AO工艺参数及影响 (2)

AO工艺参数及影响 (2)
AO工艺参数及影响 (2)

工艺运行参数的控制以及对水处理效果的影响A/O工艺运行过程中所需控制的主要参数有水力停留时间、pH值、水温、原

%)、水成分、食微比(F/M)、溶解氧(DO)、活性污泥浓度(MLSS)、沉降比(SV

30

污泥容积指数(SVI)、污泥龄、污泥回流比(%)以及混合液回流比(%)等。只有合理调控这些控制参数,才能很好地保证活性污泥处理工艺的正常、高效运行。

(1)水力停留时间HRT:水力停留时间(HRT)的长短直接影响氨氮和硝酸盐的去除效率,一般应根据设计所要求对氮的去除率决定相应的水力停留时间。在给定进出水氨氮或硝酸盐氮浓度的情况下,硝化或反硝化反应所需的最小水力停留时间可按照下式估计:

硝化反应:

反硝化反应:

在给定氨氮负荷条件下,缩短HRT,硝化反应的效率显着下降,当HRT小于5h时,出水中氨氮浓度显着增加。经估算及经验得出最佳水力停留时间为:反硝化t≤2h,硝化t≥6h,当硝化水力停留时间与反硝化水力停留时间为3:1时,氨氮去除率达到70%~80%。

(2)pH值:A/O工艺中pH值的控制不但是排放水要求的控制,更是对活性污泥法主体微生物生长条件的要求。A/O工艺中的生物脱氮过程包括硝化和反硝化两个过程:硝化过程起主要作用的微生物是硝化细菌;反硝化过程起主要作用的微生物是反硝化细菌。

硝化反应是指氨态氮在硝化菌的作用下分解氧化的过程。硝化菌是指亚硝酸菌和硝酸菌,是化能自养菌,硝化菌对pH值的变化非常敏感,在硝化反应过程中,将释放出H+离子浓度增高,从而使pH值下降,影响硝化反应速度,为了保持适宜的pH值,应当在污水中保持足够的碱度,以保证对在反应过程中pH值的变化,起到缓冲的作用。而最佳pH值是8.0~8.4,在这一最佳pH值条件下,硝化速度,硝化菌最大的比增殖速度可达最大值。碱度的调整方案一般采用的首要方法是酸碱废水中和法,或者直接向所需处理污水中投加药剂:污水呈酸性时投加氢氧化钙、石灰或氧化镁等。

污水厂只是在进水和出水口设置了pH值在线监测仪,并没有在A/O生化池内设置pH值在线监测仪,这样就无法准确了解生化池内pH值的变化情况,以致无法了解生化池的脱氮效果如何。

反硝化反应是指硝酸氮和亚硝酸氮在反硝化菌的作用下,被还原为气态氮)的过程。反硝化菌是属于异养型兼性厌氧菌的细菌。反硝化菌对pH值的(N

2

变化也是很敏感的,反硝化菌最适宜的pH值是6.5~7.5,在这个pH值范围内,反硝化速率最高,当pH值高于8或低于6时,反硝化速率将大为下降。

所以,A/O工艺中硝化最佳pH值为8.0~8.4,反硝化最佳pH值为6.5~7.5。

(3)温度:A/O工艺中硝化反应的适宜温度是20~30℃,15℃以下时,硝化速度下降,5℃时完全停止;反硝化反应的适宜温度是20~40℃,低于15℃时,反硝化菌的增殖速率降低,代谢速率也降低,从而降低了反硝化速率。

大多数污水厂的生化池都是露天建设的,在北方,夏天的温度在20~40℃范围内变化,对硝化及反硝化过程都比较适合,而冬季的温度则比较低,所以处理效率不如夏季处理效果好。在冬季低温季节,为了保持一定的反应速率,应考虑提高反应系统的污泥龄(生物固体平均停留时间):污泥龄的长短可以通过排放剩余污泥量来进行控制;提高污水的停留时间:污泥回流比控制的低些,可以延长污水在曝气池内的停留时间;降低负荷率:混合液回流比控制的高些,就可以降低污泥负荷率了;

(4)原污水总氮浓度TN:由于在硝化反应过程中每去除1mg氨氮就需要8.6mg

-,故必须为硝化反应提供相应的无机碳源以满足硝化细菌的代谢需的无机HCO

3

求。在实际水处理过程中,当氨氮含量较高时,无机碳的浓度往往不能满足微生物的需求,从而限制了硝化反应的进行和脱氮效率。也即A/O工艺过高的总氮浓度会抑制硝化反应,所以要求原污水总氮浓度TN<30mg/L。

(5)食微比(F/M):F值比作食物,M值比作微生物,即MLSS,是活性污泥浓度的意思,就是活性污泥存在的数量。

)来表示的。

食微比(F/M)实际应用中是以BOD—污泥负荷率(N

s

式中 Q——污水流量(m3/d);

V——曝气容积(m3);

X——混合液悬浮固体(MLSS)浓度(mg/L);

