以太网接口配置

以太网接口配置
以太网接口配置

目录

1 以太网接口配置.................................................................................................................................1-1

1.1 以太网接口通用配置..........................................................................................................................1-1

1.1.1 以太网接口基本配置...............................................................................................................1-1

1.1.2 配置以太网接口的流量控制功能.............................................................................................1-1

1.1.3 配置以太网接口环回测试功能.................................................................................................1-2

1.2 二层以太网接口配置..........................................................................................................................1-2

1.2.1 二层以太网接口配置任务简介.................................................................................................1-2

1.2.2 配置以太网接口的风暴抑制比.................................................................................................1-3

1.2.3 配置以太网接口统计信息的时间间隔......................................................................................1-3

1.2.4 配置以太网接口进行环回监测.................................................................................................1-4

1.2.5 配置以太网接口的MDI模式.....................................................................................................1-4

1.3 以太网接口显示和维护......................................................................................................................1-5

1 以太网接口配置

1.1 以太网接口通用配置

二层以太网接口,是设备上的一种物理接口,工作在数据链路层,处理二层协议,实现二层快速转发,本节介绍了二层以太网接口的属性及其配置。

1.1.1 以太网接口基本配置

1. 以太网接口基本配置

设置以太网接口的双工模式时存在三种情况:

z当希望接口在发送数据包的同时可以接收数据包,可以将接口设置为全双工(full)属性;

z当希望接口同一时刻只能发送数据包或接收数据包时,可以将接口设置为半双工(half)属性;

z当设置接口为自协商(auto)状态时,接口的双工状态由本接口和对端接口自动协商而定。

设置以太网接口的速率时,当设置接口速率为自协商(auto)状态时,接口的速率由本接口和对端接口双方自动协商而定。

表1-1以太网接口基本配置

操作命令说明

进入系统视图system-view -

进入以太网接口视图interface interface-type interface-number

-

设置以太网接口的描述字符串description text

可选

缺省情况下,描述字符串为“接口名 interface”,比如:

Ethernet1/0/1 Interface

设置以太网接口的双工模式duplex { auto | full | half }

可选

缺省情况下,接口的双工模式为auto(自协商)状态

设置以太网接口的速率speed { 10 | 100 | auto }

可选

缺省情况下,以太网接口的速率为auto(自协商)状态

关闭以太网接口shutdown 可选

缺省情况下,接口处于打开状态

如果想打开端口,可以使用undo shutdown命令

1.1.2 配置以太网接口的流量控制功能

当本端和对端设备都开启了流量控制功能后,如果本端设备发生拥塞,它将向对端设备发送消息,通知对端设备暂时停止发送报文;而对端设备在接收到该消息后将暂时停止向本端发送报文;反之亦然。从而避免了报文丢失现象的发生。只有本端和对端设备都开启了流量控制功能,才能实现对本端以太网接口的流量控制。

表1-2开启以太网接口的流量控制功能

操作命令说明进入系统视图system-view -

进入以太网接口视图interface interface-type

interface-number

-

开启以太网接口的流量控制功能flow-control 必选

缺省情况下,以太网接口的流量控制功能处于关闭状态

1.1.3 配置以太网接口环回测试功能

用户可以开启以太网接口环回测试功能,检验以太网接口能否正常工作。测试时接口将不能正常转发数据包。以太网接口环回测试功能包括内部环回测试和外部环回测试。

z内部环回测试。该测试在交换芯片内部建立自环,用以定位芯片内与该端口相关的功能是否出现故障。

z外部环回测试。该测试需要在以太网接口上接一个自环头,从接口发出的报文通过自环头又环回到该接口,并被该接口接收。用以定位该端口的硬件功能是否出现故障。

表1-3配置以太网接口环回测试功能

操作命令说明进入系统视图system-view -

进入以太网接口视图interface interface-type

interface-number

-

配置以太网接口进行环回测试 loopback { external | internal }可选

缺省情况下,以太网接口环回测试功能处于关闭状态

z端口关闭状态(down)下可以进行内部环回测试,但不能进行外部环回测试。手工关闭(shutdown)时,则不能进行内部和外部环回测试。

z在进行环回测试时系统将禁止在接口上进行speed、duplex、mdi和shutdown命令的配置;

z以太网接口开启环回测试功能时将工作在全双工状态;关闭环回测试功能后恢复原有配置。

1.2 二层以太网接口配置

1.2.1 二层以太网接口配置任务简介

当以太网接口工作在二层模式(bridge)时,可以进行以下配置:

表1-4二层以太网接口/子接口配置任务简介

配置任务说明详细配置

配置以太网接口的风暴抑制比可选

二层以太网接口支持

1.2.2

配置以太网接口统计信息的时间间隔可选

二层以太网接口支持

1.2.3

配置以太网接口进行环回监测可选

二层以太网接口支持

1.2.4

配置以太网接口能够识别的网线类型可选

二层以太网接口支持

1.2.5

1.2.2 配置以太网接口的风暴抑制比

用户可以通过在接口下进行配置,限制接口允许通过的最大广播/组播/未知单播报文流量的大小。

当接口上的广播/组播/未知单播流量超过用户设置的值后,系统将丢弃超出广播/组播/未知单播流量限制的报文,从而使接口广播/组播/未知单播流量所占的比例降低到限定的范围,保证网络业务的正常运行。

表1-5配置以太网接口的风暴抑制比

操作命令说明

进入系统视图system-view -

进入以太网接口视图interface interface-type

interface-number

在以太网接口视图下的配置,只在当前接口下生效

配置以太网接口的广播风暴抑制比broadcast-suppression { ratio

| pps max-pps }

可选

缺省情况下,接口上允许通过的广播流量为100%,

即不对广播流量进行抑制

配置以太网接口的组播风暴抑制比multicast-suppression { ratio |

pps max-pps }

可选

缺省情况下,接口上允许通过的组播流量为100%,

即不对组播流量进行抑制

配置以太网接口的未知单播风暴抑制比unicast-suppression { ratio |

pps max-pps }

可选

缺省情况下,接口上允许通过的未知单播流量为

100%,即不对未知单播流量进行抑制

1.2.3 配置以太网接口统计信息的时间间隔

使用以下的配置任务可以设置统计以太网接口报文信息的时间间隔。使用display interface命令可以显示端口在该间隔时间内统计的报文信息。

表1-6配置以太网接口统计信息的时间间隔

操作命令说明进入系统视图system-view -

配置接口统计信息的时间间隔flow-interval interval 可选

缺省情况下,接口统计信息的缺省时间间隔为300秒

在系统视图下执行该命令,配置的是设备上所有端口统计报文信息的时间间隔;

1.2.4 配置以太网接口进行环回监测

接口发生环路是指接口发出去的报文又通过该接口回到设备,环路的存在可能导致广播风暴。环回监测就是监测设备的接口是否有环路存在。

当用户开启以太网接口的环回监测功能后,设备便定时监测各个端口是否被外部环回。如果发现某端口被环回,设备会将该端口设置为处于环回监测工作状态。

z对于Access端口,如果系统发现端口被环回,则端口变为block状态(处于该状态的端口不能转发数据报文),关闭该端口,并向终端上报Trap信息,同时删除该端口对应的MAC地

址转发表项;

z对于Trunk端口和Hybrid端口,如果系统发现端口被环回,则向终端上报Trap信息。当端口的环回监测受控功能也同时开启时,端口将变为block状态(处于该状态的端口不能转发数据

