定量遥感-第三章辐射传输方程-2

辐射传递理论partokb

第四章 海洋辐射传递理论 第一节 引言 海洋辐射传递,顾名思义,即为辐射在海水介质中受到散射与吸收所导致的辐射场变化。海洋光学辐射传递理论即是定量地研究辐射能通过海洋水体,受到多次散射和光谱吸收后,辐射场的空间分布及光谱分布的变化。 海洋辐射传递理论是海中能见度、对比度传输、水中图象传输、激光水中传输、海洋激光雷达、海面向上光谱辐射、海洋光学遥感、海水光学参数测量等应用研究的理论基础。它与近代光学技术、激光、光学遥感探测海洋的应用研究密切相关。因此海洋辐射传递理论是海洋光学基本理论和理论核心。辐射传递又是天体物理和大气光学的重要理论工具,因为电磁波(包括核辐射)与物质相互作用的研究是近代物理的重要组成部分,故辐射传递是近代物理的重要工具,因此海洋辐射传递的研究同时也具有更普遍的理论意义。 海洋辐射传递的基础问题大致可划分为: 1)经典问题也称为辐射传递正问题,即已知海中空间各点的固有光学性质和边界面的辐射场,求海中的辐射场分布。 2)第二类问题(又称“逆问题”),即已知海中辐射场分布,求海水固有光学性质的参数。它是遥测海表层光学参数的理论基础,也是光学遥感测定海中叶绿素、悬移质和有机溶解物的基础。 3)窄光束问题,主要是求解高方向性激光束在海中的传输。它是海洋激光雷达、激光水下--空中通讯应用的理论基础。 4)海洋--大气系统辐射传递问题,即在建立海洋--大气系统辐射传递模型基础上, 根据大气顶所接收到的辐射推算海表面辐射。 5)水下图象传输问题,研究水下目标通过水体后图象的模糊和变化,或归结为海中点扩展函数和光学传递函数理论问题。 按照大气光学、海洋光学中的辐射传递模型,辐射传递方程可写为 ?+-=πωθθβθ4''),()',(d r L cL dr dL (4-1) 这里,L 为辐亮度,c 为体积衰减系数,β为海洋水体的体积散射函数,图4.1为海洋中辐射传递物理模型的示意图。显然,方程(1)是一种微—积分方程,因为β函数的复杂性,方程难以解析求解。目前国际上对辐射传递问题的研究,主要有三种方法: 1、近代解析求解 2、分离坐标法(主要是球谐函数方法) 3、蒙特卡罗方法(Monte Carlo Method ) 这三种方法在国际上一直延用至今,比较有效的方法是蒙特卡罗方法,也是当前受人关注的方法。第一种方法一般作为理论条件下的研究,后两种方法都必须进行数值计算,计算量较大。这三种方法均未突破辐射传递积一微分方程所固有的解方程的困难,当前国际上海洋光学、大气物理、天体物理、中子迁移物理所进行的辐射传递研究几乎都徘徊于如何用数值模拟方法对方程直

大气辐射传输理论 第一章..

