(word完整版)导数结合洛必达法则巧解高考压轴题

(word完整版)导数结合洛必达法则巧解高考压轴题
(word完整版)导数结合洛必达法则巧解高考压轴题

导数结合洛必达法则巧解高考压轴题

2010年和2011年高考中的全国新课标卷中的第21题中的第○2步,由不等式恒成立来求参数的取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。 洛必达法则简介:

法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a

f x →= 及()lim 0x a

g x →=;

(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()

()

lim

x a

f x l

g x →'=', 那么 ()

()lim x a f x g x →=()

()

lim

x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞

= 及()lim 0x g x →∞

=;

(2)0A ?f ,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0;

(3)()

()

lim

x f x l g x →∞'=', 那么 ()()

lim

x f x g x →∞

=()

()

lim

x f x l g x →∞

'='。 法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a

f x →=∞及()lim x a

g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()

()

lim

x a

f x l

g x →'=', 那么 ()

()lim x a f x g x →=()

()

lim

x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○

1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a

+

→,x a

-

洛必达法则也成立。

2洛必达法则可处理00,∞∞

,0?∞,1∞,0

∞,00,∞-∞型。 ○

3在着手求极限以前,首先要检查是否满足00,∞∞

,0?∞,1∞,0

∞,00,∞-∞型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。

4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 二.高考题处理

1.(2010年全国新课标理)设函数2

()1x

f x e x ax =---。

(1) 若0a =,求()f x 的单调区间; (2) 若当0x ≥时()0f x ≥,求a 的取值范围 原解:(1)0a =时,()1x

f x e x =--,'()1x

f x e =-.

当(,0)x ∈-∞时,'()0f x <;当(0,)x ∈+∞时,'()0f x >.故()f x 在(,0)-∞单调减少,在

(0,)+∞单调增加

(II )'()12x

f x e ax =--

由(I )知1x

e x ≥+,当且仅当0x =时等号成立.故

'()2(12)f x x ax a x ≥-=-,

从而当120a -≥,即1

2

a ≤

时,'()0 (0)f x x ≥≥,而(0)0f =, 于是当0x ≥时,()0f x ≥. 由1(0)x

e x x >+≠可得1(0)x

e x x ->-≠.从而当1

2

a >

时,

'()12(1)(1)(2)x x x x x f x e a e e e e a --<-+-=--,

故当(0,ln 2)x a ∈时,'()0f x <,而(0)0f =,于是当(0,ln 2)x a ∈时,()0f x <.

综合得a 的取值范围为1,

2?

?-∞ ???

原解在处理第(II )时较难想到,现利用洛必达法则处理如下: 另解:(II )当0x =时,()0f x =,对任意实数a,均在()0f x ≥;

当0x >时,()0f x ≥等价于2

1

x

x a e

x

--≤

令()2

1

x

x g x e

x

--=

(x>0),则3

22

()x

x

x x g x e e x

-++'=

,令()()220x

x

h x x

x x e

e =-++>,

则()1x

x

h x x

e

e '=-+,()0x

h x x e ''=>,

知()h x '在()0,+∞上为增函数,()()00h x h ''>=;知()h x 在()0,+∞上为增函数,

()()00h x h >=;()0g x '∴>,g(x)在()0,+∞上为增函数。

由洛必达法则知,

2

0001

1

22

2lim

lim lim x

x x

x x x x x e

e e x

+

++→→→--===,

故1

2

a ≤

综上,知a 的取值范围为1,

2??-∞ ??

?

。 2.(2011年全国新课标理)已知函数,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。 (Ⅰ)求a 、b 的值;

(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k

f x x x

>

+-,求k 的取值范围。 原解:(Ⅰ)22

1(ln )

'()(1)x x b x f x x x α+-=-

+

由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,

1'(1),2

f f =??

?=-??即

1,

1,22

b a b =???-=-??

