱水活性污泥t/天152

入口含固率%2010-20

出口含固率%8075-85

入口温度°C>10>5

污泥含砂量(干基)%<8

项目采用的公用设施参数如下:

项目入口温度°C入口压力MPaG出口温度°C出口压力MPaG

冷却水≤30≤50环境压力

冷却水水质

新鲜水水质

2.设计数据

供应方工作范围

供应方与污泥干化和造粒系统相关的工作范围可做如下界定:

提供污泥干化系统的供货及工程设计、安装指导、培训、调试和服务并保证系统的工艺完整性,主要内容包括:

工艺设计和基础设计;

详细设计;

设备供货(包括所供设备支撑和辅助钢结构);

电力分配和电马达;

控制系统(CP控制台和PLC);

用于现场控制和安全的仪器仪表;

系统设备安装和组装的现场指导;

系统启动和最终验收的现场指导;

业主方人员的培训;

买方任何的设计审查、确认和设备监造、验收,均不能免除供应方对供货范围内所有设备设计、制造、性能和安全方面的整体责任。

工艺设计数据

工艺设计原则

考虑了以下工艺设计原则:

埋地式湿污泥料仓,接收车载运输的湿污泥,可以储存200m3的脱水污泥(两套湿污泥料仓);

污泥干燥器可以在额定蒸发量70%~110%之间运行;

污泥干化系统能够生产最终含固率可在75~85%范围内进行调整的产品。设计能力定为含固率的80%;

污泥干化系统由2条干化线构成;

系统将采用低压蒸汽()作为加热介质;

脱水活性污泥原料含固率大约为20±10%;

在正常情况下,污泥干化系统可以处理每小时吨脱水污泥,将其处理至含固率80%,并造粒成直径12-14mm,长度15-45mm的干污泥颗粒;

系统为封闭式处理系统,在污泥储存和处理回路抽负压,避免臭气污染;

污泥处置系统可按照每天24小时、每周7天方式连续运行,也可按照要求断续运行,系统保证工作时间不低于每年8000小时;

干污泥料仓有效容积60m3(两套干污泥料仓),可储存干化污泥,配备保温加温装置避免产生凝结水,配备一氧化碳检测、泄爆阀等安全监控和保护装置。

系统设计可以满足项目要求,并具有以下特点:无物料返混环节,一次性处理得到含固率可调节的均一产品。

系统额定设计能力和数据

处理段处理参数数值单位备注

污泥干化系统入口污泥处理量6333kg/h 入口污泥含固率20%干基污泥量kg/h 干化污泥量1583kg/h

干化污泥含固率80%

蒸发水量4750kg/h

最终产品的出口条件

含固率80 % DS

干燥器物料出口温度<85 °C

冷却后温度<40 °C

系统通过改变生产参数可以生产75~85%含固率的产品。

辅助设施可用性

以下为最高峰条件(80%含固率产品)下的数据。

供热

加热介质饱和蒸汽

入口温度188 °C

入口压力≥ MPaG

流量可用性最大7000 kg/h

电能

进线380 V – 50 Hz 三相

安装功率约720kW

PLC 系统220V (50Hz, 1 phase)

新鲜水

入口温度20 °C

压力 MPaG

可用性约15m3/h

循环冷却水

入口温度20 °C

压力 MPaG

可用性约150m3/h

仪表风

入口压力 MPaG

温度环境温度

可用性约8Nm3/h

预期消耗

以下数据为如第节所描述的运行条件下的整厂数据。预期数值为最高值,仅包括供货方供货内容。

热量

蒸汽消耗~7000 kg/h

热能单位净消耗~690 kcal/kg 蒸发水

冷凝水流量~h

电能

吸收功率~475kWh

冷却水

用于冷凝液的间接冷却:120m3/h

入出口温差Δt +10-20°C

新鲜水

预期消耗正常运行无连续消耗

仪表风

预期消耗4Nm3/h

排放

以下数据为如第节所描述的运行条件下的整厂数据。

废水

从气体洗涤和冷凝段排出的具有污染性质的水:

废水流量~7m3/h

温度35-40°C

压力环境压力

废气

干燥系统有一种气态排放物需处理:

空气与不可凝工艺气体300-400 m3/h 温度~40 °C

相对湿度~100%

3.方案工艺描述

污泥处置系统工艺选择

本方案处理的污泥,主要是来源于市政污水处理产生的脱水活性污泥,脱水活性污泥含固率约20%,车载进入埋地式湿污泥料仓,仓内污泥经破拱滑架系统收集,由仓底污泥出料螺旋输送机、污泥螺杆泵提升输送后,进入污泥干化系统处置,最终达到含固率80%,经高干度造粒成直径10-14mm,长度15-45mm的规则颗粒,经干污泥料仓暂存后定量输送到焚烧系统处理,在焚烧系统检修期间可由车辆运输暂存。

本方案设计污泥干化处置工艺系统,具有以下核心特点:

脱水活性污泥干化后污泥减量达75%,减量化效果显着,大大节约后续处置费用;

干化工艺采用国际应用超过30年的涡轮薄层工艺系统,作为目前国内实际应用于含油污泥干燥的成熟工艺,系统能够适应各种复杂进泥情况稳定运行,无返混流程,安全性能优异,全自控运行,处理效率高,占地小,运行成本低,系统微负压运行,无臭气污染;

干化后污泥含水率大大降低,性状稳定,热值增高,为后续能源化处置奠定良好的基础;

工艺介绍和描述

本项目污泥干化系统采用经国内外长期应用验证性能优异的涡轮薄层干化工艺系统。

涡轮薄层干燥技术和设备研发应用起始于二十世纪六十年代,最早开发的目的是为极易粉尘化而产生危险的面粉物料找到更加安全可靠的干燥技术,因而从最开始的系统设计就遵循了确保最高安全性的要求。

独特的涡轮薄层干燥方式以及含有大量水蒸气的强制循环回路,形成了涡轮薄层干燥技术在含水物料干燥处理上独有的优势和特点。

涡轮薄层干燥主机设备,采用了热传导给热和热对流给热相结合的换热模式,圆柱形的高温热壁,在物料含水率高时确保高强度的传导给热干燥,高速旋转的主轴和桨叶形成的高强度涡流热风,在输送污泥颗粒的同时,能够将含水率较低采用热传导方式难以继续干燥的物料颗粒以热对流的方式快速干燥至设定的含固率,最高可达到含固率99%。

这种热传导结合热对流的干燥模式,具有高效的干燥效果,无需采用干泥返混流程,一步将含水率85-90%污泥直接干燥到含固率80%以上。在污泥快速干燥的同时,相比较传统的单一热传导干燥方式,蒸发效率可提高倍,干燥处理消耗的时间仅为30%左右,节约能耗并降低运行成本。相比较单一热对流干燥方式,没有干泥返混和挤压塑性的处理工序,能够处理含油污泥,处理效率更高。

由于具备含有大量水蒸气的强制循环主回路,配备抽取风机从主回路抽取少量气体进行冷凝,并保持整个回路的微负压,与传统单一的热对流干燥系统相比,气体排放量小,并保证环境无臭气污染。

水蒸气是惰性化效果最好的气体介质之一,饱含水蒸气的气体中含氧量能够大大降低,从而实现在干燥处理含有爆炸性有机粉尘如污泥物料成分时达到最佳的安全性,如果结合少量氮气密封,达到极低的含氧量,可以安全处理含有油(挥发性烃类)、溶剂等更加危险的物料。涡轮薄层干燥技术特有包含大量水蒸气的强制循环回路,在安全性方面表现卓越,是全球唯一具有高含油污泥干化处置业绩的干燥系统,在天津石化的实际应用和测试也证实了这一点。

