钢管热处理加热保温时间法则

钢管热处理加热保温时间法则
钢管热处理加热保温时间法则

钢管热处理加热保温时间法则

本文介绍了用于热处理加热时保温时间的简单计算法则——369法则,实际生产表明,该369法则的实行有助于提高产品质量、提高生产率、降低生产成本、简化工艺。该法则包括各种金属材料加热保温时的369法则,真空热处理的预热、加热、保温时的369法则,以及用于密封箱式多用炉热处理加热保温的369法则。

一、各种金属材料在空气炉中加热淬火保温的369法则

1.碳素钢和低合金钢(45#、T7、T8等)

传统的碳素钢淬火加热时间的计算公式:T=K?αD

式中,T——加热时间min;

K——反映装炉状况的修正系数,通常在1.0~1.3范围内选取;

α——加热系数,一般在0.7~0.8min/mm;

D——工件有效厚度。

在实际生产中,一般也根据经验和工件有效厚度(mm)来计算保温时间。例如某45#钢工件的有效厚度为60mm,在空气炉中加热淬火保温时间大约是炉温到温后再保温60min,即工件的每1mm有效厚度加热1min,这是对于单件加热。对于大批量生产,一炉装入很多工件,就只有根据实际经验延长保温时间或通过窥视孔,观察工件透烧后再保温一定的时间。经验证明,如果按照369法则,对于碳素钢,保温时间仅需原传统保温时间的30%即可。例如,对于采用箱式炉加热60mm直径的45钢工件,其保温时间公需60min×30%=20min。

2.合金结构钢(40Cr、40MnB、35CrMo)

因为合金结构钢中添加了一些合金元素,在加热保温过程中为使碳化物均匀化需要一定的时间。根据369法则,合金结构钢加热的保温时间可以是原来传统保温时间的60%。例如用传统的公式计算的40Cr的保温时问如果为100min,根据369法则,新的保温时问为:100min×60%=60min。

3.高合金工具钢(9SiCr、CrWMn、Crl2MoV、W6、W8等)

对于这些合金元素含量较高的钢种,合金碳化物较多,因此需要较长的保温时间,使其均匀化。369法则的保温时间是原来传统保温时间的90%。

4.特殊性能钢(不锈钢、耐热钢、耐磨钢等)

这些钢种的369法则可按照合金工具钢的公式计算。即以传统公式计算的加热保温时间×90%作为保温时间。

5.预热淬火

对于大型工件(有效直径≥1m)调质处理的预热保温时问的369法则为

即 T1=3D

T2=6D

T3=9D

式中:T1为第一次预热时间/h;T2为第二次预热时间/h;T3为最终保温时间/h;D为工件有效厚度/m。

对于直径φ475~1030mm的大型锻件,淬火加热时应该有一次或二次预热保温,并且阶梯加热时,最大温差出现在400~560℃和800~850℃,在这两个温度范围内的保温时间也适用预热淬火的369法则。实际生产证明,对于空气炉加热的中小零件(有效尺寸≤500mm),预热和加热时的保温时间也可按369法则计算。

二、真空加热保温时的369法则

传统的真空炉加热保温时间的计算公式如下所示

T1=30+(1.5~2)D

T2=30+(1.0~1.5)D

T3=20+(0.25~0.5)D

式中:D为工件有效厚度/m;T1为第一次预热时间/min;T2为第二次预热时间/min;T3为最终保温时间/min。

保温时间还与装炉量的大小有关,真空炉的加热保温时间与装炉量、工件有效厚度等因素之关系的经验公式如下:

T真1=T真2=T真3=O.4×G(kg)+D(mm)

式中:G为装炉工件净重量/kg,其它符号意义与以前各式相同。该式是基于装炉量在100~200kg左右,工件有效尺寸在100mm左右。

工件尺寸基本相同,摆放整齐,并留有一定空隙(摆放空隙

G≤300kg:T真1=T真2=T真3=30+D

G=301—600kg:T真1=T真2=T真3=(30—60)+D

G=601—900kg:T真1=T真2:T真3=(60—90)+D

G≥901kg:T真1=T真2=T真3=90+D

式中:G为装炉总重量,包括工件、料筐、料架及料盘的所有重量(kg);D为工件有效直径(mm)。

对于变形要求严格的工模具,因为真空炉在低温时传热速度较慢,第一次预热保温时,若时间太短则工件表面和心部的温差太大,可能会造成工件热应力变形。因此,第一次预热时间应取上限值,第二次预热取中限值,最终热处理取下限值。对于普通

热处理加热保温时间的369法则

热处理加热保温时间的369法则作者:jiangnan 时间:2009-3-14 22:36:00 第1楼 ?本文介绍了用于热处理加热时保温时间的简单计算法则——369法则,实际生产表明,该369法则的实行有助于提高产品质量、提高生产率、降低生产成本、简化工艺。该法则包括各种金属材料加热保温时的369法则,真空热处理的预热、加热、保温时的369法则,以及用于密封箱式多用炉热处理加热保温的369法则。 一、各种金属材料在空气炉中加热淬火保温的369法则 1.碳素钢和低合金钢(45、T7、T8等) 传统的碳素钢淬火加热时间的计算公式:T=K?αD(1)式中,T为加热时间min;K为反映装炉状况的修正系数,通常在1.0~1.3范围内选取;α为加热系数,一般在0.7~0.8min/mm;D为工件有效厚度。在实际生产中,一般也根据经验和工件有效厚度(mm)来计算保温时间。例如某45#钢工件的有效厚度为60mm,在空气炉中加热淬火保温时间大约是炉温到温后再保温60min,即工件的每1mm有效厚度加热1min,这是对于单件加热。对于大批量生产,一炉装入很多工件,就只有根据实际经验延长保温时间或通过窥视孔,观察工件透烧后再保温一定的时问。经验证明,如果按照369法则,对于碳素钢,保温时间仅需原传统保温时间的30%即可。例如,对于采用箱式炉加热660mm直径的45钢工件,其保温时间公需60min×