解得1a =,1b =。

(Ⅱ)由(Ⅰ)知ln 1

f ()1x x x x

=

++,所以

22

ln 1(1)(1)

()()(2ln )11x k k x f x x x x x x

---+=+--。 考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22

(1)(1)2'()k x x

h x x

-++=。 (i )设0k ≤,由22

2

(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <,h (x )递减。而(1)0

h =故当(0,1)x ∈时, ()0h x >,可得

2

1

()01h x x

>-; 当x ∈(1,+∞)时,h (x )<0,可得

2

11

x

- h (x )>0 从而当x>0,且x ≠1时,f (x )-(

1ln -x x +x k )>0,即f (x )>1ln -x x +x

k

. (ii )设0

(1)(1)2k x x -++=2

(1)21k x x k -++-的图像开口向下,且

244(1)0k ?=-->,对称轴x=

111k >-.

当x ∈(1,k -11)时,(k-1)(x 2 +1)+2x>0,故'h (x )>0,而h (1)=0,故当x ∈(1,

k -11)时,h (x )>0,可得2

11x

-h (x )<0,与题设矛盾。

(iii )设k ≥1.此时212x x +≥,2

(1)(1)20k x x -++>?'

h (x )>0,而h (1)=0,故当x ∈

(1,+∞)时,h (x )>0,可得

2

11

x

- h (x )<0,与题设矛盾。 综合得,k 的取值范围为(-∞,0]

原解在处理第(II )时非常难想到,现利用洛必达法则处理如下: 另解:(II )由题设可得,当0,1x x >≠时,k<

2

2ln 11x x

x +-恒成立。

令g (x)= 22ln 11x x

x +-(0,1x x >≠),则()()()

22221ln 121x x x g x x +-+'=?-, 再令

()()221ln 1h x x x x =+-+(

0,1x x >≠),则()12ln h x x x x x

'=+

-,

()212ln 1h x x x ''=+-

,易知()2

1

2ln 1h x x x

''=+-在()0,+∞上为增函数,且()10h ''=;故当(0,1)x ∈时,()0h x ''<,当x ∈(1,+∞)时,()0h x ''>;

∴()h x '在()0,1上为减函数,在()1,+∞上为增函数;故()h x '>()1h '=0 ∴()h x 在()0,+∞上为增函数 Q ()1h =0

∴当(0,1)x ∈时,()0h x <,当x ∈(1,+∞)时,()0h x > ∴当(0,1)x ∈时,()0g x '<,当x ∈(1,+∞)时,()0g x '>

∴()g x 在()0,1上为减函数,在()1,+∞上为增函数

Q 由洛必达法则知()2

1

1

1

ln 1ln 12121210221lim lim

lim x x x x x x g x x x →→→+??

=+=+=?-+= ?--?? ∴0k ≤,即k 的取值范围为(-∞,0]

规律总结:对恒成立问题中的求参数取值范围,参数与变量分离较易理解,但有些题中的求分

离出来的函数式的最值有点麻烦,利用洛必达法则可以较好的处理它的最值,是一种值得借鉴的方

法。

自编:若不等式3

sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围. 解:应用洛必达法则和导数

当(0,

)2

x π

∈时,原不等式等价于3

sin x x

a x ->

. 记3sin ()x x f x x -=

,则4

3sin cos 2'()x x x x

f x x --=.

记()3sin cos 2g x x x x x =--,则'()2cos sin 2g x x x x =+-. 因为''()cos sin cos (tan )g x x x x x x x =-=-,

'''()sin 0g x x x =-<,所以''()g x 在(0,)2

π

上单调递减,且''()0g x <,

所以'()g x 在(0,

)2π

上单调递减,且'()0g x <.因此()g x 在(0,)2

π

上单调递减, 且()0g x <,故4()'()0g x f x x =<,因此3sin ()x x f x x -=在(0,)2

π

上单调递减. 由洛必达法则有

320

000sin 1cos sin cos 1lim ()lim

lim lim lim 3666

x x x x x x x x x x f x x x x →→→→→--=====, 即当0x →时,1

()6

g x →

,即有1()6f x <.

故16a ≥

时,不等式3

sin x x ax >-对于(0,)2

x π∈恒成立. 通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足: ① 可以分离变量;

②用导数可以确定分离变量后一端新函数的单调性; ③出现“0

”型式子.