在物料干燥过程中,物料的颗粒在高速旋转的主轴和桨叶以及形成的涡流热风作用下,沿圆柱形热壁表面形成松散的颗粒薄层,在风力作用下移动并排出干燥器,一方面与干燥器热壁间没有压力接触位移与受力,避免对热壁的磨蚀,另一方面可是实现停机时自排空干燥器内的物料,特别是在重启时,物料自排空可以确保设备的高安全性。

涡轮薄层干燥过程采用自控运行,自动调整,特有的气体温度-进料量反馈控制方式,可以确保在进料污泥含水率在较大范围波动情况下,干燥后物料的含固率按照设定值保持稳定。

实际上,涡轮薄层干燥系统独有的特点和优势,可以允许应用于数以百计的物料干燥处理,甚至是具有腐蚀性或者高含盐的液体干燥,它可以将含盐废液干燥至含固率99%以上成为稳定的固体。

迄今为止,涡轮薄层干燥系统在工业污泥和废弃物处置领域应用超过30年,全球超过180条生产线成功运行,没有出现过安全性问题。

1)脱水污泥存储和喂料

脱水处理后的活性污泥,由车运至地埋式湿污泥料仓HST1暂存。

接收车载污泥,湿污泥料仓HST1采用埋地式设计,配备液压开盖系统和安全栅,用于接收车载污泥进入料仓。破拱滑架装置的主要功能:一方面为防止料仓内污泥架桥无法排出,另一方面是收集料仓内的污泥经过料仓底部的出料口,进入下部的出料螺旋。

湿污泥料仓内顶部装备料位计,监控仓内料位变化情况。考虑到湿污泥较长时间储存可能会出现臭气问题,料仓配备臭气抽吸管路接口。为防止快速进料和出料导致仓内气压变化影响,料仓装备有呼吸阀。

湿污泥料仓内的污泥,经液压破拱装置收集进入下部出料螺旋AC1,输送污泥进入污泥螺杆泵提升输送至干燥器喂料器的料斗中。喂料器DS1装备有破拱器和喂料螺旋,可将污泥喂入干燥器中。

2)产品干燥

污泥的干燥是基于涡轮薄层瞬间干燥技术。湿污泥通过喂料器到达卧式涡轮薄层干燥器ES1。涡轮薄层干燥器在入口处接收有待处理的污泥,这里也是工艺气体的入口。因此气体与污泥在干燥器内同向运动。

涡轮薄层干燥器主体为卧式水平轴结构,主要构造包括周围密闭的圆柱形带热夹套的干燥鼓,以及中心由旋转轴和桨叶组成的转子。在运行时干燥鼓的夹层内注入饱和蒸汽,内壁形成高温的热壁为污泥的干燥提供主要的热源。中心的转子以一定速度旋转,一方面将污泥打散成颗粒并在离心力作用下甩向热壁,另一方面特殊设计的桨叶旋转在干燥器内形成定向的涡流螺旋状热风,可以带动污泥颗粒在干燥器内定向移动形成松散的颗粒薄层,并吹拂污泥颗粒的表面形成热对流的干燥效果。

湿污泥进入干燥器后,在设备内部旋转的转子形成离心力作用下,湿污泥被迅速打散并甩到封闭的圆柱形干燥鼓内壁上,从而形成涡轮干燥薄层。污泥在设备内形成的气体涡流的强力作用下,紧贴着干燥鼓的内壁,持续地定向移动并形成良好的混合效果。这种干燥物料松散薄层方式结合了热传导和热对流的给热原理,可以达到很高的换热效率和热利用效率。

主要的热交换是靠与圆柱形干燥鼓同轴的热夹套中循环的蒸汽热传导实现的,而辅助加热和干燥物料输送是靠预热的气体完成的。预热气体与污泥的接触、并流运动,不会带来产品的降解和/或损害。事实上干燥器的进口处的热气体与高含湿量的冷产品接触,可以避免干泥的过热。

一般在涡轮薄层干燥机中的产品的量最大仅数十公斤(干物质,根据工作流的安排变化)。即使发生突然失电等紧急情况,整个系统电机停止运转的情况下,旋转涡轮的机械惯性也可以保证涡轮薄层干燥器内处理物料被基本清空,避免留存物料可能有害于系统重设、重启。

涡轮转子是由旋转轴和镀有耐磨材料的特殊形状的桨叶构成。转子安装在两个法兰连接端板中心线上的舷架轴承上。转子支撑和转动的轴承组安装在蒸发室外,因此没有弄脏和过热的风险。干化处理后的污泥颗粒由热气体带动离开涡轮薄层干燥器,与水蒸气一起进入分离段。

3)气固分离

经涡轮薄层干燥器处理后的产品进入旋风分离器C1中。在旋风分离器内固形物和气体因密度差别而被分离,干燥的产品收集在底部,而气体从顶部离开。

闭环回路保持微负压,避免任何粉尘排放到环境中。旋风分离器配备适当的保温以避免蒸汽冷凝的风险。在旋风分离器C1的底部,安装有旋转阀VS1。通过该阀分离后的固体产品落入造粒喂料器DS2中。

4)干化污泥造粒

干燥后的细颗粒状污泥,由旋风分离器分离后进入造粒喂料器DS2,并定量喂入造粒机PLT1。该造粒机用于将干化产品进行高干度造粒,即不添加水分对含固率80%以上的干化污泥进行造粒,造粒之后的物料进行筛分冷却机RF1,符合要求的成型颗粒进入后续输送螺旋输出,未成型颗粒经风机B3送回旋风分离器分离后重新造粒。

造粒机主要由采用高强度和高硬度的铁/铸铁的外壳、采用铸钢的带辊子牵引装置的中心轴、安装在凸轮轴上并在锥形滚珠轴承内旋转的自由压力辊、采用特殊硬化钢材料的造粒模具、带有微型开关的安全装置的前门、用于检查造粒模具和辊子、用于向造粒模具喂料的中心注射装置、用于造粒的切割的可调整的刀具、钢结构支撑系统以及驱动系统组成。

冷却筛分后的产品进入螺旋输送机AC2中。

5)气体除尘与循环

离开旋风分离器的气体进入一个洗涤除尘装置SCRB1进行除尘。粉尘进入水中,干净的气体进入回路重新循环。循环工艺气体由离心风机B1 抽取并循环到闭环干燥回路中。该循环气体被送入热交换器E1中,该热交换器被蒸汽加热,加热后的气体返回涡轮薄层干燥器。

6)不可凝气体抽取

为了避免气体排放至干燥车间内,由风机B2使闭路循环保持微负压。干燥回路抽取点位于连接离心风机循环和热交换器的集线器上。少量废气,其中可能含不可凝气体,从干化回路抽出经冷凝处理后,与湿泥储存抽取的臭气一起送往除臭装置。

如无法送去集中的气体处理系统处理,可单独配备除臭装置,设备采用双流体稀释喷雾装置,超干雾粒子瞬间迅速主动捕捉空气中的恶臭气体分子并将恶臭粒子包裹住,以起到除臭的的作用。通过该系统将除臭剂液充分雾化,包裹粉尘颗粒,将臭气分子分解,从而消除粉尘和空间异味,达到标本兼治理的目的。

7)蒸发水和气体冷凝

风机B2抽取的不可凝气体首先被引入冷凝塔CO1进行冷凝。冷凝塔内气体通过一个颇尔环填料层被水逆向淋洗。水蒸气的冷凝是通过并合效果完成的。冷凝液被收集在冷凝塔底部,以溢流方式排放。

为优化资源利用,冷凝液采用循环冷却水进行冷凝,完成冷凝喷淋的循环冷却液进入至换热器中,经降温后回到冷凝液管线进行循环使用。

8)干化污泥提升和存储

螺旋输送机AC2输送的干化污泥,经斗式提升机AJ1提升进入干污泥料仓HST2存储。

干污泥料仓底部为平底,设有对象关联破拱装置,确保仓内干污泥的破拱和出料。干污泥料仓设有一个出料口和一个干污泥出料螺旋,出料口配备刀闸阀,在出料时开启。出料口下配备出料伸缩节,在干污泥向输送车内出料时调节底端高度,避免高差过大产生的扬尘。