报文),并向终端上报Trap信息,同时删除该端口对应的MAC地址转发表项。

表1-7配置以太网接口进行环回监测

操作命令说明进入系统视图system-view-

开启全局的端口环回监测功能loopback-detection enable 必选

缺省情况下,全局的端口环回监测功能处于关闭状态

设置端口环回监测的时间间隔loopback-detection interval-time time 可选

缺省情况下,端口环回监测的时间间隔为30秒

进入以太网接口视图interface interface-type

interface-number

-

开启Trunk端口和Hybrid端口的环回监测受控功能loopback-detection control enable

可选

缺省情况下,端口的环回监测受控

功能处于关闭状态

z只有在系统视图下和指定接口视图下均配置了loopback-detection enable命令后,该端口的环回监测功能才能启动。

z当在系统视图下配置undo loopback-detection enable后,所有端口的环回监测功能均被关闭。

1.2.5 配置以太网接口的MDI模式

用于连接以太网设备的双绞线有两种:直通线缆(straight-through cable)和交叉线缆(crossover cable)。为了使以太网接口支持使用这两种线缆,设备实现了三种MDI(Medium Dependent Interface,介质相关接口)模式:across、normal和auto。

物理以太网接口由8个引脚组成,缺省情况下,每个引脚都有专门的作用,比如,使用引脚1和2发送信号,引脚3和6接收信号。通过设置MDI模式,可以改变引脚在通信中的角色。使用normal 模式时,不改变引脚的角色,即使用引脚1和2发送信号,使用引脚3和6接收信号;如果使用across 模式,会改变引脚的角色,将使用引脚1和2接收信号,而使用引脚3和6发送信号。只有将设备的发送引脚连接到对端的接收引脚后才能正常通信,所以MDI模式需要和两种线缆配合使用。

z通常情况下,建议用户使用auto模式,只有当设备不能获取网线类型参数时,才需要将模式手工指定为across或normal。

z当使用直通线缆时,两端设备的MDI模式配置不能相同。

z当使用交叉线缆时,两端设备的MDI模式配置必须相同或者至少有一端设置为auto模式。表1-8配置以太网接口的MDI模式

操作命令说明

进入系统视图system-view -

进入以太网接口视图interface interface-type interface-number

-

设置以太网接口的MDI模式mdi { across | auto |

normal }

可选

以太网接口的MDI模式为auto,即通过协商来决

定物理引脚的角色(发送报文或接收报文)

1.3 以太网接口显示和维护

在完成上述配置后,在任意视图下执行display命令可以显示配置后接口的运行情况,通过查看显示信息验证配置的效果。

在用户视图下执行reset命令可以清除接口统计信息。

表1-9以太网接口显示和维护

操作命令

显示指定接口当前的运行状态和相关信息display interface [ interface-type [ interface-number | interface-number.subnumber ] ]

显示指定接口的接口概要信息 display brief interface [ interface-type [ interface-number | interface-number.subnumber ] ] [ | { begin | exclude | include } regular-expression ]

清除指定接口的统计信息reset counters interface[ interface-type [ interface-number | interface-number.subnumber ] ]

显示端口环回监测功能的开启情况和

相关信息

display loopback-detection

经典中的经典 以太网电接口采用UTP设计的EMC设计指导书

?以太网电接口采用UTP设计的EMC设计指导书 一、UTP(非屏蔽网线)的介绍 非屏蔽网线由两根具有绝缘保护层的铜导线组成,两根绝缘铜导线按照一定密度绞在一起,每一根导线在传输中辐射的电波会与另外一根的抵消,这样可降低信号的干扰程度。 用来衡量UTP的主要指标有: 1、衰减:就是沿链路的信号损失度量。 2、近端串扰:测量一条UTP链路对另一条的影响。 3、直流电阻。 4、衰减串扰比(ACR)。 5、电缆特性。 二、10/100/1000BASE-T以太网电接口原理图设计 10/100/1000BASE-T以太网口电路按照连接器的种类网口电路可以分为:网口变压器集成在连接器里的网口电路和网口变压器不集成在连接器里的网口电路。 1、网口变压器未集成在连接器里的网口电路原理图 网口电路主要包括PHY芯片,网口变压器,网口连接器三部分,图中左侧的八个49.9Ω的电阻是差分线上的终端匹配电阻,其阻值的大小由差分线的特性阻抗决定,当变压器内的线圈匝数发生变化时,其阻值也跟随变化,保证两者的阻抗匹配。由电容组成的差模、共模滤波器可以增强EMC性能。在线圈的中心抽头处接的电容可以有效的改善电路的抗EMC性能,合理的选择电容值可以使电路的EMC做到最优。电路的右侧四个75Ω的电阻是电路的共模阻抗。 2、网口变压器集成在连接器里的网口电路原理图

