中子剂量与防护

中子剂量与防护
中子剂量与防护

中子剂量和防护-正文

中子剂量通常指中子吸收剂量或中子剂量当量(见辐射剂量)。不同能量的中子同人体组织中的元素(氢、氮、氧、碳等)发生不同的相互作用(见中子核反应和宏观中子物理),所产生的具有一定能量的次级带电粒子能够引起电离和激发,从而使肌体受到损伤。剂量学涉及的主要物理问题是散射、核裂变和辐射俘获等.

研究中子在生物组织中不同深度的吸收剂量和剂量当量的模型有:半无穷大板块、有限圆柱体(直径为30厘米,高为60厘米)和椭圆柱体(长半轴为18厘米,短半轴为12厘米,高为60厘米)模型。模型的材料组成应同软组织的相当,密度为1g/cm3。能量范围从10-2eV延伸至 2000MeV。其中对半无穷大板块模型和有限圆柱体模型研究的结果,是目前确定中子注量率-剂量当量率换算系数的基础。

平行中子束垂直入射到一块物质上时,该物质的吸收剂量D随深度的分布(示意图见图1)同γ辐射的情形相似:吸收剂量的最大值并不出现在表面,而是出现在某个深度处,这个深度取决于中子的能量。医学上就是通过调节辐射的能量,把这个最大值对准病变组织的部位进行放射治疗。

放射防护规定:对个人所受剂量的限制是由剂量当量决定的。不同能量中子的有效品质因数坴(见辐射剂量)的数值示于图2。此外,由测得的中子注量率可以换算到剂量当量率。目前各国都采用图3所示的数值。

中子剂量测定主要指中子吸收剂量和剂量当量的测量。此外还包括表示剂量分布的微剂量测量。通常使用组织等效电离室,乙烯-聚乙烯正比计数器,硫酸亚铁剂量计以及量热计等测量吸收剂量。在多数情况下,组织等效电离室是测定快中子吸收剂量最准确的装置仪器。剂量当量测量仅适用于辐射防护,所采用的方法分场所监测和个人监测两类,其响应正比于最大剂量当量。微剂量测定的目的在于从实验上研究辐射在直径为微米量级或更小的球体内能量沉积的空间分布和谱分布。微剂量学所考虑的体积应同生物细胞的大小相当,借以模拟辐射在生物细胞、细胞组分和生物大分子中的能量沉积。常用的测量仪器是低压组织等效气体的“无壁”计数器,但测量方法和数据处理牵涉到很复杂的技术。

中子防护目的在于减少工作人员所受的辐射剂量,并尽可能将它控制在放射防护标准规定的限值以下。职业性放射性工作人员每年所受的剂量当量限值为50mSv(5rem)。表中给出对不同能量的中子相当于25μSv(2.5mrem)每小时的中子注量率以及1mSv(0.1rem)的中子注量。

减少防护工作人员受中子照射的措施除了尽量缩短受照时间、尽可能远离中子源以外,还需对中子源进行有效的屏蔽。

不同能量的中子同物质相互作用有不同的特点(见中子核反应和宏观中子物理)。因此屏蔽热中子要用含吸收截面大、俘获辐射γ光子能量低的材料,如硼、锂以及它们的化合物等。屏蔽快中子时首先需要用慢化能力强的材料将快中子的能量降低,然后用吸收截面大、俘获辐射γ光子能量低的材料加以吸收。快中子慢化的主要过程对于重核及中重核是非弹性散射;对于轻核是同原子核发生弹性散射。对于一次弹性散射,靶原子核的质量越接近中子的质量,中子损失的能量也就越大。因此屏蔽能量不很高的快中子最有效的元素是氢,通常采用的是含氢成分较多的水、石蜡、聚乙烯等轻材料。对于几兆电子伏以上能量的中子,可以用含重核或中重核的材料通过非弹性散射使其能量迅速降低然后再用含氢材料进一步使其慢化,最后被含10B或6Li材料吸收。因此,在规划屏蔽层的布局和确定屏蔽层厚度时必须知道中子能谱及各类材料的不同中子能量的有关反应截面数据,并根据上述特点对屏蔽层填料作合理安排,据某种理论模型进行数学运算。对大型中子源常用的屏蔽计算方法有双群法、多群法和移出扩散法等。放射性同位素中子源的屏蔽计算常用分出截面法和半(或1/10)值层减弱法。

若屏蔽层足够厚,又含有足够量的氢时,可用分出截面法进行计算。在近似计算中,可用裂变中子谱的分出截面。

半(或1/10)值层减弱系指将辐射量(注量、吸收剂量或剂量当量等)降至1/2(或1/10)时所需的屏蔽层厚度。半值层厚度(HVT)同1/10值层厚度(TVT)的换算关系式是:H VT=0.301TVT。

普通混凝土对单能中子的1/10值厚度示于图4。

屏蔽放射性中子源,可以单独使用水、石蜡等;也可兼用其他慢化材料和吸收材料,或将慢化材料和吸收材料混合使用(如含硼聚乙烯、含硼石蜡等)。对大型中子源(如加速器、反应堆)的屏蔽比较复杂,常以普通混凝土和重混凝土等屏蔽材料为主,还要采用铁一类的物质屏蔽γ辐射和快中子。

在中子辐射防护中,除了中子以外还应当特别注意对γ辐射的防护。这是因为反应堆、加速器和很多放射性同位素中子源都伴有很强的γ辐射。在很多情况下,γ辐射的剂量当量大大超过中子的剂量当量。例如,镭-铍中子源的γ剂量当量率约比中子剂量当量率高50倍。即使是被认为γ剂量较少的镅-铍中子源,γ辐射剂量当量率也占总剂量当量率的百分之几十。

在使用放射性同位素中子源时,要严格防止放射性物质的泄漏。特别是使用镭-铍中子源时应经常检查是否有氡气漏出。一旦发现有漏出,就应及时采取措施。

辐射剂量-正文

包括计算媒质在辐射场中吸收辐射的能量和推断辐射对人体健康造成的危害两个方面。

吸收剂量媒质在辐射场中吸收辐射能量的度量,用D表示。D=d劔/d m,式中d劔是电离辐射授予某一体积元中物质的平均能量,d m为该体积元中物质的质量。它的国际制(SI)单位是戈瑞(Gy),1Gy=1J/kg,暂时并用单位是拉德(rad),1rad=10-2Gy。

剂量当量辐射对人体产生的危害,不仅与所受的吸收剂量有关,而且还与辐射的品质以及其他因素有关。为了以同一种尺度衡量不同品质的辐射对人体产生的效应,辐射防护上引进了剂量当量H,其定义为H=DQN,Q是用以表征辐射品质的品质因数,N是其他修正因子的乘积,目前国际辐射防护委员会指定N=1。剂量当量的国际制单位为希〔沃特〕(Sv),1Sv=1J/kg,暂时并用单位是雷姆(rem),1rem=10-2/Sv。

Q值是在所关心的一点处的水中碰撞阻止本领(L

)的函数,国际辐射单位和测量委员会规定的Q与L∞的关系如表所示。而最大剂量

当量与最大剂量当量所处深度的吸收剂量的比称为有效品质因数,记作坴.

辐射对人体的伤害直接与随机性效应的发生率相关,评价吸收剂量对人体的伤害时,常假定随机性效应的发生率与吸收剂量成线性关系。许多资料表明,剂量在几戈瑞以下随机效应发生率E与D的关系可以表示为:E=aD+bD2,其中a和b是常量。对E的贡献在高剂量(1Gy以上)和高剂量率(1Gy/min以上)时,以bD2为主,低剂量时,以aD为主。因此剂量当量不能用于评价事故性高吸收剂量照射所引起的人体有害效应。

集体剂量当量由于某种实践或辐射源而使某一群体全体成员接受的剂量当量的总和。用以评价这一组人员所受的危害。用S k表示,

定义式为。式中p(H)是群体中按剂量当量H的微分分布函数。

剂量当量负担在某些情况下,群体长期受某种辐射源的照射,例如核爆炸落下尘埃或核工厂排放的放射性废物所产生的照射,剂

量当量负担用以评价这种情形对将来所造成的照射危害,用H e表示,其定义式为,式中

是某一群体中每人的某一器官或组织所受的平均剂量当量率。

约定剂量当量是剂量当量负担的一个特例,是人体单次摄入的放射性物质对某一器官或组织在此后终止摄入放射性物质的50年内产生的累积剂量当量。

中子核反应

neutron induced nuclear reaction

中子同原子核相互作用引起的核反应。中子的重要特征是不带电,不存在库仑势垒的阻挡,这就使得几乎任何能量的中子同任何核素都能发生反应,在实际应用中,低能中子的反应起更重要的作用。

中子核反应主要有:①中子裂变反应。某些重核如235U俘获中子发生裂变,记作(n,f),裂变同时还放出2~3个瞬发中子,并释放很大的裂变能,这种中子的增殖可使裂变反应持续不断进行,形成裂变链式反应,这是获取核能的重要途径。②中子辐射俘获。中子被核俘获后形成复合核,然后通过放出一个或多个γ光子退激,记作( n,γ)研究γ射线的能谱可以得到复合核能级结构、辐射过程性质的信息,( n,γ)反应对一切稳定核都是重要的,甚至中子能量很低时也能发生,(n,γ)反应还是生产核燃料、超铀元素等的重要反应。此外,还有中子的弹性散射和非弹性散射;中子被核吸收可放出 2个、3 个…中子的( n,2n ),( n ,3n)…反应;发射带电粒子的(n,X)反应以及吸收中子不放出中子的中子吸收等等。

中子核反应在研究核结构和核反应机制及核能利用中占重要地位。

宏观中子物理-正文

研究中子同大块媒质相互作用的核物理分支。它着眼于大量中子在单一媒质中的平均行为。它首先是由于裂变反应堆的要求而发展的,但它对于裂变能源,对于中子束的应用以及各种中子物理实验技术的发展都有重要的作用。

宏观截面和平均自由程以一定速度在大块媒质中运动的中子,不断地同周围的原子核(称为靶核)发生碰撞,发生散射或吸收两类中子核反应。散射时,中子本身并不消失,只是能量发生变化,以新的速度继续在媒质中运动。吸收时,中子被原子核俘获,从而在媒质中消失。原子吸收中子以后将发出γ射线、发出次级粒子或发生原子核裂变,核裂变将产生新的中子。这些核反应的发生几率用各种反应截面(微观截面,见核反应截面)描述,截面大,表示产生核反应的几率大。不同能量的中子,与原子核产生各种反应的截面也不同。为了便于表述中子同宏观物质的作用,引入宏观反应截面这一物理量,用符号Σ表示。它是靶核的微观截面和单位体积内的靶核数N的乘积Σ=Nσ。与微观截面不同,宏观截面的量纲是【L-1】。宏观截面是一个中子同单位体积内的原子核发生核反应的平均几率大小的量度,它等于中子在媒质内飞行单位距离时发生某种核反应的几率。宏观总截面用Σt表示,Σt=Σa+Σs,Σa为宏观吸收截面,Σs