30%=20min。 2.合金结构钢(40Cr、40MnB、35CrMo) 因为合金结构钢中添加了一些合金元素,在加热保温过程中为使碳化物均匀化需要一定的时间。根据369法则,合金结构钢加热的保温时问可以是原来传统保温时间的60%。例如用传统的公式计算的40Cr的保温时问如果为100min,根据369法则,新的保温时问为:100min×60%=60min。 3.高合金工具钢(9SiCr、CrWMn、Crl2MoV、W6、W8等) 对于这些合金元素含量较高的钢种,合金碳化物较多,因此需要较长的保温时间,使其均匀化。369法则的保温时间是原来传统保温时间的90%。 4.特殊性能钢(不锈钢、耐热钢、耐磨钢等) 这些钢种的369法则可按照合金工具钢的公式计算。即以传统公式计算的加热保温时间×90%作为保温时问。 5.预热淬火 对于大型工件(有效直径≥1m)调质处理的预热保温时问的369法则为 即 T1=3D(2) T2=6D(3) T3=9D(4) 式中:T1为第一次预热时间/h;T2为第二次预热时问/h;T3为最终保温时间/h;D为工件有效厚度/m。

镍基高温合金锻件的热处理

镍基高温合金锻件的热处理 [2007-12-08] 关键字:锻件 在锻造中常用可锻性这一名词表示金属材料在锻造时变形的难易程度。可锻性一般用塑性和变形抗力两个指标来衡量。高温下塑性好、变形抗力低的钢或合金,较容易锻造,由可锻性好;而塑性差、变形抗力大的钢或合金,锻造时易产生裂纹等缺陷,或所需设备吨位较大,锻造较困难,故可锻性差。在国外常评价各种钢及合金的相对可锻性。相应可锻性是基于各种合金在各自锻造温度范围内每消耗单位能量所得到的变形量,同时还考虑了合金在锻造工艺条件下达到规定的急剧变形程度的困难性以及断裂倾向性。可锻性对锻件成形和锻件质量有重要影响,了解和研究各种金属材料的可锻性,对于正确制定锻造工艺和确定锻造设备吨位具有重要意义。1.杂质及合金元素对钢的塑性影响 钢的高温塑性除与冶金质量和锻造热参数等因素有关外,主要取决于它的化学成分。 硫在固溶体中的溶解度极小,在钢中常以FeS的形式存在,FeS与Fe形成低熔点(约985℃)共晶体,分布于晶界,当钢在800~1200℃进行锻造时,会因晶界发生熔化而开裂,呈热脆性,因而限制钢中的硫含量在0.03%以下。 磷可溶于铁素体,使钢的强度、硬度提高,但使其塑性、韧性显著下降,尤其在低温时要为严重,即使钢呈现冷脆性。 氮可溶于铁素体,当钢快冷后在200~250℃加热时,会有氮化物析出,

使钢的硬度、强度上升,塑性、韧性大为下降,即使钢呈现蓝脆性(时效脆性)。 氧在钢中形成的氧化物夹杂如MnO,SiO2,Al2O3等,它们的熔点高,硬而脆,其数量、大小及分布情况对钢的塑性有一定影响。而FeO与FeS可形成低熔点(约930℃)共晶体,加剧钢的热脆性。 氢含量高的钢锻造时易产生龟裂,并在冷却过程中易形成白点等缺陷。 碳在锻造温度范围内,若能全部溶入奥氏体,则对钢的塑性影响不大。只有当钢的含碳量较高时,由于较多渗碳体甚至莱氏体从固溶体中析出,钢的塑性才大为下降。 锰在钢中可优先形成MnS(熔点为1620℃),从而减小钢的热脆性。当锰含量大于0.8%时,作为合金元素,促进晶粒长大,使钢容易产生过热。 镍在冶炼过程中可提高钢的吸气能力,尤其是吸收氢的能力,促进钢中形成气泡或产生裂纹。镍与钢中的硫易结合形成低熔点共晶体(Ni3S2—Ni),熔点约为640℃,分布于晶界上,在锻造时引起热脆性。 铬是铁素体形成元素,铁素体型的高铬钢晶粒长大倾向大,容易产生过

煤气发生炉(锻件热处理炉)安全操作规程示范文本

煤气发生炉(锻件热处理炉)安全操作规程示范文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

煤气发生炉(锻件热处理炉)安全操作规 程示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1、做好点火前的各项准备工作: ①检查管路是否畅通,阀门是否灵活,各种零件是否 齐全,位置是否正确。 ②检查各种电气、仪表的开关是否完好,指示是否正 确。 ③检查各部分的安全防爆装置是否有效。 2、点火时必须关小一次风,人必须站在点火孔(或炉 门)侧面一米以外,以防煤气或炉火穿出伤人。 3、当遇到突然停火时,应立即打开放气烟囱,以防止 回火。 4、要经常检查煤气管道和净化设备,防止焦油堵塞或

煤气泄漏。 5、定时检查热处理炉子的除硫情况,每个两个小时检查一次PH值,确保PH值在7以上,检查时发现PH小于7时,需要添加石灰水80公斤量,PH值达到7才允许继续使用。每次设备维修时煤气发生炉需要将循环水全部更换,更换下来的废水经沉淀池沉淀后排出,每次维修时需要记录。 6、每次检查均需记录,记录的内容包括PH值,有无添加石灰水,添加的量 7、打扦时应关小一次风,将专用的打扦盖放在钎孔上。同时,操作人员应戴好石棉手套和防护眼睛,并不能对准观察孔,以免烫伤。 8、停炉时一定要打开放气烟囱,放散蒸气,并切断电源。 9、对于自产蒸气的发生炉,应经常观察汽包水位表的

热处理工艺规程

浙江 X X 重型锻造有限公司 热处理中心 文件名称:热处理工艺规程 文件编号:HT/GC-01-A 制定:日期:2010.9.10 审核:日期:2010.9.12 批准:日期:2010.9.15 版次:A/0 共12页受控号:生效日期:2010.9.15