L

——进水有机物(BOD)浓度(mg/L)。

a

公式本身所表达的含义是:在一天内进入处理系统的有机物量与已有的活性

/(kgMLSS·d)。食污泥量的比值关系。A/O工艺中最佳食微比为0.2~0.4kgBOD

5

微比过低,相应的活性污泥浓度处在一个过剩的范围内,这部分过剩的活性污泥越多,消耗额外的溶解氧就越多了,以致曝气消耗增大。食微比过高,活性污泥浓度过快下降。如何控制合理的排泥,将食微比控制在合理的范围内,就需要积累排泥的经验数据,特别是不同活性污泥浓度情况下的排泥情况。喀左污水厂根据沉降比以及出水情况改变污泥回流量及混合液回流量控制着活性污泥浓度。(6)溶解氧(DO):活性污泥法工艺的微生物皆以耗氧菌为主体,缺乏溶解氧的时候首先影响的是处理效率,更甚者会对整个活性污污泥系统产生抑制,使恢复周期延长;而过度的溶解氧也会影响出水水质。就其控制而言就显得尤为重要。

氧是硝化反应过程中的电子受体,反应器内溶解氧高低,必将影响硝化反应的过程,在进行硝化反应的曝气池内,溶解氧含量不能低于1mg/L。

反硝化菌是异养兼性厌氧菌,只有在无分子氧而同时存在硝酸和亚硝酸离子

的条件下,它们才能够利用这些离子中的氧进行呼吸,使硝酸盐还原。如反应器

内溶解氧较高,将使反硝化菌利用氧进行呼吸,抑制反硝化菌体内硝酸盐还原酶

的合成,或者氧成为电子受体,阻碍硝酸氮的还原。但是,另一方面,在反硝化

菌体内某些酶系统组分只有在有氧条件下,才能合成,这样,反硝化菌以在厌氧、

好氧交替的环境中生活为宜,溶解氧应控制在0.5mg/L以下。

所以,A/O工艺中的溶解氧控制要求O段大于1mg/L;A段小于0.5mg/L。

喀左污水厂溶解氧的监控测点位置有4个,分别在A段和O段首末端,每天

每两个小时在线监测一次,这样能够准确及时地掌握溶解氧变化,来判断污水处

理效果好坏,以便适时作出调整。

(7)活性污泥浓度(MLSS):活性污泥浓度是曝气池(生化池)出口端混合液

悬浮固体的含量,单位是mg/L,它是计量曝气池中活性污泥数量多少的指标,

包括:①活性微生物;②吸附在活性污泥上不能为生物降解的有机物;③微生物

自身氧化的残留物;④无机物。这四者包括了M.LSS的总量,实际操作中常以它

作为相对计量活性污泥微生物量的指标。

A/O工艺污泥浓度一般要求大于3000mg/L,否则脱氮效率下降。

(8)沉降比(SV

%):取曝气池末端混合液100mL于100mL的量筒中,静止30min 30

后,沉淀的活性污泥体积占整个混合液的体积比例即为活性污泥的沉降比。沉降

比作为现场监测活性污泥系统运行状况最简易、有效的方法,此控制指标对整个

活性污泥系统故障的及早发现具有重要的参考价值,可以说活性污泥沉降比是所

有操作控制指标中最具操作参考意义的。

%的正常范围是15~30%,低于15%,说明活性污泥浓度过低,需要增加回流SV

30

比,高于30%,说明活性污泥浓度过高,需要减小回流比。

(9)污泥容积指数(SVI):活性污泥容积指数是指在曝气池末端去悬浮固体

混合液倒入1000mL量筒中,静止30min,1g活性污泥干污泥所占的容积。

/MLSS

SVI=SV

30

因为活性污泥浓度的人为可控性好,而活性污泥沉降性人为可控性差,所以,

SVI值只是活性污泥松散性型的表现指标,不具备对活性污泥直接调整的操作

性。

(10)污泥龄:污泥龄是指曝气池中工作的活性污泥总量与每日排放的剩余污

泥的比值,在稳定运行时,剩余污泥量就是新增长的活性污泥量。因此污泥龄也

是新增长的活性污泥在曝气池中的平均停留时间,或者理解为活性污泥总量增长

一倍所需要的时间。

就活性污泥主体的微生物而言,其生命周期也是存在的,在不断地增殖、死

亡交替过程中,也完成了对有机污染物的去除。污泥龄是一个非常重要的控制指

标。

硝化细菌的增值速度较慢,世代时间较长,培养硝化细菌需要足够长的污泥龄,为了使硝化反应充分进行,硝化细菌在曝气池的停留时间(即污泥龄)就应不小于其世代时间,在实际工程设计中,考虑到负荷等因素的变化,A/O 工艺中污泥龄应达到15d 以上。

污泥龄与曝气池相关参数的关系可以用下式表示:

污泥龄(t )Q X VX 2124

式中 V ——曝气池容积m ;

X 1——曝气池混合液悬浮固体(MLSS )浓度(mg/L );

X 2——回流活性污泥混合液悬浮固体(MLSS )浓度(mg/L );

Q ——废弃活性污泥(排泥)流量m 3/h ;