为宏观散射截面。

中子在连续两次碰撞之间的平均飞行距离称为平均自由程,用符号λ表示。显然,在一个平均自由程之内发生某种碰撞的平均数为1。

参照宏观截面的定义,容易得出λΣ=1,即平均自由程等于宏观截面的倒数。相应的有散射平均自由程,吸收平均自由程

。中子在媒质中的各种运动规律(无论空间时间变量的,还是能量变量的)都同宏观截面或平均自由程有关,宏观截面或平均自由程是描述物质中子物理特性的最基本的物理量。

宏观参量及其实验研究无论是核裂变,还是其他核反应产生的中子,一般能量都在兆电子伏量级,这些快中子在大块媒质中不断通过散射损失能量,直到和媒质中靶核的能量交换处于平衡状态为止。散射可分为弹性散射和非弹性散射两种。发生弹性散射时,中子和靶核间只有动能交换,是一种弹性球式碰撞,靶核内能不发生变化。发生非弹性散射时,靶核内能发生变化。非弹性散射是一种阈反应,只有入射中子的能量超过某一数值时才能发生。一般说,轻核非弹性散射阈值高,重核的阈值低。研究中子在大块媒质中损失能量的规律对核反应堆的物理设计十分重要。在快中子反应堆内,中子的平均能量为100keV左右,裂变中子(平均能量约为2MeV)主要通过非弹性散射损失能量。热中子反应堆内中子的平均能量只有0.01eV左右,裂变中子主要通过弹性散射损失能量。中子这种损失能量而不断减速的过程称为慢化过程。中子从某一能量慢化到热能,在媒质中穿行的平行距离用中子年龄来描述。对一个在无限大无吸收的媒质内的单能点中子源,定义中子年龄τ为中子在被慢化前穿行的直线距离R M的均方值的1/6,即

显然τ将由中子在媒质中的散射平均自由程和靶核的质量数决定,也同中子的初始能量有关。例如,平均能量为2MeV的裂变中子,在轻水(即普通水)中的中子年龄τ=26cm2。慢化到热中子以后,中子在媒质中的主要过程是扩散。中子慢化到热中子以后并不马上消失,还会在媒质中不断运动,不断地同原子核发生碰撞,这时中子和靶核之间的能量交换已达到平衡状态,扩散过程是一个单纯的从密度高的位置向密度低的位置迁移的过程。在某些条件下,中子扩散现象可以用斐克定律来描述,这些条件中最主要的是媒质必须是均匀的,足

够大的,宏观吸收截面必须远小于宏观散射截面,即ΣaΣS。

描述中子扩散过程的斐克(Fick)定律是反应堆物理计算中广为使用的扩散近似模型的基础,它表示:中子流密度J正比于中子注量率梯度墷υ的负值,其比例系数叫扩散系数,用D表示

其中,υ为中子注量率。

中子从成为热中子开始扩散直到被吸收为止,在媒质中平均穿行的距离用中子扩散长度描述,它是表征物质宏观中子物理特性的又一重要参量。对于在无限媒质内点中子源的情况,扩散长度L的平方等于热中子从产生地点到被吸收处所穿行的直线距离RD的均方值的1/6,即

扩散长度和扩散系数之间的关系为

中子年龄和扩散系数等统称为宏观中子物理参量。它们从总体上反映了物质的中子物理特性。从20世纪40年代中期直到60年代末,由于反应堆工程的需要,人们广泛研究了已经或可能用在反应堆中作为慢化剂的各种材料,如石墨、重水、铍、轻水和多种有机材料,测定它们的中子年龄和扩散长度。测定方法可以分为静态的和动态的两类,所谓静态方法,是在大块被研究的媒质中放一个恒定中子源,测定中子注量率在媒质中的空间分布。具有不同能量响应特性的中子探测器测得的空间分布也不同,分析这些空间分布曲线就可以得到

相应的参量。所谓动态方法是瞬间向媒质注入一束中子,测量中子数随时间的衰减,从分析衰减曲线中得到有关参量。动态方法又称脉冲中子源方法,发展得比较晚,但使用得比较广。

研究课题的扩展和深入在反应堆工程发展的前期,由于堆用材料的微观核数据不够齐全,计算机及计算技术还不够发达,反应堆物理计算主要依靠宏观中子物理参量,人们不仅研究和测量了单一媒质的宏观中子物理参量,还测定了混合媒质,如水-铝等混合媒质的宏观中子物理参量,此外,还对几种常用的慢化媒质,例如轻水和重水,测定了宏观中子物理参量随媒质温度的变化。

为了描述中子群体在大块媒质中的运动规律,可以写出很完备的中子输运方程,在输运方程中出现的只是一些基本核参量,随着核数据的逐步齐备和数字计算机技术的发展,宏观中子物理参数对反应堆物理设计来说已经不那么重要了,但是,在早期形成的,属于宏观中子物理的一些基本概念仍在发展和使用,例如中子年龄本来是对无吸收的媒质定义的,对有吸收的媒质并不适用,但是人们仍然按中子被减速到某一能量以前穿行的空间距离的均方值,即所谓空间二次距来定义中子年龄。又如扩散系数,本来是对热中子定义的,人们却把它引伸到快中子能量范围,在多群扩散近似中,按斐克定律的模式,定义了群扩散系数,等等。

此外,在宏观中子物理研究中发展起来的脉冲中子源方法,它的基本思想和某些实验技术已被用在其他领域,例如在反应堆物理实验中,用以测定反应堆的次临界度,这方面的工作十分活跃。在工业上宏观中子物理参量及其有关的测试技术已被用来检验堆用慢化剂的核性能,脉冲中子源技术还用在石油地质勘探中,并取得了积极的成效。

目前,在宏观中子物理这个领域内,研究课题已经深入了一步,针对媒质的具体结构和特性,探讨一些基本问题。例如,研究媒质的几何结构和物质结构对中子宏观行为的影响。首先,在空腔内中子的宏观截面趋向于零。这意味着中子的平均自由程为无限大,如果在媒质内有空腔,它对某些中子将成为陷阱,如果空腔是开口的,还会造成中子丢失。而实际的反应堆总会有这种或那种空腔存在。其次,研究中子同靶核的相互作用时,最简单的方法是假定靶核原子是自由的,而事实上物质总是有一定结构的,例如石墨中的碳原子,氢化锆中的氢原子,它们都处在点阵的束缚状态,水中的氢原子也是处在化学键的束缚之中。物质的结构将影响靶核和中子之间的能量交换形式,进而将影响中子的宏观行为,影响描述宏观行为的物理参量。对这些基本问题的进一步研究,将有助于深化人们对中子在大块物质中的运动规律的认识,也将有助于反应堆物理计算的精确化。

参考书目卢希庭主编:《原子核物理》,原子能出版社,北京,1981。谢仲生等编著:《核反应堆物理分析》,原子能出版社,北京,1981。

电离室-正文

测量电磁辐射、粒子流强度或带电粒子能量的设备。它由室壁导电的充气容器和中心电极组成。荷电粒子或电磁辐射进入电离室后,便在气体中引起电离现象。在外壳和中心电极之间加有适当的电压,用来收集所产生的离子或电子。这个电压不能太高,以免电场或碰撞电离等引起电荷倍增。电离室输出电流与所充气体的压力、化学成分、电离室的容积以及入射线的能量等有关。尽管电离过程十分复杂,但产生一对电荷载流子所需的平均能量是一定的,与电离粒子的类型和能量无关,即与探测器的工作条件无关。电离室的响应波段取决于窗口材料和填充的工作气体。通常使用两种类型的电离室。第一种电离室直接测量电荷载流子。如果辐射强度很低,电离室输出电流也很小,就难以测准,所以这种连续输出的电离室常常用在高辐射强度区域,例如,用于对太阳X射线和紫外线的测量。这种电离室结构简单可靠,早期用在火箭上来测量太阳氢 Lα谱线辐射。以后的太阳辐射监测卫星(SOLRAD)系列也采用电离室,配备适当量程的静电计放大器,临测太阳 X射线和紫外线。1967年,卡弗等人用电离室测量太阳1580~1640埃和1430~1470埃的紫外辐射,计算出太阳亮温度的极小值,与照相等方法得到的结果相近,而探测器的定标比较简单、直接。第二种电离室是内尔提出的积分型电离室。它用在“探险者”6号、“先驱者” 5号和轨道地球物理台(OGO)卫星上。

正比计数器

proportional counter

用气体作为工作物质,输出脉冲幅度与初始电离有正比

关系的粒子探测器。这种探测器的结构大多采用圆柱形,中心是阳极细丝,圆柱筒外壳是阴极,工作气体一般是隋性气体和少量负电性气体的混合物。入射粒子与筒内气体原子碰撞使原子电离,产生电子和正离子。在电场作用下,电子向中心阳极丝运动,正离子以比电子慢得多的速度向阴极漂移。电子在阳极丝附近受强电场作用加速获得能量可使原子再电离。从阳极丝引出的输出脉冲幅度较大,且与初始电离成正比。正比计数器具有较好的能量分辨率和能量线性响应,探测效率高,寿命长,广泛应用于核物理和粒子物理实验。

能够直接引起介质电离或通过次级过程引起电离的辐射统称为致电离辐射。在辐射防护领域内通常不包括微波、激光、紫外线等。致电离辐射的防护所涉及的领域很广,它主要研究制订各种标准、规程和措施,既保护人类,又允许进行那些有可能产生辐射照射的必要活动。

致电离辐射的防护主要包括如下几项工作。①确定辐射防护的基本原则、制定辐射防护标准、规程和制度。②推荐辐射防护方法和设备。③定量或定性地确定职业工作人员和群体所受的剂量。必须包括检验屏蔽体、防护设备的效能;及时提出防护规程、措施,发现操作中的缺点以及其他事故,防止职业工作人员受到较高剂量的照射或对周围居民造成有害影响。进行个人剂量监测、场所监测和环境污染监测。④事故的预防和处理。⑤辐射防护的评价等。

辐射防护的基本原则①从事辐射工作的实践必须正当化。对于任何一项伴有辐射照射的实践,只有由于这项实践而得到的利益大于付出的代价时,才能被认为是正当的。②辐射防护水平必须达到最优化。考虑到经济因素和社会因素,任何一种实践带来的照射必须保持在可以合理做到的最低水平。要对每一实践进行代价-利益差分分析,使带来的利益达到最大。③对个人或群体所受的剂量当量制订出限值。正当化和最优化不一定能对职业工作人员或公众中的个人提供足够的防护,因此必须对个人所受的剂量当量制订出限值,以此作为保障安全的最后一项措施。