热处理工艺规程 1.0热处理工艺规范 1.1退火及其目的 把钢加热到其一适当温度并保温,然后缓慢冷却的热处理方法,称为退火。根据退火的目的和工艺特点,可分为去应力退火,再结晶退火、完全退火、不完全退火、等温退火、球化退火和均匀化退火等。 退火的目的主要有以下几点: (1)降低硬度,改善切削加工性能。 (2)细化晶粒,改善钢中碳化物的形态和分布,为最终热处理做好组织准备。 (3)消除内应力,消除由于塑性变形加工、切削加工或焊接造成的内应力以及铸件内残留的内应力,以减小变形和防止开裂。 (4)使碳化物球状化.降低硬度。 (5)改善或消除钢在铸造、锻造和焊接过程中形成的各种组织缺陷,防止产生白点。 在大多数情况下,退火一般为预备热处理,通常安排在铸造或锻造之后.粗加工之前,目的是为了降低硬度.改善切削加工性能,细化组织,为最终热处理做组织准备。对于一些要求不很高的工件,退火也可作为最终热处理。消除内应力退火往往在铸造、焊接、压力加工或粗加工之后。 1.2均匀化退火 (1)定义: 均匀化退火也称扩散退火,是把钢加热到远高于Ac3或Acm的温度,经长时间保温,然后缓慢冷却的热处理工艺。 (2)目的: 是使钢的成分均匀化,消除成分偏析。在高温下,钢中原子具有大的活动能量,有利于原子进行充分的扩散,从而消除成分偏析及组织的不均匀性。以减轻钢在热加工时产生脆裂的倾向和消除铸钢件内应力,并提高其力学性能。 (3)范围: 适用于铸钢件及具有成份偏析的锻轧件。 (4)工艺: 加热温度为Ac3+150~200℃,保温时间为10~20h ,随炉缓冷至350 ℃以下出炉。由于退火的加热温度很高,保温时间又长,很容易引起晶粒长大,需在退火后进行细化晶粒的处理,如进行压力加工使晶粒碎化,或通过完全退火、正火使晶较细化。 1.3再结晶退火 (1)目的: A、消除加工硬化,降低硬度。 B、消除冷塑性变形后的内应力。 (2)范围: 主要用于冷变形加工的工件。如工件经冷冲压或拉伸后,为降低硬度,便于继续进行冷变形加工,均需进行再结晶退火,也称工序间退火。对于某些冷变形加工零件,为消除加工硬化及内应力,再结晶退火也可作为最终热处理。 (3)工艺: 再结晶退火温度 Ac1-50~150℃。碳钢的再结晶退火温度一般为600~700℃。由于再结晶温度与钢的化学成分及冷塑性变形量有关,因此应根据具体情况确定。温度太高,晶粒会明显长大;温度过低,再结晶过程不能完全进行,晶粒大小不均匀。保温后空冷。 1.4去应力退火 (1)定义:

保温与加热问题

发热与保温问题专题复习 例1(南通)(9分)如图所示是家用饮水机的工作原理电路,其中S是温度控制开关,当水温升高到一定温度时,饮水机从加热状态自动切换到保温状态,已知电阻R0=55Ω,R=2365Ω. (1)请判断当开关S处于“1”挡时,饮水机处于加热状态还是保 温状态?简述理由。 (2)当开关S处于“2”挡时,通过电阻R和R0的电流强度各为 多大? (3)当开关S分别处于“1”挡和“2”挡时,饮水机的总功率各 是多少? 例2.(15青海)电热水壶有加热和保温两种工作状态,由机内温控开关S1控制,从说明书上收集到如图23中所示的数据及电路图。求: (1)要使电热水壶处于加热状态,S1 是断开还是闭合? (2)正常加热时,电路中的电流是多 少? (3)R2的阻值是多大? 跟踪训练: 1.(威海)图9是某家用电热器内部电路结构示意图,其中R1、R2为加热电阻丝(R1>R2).电阻丝有四种连接方式可使电热器提供不同的发热功率,其中发热功率最大的连接方式是 2(16 衡阳) 19.(2分)某型号电饭锅有高温档和低温档两个档位,其原理如图所示,若已知电阻R0=44Ω,R=2156Ω,则当开关置于(选填“1”或“2”)位置时为高温档,当电饭锅以高温档正常工作10min消耗的电能为J.

3(苏州)27.下表为一台电热水器的铭牌(有一项内容模糊不清),电热水器内部简化电路如图所示,R1和R2均为电热丝.××牌电热水器 求: (1)低温挡正常工作时的额定功率; (2)中温挡正常工作10分钟产生的热量; (3)高温挡正常工作时的额定电流. 4.(陕西)19.图示为一款有高、低温两档的蒸汽电熨斗电路原理图.R1、R2为电热丝,其中R2=242Ω,水升温并汽化成水蒸气,从而熨烫衣服. (1)电热丝是利用电流的效应工作的.分析电路图,闭合S 1, 当S2时,电熨斗处于高温档. (2)电熨斗处于低温档时,正常工作功率为100W.求:通过电路的 电流是多大?R1的电阻是多大?通电3min产生的热量是多少? (3)若将该款电熨斗进行改造,使其正常工作时高温挡功率为 1000W.要求只改变R2的阻值,请你通过分析和计算,求出该电热丝 改变后的阻值应为多少? 5 (1 6 南平) 34.(7分)如图1所示是某型号电热加湿器的原理图,如表为其部分技术参数.R1、R2为发热电阻,且R2=3R1,S为旋转型开关,1、2、3、4为触点,通过旋转开关S可实现“关”、“低档”、“高档”之间的转换(低档为小功率加热,高档为大功率加 热). 额定电压220V 高档发热功率400W 水箱容积3L 适用面积20~40m2 (1)加湿器需在高档加热,开关S应旋转至触点(选填:“1、2”、“2、3”或“3、4”)位置; (2)电阻R1的阻值; (3)加湿器处于低档位置时的发热功率; (4)如图2所示是某次使用加湿器工作30min的图象,请计算加湿器消耗的总电能. 额定电压220V 额定 电流 高温挡 中温挡5A 低温挡2A 电源频率50Hz