24——计算值为小时,换算为天。

以上公式中,如果确定了要控制的污泥龄就可以方便的推算出废弃活性污泥时排泥的流量了。这里特别要注意MLSS 值,作为回流活性污泥的浓度,理论上总比曝气池混合液的活性污泥浓度要高,通常要高出一倍以上,如果低于一倍的浓度,就应该检查活性污泥是否过于松散了。

(11)活性污泥回流比r (%):把回流的活性污泥混合液流量与进入曝气池首端的污水流量的比值称为活性污泥回流比,单位是“%”。

活性污泥回流是指流入二沉池的沉降活性污泥需要重新抽升到曝气池首端,与在曝气池首端入流的污水进行混合,以达到吸附降解有机物的目的。活性污泥的回流是用于补充曝气池活性污泥的浓度,在整个曝气池范围内达到首末段的活性污泥循环流动和降解。

(12)混合液回流比:混合液回流比是指混合液回流量与入流污水量之比,一般用R 表示。混合液回流比不仅影响脱氮效率,而且影响动力消耗。脱氮率(η—TN 去除率)与混合液回流比(R )间存在下列关系:

据某资料对A/O 系统的脱氮率与回流比的关系也用下式表示:

式中:η—TN 去除率(%);

r,R —分别为沉淀池污泥回流比及硝化混合液回流比;

Q —原污水进水流量。

一般,R≤50%,脱氮效率η很低;R <200%,η随R 的上升而显着上升;当R >200%后,η上升比较缓慢,一般混合液回流比控制在200%~400%。

AO工艺设计计算公式

A/O工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:BOD 5 /TN>4,理论BOD消耗量为1.72gBOD/gNOx--N ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD 5 /KgMLSS·d ⑦混合液浓度x=3000~4000mg/L(MLSS) ⑧溶解氧:A段DO<0.2~0.5mg/L O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5 O段pH =7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾ 碱度:硝化反应氧化1gNH 4+-N需氧4.57g,消耗碱度7.1g(以CaCO 3 计)。 反硝化反应还原1gNO 3 --N将放出2.6g氧, 生成3.75g碱度(以CaCO 3 计) ⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量 (KgO 2 /h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。 Ro=a’QSr+b’VX+4.6Nr a’─平均转化 1Kg的BOD的需氧量KgO 2 /KgBOD b’─微生物(以VSS 计)自身氧化(代谢)所需氧量KgO 2 /Kg VSS·d。

上式也可变换为: Ro/VX=a’·QSr/VX+b’ 或 Ro/QSr=a’+b’·VX/QSr Sr─所去除BOD的量(Kg) Ro/VX─氧的比耗速度,即每公斤活性污泥(VSS)平均每天的耗氧量KgO 2 /KgVSS·d Ro/QSr─比需氧量,即去除1KgBOD 的需氧量KgO 2 /KgBOD 由此可用以上两方程运用图解法求得a’ b’ Nr—被硝化的氨量kd/d 4.6—1kgNH 3-N转化成NO 3 -所需的氧 量(KgO 2 ) 几种类型污水的a’ b’值 ⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。 ⅰ.理论供氧量 1.温度的影响 KLa(θ)=K L(20)×1.024Q-20 θ─实际温度 2.分压力对Cs的影响(ρ压力修正系数) ρ=所在地区实际压力(Pa)/101325(Pa) =实际Cs值/标准大气压下Cs值

AO工艺设计参数

污水处理A/O工艺设计参数 1.HRT水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 在 A/O工艺中,好氧池的作用是使有机物碳化和使氮硝化;缺氧池的作用是反硝 化脱氮,故两池的容积大小对总氮的去除率极为重要。A/O的容积比主要与该废 水的曝气分数有关。缺氧池的大小首先应满足NO3--N利用有机碳源作为电子供体,完成脱氮反应的需要,与废水的碳氮比,停留时间、回流比等因素相应存在一定的关系。借鉴于类似的废水以及正交试验,己内酷胺生产废水的A/0容积比确定在1:6左右,较为合适。 而本设计的A/ 0容积比为亚:2,缺氧池过大,导致缺氧池中的m(BOD)/m (NO3--N)比值下降,当比值低于1.0时,脱氮速率反趋变慢。另外,缺氧池过大,废水停留时间过长,污泥在缺氧池内沉积,造成反硝化严重,经常出现大块上浮死泥,影响后续好氧处理。后将A/O容积比按1:6改造,缺氧池运行平稳。 1.1、A/O除磷工艺的基本原理 A/O法除磷工艺是依靠聚磷菌的作用而实现的,这类细菌是指那些既能贮存聚磷(poly—p)又能以聚β—羟基丁酸(PHB)形式贮存碳源的细菌。在厌氧、好氧交替条 件下运行时,通过PHB与poly—p的转化,使其成为系统中的优势菌,并可以过 量去除系统中的磷。其中聚磷是若干个基团彼此以氧桥联结起来的五价磷化合物,亦被称为聚磷酸盐,其特点是:水解后生成溶解性正磷酸盐,可提供微生物生长繁殖所需的磷源;当积累大量聚磷酸盐的细菌处于不利环境时,聚磷酸盐可分解释放能量供细菌维持生命。聚β—羟基丁酸是由多个β—羟基丁酸聚合而成的大分子聚 合物,当环境中碳源物质缺乏时,它重新被微生物分解,产生能量和机体生长所需要的物质。这一作用可分为两个过程:厌氧条件下的磷释放过程和好氧条件下的磷吸收过程。 厌氧条件下,通过产酸菌的作用,污水中有机物质转化为低分子有机物(如醋酸等),聚磷菌则分解体内的聚磷酸盐释放出磷酸盐及能量,同时利用 水中的低分子有机物在体内合成PHB,以维持其生长繁殖的需要。研究发现,厌 氧状态时间越长,对磷的释放越彻底。 好氧条件下,聚磷菌利用体内的PHB及快速降解COD产生的能量,将污水中的磷 酸盐吸收到细胞内并转变成聚磷贮存能量。好氧状态时间越长,对磷的吸收越充分。由于好氧状态下微生物吸收的磷远大于厌氧状态下微生物释放出的磷,随着厌氧—好氧过程的交替进行,微生物可以在污泥中形成稳定的种类并占据一定的优势,磷就可以通过系统中剩余污泥的排放而去除(见图1)。