辐射防护标准确定标准有三个基本环节。

①研究辐射引起的有害效应同生物所受剂量的关系。这是制订辐射防护标准的主要依据。国际放射防护委员会(ICRP)把辐射引起的有害效应(不论是反映在受照射个体本身的躯体效应还是反映在其后裔身上的遗传效应)分为两种类型,一种是随机性效应,发生这种效应的概率同所受剂量大小有关,并且不存在某个确定的阈值;另一种是非随机性效应,这种效应的严重程度同所受剂量大小有关,而且引起这种效应的剂量可能存在着某个确定的阈值。在辐射防护所涉及的剂量范围内,一切遗传效应都被视为随机性效应。反映在受照射个人身上的躯体效应,其中一些是非随机性效应(例如,辐射诱发的眼晶体白内障),而另一些则是随机性效应(例如,辐射诱发的癌症是低剂量照射下的主要躯体效应,它是辐射防护的主要问题)。从辐射引起的有害效应着眼,辐射防护的目的在于“防止辐射引起有害的非随机性效应,并限制随机性效应发生的概率”。

②分析人体受到辐射危险的主要组织所可能出现的有害效应,然后对各种随机性效应的危险度(单位剂量辐射照射下的危险。而危险是个人受到一定剂量照射之后,发生某种有害效应的概率)给出定量的估计。根据不同器官或组织可能发生的随机性效应的危险度,确定计算有效剂量当量(见辐射剂量)的权重因子W T(见表1)。根据某种实践的具体条件,权衡利弊,把一切不可避免的照射降到容易达到的较低水平。

③根据可以接受的危险度,以及辐射防护的三个基本原则,制定出与之相适应的一套剂量限制制度。表2中列出了辐射防护标准的各种限值。

辐射防护标准制订之后,还要采用有效的防护方法和设备,制定辐射防护规程和制度。为了检查是否达到了要求,就需要开展大量的多方面的监测,如个人所受内、外照射剂量监测,辐射场的监测和环境污染监测等。在发生事故的情况下应当采取措施,防止污染扩大,减少危害并立即进行处理。为了完成这些监测任务,需要各式各样的监测仪表和设备、复杂的物理分析方法和化学分析方法,例如监测个人外照射的胶片剂量计、热释光剂量计、袖珍式剂量计、裂变径迹探测器等等,测量辐射场用的各种巡测计,以及测量尿、水、空气、土壤、生物样品等中微弱放射性的低水平放射性测量的装置等。

根据监测得到的数据对职业工作人员和周围居民所受的剂量进行评价。这种评价包括:设计时的防护评价,开工前和开动时的防护评价以及运行和操作中的防护评价。然后,以辐射防护标准为依据,分析总的防护状况,找出防护设备和措施中的薄弱环节,提出改进方法。

受外照射人员的预后和医学处理,取决于是全身受照还是局部受照或二者兼有(多数为不均匀照射所致)。了解吸收剂量在体内的分布,对预后判断和治疗方法的选择是重要的。剂量分布取决于照射条件和事故环境。

如果辐射源体积很小,且紧贴身体(在衣服口袋里或用手摸),一般只发生局部照射;相反,若人员离源相对较远或源的大小与人体大小相当,人体围绕源移动,则可导致受照剂量近似均匀分布的全身照射。离源越远,移动越频繁,剂量分布越均匀。

如果源相对紧贴身体,并有一些屏蔽,将导致部分或局部受照;源贴身越近,照射范围越小,但局部照射剂量越大。

照射持续时间或照射剂量率同样也是重要的。如果同样的剂量是在短时间内接受的(高剂量率),就会发生更严重的辐射效应。

3.2局部辐射损伤的诊断和治疗

局部辐射损伤比全身辐射损伤发生的概率高得多。由高剂量(>8~10Gy)照射引起的局部损伤的症状类似热烧伤,但临床改变出现的时间明显延迟,从照后几天到几周或更长。局部损伤的严重程度不仅取决于剂量和辐射类型,而且取决于受照部位和面积大小,局部损伤通常虽无生命危险,但其迁延性效应可导致严重的身体残疾。

3.2.1临床表现

受照皮肤基底组织的进行性病理反应是局部辐射损伤的典型特征。通常接受的剂量越高,病理症状发展越快,预后越严重。典型症状是顽固的胀疼,这增加了病人的痛苦和治疗难度。表5列出了皮肤受γ或高能X线照射的剂量范围和观察到的临床症状出现的时间。表6

给出了我国急性皮肤辐射损伤的诊断标准。β辐射或低能X射线照射皮肤的特点是临床症状出现较早,但预后不严重,见表7。

表5皮肤辐射损伤临床症状的出现时间及受照剂量.

阶段/症状剂量范围(Gy)出现时间(天)

红斑5~1014~42.脱毛、毛囊丘疹3~514~18.干性脱皮8~1225~30.湿性脱皮15~2020~28.水泡形成10~207~21.溃疡(皮

内)>2014~21.坏死(穿透较深)>25>21.表6急性皮肤辐射损伤分度诊断标准.

分度初期反应潜伏期临床症状剂量(Gy)

Ⅰ度毛囊丘疹、暂时脱发≥3~.Ⅱ度红斑2~6周脱发、红斑≥5~.Ⅲ度红斑、烧灼感1~3周二次红斑、水疱≥10~.Ⅳ度红斑、麻木、搔痒、水肿、刺痛数小时~10天二次红斑、水疱坏死溃疡≥20.表7β辐射或低能X射线照射后手局部损伤的临床征候

急性期临床症状发生时间晚期效应的时间和演变(d)延迟效应估计剂量范围(Gy).初始继发性水泡糜烂坏死.红斑红斑溃疡

无或12-20d30-35无12-18(a).12-24h干性脱皮10-15(b).6-12h6-14d8-15d40-50无或轻度20-30(a).湿性脱皮萎缩18-25(b)上皮形成.4-6h3-7d5-10d10-18d50-70萎缩35-80(a).上皮形成色素消失30-70(b).毛细管扩张

1-2h0-4d3-5d6-7d6-10d60-80疤痕形成除非手术不能愈合萎缩色素消失毛细管扩张可能丧失功能>80

注:(a)只限手指;(b)整个手。

3.2.2主要诊断方法

物理剂量非常重要,因为局部辐射损伤的早期没有可利用的生物剂量方法。应详细询问事故经过并记录。物理检查中,可借助热成像技术每天观察皮肤反应。

在局部损伤情况下,应尽可能使用事故时受照的牙齿、衣服、纽扣、耳环或其它任何有机物,利用电子自旋共振法(ESR)估算受照剂量。事故后第一周内,每天的血细胞计数有助于排除全身受照的可能性,因为局部损伤只可观察到某些非特异性改变,如轻度白细胞增多或血沉加快。染色体畸变只在少数局部受照5~10Gy人员的淋巴细胞中发现,而且它只能提供定性资料,而不是定量资料。

有两种诊断方法可用来估计局部过量照射的严重程度:热成像技术和放射性同位素方法。当受照部位与相对应的非受照射区可比较时,这两种方法都是可靠的。

热成像技术可用来鉴别任何损伤,并确定其严重程度,它是探测局部辐射损伤有用而灵敏的技术,特别是在临床症状尚未出现的早期和潜伏期。另外,触点温度记录法和红外遥测温度法都是有用的。虽然后者对身体部分受照的诊断,特别是四肢受照射时要比前者好,但它也是较昂贵的。用放射性同位素方法可记录器官或身体部分血管的循环情况,即用高锝酸99Tcm静脉注射,以闪烁照相法监测锝的分布。热成像技术和放射性同位素法是互补的。这些方法虽不能准确估算剂量,但能判断临床损伤的严重程度。

3.2.3治疗

立即脱离辐射源或污染区,防止被照皮肤再次受到照射,疑有放射性核素污染时应及时洗消去污,对危及生命的损害(如休克、外伤和大出血)应首先给以抢救处理。

红班和干性脱皮可对症治疗。其原则是保护局部,避免皮肤受刺激和再损伤。可用具有清凉作用的粉剂、油剂外用。用含有氢化考地松的洗剂或喷雾剂,可减轻伴有水肿的严重红斑症状。对湿性脱皮的治疗,每天用敷料包裹和用抗菌溶液清洗是有效的,也可使用抗生素软膏。

对于溃疡,建议将患肢在无菌环境中隔离,或每天用敷料包裹以及用抗菌溶液清洗溃疡。可能需要止痛药,慎用镇痛作用较强的吗啡类药物。在确定或怀疑有继发感染的情况下,应考虑局部或全身的抗生素治疗。

对于坏死,只有外科治疗是有效的。早期外科处理(照后30~35天)包括对深部坏死组织的切除以及切除后的皮肤或其它组织的移植。外科手术的范围、时机和类型应根据每个病人的病情确定。皮肤移植只有当基底血管稳定后才可进行,否则应做肌皮瓣或蒂皮瓣移植。当出现不可逆转的改变,需要切除溃疡、坏死组织或截肢时,手术治疗都是正当的。

实际上,几乎所有局部γ线照射超过20~25Gy的病人,外科治疗可能都是需要的,因为在这种情况下,自然恢复是不可能的。即使在表皮生成后,伤口也不能愈合,因为在较高剂量区可能出现继发性溃疡。当临床上发生不可逆转的病变时,把实施这种方法的必要性向病人解释后要尽快手术。手术切除的指征包括基底组织的严重破坏,即血管损伤、难以消除的疼痛和不可控制的感染等。

3.3急性放射病的诊断和治疗

3.3.1诊断

主要根据临床和实验室资料。初期可能发生在照后几小时内,主要以厌食、恶心、呕吐为特点(表8)。在急性放射病初期,大约受0.5Gy 照射后实验室检查就能观察到造血组织损伤(表9)。通常此期症状逐渐减退,接着是相对无症状的假愈期,约持续1~3周,主要取决于受照剂量(表10),假愈期过后是极期(表11)。

外周血淋巴细胞是对辐射最敏感的细胞系之一,淋巴细胞绝对数降低是早期观察确定受照射水平的最好、最有用的实验室检查方法(表9~11)。剂量超过10~15Gy,可观察到胃肠道症状;如出现血水便或严重血性腹泻,则应考虑肠型放射性疾病的可能性。超过50Gy照射时,可发生神经系统症状,其特点是严重的早期征候,如共济失调、定向力障碍等可在照后立即出现,继之出现抽搐、昏迷等症状,可在1~2天内死亡(脑型放射性疾病)。