金属大型锻件热处理论文

小论大型锻件热处理 大型锻件是指用1000t或更大吨位水压机生产的锻件。随着大型锻件的尺寸和重量的增加,热处理时有效厚度也随之发生变化。由于截面的增大,不可避免地存在成分偏析、非金属夹杂、显微空隙等冶金缺陷,再加上相变潜热的影响,在加热和冷却过程中产生的应力较大,极易引工件的畸变和开裂,本文对大型锻件的热处理工艺参数进行了优化,并取得了显著经济效果。 一、大型锻件热处理可以解决的缺陷通常有以下几种 1.大晶粒 大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒,晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。 2.晶粒不均匀 晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。耐热钢及高温合金对晶粒不均匀特别敏感。晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。 3.冷硬现象 变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。严重的冷硬现象可能引起锻裂。 4.裂纹 裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允许的塑性指针等,则在撤粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂纹。 5.龟裂 龟裂是在锻件表面呈现较浅的龟状裂纹。在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。引起龟裂的内因可能是多方面的:①原材料合cu、sn等易熔元素过多。②高温长时间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。③燃料含硫量过高,有硫渗人钢料表面。 6.飞边裂纹 飞边裂纹是模锻及切边时在分模面处产生的裂纹。飞边裂纹产生的原因可能是:①在模锻操作中由于重击使金属强烈流动产生穿筋现象。②镁合金模锻件切边温度过低;铜合金模锻件切边温度过高。 7.铸造组织残留 铸造组织残留主要出现在用铸锭作坯料的锻件中。铸态组织主要残留在锻件的困难变形区。锻造比不够和锻造方法不当是铸造组织残留产生的主要原因,

锻造及锻后热处理工艺规范

目录 1.钢质自由锻件加热工艺规范 2.钢锭(坯)加热规范若干概念 3.加热操作守则 4.锻造操作守则 5.锻件锻后冷却规范 6.锻件锻后炉冷工艺曲线 7.锻件锻后热装炉工艺曲线 8.冷锻件校直前加热、校直后(补焊后)回火工艺曲线 9.锻件各钢种正火(或退火)及高温回火温度表 10.锻件有效截面计算方法

钢质自由锻件加热工艺规范 一.范围: 本规范规定了钢质自由锻件的通用加热技术条件。 本规范适用于碳素钢、合金钢、高合金钢、高温合金钢(铁基、镍基)的冷、热、半热钢锭(坯)的锻造前加热 二.常用钢号分组和始、终锻加热温度范围: 组别钢号 始锻温度 ℃ 终锻温度 ℃ 钢锭钢坯终锻精整 ⅠQ195~Q255,10~30 1250 1220 750 700 35~45,15Mn~35Mn,15Cr~35Cr 1220 1200 750 700 Ⅱ50,55,40Mn~50Mn,35Mn2-50Mn2,40Cr~55Cr,20SiMn~35SiMn, 12CrMo~50CrMo,34CrMo1A,30CrMnSi,20CrMnTi,20MnMo, 12CrMoV~35CrMoV,20MnMoNb,14MnMoV~42MnMoV, 38CrMoAlA,38CrMnMo 1220 1200 800 750 Ⅲ34CrNiMo~34CrNi3Mo,PCrNi1Mo~PCrNi3Mo,30Cr1Mo1V, 25Cr2Ni4MoV,22Cr2Ni4MoV,5CrNiMo,5CrMnMo,37SiMn2MoV 30Cr2MoV,40CrNiMo,18CrNiW,50Si2~60Si2,65Mn,50CrNiW, 50CrMnMo,60CrMnMo,60CrMnV 1200 1180 850 800 T7~T10,9Cr,9Cr2,9Cr2Mo,9Cr2V,9CrSi,70Cr3Mo, 1Cr13~4Cr13,86Cr2MoV,Cr5Mo,17-4PH 0Cr18Ni9~2Cr18Ni9,0Cr18Ni9Ti,Cr17Ni2,F316LN 1200 1180 850 800 50Mn18Cr4,50Mn18Cr4N,50Mn18Cr4WN,18Cr18Mn18N GCr15,GCr15SiMn,3Cr2W8V,CrWMo,4CrW2Si~6CrW2Si 1200 1180 850 800 Cr12MoV1,4Cr5MoVSi(H11),W18Cr4V 1180 1160 950 900 ⅣGH80,GH901,GH904,GH4145,WR26, NiCr20TiAl,incone1600,incone1800 1130 1100 930 930 注1:始锻温度为锻前加热允许最高炉温,由于钢锭的铸态初生晶粒加热时过热倾向比同钢号钢坯小,故两者的锻前加热温度相差20℃~30℃; 注2:根据产品的特性、锻件技术条件、变形量等因素,始锻温度可以适当调整;注3:本规范未列入的钢种,可按化学成分相近的钢号确定; 注4:重要的、关键产品的、特殊材质的钢号,其加热工艺曲线由技术部编制;注5:几种不同的钢种,不同尺寸的钢锭(或坯料),在同一加热炉加热时,要以合金成分高的,尺寸大的钢锭(或坯料)为依据编制加热工艺曲线。

退火时间和温度的确定1

退火时间和温度的确定 退火的时间是如何确定的,是不是通过保温时间就是t=kaH这个公式?等效厚度H对于管件 是1.5倍的壁厚合金钢如35CrMo、42CrMo我取的a=2.1,感觉这个公式算出来的时间太长了,出来的硬度明显偏低。 还有就是如果为去应力退火,去应力退火的温度范围一般为500-650度,不同的钢种如何选择温度呢?温度是根据钢种确定的还是根据时间确定的?,对于几个挨着的管件一起进入台车炉那么K=2, 退火是将钢材或各种金属机械零件加热到适当温度,保温一段时间,然后缓慢冷却,可以获得接近平衡状态组织的热处理工艺。在机械制造行业,退火通常作为工件制造加工过程中的预备热处理工序。 一. 完全退火 完全退火是将钢件或各种机械零件加热到临界点Ac3以上的适当温度、在炉内保温缓慢逐渐冷却的工艺方法。其目的是为了细化组织、降低硬度、改善机械切削加工性能及去除内应力。 完全退火适用于中碳钢和中碳合金钢的铸钢件、焊接件、轧制件等。 完全退火工艺曲线。 3. 工件装炉:一般中、小件均可直接装入退火温度的炉内,亦可低温装炉,随炉升温。 4. 保温时间:保温时间是指从炉子仪表到达规定退火加热温度开始计算至工件在炉内停止 加热开始降温时的全部时间。工件堆装时,主要根据装炉情况估定,一般取2~3h。 5. 工件冷却:保温完成后,一般停电(火),停止加热,关闭炉门逐渐缓冷至500℃即可出 炉空冷。对某些合金元素含量较高、按上述方式冷却后硬度仍然偏高的工件,可采用等 温冷却方法,即在650℃附近保温2~4h后再炉冷至500℃。 二. 去应力退火 去应力退火是将工件加热到Ac1以下的适当温度,保温一定时间后逐渐缓慢冷却的工艺方法。其目的是为了去除由于机械加工、变形加工、铸造、锻造、热处理以及焊接后等产生的残余应力。 1. 去应力退火工艺曲线。 2. 不同的工件去应力退火工艺。 3. 去应力退火的温度,一般应比最后一次回火温度低20~30℃,以免降低硬度及力学性能。 4. 对薄壁工件、易变形的焊接件,退火温度应低于下限。 5. 低温时效用于工件的半加工之后(如粗加工或第一次精加工之后),一般采用较低的温度。