函数与导数压轴题方法归纳与总结

函数与导数压轴题方法归纳与总结 题型与方法 题型一 切线问题 例1 (二轮复习资料p6例2) 归纳总结: 题型二 利用导数研究函数的单调性 例2 已知函数f (x )=ln x -a x . (1)求f (x )的单调区间; (2)若f (x )在[1,e]上的最小值为3 2,求a 的值; (3)若f (x )

归纳总结: 题型三 已知函数的单调性求参数的围 例 3.已知函数()1 ln sin g x x x θ=+?在[)1,+∞上为增函数, 且()0,θπ∈, ()1 ln ,m f x mx x m R x -=--∈ (1)求θ的值. (2)若[)()()1,f x g x -+∞在上为单调函数,求m 的取值围. 归纳总结:

题型四 已知不等式成立求参数的围 例4..设f (x )=a x +x ln x ,g (x )=x 3-x 2-3. (1)当a =2时,求曲线y =f (x )在x =1处的切线方程; (2)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ; (3)如果对任意的s ,t ∈????12,2都有f (s )≥g (t )成立,数a 的取值围. 归纳总结: 跟踪1.已知()ln 1 m f x n x x =++(m,n 为常数)在x=1处的切线为x+y -2=0(10月重点高中联考第22题) (1) 求y=f(x)的单调区间;

(2) 若任意实数x ∈1,1e ?? ???? ,使得对任意的t ∈[1,2]上恒有32()2f x t t at ≥--成立,数a 的取值围。 跟踪2. 设f (x )=-13x 3+12 x 2+2ax .(加强版练习题) (1)若f (x )在(23,+∞)上存在单调递增区间,求a 的取值围; (2)当0

导数结合洛必达法则巧解高考压轴题

导数结合洛必达法则巧解高考压轴题 2010年和2011年高考中的全国新课标卷中的第21题中的第色)步,由不等式恒成立来求参数的取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。 洛必达法则简介: 法则1若函数f(x)和g(x)满足下列条件:⑴lim f x = 0及lim g x = 0 ; (2) 在点a的去心邻域内,f(x) 与g(x)可导且g'(x)丰0; f '(X ) (3) lim l , x a g x 那么lim?L = |im?=|。—g(x ) —g'(x) 法则2若函数f(x)和g(x)满足下列条件:⑴lim f x =0及lim g x = 0 ; x^C * ‘ (2) A> 0, f(x)和g(x)在-::,A 与A,::上可导,且g'(x)丰 0; 0 比.T-i 0 0 ②洛必达法则可处理一,,o宀,1 -, “, 0 ,::-::型。 ◎在着手求极限以前,首先要检查是否满足-,-,o ?:: , 1 , ::0, 0°,::_::型定式, 否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ◎若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 二.高考题处理 1.(2010年全国新课标理)设函数f (x) = e x -1 - x - ax2。 (1)若a = 0,求f (x)的单调区间; (2)若当x_ 0时f (x) _ 0,求a的取值范围 原解:(1) a = 0 时,f(x)=e x-1-x, f'(x) = e x-1. 当(-::,0)时,f'(x):::0 ;当x (0^::)时,f'(x).0.故f (x)在(--■- ,0)单调减少,在(0「:)单调增加 (II ) f '(x) = e x - 1 - 2ax 由(I )知e x一「x,当且仅当x = 0时等号成立.故那么lim?=lim_^l。F g(x) F g^x) 法则3若函数f(x)和g(x)满足下列条件:⑴lim f x - ::及lim g x二::; (2)在点a的去心邻域内,f(x) 与g(x)可导且g'(x)丰0; f '(X) ⑶ lim l , x a g x 那么limd = lim?=l。—g(x ) J g (x) 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: f '(x) _ x _ 2ax = (1 _ 2a)x , 1 从而当1-2a 一0,即a 时,f '(x) _ 0 ( x 一0),而f(0) =0 , 2 于是当x^O 时,f(x)K0. 1 x x | 由e 1 x(x = 0)可得e - 1- x(x= 0).从而当a 时, 2 故当x (0,ln 2a)时,f'(x) :: 0,而f (0) = 0,于是当x (0,ln 2a)时,f(x) ::0. ①将上面公式中的X i a, X is 换成x T +8, X T - a, + — x— a , x— a洛必达法则也成立。综合得a的取值范围为