在生物剂量检查中,外周血淋巴细胞染色体畸变分析是一种最广泛采用的可靠方法。我国有些实验室已建立了良好的剂量-效应关系曲线和计算模式。该技术的灵敏度取决于剂量和辐射性质。用这种细胞遗传学方法探测的剂量下限,对X及γ射线约为0.2Gy,裂变中子约为10~20mGy。

使用这种技术在身体局部受照时受到限制,因染色体畸变虽然可表明有辐射损伤,但不能准确估计剂量。另外,对体内辐射源所致剂量,由于不同放射性核素分布不同,不能都估算出它们的剂量。

染色体结果分析需要3天,因为淋巴细胞培养必须48小时才能获得足够的中期分裂细胞,以便估算出染色体畸变率。而且计数费时,又需要相当熟练的技巧。

为了快速对损伤的人员进行鉴别诊断,淋巴细胞微核检验是可行的。这种方法同样也需要淋巴细胞培养,但计数快,也较容易。应指出的是,借助电子计算机扫描自动检测,要比细胞核分裂中期染色体人工分析费力小。

3.3.2治疗

应根据急性放射病的症状、体征和常规实验室检验结果(表8~12)确定救治方案。最初的症状和体征是非特异性的。仔细观察和重复的实验室检查是唯一的评价方法,直至收集到进一步的资料和临床表现明显时。在最初48小时内排除严重损伤唯一有用的方法是淋巴细胞绝对计数(表10)。

在急诊室里,恶心、呕吐的病人应进行对症治疗,每天还应做血细胞计数检查。外照射剂量小于1Gy的患者,若实验室检查结果(淋巴细胞绝对计数)和剂量估算证明是正确的,

放射防护-简介

放射性的来源扔天然的放射性和人工放射性两类。生活在地球上的人们经常受到这两种放射性的照射,天然放射性即木底照射是不可避免的,而人工放射性的应用产生了放射性危害,因而引起放射性防护问题

放射防护-内容

一、放射性的危害必及防护的必要性

随着放射同位素的广泛应用,越来越多的人们认识到放射性对机体造成的损害随着放射照射量的增加而增大,大剂量的放射性会造成被照射部位的组织损伤,并导致癌变,即使是小剂量的放射性,尤其是长时间的小剂量照射蓄积也会导致照射器官组织诱发癌变,并会使受照射的生殖细胞发生遗传缺陷。放射性对人体的影响主极随机效应和非随机效应。随机效应(stochastic

effect)指放射性对机体至癌或遗传效应的发生几率,此发生几率与照射剂量的大小有关,而随机性效应的严重程度与剂量有关,如放射性致癌、放射性诱发各种遗传疾病均属随机性效应。非随机性效应(non-stochastic effect)是机体受照射后在短期内就出现的急性效应,以及经过一定时间后发现的发育功能低下、白内障和造血机能障碍等等。其严重程度随受照射剂量不同而变化,存在着明确的剂量阈值,这种效应是随着受照射剂量的增加,而有越来越多的细胞被杀死而产生的。ICRP第60号出版物把非随机性效应改称为确定性效应。放射性防护的目的就在于防止有害的确定性效应,并限制随机性效应的发生率,使其达到认为可以接受的水平。放射性物质可以从体外或进入体内放出射线,对人体造成损害。就外照射而言,由于各种射线穿透能力不同,γ射线照射对机体的危害大于β射线,而β射线的危害性又大于α射线。受照射部位不同,受害程度出不同,对某种放射性同位素蓄积率高的组织或器官,必然受害严重,如【32P】对骨骼系统危害较大,【125I】和【131I】主要危及甲状腺器官等。但是,由于射线与机体作用可产生电离,射线这种电离本领的大小,决定了当放射性物质进入了体内,对机体造成内照射的情形下,α射线由于射程很短,其危害性大于β射线和γ射线的危害,而β射线的内照射危害又大于γ射线。放射防护的必要性在于保护操作者本人免受辐射损伤,防止了必要的射线照射,保护周围人群的健康和安全,做好放射性污物、污水的收集与处理,避免环境污染,保证实验能够正常进行,取得的结果可靠。在应用放射性同位素时,一定要考虑放射防护问题,“预防为主”,合理的使用放射性同位素,避免不必要的射线照射,减少人群的剂量负

二、放射防护的三原则

国际放射放护委员会(ICRP)1977年第26号出版物中提出防护的基本原则是放射实践的正当化,放射防护的最优化和个人剂量限制。这三项原则构成的剂理限制体系。

1.放射实践的正当化

在进行任何放射性工作时,都应当代价和利益的分析,要求任何放射实践,对人群和环境可能产生的危害比起个人和社会从中获得

的利益来,应当是很小的,即效益明显大于付出的全部代价时,所进行的放射性工作就是正当的,是值得进行的。

2.放射防护的最优化

使放射性和照射量在可以合理达到的尽可能低的水平,避免一些不必要的照射,要求对放射实践选择防护水平时,必须在由放射实践带来的利益与所付出和健康损害的代价之间权衡利蔽,以期用最小的代价获取最大的净利益。最优化原则又称为ALARA原则,健康代价(曲线A)

正比于总剂量,当总剂量较小时,放射防护代价(曲线B)很高,且随剂量的增加而急剧下降,曲线A和B代价之和有一最小值,这就是最优化键康代价与防射代价之和Wo。放射防护的最优化在于促进社会公众集体安全的卫生保健,它是剂量限制体系中的一项重要的原则。

3.个人剂量限制

在放射实践中,不产生过高的个体照射量,保证任何人的危险度不超过某一数值,即必须保证个人所受的放射性剂量不超过规定的相应限值。ICRP规定工作人员全身均匀照射的年剂量当量限制为50毫希沃特*(mSv),广大居民的年剂量当量限值为1mSv(0.1rem)。我国放射卫生防护基本标准中,对工作人在民年剂量当量限值,采用了ICRP推荐规定的限值,为防止随机效应,规定放射性工作人员受到全身均匀照射时的年剂量当量不应超过50mSv(5rem),公众中个人受照射的年剂量当量应低于5mSv(0.5rem)。当长期持续受放射性照射时,公众中个人在一生中每年全身受照射的年剂量当量限值不应高于1mSv(0.1rem),且以上这些限制不包括天然本底照射和医疗照射。

个人剂量限制是强制性的,必须严格遵守。各种民政部下规定的个人剂量限值是不可接受的剂量范围的下界,而不是可以允许接受的剂量上限。即使个人所受剂量没有超过规定的相应的剂量当量限值,仍然必须按照最优化原则考虑是否要进一步降低剂量。所规定的个人剂量限值不能作为达到满意防护的标准或设计指标,只能作为以最优化原则控制照射的一种约束条件而已。

中子剂量与防护

中子剂量和防护-正文 中子剂量通常指中子吸收剂量或中子剂量当量(见辐射剂量)。不同能量的中子同人体组织中的元素(氢、氮、氧、碳等)发生不同的相互作用(见中子核反应和宏观中子物理),所产生的具有一定能量的次级带电粒子能够引起电离和激发,从而使肌体受到损伤。剂量学涉及的主要物理问题是散射、核裂变和辐射俘获等. 研究中子在生物组织中不同深度的吸收剂量和剂量当量的模型有:半无穷大板块、有限圆柱体(直径为30厘米,高为60厘米)和椭圆柱体(长半轴为18厘米,短半轴为12厘米,高为60厘米)模型。模型的材料组成应同软组织的相当,密度为1g/cm3。能量范围从10-2eV延伸至 2000MeV。其中对半无穷大板块模型和有限圆柱体模型研究的结果,是目前确定中子注量率-剂量当量率换算系数的基础。 平行中子束垂直入射到一块物质上时,该物质的吸收剂量D随深度的分布(示意图见图1)同γ辐射的情形相似:吸收剂量的最大值并不出现在表面,而是出现在某个深度处,这个深度取决于中子的能量。医学上就是通过调节辐射的能量,把这个最大值对准病变组织的部位进行放射治疗。 放射防护规定:对个人所受剂量的限制是由剂量当量决定的。不同能量中子的有效品质因数坴(见辐射剂量)的数值示于图2。此外,由测得的中子注量率可以换算到剂量当量率。目前各国都采用图3所示的数值。 中子剂量测定主要指中子吸收剂量和剂量当量的测量。此外还包括表示剂量分布的微剂量测量。通常使用组织等效电离室,乙烯-聚乙烯正比计数器,硫酸亚铁剂量计以及量热计等测量吸收剂量。在多数情况下,组织等效电离室是测定快中子吸收剂量最准确的装置仪器。剂量当量测量仅适用于辐射防护,所采用的方法分场所监测和个人监测两类,其响应正比于最大剂量当量。微剂量测定的目的在于从实验上研究辐射在直径为微米量级或更小的球体内能量沉积的空间分布和谱分布。微剂量学所考虑的体积应同生物细胞的大小相当,借以模拟辐射在生物细胞、细胞组分和生物大分子中的能量沉积。常用的测量仪器是低压组织等效气体的“无壁”计数器,但测量方法和数据处理牵涉到很复杂的技术。 中子防护目的在于减少工作人员所受的辐射剂量,并尽可能将它控制在放射防护标准规定的限值以下。职业性放射性工作人员每年所受的剂量当量限值为50mSv(5rem)。表中给出对不同能量的中子相当于25μSv(2.5mrem)每小时的中子注量率以及1mSv(0.1rem)的中子注量。 减少防护工作人员受中子照射的措施除了尽量缩短受照时间、尽可能远离中子源以外,还需对中子源进行有效的屏蔽。 不同能量的中子同物质相互作用有不同的特点(见中子核反应和宏观中子物理)。因此屏蔽热中子要用含吸收截面大、俘获辐射γ光子能量低的材料,如硼、锂以及它们的化合物等。屏蔽快中子时首先需要用慢化能力强的材料将快中子的能量降低,然后用吸收截面大、俘获辐射γ光子能量低的材料加以吸收。快中子慢化的主要过程对于重核及中重核是非弹性散射;对于轻核是同原子核发生弹性散射。对于一次弹性散射,靶原子核的质量越接近中子的质量,中子损失的能量也就越大。因此屏蔽能量不很高的快中子最有效的元素是氢,通常采用的是含氢成分较多的水、石蜡、聚乙烯等轻材料。对于几兆电子伏以上能量的中子,可以用含重核或中重核的材料通过非弹性散射使其能量迅速降低然后再用含氢材料进一步使其慢化,最后被含10B或6Li材料吸收。因此,在规划屏蔽层的布局和确定屏蔽层厚度时必须知道中子能谱及各类材料的不同中子能量的有关反应截面数据,并根据上述特点对屏蔽层填料作合理安排,据某种理论模型进行数学运算。对大型中子源常用的屏蔽计算方法有双群法、多群法和移出扩散法等。放射性同位素中子源的屏蔽计算常用分出截面法和半(或1/10)值层减弱法。 若屏蔽层足够厚,又含有足够量的氢时,可用分出截面法进行计算。在近似计算中,可用裂变中子谱的分出截面。 半(或1/10)值层减弱系指将辐射量(注量、吸收剂量或剂量当量等)降至1/2(或1/10)时所需的屏蔽层厚度。半值层厚度(HVT)同1/10值层厚度(TVT)的换算关系式是:H VT=0.301TVT。 普通混凝土对单能中子的1/10值厚度示于图4。 屏蔽放射性中子源,可以单独使用水、石蜡等;也可兼用其他慢化材料和吸收材料,或将慢化材料和吸收材料混合使用(如含硼聚乙烯、含硼石蜡等)。对大型中子源(如加速器、反应堆)的屏蔽比较复杂,常以普通混凝土和重混凝土等屏蔽材料为主,还要采用铁一类的物质屏蔽γ辐射和快中子。 在中子辐射防护中,除了中子以外还应当特别注意对γ辐射的防护。这是因为反应堆、加速器和很多放射性同位素中子源都伴有很强的γ辐射。在很多情况下,γ辐射的剂量当量大大超过中子的剂量当量。例如,镭-铍中子源的γ剂量当量率约比中子剂量当量率高50倍。即使是被认为γ剂量较少的镅-铍中子源,γ辐射剂量当量率也占总剂量当量率的百分之几十。 在使用放射性同位素中子源时,要严格防止放射性物质的泄漏。特别是使用镭-铍中子源时应经常检查是否有氡气漏出。一旦发现有漏出,就应及时采取措施。 辐射剂量-正文