保温时间

保温时间,这个问题比较复杂,一般由试验确定,但也有个经验公式: t = αKD t—保温时间(min) α—加热系数(min/mm) K—工件加热是的修正系数 D—工件的有效厚度(mm) 工件有效厚度的计算原则是:薄板工件的厚度即为其有效厚度;长的圆棒料直径为其有效厚度;正方体工件的边长为其有效厚度;长方体工件的高和宽小者为其有效厚度;带锥度的圆柱形工件的有效厚度是距小端2L/3(L为工件的长度)处的直径;带有通孔的工件,其壁厚为有效厚度. 加热时间还与工件在炉内的排布方式有关 工件在炉内的排布方式与加热修正系数之间的关系 上图所示为工件在炉内的排布方式与加热修正系数之间的关系.由图可以看出,工件在炉内四面都可被加热时,修正系数最小(为1),而当堆积摆放时,修正系数最大(等于4),修正系数越大,则工件所需的加热时间越长. 加热系数α与钢材的化学成分、炉子温度、炉内所用的介质、有无预热等因素有关。在中温加热温度范围内,加热系数α的数值如下表所示: K =1 K =1 K =1.4 K =4 K =2.2 K =2 K =1.8 K =1 K =2 K =1.4 K =1.3

注:b为达到预热温度(550-650℃)时的加热系数。 对于高合金钢、高速钢、高合金模具钢的淬火加热保温时间则要适当延长,以保证碳化物的溶解和奥氏体化。 在所有工具钢中,高合金钢需用保温的时间最长。然而这类钢的保温时间在很大程度上取决于淬火温度。一般来说,为了在淬火时获得合适的硬度,对于淬火温度要求有一定的保温时间。保温时间太短,由于溶入奥氏体中碳和合金量不足,使得淬火硬度偏低;保温时间过长,淬火后将有较多的残留奥氏体,也将使硬度降低。建议保温时间为0.5-0.8min/mm。 热作模具钢,常加热到1000℃以上,以使碳化物溶入奥氏体中。在这样高温下淬火,晶粒长大速度很快,因此,要严格控制保温时间。在盐浴炉中加热时,正常的保温时间为20-30min。 在保温时间内,应使工件透烧,并保证基本完成向奥氏体的组织转变。一般来说,这是保温时间的最低限度。过长的保温时间,不仅耗费能源,增加氧化脱碳的深度,降低生产效率,而且有过热的可能性,增加淬裂的趋势。传统工艺中的保温时间过长,实无必要。 通常,保温时间包括工件表面加热到炉子温度所需的时间、透烧时间及完成内部组织转变所需时间。钢的加热温度超过Ac1点,钢中的组织转变包括珠光体向奥氏体的转变,碳化物的溶解和奥氏体均匀化。通常淬火加热温度在Ac1点50℃以上(合金钢更高)。在这一温度范围内,珠光体的奥氏体化可充分完成,无需保温。碳化物及奥氏体均匀化是一个扩散过程。对于碳钢及低合金钢,碳化物溶解及奥氏体均匀化所需时间都很短。为此,不必过分延长工件在炉中的停留时间。因此,对于碳钢和低合金钢,可以去除淬火保温时间中的“透烧时间”和“组织均匀化时间”,仅保留工件表面加热到工艺温度时间,即采用“零”保温淬火。这样可在保证零件性能的前提下,缩短工艺周期,减少淬火裂纹。 摘自.金属热处理缺陷分析及案例.王广生编著 机械工业出版社

大型锻件锻后热处理基本要求

大型锻件锻后热处理基本要求 一.锻后热处理的目的 锻后热处理,又称为第一热处理或预备热处理,通常是紧接在锻造过程完成之后进行的,有正火、回火、退火、球化、固溶等几种形式。其主要目的是: 1.消除锻造应力,降低锻件的表面硬度,提高切削加工性能和防止变形。 2.对于不再进行调质处理的工件,应使锻件达到技术条件所要求的各种性 能指标,如强度、硬度、韧性等。这类工件大多属于碳钢或低合金钢。 3.调整与改善大型锻件在锻造过程中所形成的过热与粗大组织,减少其内 部化学成分与金相组织的不均匀性,细化晶粒。 4.提高锻件的超声波探伤性能,消除草状波,使锻件中其它内部缺陷能够 清晰地显示出来,以利于准确判别和相应地处理。 5.对于含氢量高的钢种延长回火时间,以避免产生白点或氢脆开裂的危险。 对于绝大多数大型锻件来说,防止白点是锻后热处理的首要任务,必须 完成。 二.正火 正火主要目的是细化晶粒。将锻件加热到相变温度以上,形成单一奥氏体组织,经过一段均温时间稳定后,再出炉空冷。 正火时的加热速度为:在700℃以下应缓慢,以减少锻件中的内外温差和瞬时应力,最好在650~700℃之间加一个等温台阶;在700℃以上,尤其在Ac1(相变点)以上,应提高大型锻件的加热速度,争取获得更好一些的晶粒细化效果。 正火的温度范围通常在760~950℃之间,根据成分含量不同的相变点不同而定。通常,碳与合金含量越低,正火温度越高,反之则越低。有些特殊钢种可达1000~1150℃范围。但不锈钢及有色金属的组织转变却是靠固溶处理来实现的。