用洛必达法则解决导数问题

如果当(或)时,两个函数与 都趋于零或都趋于无穷大,那么极限可能存在, 也可能不存在,通常把这种极限称为未定式,并分别简记为或。 洛必达(L’Hospital)法则: 设(1)当时,函数及都趋于零; (2)在点的某去心邻域内,及都存在且; (3)存在(或为无穷大); 那么 1 用洛必达法则求下列极限 (1)x x x ) 1ln(lim 0+→ (2)x e e x x x sin lim 0-→-(3)a x a x a x --→sin sin lim (4)x x x 5tan 3sin lim π → (5)2 2 )2(sin ln lim x x x -→ ππ (6)n n m m a x a x a x --→lim (7)x x x 2tan ln 7tan ln lim 0+→(8)x x x 3tan tan lim 2 π → (9)x arc x x cot ) 11ln(lim ++∞→ (10)x x x x cos sec ) 1ln(lim 20-+→ (11)x x x 2cot lim 0 → (12) 2 1 20 lim x x e x → (13) ?? ? ??---→1112 lim 21x x x (14)x x x a )1(lim +∞→(15)x x x sin 0 lim +→ (16)x x x tan 0)1(lim +→ 例题:设函数2 ()1x f x e x ax =---. (Ⅰ)若0a =,求()f x 的单调区间; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. 应用洛必达法则和导数 (Ⅱ)当0x ≥时,()0f x ≥,即2 1x e x ax --≥. ①当0x =时,a R ∈;②当0x >时,2 1x e x ax --≥等价于2 1x e x a x --≤.

导数压轴题的几种处理方法

等号两边无法求导的导数恒成立求参数范围几种处理方法常见导数恒成立求参数范围问题有以下常见处理方法: 1、求导之后,将参数分离出来,构造新函数,计算 1+ ln x 例:已知函数 f (x ) = . (Ⅰ)若函数在区间 (a , a + 12) (其中 a > 0 )上存在极值,求实数 a 的取值范围; (Ⅱ)如果当 x ≥ 1 时,不等式 f (x ) ≥ k 恒成立,求实数 k 的取值范围; x +1 解:(Ⅰ)因为 f (x ) = 1+ ln x , x > 0 ,则 ' = - ln x , … 1 分 x f (x ) x 当 0 < x < 1 时, ' > 0 ;当 x > 1 时, ' . 所以 f (x ) 在(0,1)上单调递 f (x ) f (x ) < 0 增 ; 在 (1, +∞) 上 单 调 递 减 , 所 以 函 数 f (x ) 在 x = 1 处 取 得 极 大 值 . … 2 分 因为函数 f (x ) 在区间 (a , a + 1 ) (其中 a > 0 )上存在极值, 2 ?a < 1 1 所以 ?? 1 , 解得 < a < 1. … 4 分 ?a + > 1 2 2 ? (Ⅱ)不等式 f (x ) ≥ k ,即为 (x +1)(1+ ln x ) ≥ k , 记 g (x ) = (x +1)(1+ ln x ) , x +1 x x 所以 ' ' x - ln x … 6 分 [(x +1)(1+ ln x )] x - (x +1)(1+ ln x ) g (x ) = x 2 = x 2 , 令 h (x ) = x - ln x , 则 h '(x ) = 1 - 1x , x ≥ 1,∴ h '(x ) ≥ 0. ∴ h (x ) 在 [1, +∞) 上单调递增,∴[h (x )]min = h (1) = 1 > 0 ,从而 g '(x ) > 0 故 g (x ) 在 [1, +∞) 上也单调递增,∴[g (x )]min = g (1) = 2 ,所以 k ≤ 2 …8 分 2、直接求导后对参数展开讨论,然后求出含参最值,从而确定参数范围

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

导数结合洛必达法则巧解高考压轴题

导数结合洛必达法则巧解高考压轴题 第一部分:历届导数高考压轴题 (全国2理)设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有 f (x )≥ax 成立,求实数a 的取值范围. (全国1理)已知函数()11ax x f x e x -+= -. (Ⅰ)设0a >,讨论()y f x =的单调性; (Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围. (全国1理)设函数()e e x x f x -=-. (Ⅰ)证明:()f x 的导数()2f x '≥; (Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (全国2理)设函数sin ()2cos x f x x = +. (Ⅰ)求()f x 的单调区间; (Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. (辽宁理)设函数ln ()ln ln(1)1x f x x x x = -+++. ⑴求()f x 的单调区间和极值; ⑵是否存在实数a ,使得关于x 的不等式()f x a 的解集为(0,)+∞若存在,求a 的取值范围;若不存在,试说明理由.

