基于matlab的一维搜索

基于matlab的一维搜索

最优化理论与算法

基于matlab 的一维搜索——0.618试探法

2

m in ()21def

f x x x =-- ,

初始区间11[,][1,1]a b =-,精度0.16L ≤ clc clear %设定初始值 L=0.16; k=1; b=1; a=-1;

r=a+0.382*(b-a); u=a+0.618*(b-a); fr=fun(r); fu=fun(u); c=[]; while b-a>L if fr>fu a=r; b=b; r=u;

u=a+0.618*(b-a);

fr=fun(r); fu=fun(u); else a=a; b=u; u=r;

r=a+0.382*(b-a); fr=fun(r); fu=fun(u); end k=k+1;

c=[c,[a,b,r,u,fr,fu]]; end k

jieguo=reshape(c,6,k)’ s=[a,b] l=b-a

jieguo =

-1.0000 1.0000 -0.2360 0.2360 -0.6526 -1.1246 -0.2360 1.0000 0.2360 0.5278 -1.1246 -0.9706 -0.2360 0.5278 0.0558 0.2360 -1.0496 -1.1246 0.0558 0.5278 0.2360 0.3475 -1.1246 -1.1060 0.0558 0.3475 0.1672 0.2360 -1.1113 -1.1246 0.1672 0.3475 0.2360 0.2787 -1.1246 -1.1234 0.1672 0.2787 0.2098 0.2360 -1.1218 -1.1246

最短路径的Dijkstra算法及Matlab程序

两个指定顶点之间的最短路径 问题如下:给出了一个连接若干个城镇的铁路网络,在这个网络的两个指定城镇间,找一条最短铁路线。 以各城镇为图G 的顶点,两城镇间的直通铁路为图G 相应两顶点间的边,得图G 。对G 的每一边e ,赋以一个实数)(e w —直通铁路的长度,称为e 的权,得到赋权图G 。G 的子图的权是指子图的各边的权和。问题就是求赋权图G 中指定的两个顶点00,v u 间的具最小权的轨。这条轨叫做00,v u 间的最短路,它的权叫做00,v u 间的距离,亦记作),(00v u d 。 求最短路已有成熟的算法:迪克斯特拉(Dijkstra )算法,其基本思想是按距0u 从近到远为顺序,依次求得0u 到G 的各顶点的最短路和距离,直至0v (或直至G 的所有顶点),算法结束。为避免重复并保留每一步的计算信息,采用了标号算法。下面是该算法。 (i) 令0)(0=u l ,对0u v ≠,令∞=)(v l ,}{00u S =,0=i 。 (ii) 对每个i S v ∈(i i S V S \=),用 )}()(),({min uv w u l v l i S u +∈ 代替)(v l 。计算)}({min v l i S v ∈,把达到这个最小值的一个顶点记为1+i u ,令}{11++=i i i u S S 。 (iii). 若1||-=V i ,停止;若1||-

最短路dijkstra算法Matlab程序

function [c0,c,path0,path]=dijkstra(s,t,C,flag) % Use the Dijkstra's algorithm to find the shortest path from % s to t and can also find the shortest path between s and all % the other points. % Reference: Graph Theory with Applications by J. A. Bondy and % U. S. R. Murty. % Input -- s is the starting point and also is the point s. % -- t is the given terminal point and is the point t. % -- C \in R^{n \times n}is the cost matrix, where % C(i,j)>=0 is the cost from point i to point j. % If there is no direct connection between point i and % j, C(i,j)=inf. % -- flag: if flag=1, the function just reports the % shortest path between s and t; if flag~=1, the % function reports the shortest path between s and t, % and the shortest paths between s and other points. % Output -- c0 is the minimal cost from s to t. % -- path0 denotes the shortest path form s to t. % -- c \in R{1\times n} in which the element i is the % minimal cost from s to point i. % -- path \in R^{n \times n} in which the row i denotes % the shortest path from s to point i. % Copyright by MingHua Xu(徐明华), Changhzou University, 27 Jan. 2014. s=floor(s); t=floor(t); n=size(C,1); if s<1 || t < 1 || s > n || t > n error(' The starting point and the terminal point exceeds the valid range'); end if t==s disp('The starting point and the terminal point are the same points'); end label=ones(1,n)*inf; label(s)=0; S=[s]; Sbar=[1:s-1,s+1:n]; c0=0; path=zeros(n,n); path(:,1)=s; c=ones(1,n)*inf; parent=zeros(1,n); i=1; % number of points in point set S. while i label(S(k))+C(S(k),Sbar(j)) label(Sbar(j))=label(S(k))+C(S(k),Sbar(j)); parent(Sbar(j))=S(k); end end