三.回火 回火的主要目的是扩氢。并且还可以稳定相变后的组织结构,消除组织转变应力及降低硬度,使锻件易于加工并不产生变形。 回火的温度范围有三种,即高温回火(500~660℃)、中温回火(350~490℃)和低温回火(150~250℃)。常见的大锻件生产都采用高温回火方式。 回火一般紧跟在正火之后进行,当正火锻件空冷至220~300℃左右时,重新入炉加热、均温、保温,然后随炉冷至锻件表面250~350℃以下出炉即可。 回火后的冷却速度应足够缓慢,以防在冷却过程中因瞬时应力过大而产生白点,并尽量减少锻件中的残余应力。通常将冷却过程分为两个阶段:在400℃以上,因钢处于塑性较好、脆性较低的温度范围,冷速可稍快一点;在400℃以下,因钢已进入冷硬和脆性较大的温度范围,为了避免开裂和减少瞬时应力,应采取更为缓慢的冷却速度。 对于白点和氢脆较敏感的钢,需要根据氢当量和锻件有效截面尺寸大小,确定延长回火时间扩氢,以便将钢中的氢扩散溢出,使其降低到安全的数值范围。四.退火 退火的温度包括了正火和回火的整个范围(150~950℃),采用炉冷的方式,做法与回火差不多。 加热温度在相变点以上(正火温度)的退火叫完全退火。没有发生相变的退火叫不完全退火。 退火的主要目的是为了消除应力和稳定组织结构,包括冷变形后的高温退火和焊接后的低温退火等等。 正火+回火是比单纯退火更高级的手段,因为相变充分、组织转变充分,并且有恒温扩氢的过程。 公司技术部2012.12.13

煤气发生炉(锻件热处理炉)安全操作规程简易版

The Daily Operation Mode, It Includes All The Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify Management Process. 编订:XXXXXXXX 20XX年XX月XX日 煤气发生炉(锻件热处理炉)安全操作规程简易版

煤气发生炉(锻件热处理炉)安全操 作规程简易版 温馨提示:本操作规程文件应用在日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 1、做好点火前的各项准备工作: ①检查管路是否畅通,阀门是否灵活,各 种零件是否齐全,位置是否正确。 ②检查各种电气、仪表的开关是否完好, 指示是否正确。 ③检查各部分的安全防爆装置是否有效。 2、点火时必须关小一次风,人必须站在点 火孔(或炉门)侧面一米以外,以防煤气或炉 火穿出伤人。 3、当遇到突然停火时,应立即打开放气烟 囱,以防止回火。

4、要经常检查煤气管道和净化设备,防止焦油堵塞或煤气泄漏。 5、定时检查热处理炉子的除硫情况,每个两个小时检查一次PH值,确保PH值在7以上,检查时发现PH小于7时,需要添加石灰水80公斤量,PH值达到7才允许继续使用。每次设备维修时煤气发生炉需要将循环水全部更换,更换下来的废水经沉淀池沉淀后排出,每次维修时需要记录。 6、每次检查均需记录,记录的内容包括PH 值,有无添加石灰水,添加的量 7、打扦时应关小一次风,将专用的打扦盖放在钎孔上。同时,操作人员应戴好石棉手套和防护眼睛,并不能对准观察孔,以免烫伤。 8、停炉时一定要打开放气烟囱,放散蒸

加热与保温

5.加热与保温 单元教学目标: 1.知道加热有各种各样的方式,知道人们在生活与生产中经常需要对物体加热。 2.初步了解一些日常物品加热后产生的变化。 3.初步了解常见保温材料和保温方法。 4.能通过多次观察、比较,发现事物的变化。 5.通过观察与实验、测量与制作等活动,培养学生的动手能力。 课时安排: 3课时

第1课由冷变热 教学目标: 1.知道加热水的方法有很多。 2.能简单比较各种加热方法的相同点和不同点。 3.体会产生热的方式有很多。 4.能制作一个可以加热水的简易太阳能加热器。 教学重点: 帮助学生知道加热水的方法很多,从而体会产生热的方式是多种多样的。活动设计 活动一让水热起来 活动目标: 1.能说出3种以上加热水的方法,体会到加热水的方法有很多。 2.能简单比较各种加热方法的相同点和不同点。 3.体会产生热的方式有很多。 活动器材: 实物投影仪,三脚架、蜡烛、烧杯。

活动二制作简易太阳能加热器 活动目标: 1.能制作一个可以加热水的简易太阳能加热器。 2.体会到太阳能的重要。 活动器材: 实物投影仪,活动作业,玻璃杯、温度表、硬纸纸盒、黑颜料、透明塑料纸。

第2课加热带来的变化 教学目标: 1.能动手操作简单的加热实验并观察、描述一些食物被加热后的现象。 2.发现物体加热后会发生不同的变化。 教学重点 学生观察与描述物体加热后所发生的各种变化。 教学难点: 学生对于蜡烛加热操作的掌握。 活动设计 活动食品加热后的变化 活动目标: 1.学习用蜡烛对一些食品进行加热。 2.能说出不同食品加热后所发生的主要变化。 3.能综合运用感官对事物发生的变化进行观察。 活动器材: 实物投影仪,活动作业,三脚架、蜡烛(或酒精灯)、蒸发皿、巧克力、醋、虾、鸡蛋。