(新课标理)设函数)(x f =21x e x ax ---. (Ⅰ)若0=a ,求)(x f 的单调区间; (Ⅱ)若当x ≥0时)(x f ≥0,求a 的取值范围. (新课标文)已知函数2()(1)x f x x e ax =--. (Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. (全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1 x f x x ≥+; (Ⅱ)设当0x ≥时,()1 x f x ax ≤ +,求a 的取值范围. (新课标理)已知函数ln ()1a x b f x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x > +-,求k 的取值范围.

导数结合洛必达法则巧解高考压轴题-2019年精选文档

导数结合xx法则巧解高考压轴题 高考数学试题常与大学数学知识有机接轨,以高等数学为背景的命题形式成为热点.许多省市的高考试卷的压轴题都是导数应用问题,其中求参数的取值范围就是一类重点考查题型.这类题目简易让考生想到用分离参数的方法,一部分题用这种方法很凑效,另一部分题在高中范围内用分离参数的方法却不能顺利解决.利用分离参数的方法不能解决这类问题的原因是出现了“”型的式子,而这就是大学数学中的不定式问题,解决这类问题的有用方法就是洛必达法则.利用导数确定函数的单调性,再用洛必达法则就能顺利解决上面提出的“”型的导数应用问题.本文首先给出洛必达法则,然后用洛必达法则和导数解决高考试题并将这种方法应用于其他试题,从中可以发现运用高等数学知识解?}的优越性. 洛必达法则:设函数f(x)、g(x)满足: (1)f(x)=g(x)=0; (2)在U0(a)内,f ′(x)和g′(x)都存在,且g′(x)≠0; (3)=A(A可为实数,也可以是±∞).则==A. 1.(2011海南宁夏理21)已知函数f(x)=+,曲线y=f(x)在点(1,f (1))处的切线方程为x+2y-3=0.(1)求a,b的值; (2)如果当x>0,且x≠1时,f(x)>+,求k的取值范围.解析:(1)略解,易知a=1,b=1; (2)当x>0,且x≠1时,由f(x)>+,易得k0,从而h(x)=lnx+在x∈(0,+∞)时单调递增,且h(1)=0,所以当x∈(0,1)时,h(x)0;当 x∈(0,1)时, g′(x)0,所以g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.由洛必达法则有: g(x)=(+1)=1+=1+=0, 即当x→1时,g(x)→0所以当x>0,且x≠1时,g(x)>0.因为k0,且x≠1时,f(x)>+成立,求k的取值范围是(-∞,0].

高考导数 洛必达法则

第二部分:泰勒展开式 1.2311,1!2!3!!(1)! n n x x x x x x x e e n n θ+=++ +++++K 其中(01)θ<<; 2. 231ln(1)(1),2!3!! n n n x x x x x R n -+=- +-+-+K 其中111(1)()(1)!1n n n n x R n x θ++=-++; 3.35211sin (1)3!5!(21)!k k n x x x x x R k --=- +-+-+-K ,其中21(1)cos (21)! k k n x R x k θ+=-+; 4. 24221cos 1(1)2!4!(22)!k k n x x x x R k --=- +-+-+-K 其中2(1)cos (2)! k k n x R x k θ=-; 第三部分:新课标高考命题趋势及方法 许多省市的高考试卷的压轴题都是导数应用问题,其中求参数的取值范围就是一类重点考查的题型.这类题目容易 让学生想到用分离参数的方法,一部分题用这种方法很凑效,另一部分题在高中范围内用分离参数的方法却不能顺利解决,高中阶段解决它只有华山一条路——分类讨论和假设反证的方法.虽然这些压轴题可以用分类讨论和假设反证的方法求解,但这种方法往往讨论多样、过于繁杂,学生掌握起来非常困难.研究发现利用分离参数的方法不能解决这部分问题的原因是出现了0 ”型的式子,而这就是大学数学中的不定式问题,解决这类问题的有效方法就是洛必达法则. 第四部分:洛必达法则及其解法 洛必达法则:设函数()f x 、()g x 满足: (1)lim ()lim ()0x a x a f x g x →→==; (2)在()U a o 内,()f x '和()g x '都存在,且()0g x '≠; (3)()lim () x a f x A g x →'=' (A 可为实数,也可以是±∞).则()() lim lim ()()x a x a f x f x A g x g x →→'=='. (2011新)例:已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围. (Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法 由(Ⅰ)知ln 1 ()1x f x x x =++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x ---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22 (1)(1)2'()k x x h x x -++= . (i)当0k ≤时,由22 2 (1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.因为(1)0h =, 所以当(0,1)x ∈时,()0h x >,可得 2 1 ()01h x x ?>-;当(1,)x ∈+∞时,()0h x <,可得