大气辐射传输理论 引言 学科定义: 1、大气辐射学研究辐射能在地球-大气系统内传输和转换的规律及其应用,属大气物理学的一个分支。大气辐射学是天气学、气候学、动力气象学、应用气象学、大气化学和大气遥感等学科的理论基础之一。 2、地球-大气系统的辐射差额是天气变化和气候形成及其演变的基本因素,可以说辐射过程与动力过程的作用共同决定了地球的气候环境。 学习、研究的意义 辐射是地气系统与宇宙空间能量交换的唯一方式 数值天气预报中需要定量化考察大气辐射过程 辐射传输规律是大气遥感的理论基础 气候问题——辐射强迫 近年来人类活动造成的地球大气气候变迁成为大气科学研究热点,其原因也在于人类活动所排放的某些物质会改变地球大气中的辐射过程所致。 大气辐射学主要研究内容: 一、地-气系统辐射传输的基本物理过程和规律,包括 1、太阳的辐射(97%E在0.3~3μm波段内,λ m=0.5μm附近); 2、地-气系统辐射(绝大部分E在4~80μm波段内,λ m=10μm附近); 3、不同地表状态云、气溶胶、水汽、臭氧、二氧化碳等对辐射传输的影响。 二、大气辐射学还要研究辐射传输方程的求解。 辐射传输方程:是描述辐射传播通过介质时与介质发生相互作用(吸收、散射、发射等)而使辐射能按一定规律传输的方程,在地球大气条件下,求解非常复杂,只能在一些假定下求得解析解,因此辐射传输方程的求解,一直是大气辐射学研究的重要内容。 三、另外,对辐射与天气、气候关系的研究也是大气辐射学的重要内容,它是从地-气系统辐射收支的角度,来研究天气和气候的形成以及气候变迁问题的。 相关内容: 许多复杂的物理动力气候学问题中,涉及到海洋、极冰、陆地表面的辐射和热状况,大气中的云、气溶胶、二氧化碳等因子在辐射过程中对气候所造成的影响,以及这些过程和大气辐射过程之间复杂的相互作用和反馈关系。 第一章用于大气辐射的基本知识 第一节辐射的基本概念 太阳辐射和地球大气辐射虽具有不同的特性,其本质是相同的,它们都是电磁辐射。电磁辐射是以波动和粒子形式表现出的一种能量传送形式。 1.1.1电磁波及其特性 一、波:波是振动在空间的传播。有横波和纵波的形式之分。 二、机械波:机械振动在媒质中的传播,如声波、水波和地震波。 三、电磁波(ElectroMagnetic Spectrum):变化电场和变化磁场在空间的传播。 四、电磁辐射: 电磁能量的传递过程(包括辐射、吸收、反射和投射)称为电磁辐射。 五、电磁波的特性: 1、电磁波是横波 2、在真空中以光速传播 3、电磁波具有波粒二相性: 波动性:表现在电磁辐射以波动方式在大气中传播,并发生反射、折射、衍射和偏振等效应。也就是说电

一维辐射传递方程的谱方法求解

分类号密级 UDC 学位论文 一维辐射传递方程的谱方法求解 作者姓名:张大伟 指导教师:李本文 教授 东北大学材料电磁过程研究教育部重点实验室 申请学位级别:硕士学科类别:工学 学科专业名称:工程热物理 论文提交日期:2008年2月22日论文答辩日期:2008年2月25日学位授予日期:2008年3月 答辩委员会主席:王恩刚 教授 评阅人:陈海耿(东北大学教授) 聂宇宏(江苏科技大学副教授) 东北大学 2008年2月

A Dissertation in Engineering Thermophysics SPECTRAL METHOD FOR SOLVING ONE-DIMENSIONAL RADIATIVE TRANSFER EQUATION by Zhang Dawei Supervisor: Professor Li Benwen Northeastern University February 2008

独创性声明 本人声明,所呈交的学位论文是在导师的指导下完成的。论文中取得的研究成果除加以标注和致谢的地方外,不包含其他人己经发表或撰写过的研究成果,也不包括本人为获得其他学位而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。 学位论文作者签名: 日期: 学位论文版权使用授权书 本学位论文作者和指导教师完全了解东北大学有关保留、使用学位论文的规定:即学校有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅。本人同意东北大学可以将学位论文的全部或部分内容编入有关数据库进行检索、交流。 (如作者和导师不同意网上交流,请在下方签名;否则视为同意。) 学位论文作者签名:导师签名: 签字日期:签字日期:

第十三章课后习题答案教学文案

第十三章 热力学基础 13 -1 如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是( ) (A) b1a 过程放热,作负功;b2a 过程放热,作负功 (B) b1a 过程吸热,作负功;b2a 过程放热,作负功 (C) b1a 过程吸热,作正功;b2a 过程吸热,作负功 (D) b1a 过程放热,作正功;b2a 过程吸热,作正功 分析与解 bca ,b1a 和b2a 均是外界压缩系统,由?=V p W d 知系统经这三个过程均作负功,因而(C)、(D)不对.理想气体的内能是温度的单值函数,因此三个过程初末态内能变化相等,设为ΔE .对绝热过程bca ,由热力学第一定律知ΔE =-W bca .另外,由图可知:|W b2a |>|W bca |>|W b1a |,则W b2a <W bca <W b1a .对b1a 过程:Q =ΔE +W b1a >ΔE +W bca =0 是吸热过程.而对b2a 过程:Q =ΔE +W b2a <ΔE +W bca =0 是放热过程.可见(A)不对,正确的是(B). 13 -2 如图,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即p A =p B ,请问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( ) (A) 对外作正功 (B) 内能增加 (C) 从外界吸热 (D) 向外界放热