四种热处理方式

淬火Quenching 钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体1化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。 淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。也可以通过淬火满足某些特种钢材的铁磁性、耐蚀性等特殊的物理、化学性能。 淬火工艺 将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却的金属热处理工艺。常用的淬冷介质有盐水、水、矿物油、空气等。淬火可以提高金属工件的硬度及耐磨性,因而广泛用于各种工、模、量具及要求表面耐磨的零件(如齿轮、轧辊、渗碳零件等)。通过淬火与不同温度的回火配合,可以大幅度提高金属的强度、韧性及疲劳强度,并可获得这些性能之间的配合(综合机械性能)以满足不同的使用要求。另外淬火还可使一些特殊性能的钢获得一定的物理化学性能,如淬火使永磁钢增强其铁磁性、不锈钢提高其耐蚀性等。淬火工艺主要用于钢件。常用的钢在加热到临界温度以上时,原有在室温下的组织将全部或大部转变为奥氏体。随后将钢浸入水或油中快速冷却,奥氏体即转变为马氏体。与钢中其他组织相比,马氏体硬度最高。淬火时的快速冷却会使工件内部产生内应力,当其大到一定程度时工件便会发生扭曲变形甚至开裂。为此必须选择合适的冷却方法。根据冷却方法,淬火工艺分为单液淬火、双介质淬火、马氏体分级淬火和贝氏体等温淬火4类。 淬火工件的硬度 淬火工件的硬度影响了淬火的效果。淬火工件一般采用洛氏硬度计,测试HRC硬度。淬火的薄硬钢板和表面淬火工件可测试HRA的硬度。厚度小于0.8mm的淬火钢板、浅层表面淬火工件和直径小于5mm的淬火钢棒,可改用表面洛氏硬度计,测试HRN硬度。 在焊接中碳钢和某些合金钢时,热影响区中可能发生淬火现象而变硬,易形成冷裂纹,这是在焊接过程中要设法防止的。 由于淬火后金属硬而脆,产生的表面残余应力会造成冷裂纹,回火可作为在不影响硬度的基础上,消除冷裂纹的手段之一。 淬火对厚度、直径较小的零件使用比较合适,对于过大的零件,淬火深度不够,渗碳也存在同样问题,此时应考虑在钢材中加入铬等合金来增加强度。 淬火是钢铁材料强化的基本手段之一。钢中马氏体是铁基固溶体组织中最硬的相(表1),故钢件淬火可以获得高硬度、高强度。但是,马氏体的脆性很大,加之淬火后钢件内部有较大的淬火内应力,因而不宜直接应用,必须进行回火。 淬火工艺的应用

几种加热方式简介

石墨炉(graphite heater) 石墨炉又称电加热石墨炉。是一个石墨电阻加热器,是原子吸收分光光度计用无焰原子化器的一种。石墨炉的核心部件是一个石墨管,试样用微量进样孔注入石墨管内,经管两端的电极向石墨管供电,最高温度可达3000℃,试样在石墨管中原子化。 一、原理:是将样品用进样器定量注入到石墨管中,并以石墨管作为电阻发热体,通电后迅速升温,使试样达到原子化的目的。它由加热电源、保护气控制系统和石墨管状炉组成。外电源加于石墨管两端,供给原子化器能量,电流通过石墨管产生高达3000℃的温度,使置于石墨管中被测元素变为基态原子蒸气。 二、适用范围 三、优点: 1、坩埚材料来源丰富,价格便宜,易于加工成各种形状,生长设备较简单,建立起来比较容易, 2、更主要的是它适用于某些生长大尺寸高熔点晶体的生长工艺,如垂直梯度结晶法,热交换法等。这是感应加热难以取代的。(与感应加热相比较) 3、结构简单一次投资少、升温速度快,工作温度高,占地面积小维修方便。 4、由于原子化效率高,石墨炉法的相对灵敏度可达10-9-10-12g/ml,最适合痕量分析。 四、缺点: 1、石墨的污染:用石墨电阻加热,石墨的污染有两个方面,一个是它所造成的还原性气氛,使某些氧化物晶体在这种气氛下生长时,由于缺氧而形成氧缺位产生色心,另一个是它本身的挥发对熔体、坩埚或保护材料的侵蚀。石墨作为一种杂质进入熔体中,在晶体生长时被捕获而形成散射颗粒。在梯度法生长工艺中,由于坩埚口用钼片盖住,石墨对熔体的污染要少,再加上晶体是从坩埚底部潮汕在熔体下面由下而上生长,没有机械震动和熔体激烈流动的干扰,温度波动对它的影响也较小。可以在相对稳

用电器的加热和保温问题

用电器的加热和保温问题训练 1.如图是某电热水壶加热和保温电路原理图,R1=44 Ω,R2=440 Ω,当开关S1断开,S2闭合,电热水壶处于状态;该电热水壶的加热功率是W. (第1题)(第2题) 2、小明家买了一台电烤箱,有低、中、高三个挡位的发热功率,如图是其内部简化电路图,开关S1可分别与接触点a、b接触.(已知:R1=48.4 Ω,R2=96.8 Ω,且电源电压保持不变) (1)当开关S1置于b端、S2断开时,电路的连接方式是联,电路处于挡位加热状态. (2)当开关S1置于b端、S2闭合时,此电路处于挡位加热状态,电路消耗的电功率是 W. (3)电烤箱在高挡位正常工作100 s消耗的电能是J. 3.如图所示,是某种电热器的电路图,电源电压220 V,R1、R2的阻值分别为11 Ω、22 Ω,通过旋转扇形开关S,接触不同触点,实现高、中、低三个挡位的转换,电热器在低温工作时的电功率是W,在高温挡工作1 min产生的热量是J. (第3题)(第4题) 4.如图所示是某品牌电炖锅的内部简化电路图,电炖锅上有1 000 W和400 W两挡功率,挡位可自动调节,其工作过程是:按下开关,自动选择1 000 W挡将汤煮至100 ℃,然后自动跳至400 W挡进行保温慢炖.设汤的初温为20 ℃,质量为3 kg,汤的比热容为4.0×103 J/(kg·℃).则: (1)若电炖锅将汤从初温加热至100 ℃耗时20 min,在此过程中汤吸收的热量是多少?电炖锅的效率是多少? (2)R1的阻值是多少? (3)电炖锅进入保温慢炖时,开关S会自动跳至“a”或“b”哪个位置?试说明理由. 5.如图是某款有加热和保温功能的电热饮水机电路原理图,机内有温控开关S0.该饮水机的部分参数已知:额定电压为220 V,加热时的总功率为880 W,保温时的 功率为40 W,R1、R2为加热电阻丝.(假设它们的阻值不变)则:(计算结 果若不能整除,保留一位小数)(1)当S和S0闭合时,饮水机处在什么状 态?此时电路的总电流是多大? (2)在加热状态下,电阻丝R1的阻值为多少? (3)傍晚用电高峰期,若实际电压只有200 V时,饮水机加热的实际总功 率是多大?