辐射防护

西南科技大学辐射防护复习题 2015 1、内辐照防护的基本措施:包容、隔离、净化、稀释。 2、电离辐射按照射方式分为:内照射、外照射。 3、粒子注量率及能量注量率的计算。 P3 粒子注量Φ=dN/da ,m-2 粒子注量率φ=d Φ/dt=d2N/dadt ,m-2s-1 能量注量Ψ=dR/da ,j.m-2 能量注量率ψ=d Ψ/dt=d2R/dadt ,j.m-2.s-1(w.m-2) 4、带点粒子沉淀能量的方式? 电离、激发、轫致辐射 5、表征带点粒子与物质相互作用的参数? P10-22 总质量阻止本领: l ρ1ρd dE S ==???? ?????? ??+ρρr S S c 总线阻止本领:l E S d d = (质量碰撞阻止本领、质量辐射阻止本领) 射程R 质量散射本领(T/ρ) 产生一对粒子所消耗的平均能量 6、什么情况下不带电粒子的质量能量转移系数与质量能量吸收系数相同? 中子 7、辐射场中存在哪几种不同程度的辐射平衡状态? P60 完全辐射 平衡、带点粒子平衡、δ粒子平衡、部分δ粒子平衡、过度平衡 8、照射量、吸收剂量、比释动能的区别和联系? 作业 PPT 第二章第二节最后 P61、64 9、不带电粒子与物质作用的三种方式? P25 光电效应、康普顿散射、电子对生成 占优方式:八字 10、对吸收剂量的理解。 P52 11、照射量的定义? P 53 12、自由空气电离室按那个量定义的?建立原则? 按照射量的定义设计 P123 13、在腔室理论当中薄壁和厚壁的情况下,腔室的吸收剂量与介质的吸收剂量的关系? P102 P108 14、固体核径迹剂量计可以和不可以探测哪些粒子? 可以探测:α粒子、中子、氡及其字体(质子) 15、热释光剂量计可运用在哪些方面? a.个人剂量监测 b.环境监测 c.其它:医学放射剂量测量、体模中D 的分布测量、考古定年等。 16、哪种剂量计是处于顶端的,用来校准? 量热计 17、弗里克剂量计中硫酸亚铁等产额关系? 1个OH* →1个Fe3+ 1个H*→3个Fe3+ 1个H2O2→2个Fe3+ 19、外辐射实用量的特点? 对各类电离辐射的通用性;与辐射防护限值的相关性;由空间指定点辐射场所决定的唯一性;与人体或体模的相关性;对各种电离辐射的可叠加性。 20、对互易定理的理解? 若含有同种放射性核素的两个源,其总放射性活度相同,则其中一个源在另一个源内产生的平均剂量率彼此相同,而和源的几何大小、形状及源的相互距离322()3()()2()G Fe G H G OH G H O +**=++

人与动物及各类动物间药物剂量的换算方法

人与动物及各类动物间药物剂量的换算方法 The Standardization Office was revised on the afternoon of December 13, 2020

人与动物及各类动物间药物剂量的换算方法 1.人与动物用药量换算 人与动物对同一药物的耐受性是相差很大的。一般说来,动物的耐受性要比人大,也就是单位体重的用药理动物比人要大。人的各种药物的用量在很多书上可以查得,但动物用药量可查的书较少,而且动物用的药物种类远不如人用的那么多。因此,必须将人的用药量换算成动物的用药量。一般可按下列比例换算: 小白鼠、大白鼠为25-50 人用药量为1 兔、豚鼠为15-20 狗、猫为5-10 此外,可以采用人与动物的体表面积计算法来换算: (1)人体体表面积计算法计算我国人的体表面积,一般认为许文生氏公式(中国生理学杂志12:327,1937)尚较适用,即:体表面积(m2)=×身高(cm)+×体重(kg) 例:某人身高168cm,体重55kg,试计算其体表面积。 解:×168+×=1.576m2

(2)动物的体表面积计算法有许多种,在需要由体重推算体表面积时,一般认为Meeh-Rubner氏公式尚较适用,即: 式中的K为一常数,随动物种类而不同:小白鼠和大白鼠、家报导略有出入)。应当指出,这样计算出来的表面积还是一种粗略的估计值,不一定完全符合于每个动物的实测数值。 例:试计算体重1.50kg家兔的体表面积。 2.人及不同种类动物之间药物剂量的换算 (1)直接计算法即按:

例:某利尿药大白鼠灌给药时的剂量为250mg/kg,试粗略估计狗灌胃给药时可以试用的剂量。 解:实验用大白鼠的体重一般在200g左右,其体表面积(A)为: 250mg/kg的剂量如改以mg/m2表示,即为: 实验用狗的体重一般在10kg左右,其体表面积(A)为: (2)按mg/kg折算mg/m2转换因子计算 例:同上 解:按

中子源的注量率测量

龙源期刊网 https://www.360docs.net/doc/4f5767302.html, 中子源的注量率测量 作者:谢菊英程品晶赵越 来源:《科技资讯》2011年第33期 摘要:通过进行中子源注量率测量后,为保证进入中子源库的实验人员的安全范围提供第一手参考资料。进行中子研究具有巨大的科学价值和社会影响力。本文阐述了对238Pu-Be 20ci 中子源的注量率测量方法,测得离中子源距离约半径R=60cm辐射场的中子的注量率为 0.0682cm-2.s-1,并对实验测得的结果进行了分析。 关键词:中子源注量率安全范围 中图分类号:O571.54 文献标识码:A 文章编号:1672-3791(2011)11(c)-0167-01 中子源的辐射危害早就已经被人们所认识,随着中子源在工业生产中的广泛应用,必须做好中子的监测和评价工作。粒子剂量学是辐射防护监测的基础,在辐射防护中占有特殊重要的地 位[1~4]。而中子注量率是描述中子场或中子束的基本量,因此,中子注量率的测量始终是中子 实验方法的基本内容之一,中子注量率的准确程度,直接影响各种参数诸如反应截面、角分布等测量的准确度。 因此,关于中子以及与中子有关问题的研究,已经发展成为一门专门的学科—中子物理学。而中子的探测也成为一个专门的应用和研究课题。 1 测量原理与装置 238Pu-Be中子源是利用放射性核素衰变时,放出的一定能量的射线,去轰击某些靶物质,产生核反应而放出中子。 测量中子注量率的方法是多种多样的。但是依靠基本原理归类可概括成:标准截面发,包括n-p散射截面,及其他中子俘获的截面;伴随粒子法;次级标准法,包括标准中子源与标准探测器等[5]。 工作原理中子的探测方法基于核反应法。中子入射到仪器的探头内,被探测器中的10B或6Li核俘获,导致闪烁体发光。该闪烁光被光电倍增管放大并转换成电信号。该信号由后续电子学线路进一步处理后送单片机处理系统,由单片机处理系统完成数据采集的处理,并实现显示(见图1)。仪器连接使用时首先把探头和主机连接好,注意电缆插头缺口的方向。

(完整版)人与动物之间的给药剂量换算

人与动物之间的给药剂量换算科研实验2010-03-03 18:43:23 阅读1203 评论5 字号:大中小订阅 第一、等效剂量系数折算法换算 第二、体表面积法换算 第三、系数折算法与体表面积法的比较 第四、系数折算法的相对误差 第五、小孩与成人的剂量换算 第六、少常用实验动物剂量间的换算 第七、不同给药途径间的剂量换算 第八、LD50 与药效学剂量间的换算 下面我来简单说一下这个问题。 我们在实验中估算一种药物或化合物的使用剂量的时候,差不多是来源于两条途径:一是查文献,参考别人使用的剂量。有时有现成的,可直接用。 有时没有我们所用动物的剂量,但有其它实验动物的。也有的是有临

床用量的,但没有实验动物的。这样,我们就得进行换算。这是我们今天要谈的这种方法。 另一种方法就是根据自己或文献上有关急性毒性的数据来进行估算,以期采用合适的剂量。一般参考数据是LD50 。至于该选择LD50 的多少分之一来作为参考剂量,众说纷纭。这个我们再另题讨论。 下面我来说一说用第一种方法进行如何换算。 目前我们大多数人用的方法,是参考徐叔云教授主编的《药理实验方法学》。在其附录中有一个表,列出了人和动物间按体表面积折算的等效剂量比值。这个表,几乎被药理专业的人们奉为经典,一直在科研中沿用。 表如下所示

请注意最后一行,这个就是我们通常用到的。把人的临床剂量转换为实验动物的剂量。 试着换算一个。 如:人的临床剂量为X mg/kg , 换算成大鼠的剂量:大鼠的剂量=X mg/kg ×70kg ×0.018/200g =X mg/kg × 70kg ×0.018/0.2kg =6.3 X mg/kg. 这也就是说,按单位体重的剂量来算,大鼠的等效剂量相当于人的6.3 倍。 在这里,我们要看到每种动物的体重(包括人),在上表中以蓝色显示的。还要注意到折算系数,也就是表中以红色所示的。将人的剂量转换成哪种动物的,就在相应的动物那一列下找到与人的相交的地方的折算系数,将剂量乘以折算系数,再乘上人的体重与那种动物体重的比值。注意体重的单位要化成一致。这个折算系数是以上表中蓝色所示的标准体重计算得来的。 依此类推,我们可以算出小鼠、豚鼠等其它动物剂量与人的比值。 各常用实验动物折算系数的验证如下: 小鼠体型系数:0.06 标准体重:20g=0.02kg

辐射防护知识.