网口电路主要包括PHY芯片,网口连接器两部分,网口变压器部分集成在接口内部,同样左侧的49.9Ω的电阻阻值也是由变压器的匝数及差分线的特性阻抗决定的。中间的电容组成共模、差模滤波器,滤除共模及差模噪声。75Ω的共模电阻也集成在网口连接器的内部。 3、网口指示灯电路原理图 带指示灯的以太网口电路原理图与不带指示灯灯的大致相同,只是多出指示灯的驱动电路。 注意点: 1)、两个匹配电阻是否需要根据PHY层芯片决定,如有的PHY层芯片内部集成匹配电阻就不需要。匹配电阻是接地还是接电源也是由PHY芯片决定,一般接电源。 2)、芯片侧中间抽头需要通过磁珠串接电源,并且注意每一路接一个磁珠,并通过电容0.01-0.1uf接数字地。 3)、点灯部分电路,link和ACT灯走线要加磁珠处理,同时供电电源也要加磁珠处理。但所有显示驱动灯的电源可以共用一个磁珠。 4)、变压器与连接器部分的匹配电阻75欧姆和50欧姆精度可以放低到5%。

实验五 SDH实验(以太网业务配置实验)

实验五SDH实验(以太网业务配置实验) 一、实验目的 (1)利用ZXONM E300网管组建传输网络,了解SDH传统业务组网配置和网元的配置;(2)掌握以太网业务配置 二、实验器材 (1)ZXONM E300一台; (2)实验终端电脑一台。 三、实验内容 1.以太网业务配置 四、实验原理与步骤 (1)以太网的工作原理 以太网采用带冲突检测的载波帧听多路访问(CSMA/CD)机制。以太网中节点都可以看到在网络中发送的所有信息,因此,我们说以太网是一种广播网络。 以太网的工作过程如下: 当以太网中的一台主机要传输数据时,它将按如下步骤进行: 1、监听信道上收否有信号在传输。如果有的话,表明信道处于忙状态,就继续监听,直到信道空闲为止。 2、若没有监听到任何信号,就传输数据 3、传输的时候继续监听,如发现冲突则执行退避算法,随机等待一段时间后,重新执行步骤1(当冲突发生时,涉及冲突的计算机会发送会返回到监听信道状态。 注意:每台计算机一次只允许发送一个包,一个拥塞序列,以警告所有的节点) 4、若未发现冲突则发送成功,所有计算机在试图再一次发送数据之前,必须在最近一次发送后等待9.6微秒(以10Mbps运行)。 (2)以太网业务配置实验 ZXONM E300网管、ZXMP S325网元设备和ZXMP S200网元设备共同组成了光传输平台。实验室采用了“3+2”模式,拓扑结构如图7-1所示,即在5个网元节点中,3个网元采用ZXMP S325网元设备,2个网元采用ZXMP S200网元设备。

图7-1光传输平台拓扑结构图 实验说明:以太网业务从NET05的FE1端口进入,经过NET01、NET02,从NET04的FE1端口全部全部下业务,带宽为10M。 图7-2 以太网业务流向 以太网业务配置。 (1)业务配置 左边OL1[5-1-4] 与右边的TFE[5-1-7]连接,12(1)与12(1)相连,点击[确认],全部配置好后点击[增量下发],[关闭]