污水处理中AO工艺的设计参数

A/O生物除磷工艺是由厌氧和好氧两部分反应组成的污水生物处理系统。污水进入厌氧池后,与回流污泥混合。活性污泥中的聚磷菌在这一过程中大量吸收污水中的BOD,并将污泥中的磷以正磷酸盐的形式释放到混合液中。混合液进入好氧池后,有机物被氧化分解,同时聚磷菌大量吸收混合液中的正磷酸盐到污泥中。由于聚磷菌在好氧条件下吸收的磷多于厌氧条件下释放的磷,因此污水经过“厌氧-好氧”的交替作用和二沉池的污泥分离达到除磷的目的。一般情况下,TP的去除率可达到85%以上。 A/O工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD5/KgMLSS·d ⑦混合液浓度x=3000~4000mg/L(MLSS) ⑧溶解氧:A段DO<0.2~0.5mg/L O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5 O段pH =7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。 反硝化反应还原1gNO3--N将放出2.6g氧,生成3.75g碱度(以CaCO3计) ⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶

垃圾焚烧发电工艺设计参数的计算方法

垃圾焚烧发电工艺设计参数的计算方法 浙江旺能环保股份有限公司作者:周玉彩 摘要:本文介绍了垃圾焚烧发电炉排炉、汽轮机组工艺设计的参数计算方法。 关键词:参数、垃圾、焚烧、炉排、汽轮机组。 前言: 生活垃圾焚烧发电应用于环境保护领域,实现城市生活垃圾的无害化、减量化、减容化和资源化、智能化处理,达到节能减排之目的。在生活垃圾焚烧发电工艺设计流程中首先进行垃圾焚烧发电炉排炉工艺设计参数的计算,为后续设计提供参数依据。 一、生活垃圾焚烧炉排炉工艺设计参数的计算 1、待处理生活垃圾的性质 1.1待处理生活垃圾主要组成成分 表1:待处理生活垃圾的性质 表2:待处理生活垃圾可燃物的元素分析(应用基)% 表3:要求设计主要参数 1.2 根据垃圾元素成分计算垃圾低位热值: LHV=81C+246H+26S-26O-6W (Kcal/Kg) =81*20.6+246*0.9+26*0.12-26*0.12-6*47.4=1388(Kcal/Kg)*4.18=5800(KJ/Kg)。 1.3根据垃圾元素成分计算垃圾高位热值: HHV={LHV+600*(W+9H)}*4.18={1388+600(0.474+9*0.009)}*4.18=7193.78(KJ/Kg)。 2、处理垃圾的规模及能力 焚烧炉3台: 每台炉日处理垃圾350t;

处理垃圾量: 1000t/24h=41.67(t/h); 炉系数:(8760-8000)/8000=0.095; 实际每小时处理生产能力:41.67*(1+0.095)=45.6(t/h); 全年处理量: 45.6*8000=36.5*104t; 故:每台炉每小时处理垃圾量:350/24*1.05=15.3(t/h)。 3、设计参数计算: 3.1垃圾仓的设计和布置 已知设计中焚烧炉长度L=75.5米,宽D=18.5米,取垃圾仓内壁与炉长度对齐,T=5d,垃圾的堆积密度取0.35t/m3 求:垃圾的容积工程公式:V=a*T 式中: V----垃圾仓容积m3; a--- 容量系数,一般为 1.2~1.5,考虑到由于垃圾仓存在孔角,吊车性能和翻 仓程度以及有效量的缺陷,导致垃圾仓可利用的有效容积小于几何容积; T--- 存放时间,d;根据经验得出适合燃烧存放天数,它随地区及季节稍有变化; V=a*T=1.2*5*1000/0.35=17142.86(m3 )。 故:垃圾仓的容积设计取18000(m3)。 垃圾仓的深度为Hm Hm=L*D/V=18000/75.5*18.5=12.88(m)。 故:垃圾池全封闭结构,长75.5米,宽18.5米,总深度以6米卸料平台为基准负13米。 3.2焚烧炉的选择与计算 (1)焚烧炉的加料漏斗 焚烧炉的加料漏斗挂在加料漏斗层,通过垃圾吊车将间接垃圾供料变为均匀加料,漏斗的容积要能满足“1h”内最大焚烧量。 垃圾通过竖溜槽送到给料机,垃圾竖溜槽可通过液压传动闸板关闭,竖溜槽的尺寸选择要满足溜槽中火焰密封闭合,给料机根据要求向焚烧炉配送垃圾,每台炉安装配合给料机传动用液压汽缸,液压设备由每台炉生产线控制中心控制。 料斗的容积V D V D=G/24*Kx/ρL 式中: V D---料斗的容积(m3); G--- 每台炉日处理垃圾的量,(t/h);