用洛必达法则巧解导数问题

应用洛必达法则巧解导数问题. 近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则,充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注重考查进入高校继续学习的潜能。为此,高考数学试题常与大学数学知识有机接轨,以高等数学为背景的命题形式成为了热点. 许多省市的高考试卷的压轴题都是导数应用问题,其中求参数的取值范围就是一类重点考查的题型.这类题目容易让学生想到用分离参数法,一部分题用这种方法很奏效,另一部分题在高中范围内用分离参数的方法却不能顺利解决,高中阶段解决它只有一条路——分类讨论和假设反证的方法. 虽然这些压轴题可以用分类讨论和假设反证的方法求解,但这种方法往往讨论多样、过于繁杂,学生掌握起来非常困难.研究发现利用分离参数的方法不能解决这部分问题的原因是出现了00”型的式子,而这就是大学数学中的不定式问题,解决这类问题的有效方法就是洛必达法则. 洛必达法则:设函数()f x 、()g x 满足: (1)lim ()lim ()0x a x a f x g x →→==; (2)在()U a o 内,()f x '和()g x '都存在,且()0g x '≠; (3)()lim () x a f x A g x →'=' (A 可为实数,也可以是±∞). 则()()lim lim ()() x a x a f x f x A g x g x →→'=='.(可连环使用) 注意 使用洛必达法则时,是对分子、分母分别求导,而不是对它们的商求导,求导之后再求极限得最值。 已知函数ln ()1a x b f x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x > +-,求k 的取值范围. (Ⅰ)略解得1a =,1b =. (Ⅱ)方法一:分类讨论、假设反证法 由(Ⅰ)知ln 1()1x f x x x =++,所以所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x ---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22(1)(1)2'()k x x h x x -++= (i)当0k ≤时,由22 2 (1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.因为(1)0h =,

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

洛必达法则在高考解答题中的应用

导数结合洛必达法则巧解高考压轴题 一.洛必达法则: 法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立. ○2洛必达法则可处理00,∞ ∞,0?∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限. ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解 1. 函数2()1x f x e x ax =---. (Ⅰ)若0a =,求()f x 的单调区间; (Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围. 2. 已知函数x b x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围.

高考导数压轴题 答案

一、导数单调性、极值、最值的直接应用 1、解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3±=x . )(x g '的变化情况如下表: x 0 )3 3, 0( 33 )1,3 3( 1 )(x g ' - 0 + )(x g ↘ 极小值 ↗ 所以当3 3 = x 时,)(x g 有最小值932)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12122x a x x +=,∴1 2 111211222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 2 1<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2、解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠ -=-==a a a a x a x x f 知,由,或,解得令 以下分两种情况讨论: ①a 若> 3 2 ,则a 2-<2-a .当x 变化时,)()('x f x f ,的变化情况如下表: x ()a 2-∞-, a 2- ()22--a a , 2-a ()∞+-,2a + 0 — 0 + ↗ 极大值 ↘ 极小值 ↗

高考导数(洛必达法则)