辐射防护知识 1、四种常见的射线: 在我们的周围到处存在着射线—太阳光、无线电波、微波、红外线、宇宙射线,这些射线都是电磁波。由于光子的能量较低,强度较小,它们大多是没有危害的。核射线就和它们有很大的不同。 1)它们由α、β和中子组成同γ射线一样具有很短的波长。 2)它们的能量高到足以使分子离子化导致生物组织遭到破坏。 核射线有时也叫做“离子射线”。受到射线照射的生物体可能使机体遭到不同程度的破坏。这取决于射线源的强度和广度以及采取的防护措施。通常情况下穿透力较强的射线是γ射线和中子射线,它们破坏性较小,但是防护困难。α、β射线穿透力较弱,破坏性较大,但是防护比较简单。所有这些放射源都是向四周空间时刻放射射线。 2γ射线和X射线 X和γ射线都是电磁波(光子)。唯一的区别是来源:γ射线是属于原子核发射出来的辐射;X射线指的是在原子核外部产生的辐射。 它们和光速一样快,能穿透大多数物体,在介质中穿过波长不会发生变化但强度会逐渐减弱。Gamma射线在空气中传播几乎不受影响,它可以被几英尺的水,数英尺的混凝土,几英寸的钢或铅完全阻挡。由于它不容易被减弱,所以能轻易的检测到它的存在,同时人体也容易被它照射到。多数放射源在释放Gamma射线时都伴随着释放出α、β射线或中子射线。X射线能量比γ射线能量稍低。 3、辐射危害 1、职业照射 2、公众照射 3、医疗照射 4、潜在照射 4.吸收剂量 对X射线、γ射线,吸收剂量在0.25戈瑞以下时,人体一般不会有明显效应;但是,剂量再增加,就可能出现损伤。当达到几个戈瑞时,就可能使部分人死亡。接受同样数量的“吸收剂量”,受照射时间越短,损伤越大;反之,则轻。吸收同样数量剂量,分几次照射,比一次照射损伤要轻。 表1、常用放射线单位及换算关系

辐射防护教材(中文)

1 辐射防护的基本知识 1.1 常用的辐射源及其特点 辐射的定义是指以波或粒子的形式向周围空间或物质发射并在其中传播的能量(如声辐射、热辐射、电磁辐射及粒子辐射等)的统称。例如,物体受热向周围介质发射热量叫做热辐射;受激原子退激时发射的紫外线或X 射线叫做原子辐射;不稳定的原子核发生衰变时发射出的微观粒子叫做原子核辐射,简称核辐射。通常论及的“辐射”概念是狭义的,仅指高能电磁辐射和粒子辐射,这种狭义的“辐射”又称“射线”。 辐射源是指能够发射电离辐射的设备或物质。 辐射源大致可以分为四类:放射性核素、X 线机、加速器和反应堆。 1. 放射性核素辐射源 放射性核素具有自发地发生核跃迁的特性,依据跃迁的方式不同,可能放射出α粒子、β+粒子、β-粒子、光子、中子和裂变碎片等。利用放射性核素可以制备α源、β源或γ源;利用放射性核素放射出的α粒子、γ光子,轰击某些轻元素如Be 等,可以制备成(α、n )、(γ、n )反应的放射性中子源;也可以利用重核自裂变时放射出的中子,例如,可以用自发裂变核素如锎-252制备成自发裂变中子源。 2. X 线机辐射源 利用X 线机产生连续能谱的轫致辐射,是一种被广泛应用的X 线辐射源。 3. 加速器辐射源 利用加速器加速电子去轰击某些重元素,可产生轫致辐射,即形成X 辐射源。这是另一种X 线辐射源。利用加速器加速的带电粒子轰击某些轻元素,可引起发射中子的核反应,即形成中子源。也可以利用加速器产生轫致辐射,形成通过(γ、n )反应或光致裂变的中子源。 4. 反应堆辐射源 中子能引起一些重核裂变,裂变又放出更多的中子。所以在一定条件下,有可能形成链式反应。以中子为媒介的可持可控链式反应的装置称为反应堆。反应堆能释放出多种电离辐射,其中最主要的辐射有:瞬发裂变中子、γ光子和裂变产物的γ辐射。 在核物理类书籍中均比较详尽地阐述了各类辐射粒子的特征与性质。归纳起来,辐射可分为以下四大类: ???重带电粒子快电子带电粒子辐射

人与动物及各类动物间药物剂量的换算方法

人与动物及各类动物间药物剂量的换算方法 1.人与动物用药量换算人与动物对同一药物的耐受性是相差很大的。一般说来,动物的耐受性要比人大,也就是单位体重的用药理动物比人要大。人的各种药物的用量在很多书上可以查得,但动物用药量可查的书较少,而且动物用的药物种类远不如人用的那么多。因此,必须将人的用药量换算成动物的用药量。一般可按下列比例换算:人用药量为1,小白鼠、大白鼠为25-50,兔、豚鼠为15-20,狗、猫为5-10。 此外,可以采用人与动物的体表面积计算法来换算: (1)人体体表面积计算法计算我国人的体表面积,一般认为许文生氏公式(中国生理学杂志12:327,1937)尚较适用,即: 体表面积(m2)=0.0061×身高(cm)+0.0128×体重(kg)-0.1529 例:某人身高168cm,体重55kg,试计算其体表面积。 解:0.061×168+0.0128×55.0.1529=1.576m2 (2)动物的体表面积计算法有许多种,在需要由体重推算体表面积时,一般认为Meeh-Rubner 氏公式尚较适用,即: 式中的K为一常数,随动物种类而不同:小白鼠和大白鼠9.1、豚鼠9.8、家兔10.1、猫9.8、狗11.2、猴11.8、人10.6(上列K值各家报导略有出入)。应当指出,这样计算出来的表面积还是一种粗略的估计值,不一定完全符合于每个动物的实测数值。 例:试计算体重1.50kg家兔的体表面积。 2.人及不同种类动物之间药物剂量的换算

(1)直接计算法即按: 例:某利尿药大白鼠灌给药时的剂量为250mg/kg,试粗略估计狗灌胃给药时可以试用的剂量。 解:实验用大白鼠的体重一般在200g左右,其体表面积(A)为: 250mg/kg的剂量如改以mg/m2表示,即为: 实验用狗的体重一般在10kg左右,其体表面积(A)为: (2)按mg/kg折算mg/m2转换因子计算 例:同上 解:按 计算出狗的适当试用剂量。mg/kg 的相应转移因子可由表1查得。(即为按mg/m2计算的剂量)。

BH3105E型中子剂量当量仪操作规程

BH3105E型中子剂量当量仪操作维护规程 1 设备简介 BH3105E型中子剂量当量仪是BH3105E型中子剂量当量仪的升级产品。主要用于核反应堆、核电站、核潜艇、中子实验室及其它应用中子辐射的场合中,中子辐射的剂量监测。 2 主要技术参数 2.1灵敏度:5cps/(μsv/h) 2.2 响应时间:20S 2.3 测量范围:0.1μsv/h~999.9msv/h 2.4 相对固有误差:-50%~+100% 2.5 测量误差:≤±15%(典型值) 2.6 能量响应范围:热中子~14Mev 2.7 抑制性能:对13?Cs-γ辐射,γ抑制比优于100:1附加误差≤±10%(对1mSv/h) 2.8 角响应:相对于轴对称校准方向,指示值在0o~±90o的变化≤±25% 2.9 使用环境条件 温度范围:5℃-40℃ 相对湿度:≤85%(30℃) 3 操作规程 3.1 开机:打开电源开关,进入时间显示,实时显示当前时间。 3.2 自检:在主画面中,按自检键,仪器开始检查自身的工作状态,如果工作正常,随后自动返回到主画面。 3.3 测量;在主画面中,按测量键,仪器进入计数测试过程,屏幕显示计数正在计数。定时时间自动设定20S,定时时间到,屏幕显示计数结束,并显示出计算结果。在计数过程中经及结束后,按返回键均可回到主画面。测量过程中仪器显示剂量当量率值,显示屏指示条随剂量当量率值大小变化,即指示条长短定性显示剂量当量率值。另外每一次计数蜂鸣器有一个声响,也可根据鸣器声响判断剂量当量率大小。完成一个测量周期。测量结果自动保存到存储器内。 3.4 数据导出:存储数据由RS-232数据线导出到计算机。具体操作见软件

辐射防护介绍

辐射防护知识 一、四种常见的射线: 在我们的周围到处存在着射线—太阳光、无线电波、微波、红外线、宇宙射线,这些射线都是电磁波。由于光子的能量较低,强度较小,它们大多是没有危害的。 核射线就和它们有很大的不同。 1)它们由α、β和中子组成同γ射线一样具有很短的波长。 2)它们的能量高到足以使分子离子化导致生物组织遭到破坏。 核射线有时也叫做“离子射线”。受到射线照射的生物体可能使机体遭到不同程度的破坏。这取决于射线源的强度和广度以及采取的防护措施。通常情况下穿透力较强的射线是γ射线和中子射线,它们破坏性较小,但是防护困难。α、β射线穿透力较弱,破坏性较大,但是防护比较简单。所有这些放射源都是向四周空间时刻放射射线。 α粒子 α粒子由两个质子和两个中子组成。α相对较重,只要一张纸或几厘米空气或身体的表皮就能将它吸收或阻挡掉。因此,想要检测到它或直接暴露在α射线下是不太可能的。只有当吸入、摄入或注入α粒子时才会导致呼吸系统大面积的严重破坏。α探测器探测α粒子时需要离放射源十分接近才能探测到。 β粒子 β粒子是电子或正电子,单个电荷重量只有质子质量的1/1837。β粒子能穿透纸张和衣服,但是不能穿过薄金属片和玻璃。β粒子能损伤皮肤,像α粒子一样β粒子在进入人体后有很大的危害,要检测到它必须让探头与放射源保持很近的距离。 γ射线和X射线 X和γ射线都是电磁波(光子)。唯一的区别是来源:γ射线是属于原子核发射出来的辐射;X射线指的是在原子核外部产生的辐射。