污水处理中AO工艺的设计参数

工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:5>4,理论消耗量为1.72 ⑤硝化段的负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮): <0.05·d ⑥硝化段污泥负荷率:<0.185·d ⑦混合液浓度3000~4000() ⑧溶解氧:A段<0.2~0.5 O段>2~4 ⑨值:A段=6.5~7.5 O段=7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾碱度:硝化反应氧化14需氧4.57g,消耗碱度7.1g(以3计)。 反硝化反应还原13将放出2.6g氧,生成3.75g碱度(以3计) ⑿需氧量——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(2)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以应包括这三部分。 ’’4.6 a’─平均转化1的的需氧量2 b’─微生物(以计)自身氧化(代谢)所需氧量2·d。 上式也可变换为: ’·’或’’·

─所去除的量() ─氧的比耗速度,即每公斤活性污泥()平均每天的耗氧量2·d ─比需氧量,即去除1的需氧量2 由此可用以上两方程运用图解法求得a’ b’ —被硝化的氨量 4.6—13-N转化成3-所需的氧量(2) 几种类型污水的a’ b’值 ⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。 ⅰ.理论供氧量 1.温度的影响 (θ)(20)×1.02420 θ─实际温度 2.分压力对的影响(ρ压力修正系数) ρ=所在地区实际压力()/101325()=实际值/标准大气压下值 3.水深对的影响 2·(0.101321) ─曝气池中氧的平均饱和浓度() ─曝气设备装设深度()处绝对气压() 9.81×10-3H ─当地大气压力() 21·(1)/[79+21·(1)]?? ─扩散器的转移效率 ─空气离开池子时含氧百分浓度 综上所述,污水中氧的转移速率方程总修正为: α(20)(βρθ×1.024θ-20 {理论推出氧的转移速率α(β)} 在需氧确定之后,取一定安全系数得到实际需氧量

V型滤池工艺的介绍与设计参数

(1)过滤过程: 待滤水由进水总渠经进水阀和方孔后,溢过堰口再经侧孔进入被待滤水淹沿的V型槽,分别经槽底均匀的配水孔和V型槽堰进入滤池。被均质滤料滤层过滤的滤后水经长柄滤头流入底部空间,由方孔汇入气水分配管渠,在经管廊中的水封井、出水堰、清水渠流入清水池。 (2)反冲洗过程: 关闭进水阀,但有一部分进水仍从两侧常开的方孔流入滤池,由V型槽一侧流向排水渠一侧,形成表面扫洗。而后开启排水阀将池面水从排水槽中排出直至滤池水面与V型槽顶相平。反冲洗过程常采用“气冲→气水同时反冲→水冲”三步。 气冲打开进气阀,开启供气设备,空气经气水分配渠的上部小孔均匀进入滤池底部,由长柄滤头喷出,将滤料表面杂质擦洗下来并悬浮于水中,被表面扫洗水冲入排水槽。 气水同时反冲洗在气冲的同时启动冲洗水泵,打开冲洗水阀,反冲洗水也进入气水分配渠,气、水分别经小孔和方孔流入滤池底部配水区,经长柄滤头均匀进入滤池,滤料得到进一步冲洗,表扫仍继续进行。 停止气冲,单独水冲表扫仍继续,最后将水中杂质全部冲入排水槽。

V型滤池的工艺设计、施工安装和自动控制

滤池有多种型式,以石英砂作为滤料的普通快滤池使用历史悠久。在此基础上,人们从不同的工艺角度发展了其它型式的快滤池。V型滤池就是在此基础上由法国德利满公司在70年代发展起来的。V型滤池采用了较粗、较厚的均匀颗粒的石英砂滤层;采用了不使滤层膨胀的气、水同时反冲洗兼有待滤水的表面扫洗;采用了气垫分布空气和专用的长柄滤头进行气、水分配等工艺。它具有出水水质好、滤速高、运行周期长、反冲洗效果好、节能和便于自动化管理等特点。因此70年代已在欧洲大陆广泛使用。80年代后期,我国南京、西安、重庆等地开始引进使用。90年代以来,我国新建的大、中型净水厂差不多都采用了V型滤池这种滤水工艺,特别是广东省新建的净水厂几乎都采用了V型滤池。91年至94年我公司在沙口水厂(50万m3/d)的建设中,首次自行设计、施工安装了V型滤池。此后我们就开展了V型滤池的设计与安装这项工作。我们先后帮高明、中山小榄、中山东凤、顺德龙江、三水、广宁、汕头、惠州等兄弟自来水公司设计和安装了V 型滤池。在近十年来的V型滤池的设计、施工安装以及自动控制过程中,我们取得了一定的实践经验,有以下几点工作体会: 一、研究掌握V型滤池结构、工作原理、工艺特点 滤池是水厂净水工艺中的重要环节,而滤池过滤能力的再生,是滤池稳定高效运行的关键。若采用较好的反冲洗技术,使滤池经常处于最优条件下工作,不仅可以节水、节能,还能提高水质,增大滤层的截污能力,延长工作周期,提高产水量。而V型滤池过滤能力的再生,就采用了先进的气、水反冲洗兼表面扫洗这一技术。因此滤池的过滤周期比单纯水冲洗的滤池延长了75%左右,截污水量可提高118%,而反冲洗水的耗量比单纯水冲洗的滤池可减少40%以上。滤池在气冲洗时,由于用鼓风机将空气压入滤层,因而从以下几方面