分析与解 由p -V 图可知,p A V A <p B V B ,即知T A <T B ,则对一定量理想气体必有E B >E A .即气体由状态A 变化到状态B,内能必增加.而作功、热传递是过程量,将与具体过程有关.所以(A)、(C)、(D)不是必然结果,只有(B)正确. 13 -3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体).开始时它们的压强和温度都相同,现将3J 热量传给氦气,使之升高到一定的温度.若使氢气也升高同样的温度,则应向氢气传递热量为 ( ) (A) 6J (B) 3 J (C) 5 J (D) 10 J 分析与解 当容器体积不变,即为等体过程时系统不作功,根据热力学第一定律Q =ΔE +W ,有Q =ΔE .而由理想气体内能公式T R i M m E Δ2 Δ= ,可知欲使氢气和氦气升高相同温度,须传递的热量 ? ?? ? ?????? ??=e e e 222e 2H H H H H H H H /:i M m i M m Q Q .再由理想气体物态方程pV =mM RT ,初始时,氢气和氦气是具有相同的温度、压强和体积,因而物质的量相同,则3/5/:e 2e 2H H H H ==i i Q Q .因此正确答案为(C). 13 -4 有人想像了四个理想气体的循环过程,则在理论上可以实现的为 ( )

南华物理练习第13章答案

第十三章 早期量子论和量子力学基础 练 习 一 一. 选择题 1. 内壁为黑色的空腔开一小孔,这小孔可视为绝对黑体,是因为它( B ) (A) 吸收了辐射在它上面的全部可见光; (B) 吸收了辐射在它上面的全部能量; (C) 不辐射能量; (D) 只吸收不辐射能量。 2. 一绝对黑体在温度T 1 = 1450K 时,辐射峰值所对应的波长为λ1,当温度降为725K 时,辐射峰值所对应的波长为λ2,则λ1/λ2为( D ) (A) 2; (B) 2/1; (C) 2 ; (D) 1/2 。 3. 一般认为光子有以下性质( A ) (1) 不论在真空中或介质中的光速都是c ;(2) 它的静止质量为零;(3) 它的动量为h ν/c 2; (4) 它的动能就是它的总能量;(5) 它有动量和能量,但没有质量。 以上结论正确的是 ( A ) (A) (2)(4); (B) (3)(4)(5); (C) (2)(4)(5); (D) (1)(2)(3)。 4. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从 金属逸出需做功eU 0),则此单色光的波长λ必须满足:(A ) (A) 0hc eU λ≤ ; (B) 0 hc eU λ≥; (C) 0eU hc λ≤; (D) 0eU hc λ≥。 二. 填空题 1. 用辐射高温计测得炉壁小孔的辐射出射度为2 2.8W/cm 2,则炉内的温度为 1.416×103K 。 2. 设太阳表面的温度为5800K ,直径为1 3.9×108 m ,如果认为太阳的辐射是常数,表面积保持不变,则太阳在一年内辐射的能量为 1.228×1034 J ,太阳在一年内由于辐射而损失的质量为1.3647×1017 kg 。 3. 汞的红限频率为1.09×1015 Hz ,现用λ=2000?的单色光照射,汞放出光电子的最大初速度0v =5 7.7310 m/s ? ,截止电压U a = 1.7V 。 4. 如果入射光的波长从400nm 变到300nm ,则从表面发射的光电子的遏止电压增大(增大、减小)。 三. 计算题 1. 星星可以看作绝对黑体,今测得太阳辐射所对应的峰值波长λm1=5500?,北极星辐射所对应的峰值波长λm2=0.35μm ,求太阳的表面温度T 1和北极星的表面温度T 2 . 解:由:T b m λ= 3103 1 11026.510 550010897.2?=??== --m b T λ

第13章 波动光学基础

第十三章 波动光学基础 光是电磁波 电磁波, 又称电磁辐射, 是由同相振荡且互相垂直的电场与磁场在空间中以波的形式传递能量和动量, 其传播方向垂直于电场与磁场构成的平面. 电磁辐射的载体为光子, 不需要依靠介质传播, 在真空中的传播速度为光速. 电磁辐射可按照频率分类, 从低频率到高频率, 主要包括无线电波、微波、红外线、可见光、紫外线、X 射线和伽 马射线. 人眼可接收到的电磁辐射, 波长大约在380至780纳米之间, 称为可见光. ()u x t E E -=ωcos 0 ()u x t H H -=ωcos 0 波速, εμ 1 = u ;平均能流密度, 202 1E I = 电磁波首先由詹姆斯·麦克斯韦于1865年预测出来, 而后由德国物理学家海因里希·赫兹于1887年至1888年间在实验中证实存在. 麦克斯韦推导出电磁波方程, 一种波动方程, 这清楚地显示出电场和磁场的波动本质. 因为电磁波方程预测的电磁波速度与光速的测量值相等, 麦克斯韦推论光波也是电磁波. 波的叠加 非相干叠加 21I I I += 相干叠加 ??++=cos 22121I I I I I