第二部分:泰勒展开式 1.2311,1!2!3!!(1)!n n x x x x x x x e e n n θ+=+++++++K 其中(01)θ<<; 2. 23 1ln(1)(1),2!3!! n n n x x x x x R n -+=-+-+-+K 其中111(1)()(1)!1n n n n x R n x θ++=-++; 3.35211sin (1)3!5!(21)!k k n x x x x x R k --=-+-+-+-K ,其中21 (1)cos (21)! k k n x R x k θ+=-+; 4. 2422 1cos 1(1)2!4!(22)!k k n x x x x R k --=-+-+-+-K 其中2(1)cos (2)! k k n x R x k θ=-; 第三部分:新课标高考命题趋势及方法 许多省市的高考试卷的压轴题都是导数应用问题,其中求参数的取值范围就是一类重点考查的题型.这类题目容易让学生想到用分离参数的方法,一部分题用这种方法很凑效,另一部分题在高中范围内用分离参数的方法却不能顺利解决,高中阶段解决它只有华山一条路——分类讨论和假设反证的方法.虽然这些压轴题可以用分类讨论和假设反证的方法求解,但这种方法往往讨论多样、过于繁杂,学生掌握起来非常困难.研究发现利用分离参数的方法不能解决这部分问题的原因是出现了 00 ”型的式子,而这就是大学数学中的不定式问题,解决这类问题的有效方法就是洛必达法则. 第四部分:洛必达法则及其解法 洛必达法则:设函数()f x 、()g x 满足: (1)lim ()lim ()0x a x a f x g x →→==; (2)在()U a o 内,()f x '和()g x '都存在,且()0g x '≠; (3)()lim () x a f x A g x →'=' (A 可为实数,也可以是±∞).则()()lim lim ()()x a x a f x f x A g x g x →→'=='. (2011新)例:已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围. (Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法 由(Ⅰ)知ln 1()1x f x x x =++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x ---+=+--.

高考导数压轴题题型(精选.)

高考导数压轴题题型 李远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足12 1()(1)(0)2 x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; 【解析】 (1)12 11()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211 ()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1 e x x m - +. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1 e 1 x x -+. 函数f ′(x )=1 e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. 3.【2014新课标2】21. 已知函数()f x =2x x e e x --- (1)讨论()f x 的单调性; 【解析】 (1)+ -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递 增 【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。 (1)证明: f (x )在 (-¥,0)单调递减,在 (0,+¥)单调递增; (2)若对于任意 x 1,x 2?[-1,1],都有 |f (x 1)-f (x 2)|£e -1,求m 的取值范围。

导数结合洛必达法则在解答高考压轴题中的妙用

导数结合洛必达法则在解答高考压轴题中的妙用 2010年和2011年高考中的全国新课标卷中的第21题中的第○2步,由不等式恒成立来求参数的取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。 洛必达法则简介: 法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=()() lim x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=; (2)0A ?,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)()() lim x f x l g x →∞'=', 那么 () ()lim x f x g x →∞=()() lim x f x l g x →∞'='。 法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则也成立。 ○2洛必达法则可处理00,∞∞ ,0?∞,1∞,0∞,00,∞-∞型。 ○3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,1∞,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 二.高考题处理 1.(2010年全国新课标理)设函数2 ()1x f x e x ax =---。

导数的应用洛必达法则

导数的应用洛必达法则 1.设函数21)(ax x e x f x ---=. (1) 若0=a ,求)(x f 的单调区间; (2) 若当0≥x 时,0)(≥x f ,求实数a 的取值范围. 解:(1) 定义域为R ,当0=a 时,有题知x e x f x --=1)(,则1)('-=x e x f . 令0)('>x f ,得e x >;令0)('x 时,当210)(x x e a x f x --≤?≥时,设)0(,1)(2>--=x x x e x g x ,则4 42]2)2[(2)1()1()('x x e x x x x x e x e x g x x x ++-=?----= 设)0(,2)2()(>++-=x x e x x h x ,显然)(x h 在),0(+∞为增函数,所以 0)0()(=>h x h ,所以0)('>x g ,所以)(x g 在),0(+∞上为增函数 由洛必达法则得 2122 211)(000200lim lim lim lim ===-=--=→→→→e e x e x x e x g x x x x x x x 所以2 1)(>x g 因为)(x g a ≤在),0(+∞恒成立,所以21≤ a . 即实数a 的取值范围为]21,(-∞ 2.设函数x e x f --=1)(. (1) 证明:当1->x 时,1)(+≥ x x x f ; (2) 设当0≥x 时,1 )(+≤ax x x f ,求实数a 的取值范围. 解:(1) 证明: 当1->x 时,011)(≥--?+≥ x e x x x f x . 设)1(,1)(->--=x x e x g x ,则1)('-=x e x g . 令0)('>x g ,得0>x ;令0)('

专题05 挖掘“隐零点”,破解导数压轴题-2019年高考数学压轴题之函数零点问题(解析版)