考虑到高含固率的热干化污泥存储过程中可能的再复水倾向,干污泥料仓配备多个探头组成的温度探测系统,并采用保温和加温的温度控制系统,避免料仓内部出现冷凝水。考虑到热干化污泥的较高入仓温度和热量累计风险,干污泥存储配备一氧化碳检测、泄爆阀等安全监控和保护装置。

9)干化污泥输送至焚烧

干污泥料仓存储的干化污泥,由底部的出料口进入干污泥出料螺旋AC3,汇集到干污泥输送螺旋AC4中,输送至斗提机AJ2中进行提升,提升后的物料送入焚烧系统进料口。在焚烧炉停产或检修时,干污泥颗粒通过车运另行储存。

10)工艺控制

污泥干化工艺采用PLC对工艺进行自动控制。PLC的编程是根据供应商的工艺诀窍和经验的特定逻辑顺序而进行的。

由于污泥干化工艺所处理的物料为废物,多项因素可能导致运行的变化,这些变化可能导致工艺不稳定甚至阻断,因此,为了保证运行的安全性,设计应尽可能简化和实现单变量单输出,避免变量之间的互相干扰。

涡轮薄层干化工艺由于工艺本身的特点,具有实现最简洁和可靠的闭环、条件(连锁)控制。在基本条件设定后,可以通过在线仪器仪表,准确地实现对工艺的控制。

对于干燥工艺而言,给热是独立于干化工艺运行条件的前提条件。给热条件的设定是以蒸汽输入量及其入、出口温度、压力来衡量的。

在本项目中,蒸汽进入换热器,加热工艺气体;进入干燥器夹套,加热干燥器本身。热量源源不断输入干燥系统后,产生工艺气体的温升。由于工艺气体量是一定的,通过测量干燥器入口、出口温度,可以了解系统的给热状况。当达到设定工艺温度后,系统开始定量喂入湿泥,湿泥与热壁和热介质接触,产生蒸发。随着湿泥喂入量分步到位,干燥器出口温度稳定在一个合适的温度区间。该温度与产品最终含固率有较为准确的一一对应关系。

产品的含固率变化可以通过多种调节方式来进行,其中除了桨叶角度为冷机机械调整外,均为热机在线调整:

工艺的大幅度调整一般在工厂调试阶段均以菜单形式记录和保存下来,以备在实际运行中调用。因湿泥状况变化而需要作出的临时调整可由操作人员现场进行。

工厂的开机和关机均为执行一个一系列预先设定好的命令集的过程。开机的目标是在确保安全和温度合适的条件下,建立系统内的物料和热平衡。关机的目标是在确保安全和阻断湿泥进料的同时,实现干燥器的缓慢降温和冷却。这些过程对干燥器的长期稳定运行是十分必要的。

涡轮薄层干化的工艺控制主要是对干燥器出口工艺气体温度的控制。污泥干化回路内可能存在大量干扰性物质,这些物质可能造成仪器仪表失效。这种以温度为核心的控制所需仪器仪表更为耐用和可靠,精度误差对工艺安全和运行影响不大。

污泥干化设备行业调研分析报告

污泥干化设备行业调研分析报告 摘要—— 该污泥干化设备行业调研报告仅针对xx区域分析,时间2016-2017年度。 目前,区域内拥有各类污泥干化设备企业895家,从业人员44750人。截至2017年底,区域内污泥干化设备产值156802.72万元,较2016年141149.27万元增长11.09%。产值前十位企业合计收入68441.51万元,较去年61075.77万元同比增长12.06%。 ...... 中国的制造业正面临着第三次工业革命。第三次工业革命是由于人工智能、数字制造和工业机器人等基础技术的成熟和成本下降,以数字制造和智能制造为代表的现代制造技术对既有制造范式的改造以及基于现代制造技术的新型制造范式的出现,其核心特征是制造的数字化、智能化和网络化。

第一章宏观环境分析 一、宏观经济分析 1、优化环境是振兴实体经济的前提保障。把实体经济确定为国民经济之本,就要让政策、资金、技术、人才等要素不断汇聚过来,实现实体经济、科技创新、现代金融、人力资源协同发展。其一,使科技创新在实体经济发展中的贡献份额不断提高,就要加快构建国家制造业创新体系,包括完善以企业为主体、需求为导向、产学研深度融合的技术创新体系,建成一批高水平制造业创新中心,培育一批创新型领军企业等。其二,使现代金融服务实体经济的能力不断增强,就要落实好中央出台的金融支持实体经济相关政策,运用大数据、互联网等新型技术改善融资服务,积极发展多层次资本市场,增强金融服务实体经济能力。其三,使人力资源支撑实体经济发展的作用不断优化,就要落实好新时期产业工人队伍建设改革方案和制造业人才发展规划指南,培养一大批具有创新精神和国际视野的企业家人才、专家型人才和高级经营管理人才,建设知识型、技能型、创新型的劳动者大军。尤需强调的是,对实体经济伤害最大的“脱实向虚”现象,很大程度上反映了市场的盲目性,通过加强宏观调控发挥“有形之手”的作用格外重要。这方面,不仅要强化金融监管治理、促其回归本源,

污泥干化焚烧处理技术.

污泥干化焚烧处理技术 公司简介: 华西能源工业股份有限公司(原东方锅炉工业集团有限公司)位于四川省自贡市,是我国大型电站锅炉、大型电站辅机、特种锅炉研发制造商和出口基地之一。华西能源一直专注于各类大中型电站锅炉以及世界先进动力技术的研发、设计和制造,开发了具有国内领先水平的以煤粉、煤矸石、水煤浆、油页岩、石油焦、油气、高炉煤气及工业废弃物与生活废弃物等为燃料的高新锅炉技术,并发展成为我国专业从事电站锅炉、碱回收锅炉、生物质燃料锅炉、垃圾焚烧锅炉、油泥砂锅炉、高炉煤气锅炉、工业锅炉以及其它各类特种锅炉研发、设计、制造的大型骨干企业。 污泥干化焚烧技术来源 华西能源和韩国HANSOL EME等国外知名公司合作,可以提供湿污泥直接焚烧系统、污泥干化焚烧系统、污泥全干化系统及污泥半干化系统的设计、供货、建设、运营、维护的全方位服务,也可提供技术咨询、工艺设计、核心及配套设备集成供货等多种形式服务。

污泥热处理的优势 焚烧 (最大程度的 细菌和微生

污泥处理技术 干化: 间接水平转碟式干化机 焚烧: 具有高效能量回收的流化床炉 污泥含水率和有机物含量对燃烧的影响 我国污水处理厂机械脱水污泥含水率多在80~83%(含固率在17~20%),有机物含量大多数在60%以下。从污泥的含固率和有机物含量对燃烧的影响曲线可以看到,污泥直接焚烧不能依靠自身的热量维持燃烧温度,要自持燃烧,污泥的含水率要小于70%。

污泥含固率和有机物含量对燃烧的影响曲线 “全干化”和“半干化”的选择 ?“全干化”指较高含固率的类型,如含固率85%以上;而半干化则主要指含固率在50-65%之间的类型。 ?将含固率20%的湿泥干化到90%或干化到60%,其减量比例分别为78%和67%,相差仅11个百分点。但全干化对干化系统的安全监测和措施要求更高,同样处理能力的干化机换热面积更大。这是因为污泥在不同的干燥条件下失去水分的速率是不一样的,当含湿量高时失水速率高,相反则降低。 ?含固率的选择要根据最终处置目的。对于干化焚烧,根据能量平衡和燃烧温度计算,一般采用半干化较为经济。 污泥干化焚烧 污泥干化焚烧系统组成