几个主要工艺参数的计算

三、几个重要工艺参数的计算 1、轧制压力、轧制力矩的计算 (1)平均单位压力计算 平均单位压力一般形式 式中? ——应力状态影响系数; ——考虑外摩擦及变形区几何参数对应力状态的影响系数; ——考虑外区(外端)对应力状态的影响系数; ——考虑张力对应力状态的影响系数,其值小于1,当张力很大时可达到0.7~0.8。——考虑轧件宽度影响的系数; ——对应一定的钢种、变形温度、变形速度、变形程度的单向拉伸(或压缩)变形抗力(或屈服极限); ——考虑中间主应力对应力状态的影响系数。 在1~1.15范围内变化,如果忽略宽展,认为轧件产生平面变形,有,则,=1.15。 斯米尔诺夫根据因次理论得出如下关系式 当 时, 当时, 、为变形区平均宽度和平均高度,为外摩擦系数。 根据大量现场实测和实验室研究结果表明,影响轧件应力状态的主要参数是接触弧长度与轧件平均高度的比值。该比值综合反映了变形区三个主要参数R (工作辊半径)、(轧前厚度)、(压下量)对影响状态的影响。 1)热轧钢板轧机 热轧钢板轧机包括中厚板与薄板轧机。中厚板轧机(包括热轧薄板轧机的粗轧机组)轧制特点与初轧(开坯)机相近,外区影响()是主要的;与初轧不同点是宽度较大,可近似认为是平面应变情况,此时,。薄板轧机的产品厚度为1.2~16mm 。其待点是,一般为1.5~7,此时,外区影响不存在(),而接触弧上摩擦力是造成应力状态的主要因素,其平均单位压力可表示为 外摩擦对应力状态的影响系数,可按前面介绍的采利柯夫方法与西姆斯方法进行计算。热轧薄板精轧机组平均单位压力计算用得最多的是西姆斯公式。实际计算时常常使用以下简化式 或美板佳助简化式。 2)冷轧带钢轧机

研发工艺设计规范

研发工艺设计规范 1.范围和简介 范围 本规范规定了研发设计中的相关工艺参数。 本规范适用于研发工艺设计 简介 本规范从PCB外形,材料叠层,基准点,器件布局,走线,孔,阻焊,表面处理方式,丝印设计等多方面,从DFM角度定义了PCB的相关工艺设计参数。 2.引用规范性文件 下面是引用到的企业标准,以行业发布的最新标准为有效版本。 3 术语和定义 细间距器件:pitch≤异型引脚器件以及pitch≤的面阵列器件。 Stand off:器件安装在PCB板上后,本体底部与PCB表面的距离。 PCB表面处理方式缩写: 热风整平(HASL喷锡板):Hot Air Solder Leveling 化学镍金(ENIG):Electroless Nickel and Immersion Gold 有机可焊性保护涂层(OSP):Organic Solderability Preservatives 说明:本规范没有定义的术语和定义请参考《印刷板设计,制造与组装术语与定义》(IEC60194)4. 拼板和辅助边连接设计 V-CUT连接 [1]当板与板之间为直线连接,边缘平整且不影响器件安装的PCB可用此种连接。V-CUT为直通型,不能在中间转弯。 [2]V-CUT设计要求的PCB推荐的板厚≤。 [3]对于需要机器自动分板的PCB,V-CUT线两面(TOP和BOTTOM面)要求各保留不小于 1mm的器件禁布区,以避免在自动分板时损坏器件。

图1 :V-CUT自动分板PCB禁布要求 同时还需要考虑自动分板机刀片的结构,如图2所示。在离板边禁布区5mm的范围内,不允许布局器件高度高于25mm的器件。 采用V-CUT设计时以上两条需要综合考虑,以条件苛刻者为准。保证在V-CUT的过程中不会损伤到元器件,且分板自如。 此时需考虑到V-CUT的边缘到线路(或PAD)边缘的安全距离“S”,以防止线路损伤或铜,一般要求S≥。如图4所示。