斐波那契法 一维搜索方法

短后的区间不大于区间[0,10]的5% 。 解:由题意=δ5%,由斐波那契数列δ1 ≥n F ,则n=7, 00=a ,100=b 1t =0b )(0076a b F F --=2180 , 21 130)(00760'1=-+=a b F F a t , 将1t 和'1t 代入函数,比较大小有)()('11t f t f < 则有001==a a ,21801'2==t t ,21130'11==t b ,21 50)(116512=--=a b F F b t , 将2t 和'2t 代入函数,比较大小有)()('22t f t f < , 则有012==a a ,21502'3==t t ,2180'22==t b ,21 30)(225423=--=a b F F b t , 将3t 和'3t 代入函数,比较大小有)()('33t f t f >, 则有213033==t a ,2150'34==t t ,218023==b b ,21 60)(33433'4=-+=a b F F a t , 将4t 和'4t 代入函数,比较大小有)()('44t f t f >, 则有215044==t a ,2160'45==t t ,218034==b b ,21 70)(44324'5=-+=a b F F a t , 将5t 和'5t 代入函数,比较大小有)()('55t f t f >, 则有216055= =t a ,2170'56==t t ,218045==b b , 则令105 351)21602180()01.05.0(2160))((55215'6=-?++=-++=a b F F a t ε, 将6t 和'6t 代入函数,比较大小有)()('66t f t f <, 则216056==a a ,105351'66==t b ,区间为:?? ????105351,2160 所以选择6t 为极小点,=)(6t f 89.6)2170( -=f 。

dijkstra算法的matlab实现

学号: 课程设计 题目Dijkstra算法的MATLAB实现 学院信息工程学院 专业通信工程 班级 姓名 指导教师 2012 年 1 月9 日 课程设计任务书 学生姓名:专业班级:通信 0901班 指导教师:工作单位:信息工程学院 题目: Dijkstra算法的MATLAB实现 初始条件: (1)MATLAB应用软件的基本知识以及基本操作技能 (2)高等数学、线性代数等基础数学中的运算知识 (3)数据结构里面关于Dijkstra算法的基本原理和思想 要求完成的主要任务: 必做题:采用MATLAB选用适当的函数或矩阵进行如下计算 (1)极限的计算、微分的计算、积分的计算、级数的计算、求解代数方程、求解常微分方程; (2)矩阵的最大值、最小值、均值、方差、转置、逆、行列式、特征值的计算、矩阵的相乘、右除、左除、幂运算;

(3)多项式加减乘除运算、多项式求导、求根和求值运算、多项式的部分分式展开、多项式的拟合、插值运算。 选做题:Dijkstra算法的MATLAB实现 时间安排: 第一周,安排任务地点:鉴主17楼实验室 第1-17,周仿真设计地点:鉴主13楼计算机实验室 第18周,完成答辩,提交报告地点:鉴主17楼实验室 指导教师签名:年月日 系主任(或责任教师)签名:年月

目录 摘要................................................................................................................................. I Abstract ......................................................................................................................... II 1 MATLAB的基本运算 .. 0 1.1 基础微积分计算 0 1.1.1 极限的基本运算 0 1.1.2 微分的计算 0 1.1.3 积分的计算 (1) 1.1.4 级数的运算 (1) 1.1.5 求解代数微分方程 (1) 1.1.6 求解常微分方程 (2) 1.2 矩阵的基本运算 (2) 1.2.1 矩阵的最大最小值 (2) 1.2.2 矩阵的均值方差 (3) 1.2.3 矩阵的转置和逆 (3) 1.2.4 矩阵的行列式 (3) 1.2.5 矩阵特征值的计算 (3) 1.2.6 矩阵的相乘 (4) 1.2.7 矩阵的右除和左除 (4) 1.2.8 矩阵的幂运算 (4) 1.3 多项式的基本运算 (4) 1.3.1 多项式的四则运算 (4) 1.3.2 多项式的求导、求根、求值运算 (5) 1.3.3 多项式的部分分式展开 (5) 1.3.4 多项式的拟合 (5) 1.3.5 多项式的插值运算 (6) 2关于Dijkstra的问题描述 (6) 2.1问题的提出 (6) 2.2 Dijkstra算法的算法思想 (7) 2.3 Dijkstra算法的算法原理 (7) 3 Dijkstra算法的设计分析 (8) 3.1 Dijkstra算法部分的设计分析 (8) 3.2 程序主体的设计分析 (9) 4程序源代码与算法思想 (10) 4.1 文件isIn.m的源代码 (10) 4.2 文件default_dat.m的源代码 (11) 4.3 文件input_dat.m的源代码 (11) 4.4 文件menu.m的源代码 (11) 4.5 文件dijkstra.m的源代码 (13) 5 测试报告 (16) 6 心得体会 (17) 7 参考文献 (18)