专题五挖掘“隐零点”,破解导数压轴题 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破解导数压轴问题,例题说法,高效训练. 【典型例题】 类型一挖掘“隐零点”,求参数的最值或取值范围 例1.【浙江省杭州第十四中学2019届高三12月月考】设函数,曲线y=f(x)在x=1处的切线与直线y=3x平行. (1)判断函数f(x)在区间和上的单调性,并说明理由; (2)当时,恒成立,求的取值范围. 【答案】(1)区间单调递增;(2) 【解析】 (1).∵f'(1)=1+b=3,∴b=2,则f'(x)=ln x+4x-1. 因为在单调递增,所以当时 即函数f(x)在区间单调递减;当时 即函数f(x)在区间单调递增; (2)因为,而在(0,1)上递增 存在使得

,当 时单调递减; 当时 单调递增 所以 又因为时则 所以则 类型二 挖掘“隐零点”,证明不等式 例2. 设函数2()ln x f x e a x =-,设()2 0,2a e ∈求证:当(]0,1x ∈时,2()2ln f x a a a ≥+ 【答案】见解析 【解析】()f x 的定义域为(]0,1,222'()2x x a xe a f x e x x -=-= 设2()2x x xe a ?=-,()22()242x x x xe x e ?'==+, 当(]0,1x ∈,()0x ?'>,即()x ?在区间(]0,1为增函数, (2(),2x a e a ??∈--? 又因为( )2 0,2a e ∈,所以2 (0)0,(1)20a e a ??=-<=-> 由零点存在定理可知'()f x 在(]0,1的唯一零点为0x 当0(0,)x x ∈时,'()0f x <,当(]0,1x x ∈,'()0f x > 故()f x 在0(0,)x 单调递减,在(]0,1x 单调递增, 所以当0x x =时,()f x 取得最小值,最小值为0200()ln x f x e a x =-, 由0 2020x x e a -=,即0 202x a e x = ,两边去对数得00ln ln 22 a x x =- 由于,所以00000222()2ln 22ln 2ln 22a a f x ax a ax a a a x a x a a = ++≥?=+

导数结合洛必达法则巧解高考压轴题64808

导数结合洛必达法则巧解高考压轴题 第一部分:历届导数高考压轴题 (全国2理)设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围. (全国1理)已知函数()11ax x f x e x -+=-. (Ⅰ)设0a >,讨论()y f x =的单调性; (Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围. (全国1理)设函数()e e x x f x -=-. (Ⅰ)证明:()f x 的导数()2f x '≥; (Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (全国2理)设函数sin ()2cos x f x x =+. (Ⅰ)求()f x 的单调区间; (Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. (辽宁理)设函数ln ()ln ln(1)1x f x x x x = -+++. ⑴求()f x 的单调区间和极值; ⑵是否存在实数a ,使得关于x 的不等式()f x a 的解集为(0,)+∞?若存在,求a 的 取值范围;若不存在,试说明理由. (新课标理)设函数)(x f =21x e x ax ---. (Ⅰ)若0=a ,求)(x f 的单调区间; (Ⅱ)若当x ≥0时)(x f ≥0,求a 的取值范围. (新课标文)已知函数2()(1)x f x x e ax =--.

(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. (全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1 x f x x ≥+; (Ⅱ)设当0x ≥时,()1 x f x ax ≤+,求a 的取值范围. (新课标理)已知函数ln ()1a x b f x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x > +-,求k 的取值范围. 例题:若不等式3sin x x ax >-对于(0,)2x π ∈恒成立,求a 的取值范围 第二部分:泰勒展开式 1.23 11,1!2!3! !(1)! n n x x x x x x x e e n n θ+=++++ +++其中(01)θ<<; 2.23 1 ln(1)(1) ,2!3!! n n n x x x x x R n -+=-+- +-+其中111(1) ()(1)!1n n n n x R n x θ++=-++; 3.35 211 sin (1) 3!5!(21)!k k n x x x x x R k --=-+- +-+-,其中21(1)cos (21)! k k n x R x k θ+=-+; 4.24 221 cos 1(1) 2!4! (22)!k k n x x x x R k --=-+- +-+-,其中2(1)cos (2)! k k n x R x k θ=-;

相关文档
最新文档