设计参数选择

设计参数选择(生活污水) 1、集水井设计:容积的确定,按大于日处理量之5分钟之容积。根据现场安排尺寸设置水深,根据水深度确定截面积。提升泵选择?选择流量及数量应满足一小时排空集水井。 2、调节池设计:容积的确定,按日处理量之35%-50%确定。底部设一定坡度(大于0.05)坡向积水坑可设微孔曝气,曝气量确定:按5-6 m3/(m2.h)设计或气水比4/1确定。容积校验根据,停留时间:V/Q即有效容积/流量,一般在8小时左右。泵的选择考虑流量及扬程。空气搅拌气水比(1-3):1。消毒池V=30min 以上量,卤消毒5-8mg/L。中水池V日水量之25%-35%。 3、接触氧化池:容积的确定,一般按照前调节池容积之1/2计,根据现场确定池深及截面积。容积之校验,有效容积之停留时间T=V/Q一般时间按水之BOD 浓度计生活污水按大于等于3小时保险系数计算。内设半软性填料,超高按0.3米,具体填料高度可以按照设计之池子高度确定。长宽比控制在2/1~1/1有效面积不宜大于100m2 校验按照单位体积填料消耗BOD5值来计算(依据填料之布置计算填料体积)进水BOD5值为Amg/l,出水BOD5值取Bmg/l,则BOD5的消减量为:(A-B)*Q kg/d,单位体积填料消耗BOD5值应<1.0 kg/d 校验按照填料的容积负荷:Fr=0.2881×L0.7246 应<3㎏/(m3.d),L为生物接触氧化系统出水BOD5值。 校验按照污水与填料需要的接触时间:t=24Lj/(1000Fr),Lj为生物接触氧化系统进水BOD5值。污水与填料的实际接触时间t停=V有效/Q应该>t 接触氧化池曝气量的确定:接触氧化池曝气强度宜采用10-20 m3/(m2.h),同时参考《建筑中水设计规范》(GB50336-2002)可知,接触氧化池曝气量可按

AO工艺设计计算公式

A O工艺设计计算公式 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

A/O工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% /TN>4,理论BOD消耗量为gNOx--N ④反硝化段碳/氮比:BOD 5 ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):2~4mg/L

⑨pH值:A段pH =~ O段pH =~ ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾ 碱度:硝化反应氧化1gNH 4+-N需氧4.57g,消耗碱度7.1g(以CaCO 3 计)。 反硝化反应还原1gNO 3--N将放出2.6g氧,生成3.75g碱度(以CaCO 3 计) ⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量 (KgO 2 /h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。 Ro=a’QSr+b’VX+ a’─平均转化1Kg的BOD的需氧量KgO 2 /KgBOD b’─微生物(以VSS计)自身氧化(代谢)所需氧量KgO 2 /KgVSS·d。 上式也可变换为: Ro/VX=a’·QSr/VX+b’ 或Ro/QSr=a’+b’·VX/QSr Sr─所去除BOD的量(Kg) Ro/VX─氧的比耗速度,即每公斤活性污泥(VSS)平均每天的耗氧量 KgO 2 /KgVSS·d

工艺设计文件

甲基牛磺酸工艺 工艺简介: 1、投料: 按照工艺参数,投入一定量的氢氧化钠、羟乙基磺酸钠、回收母液、水(或氨水),在常温下搅拌,待全部溶解后,控制空压≤0.2MPa,将物料压入物料储存罐内。 2、调整 将物料在调整罐内循环,并向里面通入甲胺。按照工艺要求,补加定量甲胺后,利用吸收的胺水,将物料体积补加到一定量,然后再将调整好的物料,转入高压进料储罐,等待下步合成。 3、合成 合成塔提前走纯水升温,待合成塔出口温度达到240℃时,切换至物料储罐,开始进物料;进料速度控制2000L/h,合成塔物料出口控制在240-260℃。 4、离子交换 离子交换:合成出来的物料进过树脂柱,进行Na+离子交换,全部转换成甲基牛磺酸,进料时速度控制2000-4000L/h,出料温度≤50℃,最终控制成品物料PH=6.0-6.5(混合均匀后,出料PH值是从低到高),再停止进料,将树脂柱内的残留物料利用氮气压入原料罐内。 树脂物料清洗:待树脂柱内物料吹干净后,往里面进满纯水,浸泡1-1.5h后,将洗水压出,收集投料套用。

树脂再生:再生罐内注入2000L纯水,开启循环泵,往里通SO2,形成H2SO3直至PH=2.0左右(在再生循环过程中,不断消耗H2SO3的同时,补充SO2),开启H2SO3再生泵,下进上出的进料方式,不断循环,直至出口PH=2.0-2.5,停止再生。此时,让H2SO3在树脂柱内浸泡1-1.5h,再将H2SO3压至再生罐内(此再生液可以不断通SO2利用,直至检测亚钠含量达到25%左右,将再生液转入亚钠储罐储存,制备羟乙基磺酸钠用)。 树脂再生清洗:氮气吹干净树脂柱后,往里打满纯水,浸泡1.5h 后,再将洗水用氮气压出收集储存(以备下次再生换水使用,或者羟乙基磺酸钠投料使用)。清洗完成后,树脂柱待下批物料使用。 5、产品提取 浓缩:将通过离子交换后的成品液,转入一定量至脱色釜内,升温加入活性炭脱色后,转至浓缩釜内。控制真空度0.06以上,蒸汽压力≤0.4MPa条件下,浓缩至固含量80%-85%后,停止浓缩;再缓慢进行降温析晶,析晶时间保证≥3小时,降温温度控制到25-35℃。 产品离心:离心时,提前将滤袋、离心机、管线清洗干净。放料时,低速均匀放料,保证离心机的平稳运转,再能继续进料。离心时温度,控制在25-35℃。母液收集,进行回收套用。 6、干燥包装 将中控检测合格物料,放入干燥机内,控制温度100-105℃,进行干燥1-1.5h,取样检测,合格后包装入库。 7、主要化学反应式