算法设计与分析复习题目及答案 (3)

分治法 1、二分搜索算法是利用(分治策略)实现的算法。 9. 实现循环赛日程表利用的算法是(分治策略) 27、Strassen矩阵乘法是利用(分治策略)实现的算法。 34.实现合并排序利用的算法是(分治策略)。 实现大整数的乘法是利用的算法(分治策略)。 17.实现棋盘覆盖算法利用的算法是(分治法)。 29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。 不可以使用分治法求解的是(0/1背包问题)。 动态规划 下列不是动态规划算法基本步骤的是(构造最优解) 下列是动态规划算法基本要素的是(子问题重叠性质)。 下列算法中通常以自底向上的方式求解最优解的是(动态规划法) 备忘录方法是那种算法的变形。(动态规划法) 最长公共子序列算法利用的算法是(动态规划法)。 矩阵连乘问题的算法可由(动态规划算法B)设计实现。 实现最大子段和利用的算法是(动态规划法)。 贪心算法 能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题, 不能解决的问题:N皇后问题,0/1背包问题 是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。 回溯法 回溯法解旅行售货员问题时的解空间树是(排列树)。 剪枝函数是回溯法中为避免无效搜索采取的策略 回溯法的效率不依赖于下列哪些因素(确定解空间的时间)

分支限界法 最大效益优先是(分支界限法)的一搜索方式。 分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。 分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆) 优先队列式分支限界法选取扩展结点的原则是(结点的优先级) 在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法). 从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式. (1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。 (2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。 (最优子结构性质)是贪心算法与动态规划算法的共同点。 贪心算法与动态规划算法的主要区别是(贪心选择性质)。 回溯算法和分支限界法的问题的解空间树不会是( 无序树). 14.哈弗曼编码的贪心算法所需的计算时间为( B )。 A、O(n2n) B、O(nlogn) C、O(2n) D、O(n) 21、下面关于NP问题说法正确的是(B ) A NP问题都是不可能解决的问题 B P类问题包含在NP类问题中 C NP完全问题是P类问题的子集 D NP类问题包含在P类问题中 40、背包问题的贪心算法所需的计算时间为( B )

dijkstra算法原理及MATLAB代码

Dijkstra算法是寻找最短路径的一种搜索算法,由荷兰科学家提出。 1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v 到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。 2)算法步骤: a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点, 即:U={其余顶点},若v与U中顶点u有边,则正常有权值,若u不是v的出边邻接点,则权值为∞。 b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k 的最短路径长度)。 c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经 过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。 d.重复步骤b和c直到所有顶点都包含在S中。 算法描述:通过为每个节点保留目前为止所找到的从s到e的最短路径。为了记录最佳路径轨迹,记录路径上每个节点的前趋,通过回溯法找出最短路径轨迹。

过程如下: 在网上搜索一些版本的Matlab实现方法,感觉都有些毛病。经过修改,得到比较好的效果。[cpp]view plain copy 1.function [ distance path] = Dijk( W,st,e ) 2.%DIJK Summary of this function goes here 3.% W 权值矩阵 st 搜索的起点 e 搜索的终点 4.n=length(W);%节点数 5. D = W(st,:); 6.visit= ones(1:n); visit(st)=0; 7.parent = zeros(1,n);%记录每个节点的上一个节点 8. 9.path =[]; 10. 11.for i=1:n-1