污泥干化详细方案

污泥干化方案 1.1 总体方案思路 本项目含铜污泥的处理处置流程为:污泥—收集运输—进场接收(称重计量)—鉴别—贮存—干化预处理—包装外售。 1.2 污泥干化工艺选择 根据调研资料,含铜污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后送至金属冶炼厂进一步提炼。污泥干化常规方法主要有自然干化、热力干化、高干脱水等。 1.2.1自然干化 自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因周边空气的蒸汽压的不同而形成从内向外的迁移(蒸发)。该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,我国南方大多数具有多雨潮湿季节的地区难以适用。此外随着工业化、城市化的高速发展,很多北方的大中型发达城市也已难找到适当的土地。 自然干化的周期长(根据气候条件差异极大),可以采用频繁机械搅拌和翻到工艺的强化自然干化来缩短周期;但占地面积大,臭气污染严重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。1.2.2热力干化 污泥的大规模、工业化处理工艺中最常见的是热力干化。事实上,

通常人们所讨论的“干化”多数是指热力干化。热力干化是指利用燃烧化石燃料所产生的热量或工业余热、废热,通过专门的工艺和设备,使污泥失去部分或大部分水分的过程。这一过程具有处理时间短、占用场地小、处理能力大、减量率高、卫生化程度高、外部因素影响小(如气候、污泥性质等)、最终处置适用性好和灵活性高等优点。 污泥热力干化工艺通常有半干化(含水率不高于40%)和全干化(含水率低于20%)两种,热干化工艺一般仅用脱水污泥,主要技术性能指标(以单机升水蒸发量计)为:热能消耗2940~4200KJ/kgH2O,电能消耗0.04~0.90KW kgH2O。污泥含水率55%~65%时,热值为 4.8~6.5MJ/kg,可自持燃烧,这样不会受电厂热负荷的影响,真正达到无害化处理效果。 但热力干化的缺点在于初建投资大,具有一定的运行风险,采用化石燃料提供热能的成本因燃料价格而相对较高。因此,对于人口密集、土地资源紧张的大中型城市污水厂来说,热力干化成为一种首先的减量化工具。 1.2.3高干脱水 高干脱水一般是指采用化学和物理的综合方法对污泥颗粒进行表面化学改性,使其颗粒表面的水和毛细孔道中的束搏水使其成为自由水,然后通过高强度机械压滤析出达到高干的目的。一般污泥是通过加药改性和机械压滤方式把含水率从80%左右降低至50%以下,干化后的污泥或填埋或送至燃煤电厂或垃圾电厂与燃煤或生活垃圾混合焚烧发电。

污泥脱水设计方案

污泥脱水系统 设 计 方 案 宜兴市昌亚环保设备有限公司 二零一二年三月 目录 一、项目概述.................................................... 二、设计依据.................................................... 三、处理量...................................................... 四、污泥处理工艺选择............................................ 五、污泥处理工艺流程............................................ 六、主要工艺设备技术性能及结构.................................. 七、主要设备清单................................................

八、设备投资概算................................................ 九、服务承诺、优惠内容......................................... 一、项目概述 本方案污泥来源主要为印染污水系统产生的污泥。该公司领导决定新增一套污泥处理系统。我公司受该公司委托,并对现场进行了实地考察,针对该项目的实际情况,编制如下污泥处理方案,供业主及有关专家参考。 二、设计依据 1.《室外给水设计规范》(GB50013-2006) 2. 给水排水设计手册3《城镇给水》(第二版) 3.《供配电系统设计规范》(GB50052-95) 4.《低压配电设计规范》(GB50054-95) 5.《通用电气设备配电设计规范》(GB50055-93) 6、有关土建、电气设计规范; 7、用户提供的有关资料; 三、处理量 考虑业主现场的实际情况,本工程考虑处理量:5m3/h。 脱水后污泥含水率:≤20% PAM投加量:3kg/t干污泥(以粉状PAM计) 四、污泥处理工艺选择 污泥脱水和干化的目的是除去污泥中的大量水分,缩小其体积,减轻其重量;一般经过脱水、干化处理后,污泥含水量能从90%左右下降到60~80%,体积减小到仅为原来的1/10~1/5。自然干化多采用于干化床;机械脱水多采用板框压滤机、带式压滤机、离心脱水机等。 1、真空过滤机 真空过滤机是早期使用的连续机械脱水机械,过滤能力强;但其滤饼的

市政污泥干化汇总

常见市政污泥处理手段及设备 概论: 市政污泥的处理一直是城市正常运转的保障之一,不论是城市工业运转还是家庭生活都会产生相当数量的污泥,最终进入城市下水系统。市政污泥中往往富集了各种有害物质,因而对其无害化处理往往是将其深埋之前必须做的一道工序。 本文通过阅读整理当前学术界的一些文献,分析了污泥的基本组成,展示了目前我国市政污泥的常见预处理手段,脱水手段以及干燥手段,对比了两种污泥处置手段,并讨论了其利弊。最后对比与国内外相关行业的差距提出了自己个人一点建议。 关键词:市政污泥无害化资源化微波预处理 一、引言 随着我国经济高速发展,城镇污水排放量急剧增长。为应对日益增长的污水排放量,势必要增加城镇污水处理企业以及改善城镇污水处理厂处理效率。截止“十一五”末期,全国城镇累计建成污水处理厂1993座,总处理能力已经超过 每日1亿立方米。随着我国对环境保护的日益重视,近年来污水处理技术的到了快速的发展。但是污泥产量也大幅度增加,我国经济在地域上的发展不平衡,也造成了各地城镇污泥产量的明显差异。就当前而言污泥的产量主要集中在我国东部地区。据统计,东部十一个省市的污泥产生量占全国污泥总量的63.87%,中 部八个省的污泥产量占到20.9%。但是随着中部崛起和西部大开发,中西部一些省市污泥产量不断增加,全国城市污泥年平均增长率为16.82%,而中西部平均 增长率分别高达23.29%和21.83%。相关资料表明,截止到2009年底,全国城镇污水处理量达到280亿立方米,湿污泥产量突破2000万吨。我国污水处理场所产生的80%勺污泥并没有得到妥善处理。 污泥是按废物相态特征分类的一类废弃物。污泥的相态特征首先是固液混合,即污泥是固体和液体的混合物,且所含的固体和液体依然保持各自的相态特征,这一点可以区别于含结晶水的无机盐和细胞组织含水的生物质(如新鲜的动、植物体等)。其次,污泥的固液组成比有一定的稳定性,在无外加作用力的条件下,其固液比例能保持相对的稳定,这构成了污泥应按其特殊的混合相态进行处理的依据。如果一种废弃物尽管产生时有固液相混合的特征,但排出后能自发地 进行较彻底的固液分离,如矿物浮选排出液,在重力作用下,可自发地分离成尾矿砂和选矿液,则两者可分别按固体废物或液体废物进行处理。最后,污泥中所含的液体通常是水,这既是由于地球上水是丰度最大的液体所导致的,也由于水 是人类生产与生活活动中应用最广泛的液体。 二、市政污泥概况 1. 污泥的基本特性 污泥(sludge)通常是指污水处理过程所产生的含水固体沉淀物质。其物质组成包括:(1)水分:含水量达95%左右或更高;(2)挥发性物质和灰分:前者是有机杂质,后者是无机杂质;(3)病原体:如细菌、病毒和寄生虫卵等,这些病原体大量

污泥方案设计设计

xxxx污水处理厂 污泥处置方案

xxxx环境工程技术有限公司2016年3月5日

目录 一、污泥概述 (1) 二、污泥干化 (1) 1、深度脱水是污泥处置的前提 (1) 2、污泥干化技术 (2) 2.1 热干化 (2) 2.2 石灰干化 (4) 2.3 常温高效深度干化(TSP工艺) (5) 2.4 技术比较 (6) 三、TSP常温干化系统 (8) 1、工艺流程概述 (8) 1.1 调理+压滤单元 (9) 1.2 预混单元及输送 (10) 1.3 干化单元 (10) 2 极端天气(温度低于20℃)情况说明 (11) 四、污泥最终处置 (12) 1、烧制水泥 (12) 2、焙烧制砖 (13) 3、焚烧 (14) 4、卫生填埋 (16) 五、污泥脱水实验结果(某污水水厂剩余污泥实验) (17) 1、脱水小试实验 (17)