它们和光速一样快,能穿透大多数物体,在介质中穿过波长不会发生变化但强度会逐渐减弱。Gamma射线在空气中传播几乎不受影响,它可以被几英尺的水,数英尺的混凝土,几英寸的钢或铅完全阻挡。由于它不容易被减弱,所以能轻易的检测到它的存在,同时人体也容易被它照射到。多数放射源在释放Gamma 射线时都伴随着释放出α、β射线或中子射线。X射线能量比γ射线能量稍低。 中子射线(η) 中子射线来自于一些大分子量原子的原子核,从原子核中释放出中子。中子具有很高的动能,它会与空气分子或其它介质发生碰撞。那些能分散在常温空气中能量最小的中子被叫做热中子。这些在空气中到处移动的中子在遇到几英尺的水或溶液时将容入其中。它们能轻易的被象水中的氢这样的元素捕获。就象铅这样的重金属元素能够阻挡γ射线一样。中子射线虽然不是很常见,但是暴露在它之下将更加危险,因为它需要更严密的防护才能防止他的照射。在含钚的武器中会释放出中子,这意味着中子检测器可以用来检测是否拥有非法核武器。 二、辐射危害 各种辐射照射对人类的健康危害是在人类不断利用各种电离辐射源的过程中被认识的。今天,随着辐射源与核能的广泛和平利用,在给人类带来莫大利益的同时,也使人类接触各类辐射的机会显著增加。其中包括:在从事某种职业的过程中受到的职业性照射,因接受医学诊断和治疗而受到的医学照射,以及一般居民从所有其它辐射源受到的公众照射。因此,人类应该在最大限度利用电离辐射源和核能的同时加强辐射防护,尽量避免和减少电离辐射可能引起的健康危害。 1、职业照射 工作人员在其工作过程中所受的所有照射。 这里有两种情况要排除在外:一是除了国家有关法规和标准所排除的照射;另一是根据国家有关法规和标准予以豁免的实践或辐射源所产生的照射。 通常情况下应将天然源照射视为一种持续照射,但是,喷气飞机飞行过程中机组人员所受的天然源照射,列入工作人员的职业照射。 2、公众照射

人与动物剂量换算资料

动物给药量的确定 在观察一个药物的作用时,应该给动物多在的剂量是实验开始时应确定的一个重要问题。剂量太小,作用不明显,剂量太大,又可能引起动物中毒致死,可以按下述方法确定剂量: 1.先用小鼠粗略地探索中毒剂量或致死剂量,然后用小于中毒量的剂量,或取致死量的若干分之一为应用剂量,一般可取1/10-1/5。 2.植物药粗制剂的剂量多按生药折算。 3.化学药品可参考化学结构相似的已知药物,特别是化学结构和作用都相似的药物的剂量。 4.确定剂量后,如第一次实验的作用不明显,动物也没有中毒的表现(体重下降、精神不振、活动减少或其他症状),可以加大剂量再次实验。如出现中毒现象,作用也明显,则应降低剂量再次实验。在一般情况下,在适宜的剂量范围内,药物的作用常随剂量的加大而增强。所以有条件时,最好同时用几个剂量作实验,以便迅速获得关于药物作用的较完整的资料。如实验结果出现剂量与作用强度之间毫无规律时,则更应慎重分析。5.用大动物进行实验时,开始的剂量可采用给鼠类剂量的十五分之一~二分之一,以后可根据动物的反应调整剂量。 6.确定动物给药剂量时,要考虑给药动物的年龄大小和体质强弱。一般说确定的给药剂量是指成年动物的,如是幼小动物,剂量应减少。如以狗为例:6个月以上的狗给药量为1份时,3-6个月的给1/2份,45-89日1/4份,20-44日的给1/8份,10-19日的给1/16份。 7.确定动物给药剂量时,要考虑因给药途径不同,所用剂量也不同,以口服量为100时,灌肠量应为100-200,皮下注射量30-50,肌肉注射量为25-30,静脉注射量为25。 实验动物用药量的计算方法 动物实验所用的药物剂量,一般按mg/kg体重或g/kg体重计算,应用时须从已知药液的浓度换算出相当于每kg体重应注射的药液量(ml数),以便给药。例1:计算给体重1.8kg的家兔,静脉注射20%氨基甲酸乙酯溶液麻醉,按每kg体重1g的剂量注射,应注射多少ml?计算方法:兔每kg体重需注射1g,注射液为20%,则氨基甲酸乙酯溶液的注射量应为5ml/kg体重,现在兔体重为1.8kg,应注射20%氨基甲酸乙酯溶液用量=5×1.8=9ml。 例2:计算给体重23g的小白鼠,注射盐酸吗啡15mg/kg重,溶液浓度为0.1%,应注射多少ml?计算方法:小白鼠每kg体重需吗啡的量为15mg,则0.1%盐酸吗啡溶液的注射量应为15ml/kg体重,现小白鼠体重为23g,应注射0.1%盐酸吗啡溶液的用量=15×0.023=0.345ml。 人与动物及各类动物间药物剂量的换算方法 1.人与动物用药量换算人与动物对同一药物的耐受性是相差很大的。一般说来,动物的耐受性要比人大,也就是单位体重的用药理动物比人要大。人的各种药物的用量在很多书上可以查得,但动物用药量可查的书较少,而且动物用的药物种类远不如人用的那么多。因此,必须将人的用药量换算成动物的用药量。一般可按下列比例换算:人用药量为1,小白鼠、大白鼠为25-50,兔、豚鼠为15-20,狗、猫为5-10。 此外,可以采用人与动物的体表面积计算法来换算: (1)人体体表面积计算法计算我国人的体表面积,一般认为许文生氏公式(中国生理学杂志12:327,1937)尚较适用. (2)动物的体表面积计算法有许多种,在需要由体重推算体表面积时,一般认为Meeh-Rubner氏公式尚较适用. 关于中药新药药理研究的技术要求的原因,关于中药新药药理研究的技术要求的相关知识。一、基本要求 1.试验主要负责人应具有药理毒理专业高级技术职称、有较高的理论水平、工作经验与资历。确保试验设计合理,数据可靠,结果可信,结论判断准确。试验报告应有试验负责人签字及单位盖章。 2.受试药物应处方固定、制备工艺稳定、质量可控。 3. 从事新药安全性研究的试验室应符合国家药品监督管理局《药品非临床研究质量管理规范》(GLP)的要求,药理研究也可参照实行。 二、药理学研究 药理学研究主要包括主要药效学研究和一般药理学研究。

辐射防护-习题答案

11.一个动能E=10Mev 的正电子进入体积V ,通过碰撞损失掉1Mev 的能量之后发生湮没,产生能量相等的两个光子,其中的一个逸出体积V ,另一个在V 内产生动能相等的正负电子对。正负电子在V 内通过碰撞各自消耗掉其一半动能后负电子逸出V ,正电子发生飞行中湮没,湮没光子从V 逸出。求上述过程的转移动能tr ε、碰撞转移能τ εtr 和授与能ε。 第一章 3、吸收剂量、比释动能和照射量三者之间有什么联系和区别? 三者联系: 带电粒子平衡:不带电粒子在某一体积元的物质中,转移给带电粒子的平均能量,等于该体积元物质所吸收的平均能量。发生在物质层的厚度大于次级带电粒子在其中的最大射程深度处。D=K (1-g ) g 是次级电子在慢化过程中,能量损失于轫致辐射的能量份额。 对低能X 或γ射线,可忽略轫致辐射能量损失,此时D =K 带电粒子平衡条件下,空气中照射量(X )和同一点处空气吸收剂量(Da)的关系为:X e W D a a = 吸收剂量与物质的质量吸收系数ρμ/en 成正比,即 )/()/(a en m en a m u u D D ρρ= 故空气中同一点处物质的吸收剂量Dm 为: 三者区别见P18页表1.4。 辐射量 吸收剂量 D 比释动能K 照射量X 适用 适用于任何带电粒子及 适用于不带电粒子如X 、 仅适用于于X 或γ射 范围 不带电粒子和任何物质 γ光子、中子等和任何物质 线,并仅限于空气 介质 剂量学 表征辐射在所关心的 表征不带电粒子在所关心的 表征X 或γ射线 含意 体积V 沉积的能量;这些 体积V 内交给带电粒子的能 在所关心的空 能量可来自V 内或V 外 量,不必注意这些能量在何处, 气体积V 内 以何种方式损失的 交给次级电子 用于电离、激

用于中子测井的CR39中子剂量计的个人剂量监测方法

用于中子测井的CR39 中子剂量计的个人剂量监测方法 GBZ/T 148-2002 1范围 本标准推荐了用于中子测井场所的CR39中子剂量计的个人剂量监测方法。 本标准适用于241Am-Be中子源测井场所工作人员的个人中子剂量监测。 2规范性引用文件 下列文件中的条款通过在本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡不注日期的引用文件,其最新版本适用于本标准。 GB 12714 镅铍中子源 3术语和定义 下列术语和定义适用于本标准。 3.1 固体核径迹探测器 solid state nuclear track detector 核粒子穿过绝缘体时,造成一定密度的辐射损伤,经适当处理,形成可观测的径迹,这种固体称为固体核径迹探测器。 3.2 CR-39径迹探测器CR39 track detector 用烯丙基二甘醇碳酸酯(品名 CR39)制成的核径迹探测器。按照测定程序,利用其在中子场经累积照射形成的可观察径迹,在一定准确度内,可得到相应的当量剂量。它是固体核径迹探测器的一种。 3.3 化学蚀刻 chemical etching 固体核径迹探测器的辐射损伤经过化学试剂蚀刻形成可观察径迹的过程。 3.4 中子注量灵敏度 neutron fluence sensitivity 垂直入射的单位中子注量在剂量计单位面积上产生核径迹的概率。 3.5 中子当量剂量灵敏度 neutron equivalent dose sensitivity 中子探测器单位面积上每单位当量剂量相应的径迹数。 3.6 中子剂量换算系数 neutron dose converson coefficient 在各种照射条件下,用人形体模换算出的单位中子注量的当量剂量。 4测量元件 CR39个人中子剂量计由CR39径迹探测器和包装盒组成。 4.1 CR39径迹探测器应具备对辐射损伤灵敏、高透明度、结构均匀、各向同性、热固性稳定和低本底等特性。CR39呈片状,其典型值厚1mm,面积10mm×20mm。 4.2 包装盒用硬质塑料制成,外形为圆柱体或长方体,一侧装有佩带针(夹),以便使用;其典型值厚度为5mm,面积为55mm×35mm。 1