Dijkstra算法

最短路径—Dijkstra算法 Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。 问题描述:在无向图G=(V,E) 中,假设每条边E[i] 的长度为w[i],找到由顶点V0 到其余各点的最短路径。(单源最短路径) 2.算法描述 1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S 中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。 2)算法步骤: a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边, 则正常有权值,若u不是v的出边邻接点,则权值为∞。 b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。 c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短, 则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。 d.重复步骤b和c直到所有顶点都包含在S中。 GPSR路由协议:(车载自组织网络中自适应路由协议研究_李诗雨) 2>基于地理位置的路由 随着科技的发展,现在的车辆通常都会具有全球定位系统,利用这个系统, 车辆可以随时随地查找出自己的地理坐标。于是越来越多的学者开始利用这些定 位系统来制定新的路由,如Greedy Perimeter Stateless Routing(GPSR)}ZO}。GPSR 是影响最广和应用范围最大的一个路由协议。它脱离了传统路由协议需要维护一 个全局静态路由,需要时刻去查看该路由的有效性的方式,而开始将更多的注意 力放到车辆四周的临近车辆,只依赖它们进行短距离的路由计算。在GPSR协议 中[[21],网络节点都可以通过GPS等方法获取自身的地理位置,源节点在发送数据 时会在报文里加入目的节点的GPS坐标,在后面每一跳节点都会查找自己的邻居 车辆,在其中找到一个距离目的节点在地理位置上最近的节点作为下一跳节点。

一维数组的常用算法源代码

1.数组元素逆置 #include #include int main() { int a[10],t,i,j; //随机生成数组元素,并显示 printf("逆置前:"); for(i=0;i<10;i++) { a[i]= rand()%100; printf("%4d",a[i]); } printf("\n"); //数组元素逆置,即对称位置交换for(i=0,j=9;i

2.静态查找 #include #include int main() { int a[10],t,i,j; //随机生成数组元素,并显示 printf("数组元素:"); for(i=0;i<10;i++) { a[i]= rand()%100; printf("%4d",a[i]); } printf("\n"); //输入查找的数 printf("请输入要查找的数:"); scanf("%d", &t); //静态查找:从前往后依次遍历 for(i=0;i<10;i++) if(a[i]==t) break;//找到并退出//输出查找结果 if(i<10)

printf("%d在数组a[%d]中。\n",t,i); else printf("%d不在a数组中。\n",t); } 3.二分查找:前提数组有序 #include #include void sort(int a[], int n) { int i,j, t; for(i=0;ia[j+1]) {t=a[j]; a[j]=a[j+1]; a[j+1]=t;} } int main() { int a[10],t,i,left,right,mid; //随机生成数组元素 printf("数组元素:"); for(i=0;i<10;i++)

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到j v 的权ij w =∞。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在 1 i v +,使 1()min{()} i l v l v +=,v S ∈; ⑤ 1{} i S S v +=, 1{} i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果12 1n n v v v v -是从1v 到 n v 的最短路径,则 12 1 n v v v -也必然是从1v 到 1 n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元 素表示顶点i v 到j v 的权ij w ,若i v 到j v 无边,则realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数+308)。 function re=Dijkstra(ma)

常用一维搜索算法

无约束优化:不对定义域或值域做任何限制的情况下,求解目标函数的最小值。 这是因为实际应用中,许多情形被抽象为函数形式后均为凸函数,对于凸函数来说局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值。 (直接法:又称数值方法,它只需计算目标函数驻点的函数数值,而不是求其倒数,如坐标轮换法,单纯型法等。 间接法:又称解析法,是应用数学极值理论的解析方法。首先计算出目标函数的一阶或一阶、二阶导数,然后根据梯度及海赛矩阵提供的信息,构造何种算法,从而间接地求出目标函数的最优解,如牛顿法、最速下降法共轭梯度法及变尺度法。) 在优化算法中保证整体收敛的重要方法就是线搜索法与信赖域法,这两种算法既相似又有所不同。根据不同的线搜索准则就延伸出不同的线搜索算法,譬如比较常见和经典的最速下降法,牛顿法,拟牛顿法以及共辄梯度法等。 一维搜索又称线性搜索(Line Search),就是指单变量函数的最优化,它是多变量函数最优化的基础,是求解无约束非线性规划问题的基本方法之一。 一维搜索技术既可独立的用于求解单变量最优化问题,同时又是求解多变量最优化问题常用的手段,虽然求解单变量最优化问题相对比较简单,但其中也贯穿了求解最优化问题的基本思想。由于一维搜索的使用频率较高,因此努力提高求解单变量问题算法的计算效率具有重要的实际意义。 在多变量函数的最优化中,迭代格式X k+1=X k+a k d k其关键就是构造搜索方向d k和步长因子a k 设Φ(a)=f(x k+ad k) 这样从凡出发,沿搜索方向d k,确定步长因子a k,使Φ(a)<Φ(0)的问题就是关于步长因子a的一维搜索问题。其主要结构可作如下概括:首先确定包含问题最优解的搜索区间,然后采用某种分割技术或插值方法缩小这个区间,进行搜索求解。 一维搜索通常分为精确的和不精确的两类。如果求得a k使目标函数沿方向d k达到 极小,即使得f (x k+a k d k)=min f (x k+ ad k) ( a>0) 则称这样的一维搜索为最优一维搜索,或精确一维搜索,a k叫最优步长因子; 如果选取a k使目标函数f得到可接受的下降量,即使得下降量f (x k)一f (x k+a k d k)>0是用 户可接受的,则称这样的一维搜索为近似一维搜索,或不精确一维搜索,或可接受一维 搜索。 由于在实际计算中,一般做不到精确的一维搜索,实际上也没有必要做到这一点,因为精确的