2、压滤脱水中试实验 (20) 六、工艺确定与参数配置 (23) 1、工艺确定和占地面积 (23) 2、设备选型 (25) 七、投资估算和运行成本 (29) 1.投资估算 (29) 2.运营费用估算 (29)

一、污泥概述 xxxx污水处理有限公司位于著名风景名胜区鼓山南麓,是福州市实施水环境治理的核心工程,同时也是福建省重要环保教育基地之一。一期工程设计处理能力为20万吨/日,于1999年10月动工,2002年12月建成,2003年1月1日开始通水试运行,同年6月份投入正常运行,2004年4月达产。二期工程设计处理能力为10万吨/日,于2005年底动工,2007年11月投产,同时一期工程分批进行升级改造,并于2008年8月全部改造完成。其远期规划工程规模为日处理污水60万吨。 污水处理一期工程采用卡鲁塞尔氧化沟处理工艺(改造后称为A-C工艺),二期工程采用AAO处理工艺,由预处理系统、生化处理系统、污泥处理系统和中央控制系统组成。在处理过程中产生的剩余污泥由污泥泵排至污泥浓缩池,浓缩至含水率96%左右,而后经均质池均质后送至脱水机房加药混合并经脱水机脱水,形成含水率约85%的泥饼共计300 t/d。 二、污泥干化 1、深度脱水是污泥处置的前提 污泥的高含水率是制约污泥处置的最主要的瓶颈,而污水处理厂产生的剩余污泥,经过常规脱水后含水率在85%左右,无法达到减量化、无害化、资源化处置的要求。同时,我国出台的多项污泥处理处置标准中,均对污泥含水率做出了严格的规定和限制。 《水泥窑协同处置污泥工程设计规范》(GB50757-2012)中规

增加污泥干化协同焚烧工艺的技术方案分析

增加污泥干化协同焚烧工艺的技术方案分析摘要:成都市目前已投运的规模最大的垃圾焚烧发电厂——成都市万兴环保发电厂拟实施增加污泥干化-协同焚烧工艺技改,结合该厂现有的垃圾焚烧系统工艺条件和需协同处理污泥的泥质特点,分析了该厂新增的污泥干化工艺设计、污泥入炉掺烧工艺参数设计、新建配套辅助工艺设计和改造现有辅助工艺设施的技术方案。 近些年来,随着成都市经济快速增长,城镇人口不断增多,生活垃圾和污水的产生量也逐年增加。当前,成都市一方面面临“垃圾围城”的压力,现有的生活垃圾无害化处理设施处理能力已不能满足成都市生活垃圾产生量的要求;另一方面,成都市污水处理设施建设加快推进,成都市中心城区已运营的污水处理设施污泥产生量急剧增长,现有污泥处理设施处理能力已不能满足实际污泥产生量的需要。利用垃圾焚烧发电厂的蒸汽干化污泥,将干化后的污泥进入垃圾焚烧发电厂协同焚烧,该技术已成熟并在国内有多处工程案例,此类项目整合了各固体废弃物处理过程中二次能源资源协同利用和二次污染物的协同处理环节,发挥产业协同、以废治废、上下游资源循环利用作用,是解决城市“垃圾围城”和“污泥围城”双重困境的有利之举。成都市相关规划已将垃圾焚烧发电厂协同处理污泥作为近期重点规划的城市固废处理方案,其中,已投运的万兴环保发电厂实施协同处理

污泥的相关技改也被纳入规划项目之一。 1成都市万兴环保发电厂项目概况 成都市万兴环保发电厂是成都市第4座垃圾焚烧发电厂,也是目前成都市已投运规模最大的垃圾焚烧发电厂,由成都市兴蓉再生能源有限公司投资运营。万兴环保发电厂于2017年1月正式投运,设计处理能力2400t/d,配置4台600t/d机械炉排炉,4台中温中压卧式余热锅炉,2台25MW 凝汽式汽轮发电机组。该项目采用了目前国际上先进的焚烧工艺技术,关键设备一焚烧炉排为日立造船公司的INOVA式L型炉排,焚烧线整体设计水平达到业内一流。 2增加污泥干化协同焚烧工艺技改要点和难点 2.1焚烧物料性质分析 目前,万兴环保发电厂处理对象主要是来自成都市中心城区的生活垃圾。其在收运过程中经转运站压缩后进人垃圾焚烧厂垃圾储坑,再经数天堆酵后,生活垃圾中的部分水分已沥出,人炉垃圾热值波动不大。白2017年1月,该厂人炉垃圾热值为6000~8 000 kJ/kg,一般无需添加辅助燃料。 万兴环保发电厂拟掺烧的污泥包括该厂所在固废处理产业园区2座垃圾渗沥液厂的脱水后污泥和成都市中心城区污水处理厂的脱水后污泥。污泥泥质和万兴环保发电厂入炉垃圾性质和元素分析见表1。 1.jpg

市政污泥干化设计方案

2t/d市政生活污泥干化设计方案

第一绪论 1.1市政污泥处理工艺的发展和现状 早在20世纪40年代,日本和欧美等国家开始将干化技术用于对污泥的处理,经过几十年的发展,污泥干化技术的优点正逐渐显现出来。干化后的污泥显著减少容积;形成颗粒或粉状稳定产品,污泥性状大大改善;使干化后的污泥更易被后续处理;而其产品具有多种用途,如作肥料、土壤改良剂、替代能源等。所以无论填埋、焚烧、农业利用还是热能利用,污泥干化处理都是重要的一步。 污泥的干化分为全干化和半干化两种方式,其中全干化是将含水率大约80%脱水污泥干燥到含水率10%左右,而半干化是将含水率大约80%脱水污泥干燥到含水率40%左右。同全干化处理方式相比较,半干化方式投资和运行费用相对较低,系统运行安全可靠,干化过程中产品的含水率可以根据需要进行调整,干化后的产品用途较广。 根据调研资料,市政生活污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后再进行下一步处理。污泥干化常规方法主要有自然干化、热力干化、高干脱水等。第二章污泥干化工艺介绍及选择 2.1自然干化 自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因周边空气的蒸汽压的不同而形成从内向外的迁移(蒸发)。该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,我国南方大多数具有多雨潮湿季节的地区难以适用。此外随着工业化、城市化的高速发展,很多北方的大中型发达城市也已难找到适当的土地。 自然干化的周期长(根据气候条件差异极大),可以采用频繁机械搅拌和翻到工艺的强化自然干化来缩短周期;但占地面积大,臭气污染严重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。 2.2热干化 污泥的大规模、工业化处理工艺中最常见的是热干化工艺。事实上,通常人们所讨论的“干化”多数是指热干化。热干化是指利用燃烧化石燃料所产生的热量或工业余热、废热,通过专门的工艺和设备,使污泥失去