杨氏双缝实验 干涉加强(明纹)d D k x 22λ ±=, ,2,1,0=k 干涉相消(暗纹)()d D k x 212λ +±=, ,2,1,0=k 相邻明/暗条纹间距D x d λ?= 光程与光程差 在传播时间相同的条件下, 把光在介质中传播的路程折合为光在真空中传播的路程 光程 nr x = 光程差1122r n r n -=δ 薄膜等厚干涉(牛顿环, 劈尖干涉) 2 cos 22λ γδ+ =d n 明纹条件 2 2λ δk ±=, ,2,1,0=k 暗纹条件 ()2 12λ δ+±=k , ,2,1,0=k 单缝的夫琅禾费衍射 明纹条件 2 2sin λ ?k a ±=, ,2,1=k 暗纹条件 ()2 12sin λ ?+±=k a , ,2,1=k

大气辐射传输理论 第三章..

第三章 太阳辐射在大气中的吸收和散射 第一节 地球大气的成分和结构 为了描述地球大气与太阳辐射的相互作用,我们首先来了解一下大气的结构和成分。 3.1.1热力结构 ? 为了确定与太阳光吸收 和散射有关的大气区域,我们首先给出标准大气的垂直温度廓线: 大气的分层命名通常由它的热力状态导出 ? 对流层-对流层顶的高度随纬度和季节变化(低纬17~18km ,中11~12km ,高8~9km);集中了整个 大气质量的3/4和全部的水汽;天气现象都发生在这一层。 ? 平流层-高达50km ;气层稳定;T 最初微升,30km 以上随Z 的升高增加很快,达270~290K 。 这主要是由于O3 吸收紫外辐射所致;水汽很少,能见度很高。 ? 中层-高达80~85km ;T 随Z 升高而递减得很快;有强烈的湍流混合和光化学反应。 ? 热层-高达500~600km ;T 随Z 上升而迅速增加,可达1000~2000K ,所以称热层;由于波长小于 0.175微米的太阳紫外辐射,被热层气体吸收所致。温度是分子运动速度的一个度量;温度一日间有显著变化;热层处于高度电离状态。 ? 外层-热层顶以上是外层,这一层可能一直延伸到约1600km 的高空,并且逐步融合到行星空间去。 由于地球引力场的束缚力很小,一些高速运动的空气质粒不断向星际空间逃逸,又称外逸层。 ? 电离层-从距离约60km 开始向上延伸。在远距离无线电通讯中起着重要作用。与太阳活动密切相 关。 ? 磁层-500km 以上的高空。受太阳风的作用,看起来像彗星状。 ? 行星边界层:大气层的最低1km 左右的层次明显与对流层的其他高度不同,它与地表发生强烈而重要 的相互作用,这一层称为行星边界层。 3.1.2 化学成分 恒定成分变化成分成分 体积比(%) 成分 体积比(%) Nitrogen (N 2)Oxygen (O 2)Argon (Ar) Carbon dioxide (CO 2)Neon (Ne)Helium (He)Krypton (Kr)Xenon (Xe) Hydrogen (H 2)Methane (CH 4) Nitrous oxide (N 2O)b Carbon monoxide (CO)b 78.08420.9480.934 0.036 18.18 ×10-45.24 ×10-41.14 ×10-40.089 ×10-40.5 ×10-41.7 ×10-40.3 ×10-40.08 ×10-4 Water vapor (H2O)Ozone (O3) Sulfurdioxide (SO2)b Nitrogendioxide (NO2)b Ammonia (NH3)b Nitric oxide (NO)b Hydrogensulfide (H2S)b (HNO3) Chlorofluorocarbons (CFCI3, CF2C12 CH3CCI3, CC14, etc.) 0 ~0.04 0 ~12 ×10-40.001 ×10-40.001 ×10-40.004 ×10-40.0005 ×10-40.00005 ×10-4微量Trace

相关文档
最新文档