基于matlab的一维搜索

最优化理论与算法 基于matlab 的一维搜索——0.618试探法 2 m in ()21def f x x x =-- , 初始区间11[,][1,1]a b =-,精度0.16L ≤ clc clear %设定初始值 L=0.16; k=1; b=1; a=-1; r=a+0.382*(b-a); u=a+0.618*(b-a); fr=fun(r); fu=fun(u); c=[]; while b-a>L if fr>fu a=r; b=b; r=u; u=a+0.618*(b-a); fr=fun(r); fu=fun(u); else a=a; b=u; u=r; r=a+0.382*(b-a); fr=fun(r); fu=fun(u); end k=k+1; c=[c,[a,b,r,u,fr,fu]]; end k jieguo=reshape(c,6,k)’ s=[a,b] l=b-a jieguo = -1.0000 1.0000 -0.2360 0.2360 -0.6526 -1.1246 -0.2360 1.0000 0.2360 0.5278 -1.1246 -0.9706 -0.2360 0.5278 0.0558 0.2360 -1.0496 -1.1246 0.0558 0.5278 0.2360 0.3475 -1.1246 -1.1060 0.0558 0.3475 0.1672 0.2360 -1.1113 -1.1246 0.1672 0.3475 0.2360 0.2787 -1.1246 -1.1234 0.1672 0.2787 0.2098 0.2360 -1.1218 -1.1246

利用MATLAB实现Dijkstra算法

利用计算机语言编程实现D算法 一:实验目的 本实验课程主要目的是让学生够熟练掌握图论中的D算法。 二:实验方法 选择MATLAB语言编程实现D算法。 三:实验要求 1.输入必要参数,包括:节点个数、节点间路径长度、给定节点; 2.输出给定节点到其它各节点的最短路径、径长; 3.节点间路径长度用矩阵形式表示。 四:实验内容 无向图共有7个节点,如下图所示。 v1 45 7 计算机输入的节点间路径长度为7×7矩阵: 1234567 1 2 3 4 5 6 7 0123 106 2054 304 5407 6408 780?? ∞∞∞?? ∞∞∞∞?? ??∞∞∞??∞∞∞∞?? ??∞∞∞ ??∞∞∞ ????∞∞∞∞ ??v v v v v v v v v v v v v v 若 1 v为指定节点,则1v到其它各节点的最短路径及径长的计算机计算结果为: 提示:不相邻的两个节点间∞可以用相对较大的数代替(如输入100表示∞)