介绍几种污泥干化技术

介绍几种污泥干化技术 1 引言 随着社会的发展和人类的进步,人们对生存环境的保护和改善意识不断加强。加之,国家对环境保护政策实施力度不断加强,使全国范围内污水处理率不断提高,各城市纷纷建设污水处理厂,大、中、小型污水处理厂已达几百座,而且还在迅速增加。各污水处理厂都面临着如何处置每天产生的大量剩余污泥的问题。在我国目前尚无妥善的最终处置方法,加之,致病菌的超标,传统上用作农肥,不能完全符合卫生标准。特别是天津市作为老工业城市,污水中工业废水的比例一直较高,污泥中含有一定比例的重金属物质长期使用会在土壤中富集,造成土地板结,因此近年来污水处理厂脱水污泥无适当出路随意堆放造成二次污染,污泥处置问题已经成为多数污水处理厂急待解决的问题,污泥处置是否妥当已关系到污水处理厂的生存。 纵观欧、美一些国家进入80年代末期,由于污泥在农用、填埋、投海上的各种限制条件和不利因素的逐渐突出,也由于污泥热干化技术在欧、美等国家一些污水处理厂的成功应用,使污泥干化技术在西方工业发达国家很快推广开来。例如:欧盟在80年代初只有数家污水处理厂采用污泥热干化设备处理污泥,但到1994年底已有110家污泥干化处理厂,并且还在逐年增加。这项技术同时也得到了越来越多发展中国家环境工程界的重视,也为我国污泥处置提供了宝贵的经验。 2 污泥干化设备的类型

2.1 按热介质与污泥接触的方式可分为: 2.1.1直接加热式:将燃烧室产生的热气与污泥直接进行接触混合,使污泥得以加热,水分得以蒸发并最终得到干污泥产品,是对流干化技术的应用; 2.1.2间接加热式:将燃烧炉产生的热气通过蒸气、热油介质传递,加热器壁,从而使器壁另一侧的湿污泥受热、水分蒸发而加以去除,是传导干化技术的应用; 2.1.3“直接一间接”联合式干燥:即是"对流一传导技术"的结合。2.2 按设备的形式分为: 转鼓式、转盘式、带式、螺旋式、离心干化机、喷淋式多效蒸发器、流化床、多重盘管式、薄膜式、浆板式等多种形式。 2.3 按干化设备进料方式和产品形态大致分为两类: 一种是采用干料返混系统,湿污泥在进料前先与一定比例的干泥混合,然后才进入干燥器,产品为球状颗粒,是干化、造粒结合为一体的工艺;另一种是湿污泥直接进料,产品多为粉末状。 3 结合在欧、美的实际考察情况,就目前西方国家主要采用的几家公司的污泥干化技术和设备,介绍其工作原理和工艺流程。 3.1 直接加热转鼓干化技术 如图1是带返料、直接加热转鼓式干化系统流程图。

吨污泥干化方案

15吨污水厂污泥处置方案 一、我们推荐的污泥处理工艺技术路线 1、我们的工艺路线: 我们认为《国家城镇污水处理厂污泥处理处置污染防治最佳可行技术指南(试行) 》中提出“最佳”与“可行技术”是符合目前中国污泥处置工业国情的,中国在一定时期内的技术、经济发展水平和环境管理要相适应。在经济和技术许可的条件下要因地制宜,在考虑成本和综合效益的前提下,综合整体地考虑污泥处置方案。通过技术和管理措施使污染污泥处理能够实现达标排放,同时达到高水平的整体的环境保护效果。 2、我们建议的污泥处置出处: 污泥中含有具有潜在利用价值的有机质,氮、磷、钾和各种微量元素,寄生虫卵、病原微生物等致病物质,铜、锌、铬等重金属,以及多氯联苯、二噁英等难降解有毒有害物质,如不妥善处理,易造成二次污染.我们认为处理后的污泥或污泥产品在环境中或利用过程中达到长期稳定,并对人体健康和生态环境不产生有害影响才是最终消纳方法。 对于一些污水厂所在地区的工业经济比较发达而且没有空余土地消纳污泥的可以采取对污泥进行适当处理后作为生产水泥的辅助燃料或电厂补充燃料。 3、我们推荐电渗透污泥干化方法的理由。 污水厂污泥是市政污泥,市政污泥的细胞水含量多且具有发热量,低位发热量约为2000-3400大卡/吨干污泥。如卖给发电厂做燃料每吨干泥可以产生2000-3300大卡的热量,现在5500大卡的热量的燃煤在中国买到800元/吨左右,而且用量每天很大,火电厂都有烟气和粉尘处理设施,如把干燥后的污泥(90%含固率)作为燃料送到发电厂,不仅可以产生效益,而且合理利用电厂环保设施

资源,避免投资浪费(污水厂减少处理污泥的环保投入),高效环保的最终处置了污泥,而且污泥作为燃料发挥了自身最大化的利用率,真正做到了再生能源。 并且我们认为电能是今后发展的主要能源,而且风力发电、太阳能发电、潮汐发电、水力发电等不消耗矿产资源的绿色发电方法越来越多,2020年绿色电能将占我国总发电量的40%这样许多工业企业都将利用电能这种低成本绿色可持续能源作为主要生产能源,随着电力工业发展逐渐走向一条清洁高效环保之路,电费也随之降低。所以利用电能这种经济清洁能源作为污泥转化生产能源的这条路发展方向是正确的。 4、污泥低温燃料化 解决能源危机的途径 ⑴节能 《中华人民共和国节约能源法》1997通过,2007修订,2008年4月1日实施。2007年12月《中华人民共和国能源法》征求意见稿出台。 ⑵能源综合利用 上述2个方法无法避免世界一次能源必将枯竭的局面,未来能源的出路在哪里,资源要综合、循环利用才是出路。2005通过《中华人民共和国可再生能源法》

城市污泥干化处理课程设计

城市污泥干化处理课程设计 一、课程设计基础资料 广州污水处理厂污泥干化工程即将大规模启动,广州市水务局计划推动西朗污水厂、沥滘污水厂、京溪地下净水厂、大坦沙污水厂和猎德污水厂等污泥干化减量工程。按照计划,将要求相关污水处理厂建设污泥干化减量设施,再将干化污泥运输至水泥厂、电厂和垃圾焚烧厂直接焚烧。从而实现所有污泥都可以在广州本地处理,不再产生臭气扰民的同时还能够实现资源化利用。 某污水处理厂按照污水厂规模10万立方米/日(20万立方米/日、50万立方米/日),配套建设污泥处理系统,折合干基污泥约15吨/日(30吨/日、75吨/日)。将在厂内新建污泥脱水干化车间,配套物料分选系统、板框压滤系统、热干化系统、热源供给和回收系统、废气净化除湿系统,生物除臭系统,以及浓缩、调理、出料等相关辅助设备。污泥在厂内进行处理后,含水率从原来的80%以上,降低到30%~40%。 本课程设计的目的和要求:能够将数学、自然科学、工程基础和专业知识用于解决固体废物处理与资源化方面的复杂工程问题。运用深入的工程原理通过系统分析解决复杂工程问题,重点如下:1、设计多种技术、工程和其他因素,分析其中存在的冲突,做到扬长避短,尽量做到互相借鉴;2、通过建立合适的抽象模型解决工程问题,建模过程中需要体现出创造性(建立模型可理解为利用有关工程原理进行合理的情景分析和预测,提出解决思路);3、以常用的技术方法为基础,从多学科交叉和方法移用方面体现出创新性,以推动问题的解决;4、分析有关专业标准和规范中所涉及的因素是否全面,找出或发掘解决复杂问题的关键因素,并对标准和规范进行拓展;5、技术方法的确定方面,既要考虑处理效率和环保政策要求,又要考虑经济成本的可接受性,还需考虑短期和长远的发展预期;6、提出解决方案需要综合考虑经济、环境和社会效益,也需要采用综合性的解决思路和多学科工程技术的集成,还需考虑固体废物、废水、废气的全面有效处理,也需考虑技术的可行性、选用设备的处理能力和组合方式、工程应用的安全性等,即从多角度、多层次、多阶段、整体性等方面综合性解决。