Q-ZZ 30021锻件热处理验收规范-2011(下发 版)

Q/ZZ 锻件热处理验收规范 中国重型汽车集团有限公司发布

前 言 本标准代替QZZ 30021—1996《锻件热处理验收规范》。 本标准与QZZ 30021—1996相比,主要变化如下: ——标准的编排格式按GB/T 1.1—2009《标准化工作导则 第1 部分:标准的结构和编写》的规定 进行了调整; ——对原标准中3.2条、3.3条进行了修订,并取消了原标准中5.3.2条; ——删除原标准3.4条对等温退火工艺晶粒度检测,增加调质工艺; ——对原标准3.5条增加了“如没有规定,一般锻件按取样部位处总脱碳层深度,每边应小于或等于有效厚度的1%” ——对原标准中3.6条进行了修订,增加了“但当锻件尺寸不够取拉伸试样时,则应按强度与硬度值进行换算后,对该锻件在取拉伸试样部位进行硬度检测。” ——对原标准中5.3.3条进行了修订,取消金相组织半级的规定; ——在新标准中增加了3.8条和3.9条对过热和过烧的规定; ——原标准中规定了拉伸性能,在新标准中修订为力学性能,并增加了对冲击韧性的检验规定; ——新标准中增加了非调质钢的有关规定; ——取消了原标准5.3.2中所列出的各种具体钢号; ——因GB/T 13320-2007较91版作了很大的改动,故金相组织评级图参照GB/T 13320-2007; ——原标准中取样位置已经不适用,对力学性能的取样位置按DIN EN 10083-1:2006-10重新作了规定; ——增加了5.4.1和5.4.2条款,对热处理硬度的测定位置进行了明确规定; ——对金相试样的取样位置重新作了规定,取消原标准中对边部和心部金相组织的判定依据; ——取消了原标准5.5.3中对金相试样的硬度检测; ——因GB6397已取消,所以本标准中取消了GB6397标准; ——本次修订删除了原标准中的“斯达—斯太尔汽车”、“等温退火”等词语; —— 增加了GB/T 229冲击试验标准和DIN EN 10083-1:2006-10 力学性能取样标准; ——对原标准的附录A进行了修订。 本标准的附录A为规范性附录。 本标准为第一次修订。 本标准由中国重型汽车集团有限公司提出。 本标准由中国重型汽车集团有限公司技术中心归口。 本标准主要起草人:鲁统轮、李玉新。 本标准所代替标准的历次版本发布情况为:——QZZ 30021-1996。

大型锻件热处理基本知识

大型锻件热处理基本知识 大型锻件的热处理分为锻后热处理和性能热处理两种。 一.锻后热处理 (一)锻后热处理的目的 锻后热处理,又称为第一热处理或预备热处理,通常是紧接在锻造过程完成之后进行的,有正火、回火、退火、球化、固溶等几种形式。其主要目的是: 1.消除锻造应力,降低锻件的表面硬度,提高切削加工性能和防止变形。 2.对于不再进行调质处理的工件,应使锻件达到技术条件所要求的各种 性能指标,如强度、硬度、韧性等。这类工件大多属于碳钢或低合金 钢锻件。 3.调整与改善大型锻件在锻造过程中所形成的过热与粗大组织,减少其 内部化学成分与金相组织的不均匀性,细化晶粒。 4.提高锻件的超声波探伤性能,消除草状波,使锻件中其它内部缺陷能 够清晰地显示出来,以利于准确判别和相应地处理。 5.对于含氢量高的钢种延长回火时间,以避免产生白点或氢脆开裂的危 险。对于绝大多数大型锻件来说,防止白点是锻后热处理的首要任务, 必须完成。 (二)正火 正火主要目的是细化晶粒。将锻件加热到相变温度以上,形成单一奥氏体组织,经过一段均温时间稳定后,再出炉空冷。 正火时的加热速度为:在700℃以下应缓慢,以减少锻件中的内外温差和瞬时应力,最好在650~700℃之间加一个等温台阶;在700℃以上,尤其在Ac1(相变点)以上,应提高大型锻件的加热速度,争取获得更好一些的晶粒细化

效果。 正火的温度范围通常在760~950℃之间,根据成分含量不同的相变点不同而定。通常,碳与合金含量越低,正火温度越高,反之则越低。有些特殊钢种可达1000~1150℃范围。但不锈钢及有色金属的组织转变却是靠固溶处理来实现的。 正火后的空冷应尽量使锻件散开和垫起,以促进快速实现相变并冷却均匀,减少组织应力。 大型锻件正火后可以空冷至表面100~200℃,然后在220~300℃之间设一个台阶,保温一段时间再加热回火。 (三)回火 回火的主要目的是扩氢。并且还可以稳定相变后的组织结构,消除组织转变应力及降低硬度,使锻件易于加工并不产生变形。 回火的温度范围有三种,即高温回火(500~660℃)、中温回火(350~490℃)和低温回火(150~250℃)。常见的大锻件生产都采用高温回火方式。 回火一般紧跟在正火之后进行,当正火锻件空冷至220~300℃左右时,重新入炉加热、均温、保温,然后随炉冷至锻件表面250~350℃以下出炉即可。 回火后的冷却速度应足够缓慢,以防在冷却过程中因瞬时应力过大而产生白点,并尽量减少锻件中的残余应力。通常将冷却过程分为两个阶段:在400℃以上,因钢处于塑性较好、脆性较低的温度范围,冷速可稍快一点;在400℃以下,因钢已进入冷硬和脆性较大的温度范围,为了避免开裂和减少瞬时应力,应采取更为缓慢的冷却速度。 对于白点和氢脆较敏感的钢,需要根据氢当量和锻件有效截面尺寸大小,确定延长回火时间扩氢,以便将钢中的氢扩散溢出,使其降低到安全的数值范围。

相关文档
最新文档