五:实验原理 1. D 算法原理 已知图G=(V,E),将其节点集分为两组:置定节点集p G 和未置定节点集 p G G -。其中p G 内的所有置定节点,是指定点s v 到这些节点的路径为最短(即已完成最短路径的计算)的节点。而p G G -内的节点是未置定节点,即s v 到未置定节点距离是暂时的,随着算法的下一步将进行不断调整,使其成为最短径。在调整各未置定节点的最短径时,是将p G 中的节点作为转接点。具体地说,就是将p G 中的节点作为转接点,计算(s v ,j v )的径长(j p v G G ∈-),若该次计算的径长小于上次的值,则更新径长,否则,径长不变。计算后取其中径长最短者,之后将j v 划归到p G 中。当(p G G -)最终成为空集,同时p G G =,即求得s v 到所有其他节点的最短路径。 j w 表示s v 与其他节点的距离。 在p G 中,i w 表示上一次划分到p G 中的节点i v 到s v 得最短路径。在 p G G -中,表示s v 到j v (j p v G G ∈-)仅经过p G 中的节点作为转接点所求得的该次的最短路径的长度。 如果s v 与j v 不直接相连,且无置定节点作为转接点,则令j w =∞。 2. D 算法实现流程 D 算法流程如下图所示。

第5章 一维搜索

第5章 一维搜索 §5.1 最优化算法的简单介绍 1.算法概念 在解非线性规划时,所用的计算方法,最常见的是迭代下降算法. 迭代:从一点) (k x 出发,按照某种规则A 求出后继点) 1(+k x .用1+k 代替k ,重复以上 过程,产生点列}{) (k x 。 规则A 是在某个空间X 中点到点的映射,即对每一个X x k ∈) (,有点 X x A x k k ∈=+)() () 1(. 更一般地,把A 定义为点到集的映射,即对每个点X x k ∈) (,经A 作用,产生一个点 集X x A k ?)() (.任意选取一个点)() () 1(k k x A x ∈+,作为) (k x 的后继点. 定义1: 算法A 是定义在空间X 上的点到集映射,即对每一个点X x ∈,给定-个子集 X x A ?)(. 例1 考虑线性规划: 1 s.t. min 2 ≥x x 最优解1=x .设计一个算法A 求出这个最优解. ???????

无约束最优化问题可以定义解集合为 }0)(|{=?=Ωx f x 约束最优化问题可以定义解集合为 }T -K 为|{点x x =Ω 2. 算法收敛问题 设Ω为解集合,X X A →:是一个算法,集合X Y ?.若以任一初点Y x ∈) 1(开始, 算法产生的序列其任一收敛子序列的极限属于Ω,则称算法映射A 在Y 上收敛. 收敛速率: 定义2: 设序列}{) (k γ 收敛于* γ,定义满足 ∞<=--≤+∞ →βγ γ γ γp k k k * ) (*) 1(lim 的非负数p 的上确界为序列}{) (k γ 的收敛级. 若序列的收敛级为p ,就称序列是p 级收敛的. 若1=p 且1<β,则称序列是以收敛比β 线性收敛的. 若1>p 或者1=p 且0=β,则称序列是超线性收敛的. 例2 序列{}10 ,<

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 1.1 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到 j v 的权 ij w =∞ 。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在1i v +,使1()min{()}i l v l v +=,v S ∈; ⑤ 1{}i S S v += ,1{}i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果121n n v v v v - 是从1v 到n v 的最短路径,则121n v v v - 也必然是从1v 到1n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元素表示顶点i v 到 j v 的权 ij w ,若i v 到 j v 无边,则 realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数(1.7977e+308)。 function re=Dijkstra(ma)

最短路dijkstra算法Matlab程序调用举例

最短路dijkstra算法Matlab程序调用举例 2014/4/17 徐明华 设赋权图如下图所示 下述Matlab程序 % test dijkstra's algorithm % The test example is take from the following book % Graph Theory with Applications by J. A. Bondy and U. S. R. Murty. % Page 16. clc s=1; t=5; flag=1; W=ones(11,11)*inf; % for i=1:11 W(i,i)=0; end W(1,2)=2; W(2,1)=2; W(2,3)=1; W(3,2)=1; W(3,4)=2; W(4,3)=2; W(4,5)=9; W(5,4)=9; W(5,6)=4; W(6,5)=4; W(6,7)=1; W(7,6)=1; W(7,8)=9; W(8,7)=9; W(8,1)=1; W(1,8)=1; W(1,9)=8; W(9,1)=8; W(9,2)=6; W(2,9)=6;