污泥处理方案

高铁新城污水处理厂一期工程场地南部污泥处理方案 一、情况说明 高铁新城污水处理厂一期工程项目由我单位负责实施土建工程施工。项目部在2015年12月份准备清理场地南部管理用房、污泥泵房、污泥脱水机房等构筑物位置淤泥时发现该区域内淤泥含水率在80%以上,呈柔软半流体状态。静置后析出大量红色、黑色液体,并散发出刺鼻的化学气味。后项目部从渭塘镇处得知,该处场地为原苏化厂工业废渣堆放场地及渭塘污水厂部分淤泥排放场地,具有污染性,与招投标文件、清单合同、勘察报告中描述差异较大。经过现场测算结合勘察报告,估算该部分淤泥总量约5-6万m3。 二、参考依据及工艺原理 1、参考依据: 《城镇污水处理厂污泥处置—单独焚烧泥质》(CJ/T289-2008) 《城镇污水处理厂污泥处置—混合填埋泥质》(GB/T 23485-2009) 2、工艺原理: 1)、填埋:主要包括浓缩、消化、脱水、堆肥或填埋。浓缩有机械浓缩或重力浓缩,后续的消化通常是厌氧中温消化。消化产生的沼气可作为能源燃烧或发电,或用于作化工产品等。消化产生的污泥性质稳定,具有肥效,经过脱水,减少体积成饼成形,有利运输。为了进一步改善污泥的卫生学质量,污泥还可以进行人工堆肥或机械堆肥。堆肥后的污泥是一种很好的土壤改良剂。对重金属含量超标的污泥,经脱水处理后要慎重处置,一般需要将其填埋封闭起来。 2)、干化+焚烧:污泥干化是指利用热能将含水率70%以下的湿污泥干化至含水率10%的干污泥,再将其与煤掺和后送入锅炉内焚烧,实现污泥减量

化、无害化处置,并回收冷凝水和干污泥热值。燃烧后的灰分送入水泥厂等二次利用。 参照苏州工业园区污泥干化厂处理工艺图: 现场的淤泥含有化学污染物及原渭塘污水处理厂排放的污泥,如采用第一种“堆肥填埋”的方式存在耗时长、重金属超标的弊端,跟目前项目工期矛盾。第二种“干化焚烧”的方式更快捷,残留的灰分可以循环利用,无后顾之忧。拟采取第二种处理方式。 三、处理办法 1、淤泥外运 现有淤泥干化处理厂家均距离项目所在位置较远,驳船运输、管道运输均不可取。故采用车辆运输。由于淤泥含水量较大,呈柔软半流体状态,常规土方车运输会造成道路、空气等环境污染,不符合环保要求,必须采用封闭式罐车运输。 拟采取将现有淤泥按1:1比例加水稀释后经泥浆泵抽取至泥浆罐车,经罐车运输至指定堆放场地,场地必须采用硬化且四周需砌筑围护封闭,场地

污泥干化焚烧技术及运用(2021)

Enhance the initiative and predictability of work safety, take precautions, and comprehensively solve the problems of work safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 污泥干化焚烧技术及运用(2021)

污泥干化焚烧技术及运用(2021)导语:根据时代发展的要求,转变观念,开拓创新,统筹规划,增强对安全生产工作的主动性和预见性,做到未雨绸缪,综合解决安全生产问题。文档可用作电子存档或实体印刷,使用时请详细阅读条款。 摘要:随着社会经济的发展和人们生活水平的提高,工业废水和城市污水的产量日益增多,污水在处理的过程中会产生大量的悬浮物质,这些物质统称为污泥。污泥的成分较为复杂,若任意堆放将会对人类及动植物的健康造成较大影响。减量化、稳定化和无害化是污泥处理的基本原则。污泥焚烧技术具有处理速度快、减量化程度高、能源可再利用等优点,在国内外被广泛应用。该技术是污泥处置最彻底的方式,当污泥中有毒有害物质含量很高且短期不可降低时尤为实用。 关键词:市政污泥;干化;焚烧;运用 一、污泥干化、焚烧技术介绍 1.1污泥干化技术 通过开展污泥干化能够有效降低污泥体积,通常能够缩小到4倍以上,生产出稳定、无菌、无臭的原生物,干化后的污泥产品用途非常广泛,不仅能够用作于肥料、土壤改良剂等,同时也能够替代部分能源。将污泥干化设备根据介质与接触方式进行划分,能够分为直接

污泥干化详细方案

污泥干化详细方案

污泥干化方案 1.1 总体方案思路 本项目含铜污泥的处理处理流程为:污泥—收集运输—进场接收(称重计量)—鉴别—贮存—干化预处理—包装外售。 1.2 污泥干化工艺选择 根据调研资料,含铜污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后送至金属冶炼厂进一步提炼。污泥干化常规方法主要有自然干化、热力干化、高干脱水等。 1.2.1自然干化 自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因周边空气的蒸汽压的不同而形成从内向外的迁移(蒸发)。该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,中国南方大多数具有多雨潮湿季节的地区难以适用。另外随着工业化、城市化的高速发展,很多北方的大中型发达城市也已难找到适当的土地。 自然干化的周期长(根据气候条件差异极大),能够采用频繁机械搅拌和翻到工艺的强化自然干化来缩短周期;但占地面积大,臭气污染严重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。

1.2.2热力干化 污泥的大规模、工业化处理工艺中最常见的是热力干化。事实上,一般人们所讨论的“干化”多数是指热力干化。热力干化是指利用燃烧化石燃料所产生的热量或工业余热、废热,经过专门的工艺和设备,使污泥失去部分或大部分水分的过程。这一过程具有处理时间短、占用场地小、处理能力大、减量率高、卫生化程度高、外部因素影响小(如气候、污泥性质等)、最终处理适用性好和灵活性高等优点。 污泥热力干化工艺一般有半干化(含水率不高于40%)和全干化(含水率低于20%)两种,热干化工艺一般仅用脱水污泥,主要技术性能指标(以单机升水蒸发量计)为:热能消耗2940~4200KJ/kgH2O,电能消耗0.04~0.90KW kgH2O。污泥含水率55%~65%时,热值为4.8~6.5MJ/kg,可自持燃烧,这样不会受电厂热负荷的影响,真正达到无害化处理效果。 但热力干化的缺点在于初建投资大,具有一定的运行风险,采用化石燃料提供热能的成本因燃料价格而相对较高。因此,对于人口密集、土地资源紧张的大中型城市污水厂来说,热力干化成为一种首先的减量化工具。 1.2.3高干脱水 高干脱水一般是指采用化学和物理的综合方法对污泥颗粒进行表面化学改性,使其颗粒表面的水和毛细孔道中的束搏水使其成为自由水,然后经过高强度机械压滤析出达到高干的目的。一般污泥

污泥干化焚烧处理技术

公司简介: 华西能源工业股份有限公司(原东方锅炉工业集团有限公司)位于四川省自贡市,是我国大型电站锅炉、大型电站辅机、特种锅炉研发制造商和出口基地之一。华西能源一直专注于各类大中型电站锅炉以及世界先进动力技术的研发、设计和制造,开发了具有国内领先水平的以煤粉、煤矸石、水煤浆、油页岩、石油焦、油气、高炉煤气及工业废弃物与生活废弃物等为燃料的高新锅炉技术,并发展成为我国专业从事电站锅炉、碱回收锅炉、生物质燃料锅炉、垃圾焚烧锅炉、油泥砂锅炉、高炉煤气锅炉、工业锅炉以及其它各类特种锅炉研发、设计、制造的大型骨干企业。 污泥干化焚烧技术来源 华西能源和韩国HANSOL EME等国外知名公司合作,可以提供湿污泥直接焚烧系统、污泥干化焚烧系统、污泥全干化系统及污泥半干化系统的设计、供货、建设、运营、维护的全方位服务,也可提供技术咨询、工艺设计、核心及配套设备集成供货等多种形式服务。 污泥热处理的优势 焚烧 (最大程度的