辐射防护知识

辐射防护知识、四种常见的射线:1太阳光、无线电波、微波、红外线、宇宙射线,—在我们的周围到处存在着射线这些射线都是电磁波。由于光子的能量较低,强度较小,它们大多是没有危害核射线就和它们有很大的不同。的。 γβ和中子组成同射线一样具有很短的波长。1)它们由α、)它们的能量高到足以使分子离子化导致生物组织遭到破坏。2。受到射线照射的生物体可能使机体遭到不同程度“离子射线”核射线有时也叫做的破坏。这取决于射线源的强度和广度以及采取的防护措施。通常情况下穿透力射线穿、β射线和中子射线,它们破坏性较小,但是防护困难。较强的射线是γα透力较弱,破坏性较大,但是防护比较简单。所有这些放射源都是向四周空间时刻放射射线。X射线2γ射线和射线是属于原子核发射射线都是电磁波(光子)。唯一的区别是来源:γX和γ出来的辐射;X射线指的是在原子核外部产生的辐射。它们和光速一样快,能穿透大多数物体,在介质中穿过波长不会发生变化但强度射线在空气中传播几乎不受影响,它可以被几英尺的水,数Gamma会逐渐减弱。英尺的混凝土,几英寸的钢或铅完全阻挡。由于它不容易被减弱,所以能轻易的射线Gamma检测到它的存在,同时人体也容易被它照射到。多数放射源在释放射线能量比γ射线能量稍低。射线或中子射线。时都伴随着释放出α、βX 3、辐射危害4、潜在照射、职业照射2、公众照射3、医疗照射1 .吸收剂量4戈瑞以下时,人体一般不会有明显效应;但γ射线,吸收剂量在0.25 对X射线、是,剂量再增加,就可能出现损伤。当达到几个戈瑞时,就可能使部分人死亡。,受照射时间越短,损伤越大;反之,则轻。吸收同”“接受同样数量的吸收剂量样数量剂量,分几次照射,比一次照射损伤要轻。1、常用放射线单位及换算关系表 自然界中到处都存在射线,但它的量十分的低下且不会对人造成伤害(小于射γ20μR/h)。这些微量的射线有来自宇宙的少量射线,来自自然界各类物质的线辐射,还有当地层环境中本身含有的放射性物质辐射出的各种射线,同时也包括建

13 理论中子剂量学的一些基本概念

22.54 中子与物质的相互作用及应用(2004年春季) 第十三讲(2004年4月6日) 理论中子剂量学的一些基本概念 参考文献 -- Radiation Dosimetry, G. J. Hine and G. B. Brownell, eds. (Academic Press, New York, 1956). G. S. Hurst and J. E. Turner, Elementary Radiation Physics (Wiley, New York, 1970). J. A. Coderre et al., "Boron Neutron Capture Therapy: Cellular Targeting of High Linear Energy Transfer Radiation", Technology in Cancer Research and Treatment 2, 355 (2003). Monte Carlo Simulation in the Radiological Sciences, R. L. Morin, ed. (CRC Press, boca Rotan, 1988). 除去在核反应堆中的应用之外,中子相互作用的另一个重要应用是在核医学领域。辐射在医学中的应用在Wilhem C. Roentgen(伦琴)于1895年发现x射线(他为此获得了1901年的诺贝尔物理学奖)之后不久就开始了。不仅是因为1899年第一例有记载的成功肿瘤治疗,而且也由于早期的一些失败经历,使得人们认识到:理解和控制射线反应对人体的定量效果是多么的重要和困难。辐射剂量问题包括物理和生物方面的因素,二者难以很明确地区分;对于中子剂量学来说,挑战既来自于科学,又来自于技术——控制辐射的效果,并利用中子反应的特点来为人体健康尽可能造福(或造成最小损伤)。 1. 一些基本的辐射剂量学概念 从最基本的层面上讲,核心问题是被照射物中的能量沉积。如何描述这个过程,包括辐射的特性、射线与物质相互作用的一般知识,初看起来非常简单,但是稍作思考就会发现事情没有这么容易。对射线的反应过程方面是没有什么问题的,但我们还是不清楚射线在介质中造成的生物响应是怎样的。换句话说,如何将能量沉积的物理特性与随之而来的生物效应、破坏或者治疗结合起来,是一个令人感到畏惧的挑战。我们在本课程中不会研究这个问题。 在剂量学中,沉积能量(辐射损失)和吸收能量(局部或者分散)不完全是一回事。当我们谈到单位体积内沉积了多少能量的时候,我们也应该意识到生物效应或许也依赖于射线在其径迹上释放能量的空间分布。能量沉积不是一个点函数,而是与其路径有关的,这使得它很难去量化。在辐射剂量学中,分布式的过程为我们早先讨论过的关于中子反应的情况又提供了一个例子,即由特定反应截面决定的单个反应事件与包含许多次碰撞、由分布函数描述的作用是不同的。 在考虑介质中吸收能量与其所导致生物效应之间的关系时,吸收的局部范围起到了关键的作用。直观地,我们会觉得有必要考虑一些有关生物系统内能量传输的描述。仅仅考虑吸收剂量来反映从原子、分子的电离到临床症状的复杂过程是不合理的。除了吸收能量的多少,吸收的速率(剂量率)也是很重要的。另外,在射线轨迹上能量的沉积方式,即阻止能力,也对最终的生物效应有影响。我们在(cf. 22.101)中已经讨论过物质与射线反应时的阻止能力,现在可以用到这些知识了。 剂量的单位 能量沉积这个概念使我们很自然地将物理剂量与被照射物体单位质量所吸收的能量联系起

辐射防护练习题

第一部分:单项选择,请选出正确答案,并填写在括号内。 1.一个人受到的总的辐照是(C) A:内照射的量减去外照射的量B:外照射的量减去内照射的量 C:外照射的量加上内照射的量 2.放射工作单位应当安排本单位的放射工作人员接受个人剂量监测,外照射个人剂量的监测周期一般为()天,最长不应超过()天。( A ) A:30,90 B:60,90 C:90,90 D:60,120 3.放射工作单位应当组织上岗后的放射工作人员定期进行职业健康检查,两次检查的时间间隔不应超过( A )年。 A:2 B:3 C:4 D:1 4.吸收剂量的SI单位是( B ) A. 伦琴(R) B. 戈瑞(Gy) C. 拉得(rad) D. 希沃特(Sv) 5.在相同吸收剂量的情况下,对人体伤害最大的射线种类是( C ) A. X射线 B. γ射线 C. 中子射线 D. β射线 标准规定:公众中有关关键人群组的成员所受到的平均年有效剂量不应超过(D ) A. 5rem B. 15mSv C. 50mSv D. 1mSv 7.辐射防护应遵循的三个基本原则是( D ) A. 辐射实践的正当化 B. 辐射防护的最优化 C. 个人剂量限制 D. 以上都应予以同时考虑 射线通过水泥墙后,照射率衰减到200mR/h,为使照射率衰减到10mR/h以下,至少还应覆盖多厚的铅板(半价层厚度为)( D ) A. B. C. D. 9.离源200mm处的照射率为100mR/h,照射率为2mR/h辐射区边界标记离源的距离约为() A. B. C. D. 1m 10.射线的生物效应,与下列什么因素有关( D ) A. 射线的性质和能量 B. 射线的照射量 C. 肌体的吸收剂量 D. 以上都是 11.热释光剂量计用于(B ) A. 工作场所辐射监测 B. 个人剂量监测 C. 内照射监测 D. A和B 12.下列有关照射量的叙述,正确的是( C ) A. 辐射防护常用辐射量的物理量 B. 当量计量的剂量单位 C. 只适用于X射线和γ射线 D. 以上都是 13.辐射损伤随机效应的特点是( A ) A. 效应的发生率与剂量无关 B. 剂量越大效应越严重 C. 只要限制剂量便可以限制效应发生 D. B和C 14.辐射损伤确定性效应的特点是(D ) A. 效应的发生率与剂量无关 B. 剂量越大效应越严重 C. 只要限制剂量便可以限制效应发生 D. B和C 关于应急照射的叙述,哪一条是错误的( D ) A. 应急照射事先必须周密计划; B. 计划执行前必须履行相应的批准程序; C. 应急照射的剂量水平应在标准范围内; D. 经受应急照射后的人员不应再从事放射工作。 16.外照射防护的三个基本要素是( D )

辐射防护习题答案解析

11.一个动能E=10Mev 的正电子进入体积V ,通过碰撞损失掉1Mev 的能量之后发生湮没,产生能量相等的两个光子,其中的一个逸出体积V ,另一个在V 内产生动能相等的正负电子对。正负电子在V 内通过碰撞各自消耗掉其一半动能后负电子逸出V ,正电子发生飞行中湮没,湮没光子从V 逸出。求上述过程的转移动能tr ε、碰撞转移能τ εtr 和授与能ε。 第一章 3、吸收剂量、比释动能和照射量三者之间有什么联系和区别? 三者联系: 带电粒子平衡:不带电粒子在某一体积元的物质中,转移给带电粒子的平均能量,等于该体积元物质所吸收的平均能量。发生在物质层的厚度大于次级带电粒子在其中的最大射程深度处。D=K (1-g ) g 是次级电子在慢化过程中,能量损失于轫致辐射的能量份额。 对低能X 或γ射线,可忽略轫致辐射能量损失,此时D =K 带电粒子平衡条件下,空气中照射量(X )和同一点处空气吸收剂量(Da)的关系为:X e W D a a = 吸收剂量与物质的质量吸收系数ρμ/en 成正比,即 )/()/(a en m en a m u u D D ρρ=

故空气中同一点处物质的吸收剂量Dm 为: X f X X e W D m a en m en a a en m en m ?=?=??=)/()/(85.33)/()/(ρμρμρμρμ 三者区别见P18页表1.4。 辐射量 吸收剂量 D 比释动能K 照射量X 适用 适用于任何带电粒子及 适用于不带电粒子如X 、 仅适用于于X 或γ射 范围 不带电粒子和任何物质 γ光子、中子等和任何物质 线,并仅限于空气 介质 剂量学 表征辐射在所关心的 表征不带电粒子在所关心的 表征X 或γ射线 含意 体积V 沉积的能量;这些 体积V 内交给带电粒子的能 在所关心的空 能量可来自V 内或V 外 量,不必注意这些能量在何处, 气体积V 内 以何种方式损失的 交给次级电子 用于电离、激 发的那部分能量 4、在γ辐射场中,某点处放置一个圆柱形电离室,其直径为0.03m 长为0.1m 。在γ射线照射下产生10-6C 的电离电荷。试求在该考察点处的照射量和同一点处空气的吸收剂量各为多少? ) mg/cm 29.1( C/kg 10097.1103a 226 =?=?==--ρπρh r dm dQ X a Gy 371.085.33===X X e W D a a 5、通过测量,已知空气中某点处的照射量为6.45×10-3C.kg -1,求该点处空气的吸收剂量。 Gy 218.085.33===X X e W D a a 设在3min 内测得能量为14.5 MeV 的中子注量为1.5×1011m -2。求在这一点处的

相关文档
最新文档