W(9,8)=7; W(8,9)=7; W(9,7)=2; W(7,9)=2; W(9,10)=1;W(10,9)=1; W(9,3)=5; W(3,9)=5; W(10,7)=4; W(7,10)=4; W(10,11)=6; W(11,10)=6; W(10,3)=3; W(3,10)=3; W(11,7)=3; W(7,11)=3; W(11,6)=1; W(6,11)=1; W(11,4)=7; W(4,11)=7; W(11,5)=2; W(5,11)=2; W(11,3)=9; W(3,11)=9; [c0,c,path0,path]=dijkstra(s,t,W,flag); c0 path0 调用matlab函数dijkstra(具体见本文库文档:最短路dijkstra算法Matlab程序), 可得到顶点v1 到顶点v5的最短路径path0及最短路径的长度c0如下: c0 = 13 path0 = 1 2 3 10 9 7 6 11 5 如果将上述程序中的语句 flag=1; 替换为 flag=2; 并将 [c0,c,path0,path]=dijkstra(s,t,C,flag); c0 path0 替换为 [c0,c,path0,path]=dijkstra(s,t,C,flag); c path 运行程序可得到顶点v1到图中其他各顶点的最短路径所成矩阵path和各最短路径的长度所成向量c,其中path的第i行表示v1到第i个顶点的最短路径,c(i) 为v1到第i个顶点的最短路径的长度。具体运算结果如下: c = 0 2 3 5 13 10 9 1 7 6 11 path = 1 0 0 0 0 0 0 0 0 0 0

三点一维搜索法报告

三点一维搜索法报告 姓名:张攀班级:2009211102 学号:09210048 算法的基本思想: 三点一维算法是从0.618法衍生而来的,0.618算法使用从两点a,b间选择两个点c,d将原来区域分为三个,抛弃不符合所求数值趋势的两个区域,不断逼近所求值,当|b-a|

实例分析: 选择函数:f[x] := Sin[x^4] + Cos[x] 该函数在[0,1]范围内有极小值,令a=0,b=1,p=0.1,e选取1*10^(-9),运算后结果在x=0.4904089750976563时有最小值0.939949。运算次数为22次, P值选取效率的影响: 在该函数中,[0,1]内函数波动较为平缓,从中间缓慢向两边扩展显然速度较快,因为所求点接近终点,当p增大的时能很快覆盖到所求点效率将变高,如果区域远超过所求点则效率将变低。 P取值以及逼近次数i的关系: P=0.1,i=22 P=0.2,i=26 P=0.25,i=19 P=0.3,i=19 P=0.35,i=21 P=0.4,i=23 P=0.5,i=26 P=0.6,i=30 P=0.7,i=36 P=0.8,i=57 可见最好的取值应为0.25到0.3之间。 总结: 三点一维算法实际通过多次比较,减少了0.618法对点的移动,和对区域的选择,比0.618法稳定。在比较区域大时三点一维算法比起0.618法更加优秀。

D_i_j_k_s_t_r_a最短路算法MATLAB程序_

从起点sb到终点db通用的Dijkstra标号算法程序 function [mydistance,mypath]=mydijkstra(a,sb,db); % 输入:a—邻接矩阵,a(i,j)是指i到j之间的距离,可以是有向的% sb—起点的标号, db—终点的标号 % 输出:mydistance—最短路的距离, mypath—最短路的路径 n=size(a,1); visited(1:n) = 0; distance(1:n) = inf; distance(sb) = 0; %起点到各顶点距离的初始化visited(sb)=1; u=sb; %u为最新的P标号顶点 parent(1:n) = 0; %前驱顶点的初始化 for i = 1: n-1 id=find(visited==0); %查找未标号的顶点 for v = id if a(u, v) + distance(u) < distance(v) distance(v) = distance(u) + a(u, v); %修改标号值 parent(v) = u; end end temp=distance; temp(visited==1)=inf; %已标号点的距离换成无穷 [t, u] = min(temp); %找标号值最小的顶点 visited(u) = 1; %标记已经标号的顶点 end mypath = []; if parent(db) ~= 0 %如果存在路! t = db; mypath = [db]; while t ~= sb %从终点db开始回溯 p = parent(t); mypath = [p mypath]; t = p; end end mydistance = distance(db); 例题:运筹学教材P205 第七题 D=[0 3 6 1 inf inf inf inf; inf 0 2 inf 4 6 inf inf; inf inf 0 inf inf 5 inf inf; inf inf 4 0 inf 3 6 inf; inf inf inf inf 0 inf inf 7; inf inf inf inf inf 0 7 11; inf inf inf inf inf inf 0 8; inf inf inf inf inf inf inf 0]

相关文档
最新文档