细菌和微生 污泥处理技术 干化: 间接水平转碟式干化机 焚烧: 具有高效能量回收的流化床炉 污泥含水率和有机物含量对燃烧的影响 我国污水处理厂机械脱水污泥含水率多在80~83%(含固率在17~20%),有机物含量大多数在60%以下。从污泥的含固率和有机物含量对燃烧的影响曲线可以看到,污泥直接焚烧不能依靠自身的热量维持燃烧温度,要自持燃烧,污泥的含水率要小于70%。 污泥含固率和有机物含量对燃烧的影响曲线 “全干化”和“半干化”的选择 ?“全干化”指较高含固率的类型,如含固率85%以上;而半干化则主要指含固率在50-65%之间的类型。 ?将含固率20%的湿泥干化到90%或干化到60%,其减量比例分别为78%和67%,相差仅11个百分点。但全干化对干化系统的安全监测和措施要求更高,同样处理能力的

城市污水处理厂污泥处置设计方案

城市污水处理厂污泥处置设计方案 1 项目介绍 1.1项目编制单位简介 1.2 项目编制原则 1.3 项目编制范围 1.4 采用的规范和标准 2 污泥处理技术的比较与选择 2.1污泥的处置方法概述项目 2.2、污泥处理处置方法简述 2.3、国内、外污泥处理和处置简述 1.1项目编制单位简介 1.2 项目编制原则 在污泥处理有关文件的指导下,坚持可持续发展战略原则,并在调研国内外污泥处理技术的基础上,针对污水处理厂的实际情况,选用适宜的处理方案。做到工艺合理、运行可靠、管理方便、环保节能,实现污泥无害化、资源化处理的目标; . 严格执行国家和省政府制定的有关法规和相关标准,根据城市污水厂污泥的特点、当地气候条件、地形情况、水文地质特征做好各项环境保护措施,使工程周围的环境卫生受到的污染减少到最低程度;

. 在确保环保达标的前提下,尽量节约投资及运行费用。 1.3 项目编制范围 本系统处理污水处理厂经过浓缩后的污泥。 本方案编制范围从污泥浓缩池开始,到干化成品送出处理区为止,包括处理工艺流程的设计,处理区的设计、建设、处理装置的购置和安装、脱水固剂的选择、以及污泥处理设施的调试运营。 1.4 采用的规范和标准 本报告采用的规范和标准为: 1 《城市生活垃圾卫生填埋技术规范》(CJJl7—2001); 2 《生活垃圾填埋污染控制标准》(GBl6889—2001); 3 《城市生活垃圾卫生填埋处理工程项目建设标准》(建标[2001]101号); 4 《城市生活垃圾卫生填埋场运行维护技术规程》(CJJ93-2003); 5 《生活垃圾填埋场环境监测技术标准》(CJ/T3037); 6 《恶臭污染物排放标准》(GB14554—93); 7 《污水综合排放标准》(GB8978—1996); 8 《环境空气质量标准》(GB3095—1996); 9 《大气污染物综合排放标准》(GBl6297—1996); 10 《城市防洪工程设计规范》(CJJ50-1992); 11 《建筑设计防火设计设计规范》(GBJ16-1987); 12 《堤防工程设计规范》(GB50286—1998);

鹰潭项目MVR污泥干化方案

10吨/日市政污泥 空心桨叶MVR干化处理项目 技术案

1、技术案总体思路 本项目干化处理对象为脱水后含水率80%的污泥,处理量为10吨/天,湿污泥首先通过车辆短驳运输或污泥输送设备送至湿污泥暂存仓,污泥仓的污泥通过污泥泵输送到空心桨叶式污泥干化机(含水率从80%干化至40%左右),干化后的污泥输送至垃圾焚烧电厂同生活垃圾一并协同焚烧处置。空心桨叶污泥干化机的热源启动时采用新蒸汽,正常使用采用循环蒸汽。最大程度地降低污泥处置成本。整个污泥处置系统包括:污泥存储和输送系统、污泥干燥系统、蒸汽压缩系统及相应的配套的辅助设备。 2、污泥处理系统描述 2.1、污泥接收和输送系统 污泥经过汽车或污泥输送设备送入污泥料仓。料仓上部为半闭半启装置,保证在没有污泥加入时料仓的密封,防止污泥中的臭味溢出污染空气。污泥储仓上设吸风口,有管道与垃圾焚烧炉给风管路或垃圾储坑相通,保持微负压状态,避免臭气外泄。 污泥泵形式采用单螺杆泵,通过污泥泵将湿污泥泵送到空心桨叶干燥机中干化处理。污泥泵可以变频调节实现流量的控制。 污泥仓钢板要有足够的厚度,保证在长期运行的情况下稳定可靠运行,污泥料仓做防腐耐磨处理。污泥仓设有料位计可连续监测污泥料位,料仓底部设置液压滑架系统防止污泥搭桥,让污泥卸料畅通。 污泥料仓底部设有可移动滑架,滑架行程期为2~3分钟,运行缓慢,磨损小。 通过液压缸的驱动,滑架单元在料仓底部做往复运动,从而保证了物料在卸料口均匀输出。

滑架的运行向通过电感应到位开关切换,如果到位开关没有被按动,在液压包上设置的压力开关,也会改变运行滑架的运行向。这样可以避免引起滑架与料仓的损坏。 滑架在来回往复移动的过程中,将脱水污泥推入污泥泵,污泥由污泥泵送入空心桨叶式干燥机的进料口。 2.2、污泥干化系统 污泥干化系统对湿污泥进行干化;干化产生的蒸汽循环利用,不凝结气体通过抽气风机进行连续抽气,防止臭气外溢影响环境;出料空心螺旋对高温物料进行边冷却边出料;操作便。系统由污泥干化机、蒸汽压缩机、风机、管道泵等组成。 2.2.1污泥干化系统 (1)系统启动时采用锅炉新蒸汽,经过加热后的污泥蒸发产生蒸汽,产生的再生蒸汽进MVR蒸汽压缩机,在此再生蒸汽的温度和压力得到提升并能满足连续蒸发的需要。经过蒸汽压缩机压缩后的蒸汽为过热蒸汽,其压力稍高于大气压。 (2)不凝结气体再经排湿风机提升压力后,送至锅炉送风机入口经送风机送入锅炉焚烧分解。 (3)蒸汽凝结产生的废水,经污水泵排至污水处理站。

污泥干化系统方案市政污泥造粒循环冷却

污泥干化系统方案市政污 泥造粒循环冷却 The following text is amended on 12 November 2020.

北控环保工程技术有限公司污泥干化项目 初步技术方案 Turbo Thin Film Technology For Waste Treatment 世界领先的涡轮薄层干燥技术应用于环境废弃物处置

目录 1.项目概况.............................................. 错误!未定义书签。设计目的....................................................... 错误!未定义书签。 主要设计条件................................................... 错误!未定义书签。 2.设计数据................................................ 错误!未定义书签。供应方工作范围................................................. 错误!未定义书签。 工艺设计数据................................................... 错误!未定义书签。 辅助设施可用性................................................. 错误!未定义书签。 预期消耗....................................................... 错误!未定义书签。 排放........................................................... 错误!未定义书签。 3.方案工艺描述............................................ 错误!未定义书签。污泥处置系统工艺选择........................................... 错误!未定义书签。 工艺介绍和描述................................................ 错误!未定义书签。 工艺系统的特点................................................ 错误!未定义书签。 4 方案系统设计............................................ 错误!未定义书签。主要工艺设备清单............................................... 错误!未定义书签。 电气和自动化系统............................................... 错误!未定义书签。 仪器仪表....................................................... 错误!未定义书签。 管线系统....................................................... 错误!未定义书签。 系统平面布置................................................... 错误!未定义书签。 5.系统设备投资估算和活性污泥减量处置经济测算.............. 错误!未定义书签。 6.供应商简介.............................................. 错误!未定义书签。 7. 全球部分环保污泥处置业绩表............................. 错误!未定义书签。 8. 国内部分项目应用情况简介............................... 错误!未定义书签。

相关文档
最新文档