轧制工艺参数设计

5 轧制工艺参数设计 轧制工艺参数设计主要包括压下制度、速度制度、温度制度。我们知道轧制工艺参数是中厚板生产的核心部分,直接关系着轧机的产量和产品的质量。轧制工艺参数设计的主要内容就是要由所需的产品选出合适的坯料,确定由这一坯料轧制成成品总共需要多少道次、每道次的压下量等内容,具体到操作上就是要计算出每道次压下螺丝的升降位置。同时,为了轧制出合格的产品,还要确定轧制的开轧温度、终轧温度,各道次的轧制速度分配等。另外,还应包括轧辊的辊型制度。这样才能在生产中制定出合理的轧制制度,达到既产量和质量,又实现操作方便、设备安全等目的。本设计的产品是ss400,42×2850×9000mm 厚板轧制工艺参数设计。 5.1 坯料的选择 选择坯料是中厚钢板生产中的重要环节之一。坯料选择是否合理,将影响轧机的生产率、成材率、钢板质量及成本,应予重视。 5.1.1 原料的种类 如前所述,所以本设计选择连铸坯作为原料。 5.1.2 原料的尺寸 本次设计原料的厚度选择260 mm 。原料的宽度尺寸尽量大,考虑到展宽比1.4和实际情况,使横轧操作容易,由常用规格,原料宽度选择2030mm 。切边100mm ,切头尾400mm 。原料的长度尺寸应尽可能接近原料的最大允许长度。根据生产实际情况ss400的烧损率为0.6%,并由体积不变的原则: 260×2030×l =42×(2850+100)×(9000+400)×1.006 mm l 22202030 260006 .1)4009000()1002850(42=??+?+?= 即l 取2220.00mm 。 所以坯料规格取为mm 22202030260??。根据钢的成分和铁碳相图以及控制

萃取分离工艺参数设计

萃取分离工艺参数设计 ——最优化串级萃取工艺设计 1、确定原料和处理能力 根据市场需求现状和发展趋势、本地稀土资源状况和开采能力、企业投资和融资能力大小等因素,确定稀土生产线的原料来源、基本配份、年处理能力。 2、确定产品方案 产品品种和规格要符合主流要求,适销对路,既不要盲目求高而增加分离难度和成本,又不能没有市场竟争能力而遭淘汰。 3、确定分离工艺流程 稀土分离时往往按“四分组”效应首先将原料分为轻、中、重稀土富集物。 分组的切割位置通常选择边界元素间分离系数(或等效分离系数)较大、并保持易萃取组分比例均衡,同时兼顾产品要求、设备条件、工艺衔接、操作稳定性和可行性等因素,以降低生产成本、提高流程的稳定性。 (1)工艺采用了具有世界先进水平分离提纯技术,确保产品质量稳定,纯度较高。 (2)工艺流程在实施过程中容易控制,比较灵活,可以根据市场的不同需求,生产不同规格的产品,充槽投资较省,化工辅料消耗降低,有利于降低产品成本。 (3)整个工艺流程较短,可连续化操作,稀土机械损失少,稀土的总收率高。 (4)实现产品“系列化”“高纯化”“单一化”“规模化”,经济指标较好,市场适应能力较强。 4、最优化串级萃取工艺设计 4.1 确定萃取体系和测定分离系数β 针对要分离的问题,选择一个合适的萃取体系,进行单级试验,确定最适宜的有机相配比、皂化度、料液和洗液的浓度和酸度等。测定萃取段和洗涤段的平均分离系数β和β'。 B A E E = β (1)

' '' B A E E =β (2) 若β和β'值相差不大,通常采用数值较小的β值进行计算。 4.2 确定分离指标 根据料液组成,确定分离切割线位置,确定易萃组分A 和难萃组分B ,B f 为料液中组分B 的摩尔分数,1A B f f =-为料液中组分A 的摩尔分数。 根据市场需求确定产品分离指标,若A 为主要产品,规定其纯度An m p +,回收率为A Y ,则A 的纯化倍数和B 的纯化倍数为: (1) n m n m A A A B P P a f f ++-= (3) (1) A A a Y b a Y -= - (4) 出口水相B 的纯度1B P 和A 的纯度1A P 为: 1B B A B bf P f bf = + (5) 111A B P P =- (6) 出口有机相和出口水相分数A f '和B f ': n m A A A A f Y f P +'= (7) 1B A f f ''=- (8) 若 B 为主要产品,规定其纯度为1B P ,回收率为B Y ,则: 1 1(1) B B B A P P b f f -= (9) (1) B B b Y a b Y -= - (10)

相关主题
相关文档
最新文档