以太网EMC接口电路设计与PCB设计说明

以太网EMC接口电路设计及PCB设计 我们现今使用的网络接口均为以太网接口,目前大部分处理器都支持以太网口。目前以太网按照速率主要包括10M、10/100M、1000M三种接口,10M应用已经很少,基本为10/100M所代替。目前我司产品的以太网接口类型主要采用双绞线的RJ45接口,且基本应用于工控领域,因工控领域的特殊性,所以我们对以太网的器件选型以及PCB设计相当考究。从硬件的角度看,以太网接口电路主要由MAC(Media Access Controlleroler)控制和物理层接口(Physical Layer,PHY)两大部分构成。大部分处理器内部包含了以太网MAC控制,但并不提供物理层接口,故需外接一片物理芯片以提供以太网的接入通道。面对如此复杂的接口电路,相信各位硬件工程师们都想知道该硬件电路如何在PCB上实现。 下图1以太网的典型应用。我们的PCB设计基本是按照这个框图来布局布线,下面我们就以这个框图详解以太网有关的布局布线要点。 图1 以太网典型应用 1.图2网口变压器没有集成在网口连接器里的参考电路PCB布局、布线图,下面就以图2介绍以太网电路的布局、布线需注意的要点。 图2 变压器没有集成在网口连接器的电路PCB布局、布线参考 a)RJ45和变压器之间的距离尽可能的短,晶振远离接口、PCB边缘和其他的高频设备、走线或磁性元件周围,PHY层芯片和变压器之间的距离尽可能短,但有时为了

顾全整体布局,这一点可能比较难满足,但他们之间的距离最大约10~12cm,器件布局的原则是通常按照信号流向放置,切不可绕来绕去; b)PHY层芯片的电源滤波按照要芯片要求设计,通常每个电源端都需放置一个退耦电容,他们可以为信号提供一个低阻抗通路,减小电源和地平面间的谐振,为了让电容起到去耦和旁路的作用,故要保证退耦和旁路电容由电容、走线、过孔、焊盘组成的环路面积尽量小,保证引线电感尽量小; c)网口变压器PHY层芯片侧中心抽头对地的滤波电容要尽量靠近变压器管脚,保证引线最短,分布电感最小; d)网口变压器接口侧的共模电阻和高压电容靠近中心抽头放置,走线短而粗(≥15mil); e)变压器的两边需要割地:即RJ45连接座和变压器的次级线圈用单独的隔离地,隔离区域100mil以上,且在这个隔离区域下没有电源和地层存在。这样做分割处理,就是为了达到初、次级的隔离,控制源端的干扰通过参考平面耦合到次级; f)指示灯的电源线和驱动信号线相邻走线,尽量减小环路面积。指示灯和差分线要进行必要的隔离,两者要保证足够的距离,如有空间可用GND隔开; g)用于连接GND和PGND的电阻及电容需放置地分割区域。 2.以太网的信号线是以差分对(Rx±、Tx±)的形式存在,差分线具有很强共模抑制能力,抗干扰能力强,但是如果布线不当,将会带来严重的信号完整性问题。下面我们来一一介绍差分线的处理要点: a)优先绘制Rx±、Tx±差分对,尽量保持差分对平行、等长、短距,避免过孔、交叉。由于管脚分布、过孔、以及走线空间等因素存在使得差分线长易不匹配,时序会发生偏移,还会引入共模干扰,降低信号质量。所以,相应的要对差分对不匹配的情况作出补偿,使其线长匹配,长度差通常控制在5mil以内,补偿原则是哪里出现长度差补偿哪里; b)当速度要求高时需对Rx±、Tx±差分对进行阻抗控制,通常阻抗控制在100Ω±10%; c)差分信号终端电阻(49.9Ω,有的PHY层芯片可能没有)必须靠近PHY层芯片的Rx±、Tx±管脚放置,这样能更好的消除通信电缆中的信号反射,此电阻有些接电源,有些通过电容接地,这是由PHY芯片决定的; d)差分线对上的滤波电容必须对称放置,否则差模可能转成共模,带来共模噪声,且其走线时不能有stub ,这样才能对高频噪声有良好的抑制能力。

以太网汇聚业务(VLAN划分)

以太网汇聚业务操作 业务需求: 项目的实际业务情况如下:在工行中心机房有一台S325设备,直接与城域网上S385对接。在城域网上下挂有31台S200设备。工行要求将31个S200的业务上传到工行机房S325上,经过汇聚,业务通过S325上汇聚板的GE光口与工行中心机房的中心路由器相接。 但是工行路由器的光口为多模方式。S325无法提供多模的光模块与之对接。因而局方希望我公司能提供一台能支持多模接入的设备。我方提供一台A80,提供GE多模光口与工行路由器对接,并完成汇聚业务。 解决方案: A80板卡配置如下: 配置方案为:利用A80设备STM-4上每个VC4的1-60时隙,实现与中兴S325的业务对接。我们使用4块FE06板进行汇聚及VLAN划分,最后直接从GX01A的GE口中出一条光路,与工行路由器对接。 操作过程:

首先,将基层节点的传送的以太网业务交叉到FE06板卡的对应时隙上。本次传输侧的第一个VC4的1-40时隙为60-67号VLAN基层节点的以太网业务,每个节点的FE业务带宽为10M,将这40个

时隙交叉到8号槽位FE06的1-40时隙上;传输侧的第一个VC4的41-60,第二个VC4的1-20时隙为67-75号VLAN基层节点的以太网业务,每个节点的FE业务带宽为10M,将这40个时隙交叉到9号槽位FE06的1-40时隙上;传输侧的第二个VC4的21-60时隙为76-83号VLAN基层节点的以太网业务,每个节点的FE业务带宽为10M,将这40个时隙交叉到10号槽位的FE06的1-40时隙上;传输侧的第三个VC4的1-40时隙为83-91号VLAN基层节点的以太网业务(为后期扩容方便,我们此次多配置了一个10M带宽)。每个节点的FE业务带宽为10M,将这40个时隙交叉到12号槽位FE06的1-40时隙上。 注: 1.考虑到充分利用板卡,及业务开通情况,在时隙的利用上需与上联的MSTP设备工程人员进行沟通。本次业务中,为配置操作方便,我们本打算每个板卡只使用1-40时隙,但中兴工程人员认为如此会浪费S325的时隙,要求我们每个VC4需利用1-60号时隙。 2.跨设备汇聚业务需与S325上各时隙完全对应。 3.我司设备的VC12编码方式与其他公司设备可能存在差异,因此在配置业务前需确认上联设备的编码方式并加以更改对应(中兴设备为Tributary方式,华为设备为TS方式)。 4.监控通道的时隙绑定一般在业务配置时,应与上行设备工程人员沟通,上行设备一般会存在大量闲置时隙,如此次业务中S325和我们的A80每个VC4只用了1-60时隙,剩余的3个时隙闲置。我们可要求对方工程人员划出其中一个或两个时隙,作为我们设备网管信息的透传通道,这样无需在后期网管搭建上再费周折。 时隙划分操作界面:

以太网接口PCB设计经验分享

以太网口PCB布线经验分享 目前大部分32 位处理器都支持以太网口。从硬件的角度看,以太网接口电路主要由 MAC 控制器和物理层接口(Physical Layer ,PHY )两大部分构成,目前常见的以太网接口 芯片,如LXT971 、RTL8019 、RTL8201、RTL8039、CS8900、DM9008 等,其内部结构也 主要包含这两部分。 一般32 位处理器内部实际上已包含了以太网MAC 控制,但并未提供物理层接口,因此,需外接一片物理层芯片以提供以太网的接入通道。 常用的单口10M/100Mbps 高速以太网物理层接口器件主要有RTL8201、LXT971 等,均提供MII 接口和传统7 线制网络接口,可方便的与CPU 接口。以太网物理层接口器件主 要功能一般包括:物理编码子层、物理媒体附件、双绞线物理媒体子层、10BASE-TX 编码/ 解码器和双绞线媒体访问单元等。 下面以RTL8201 为例,详细描述以太网接口的有关布局布线问题。 一、布局 CPU M A RTL8201 TX ± 变 压 RJ45 网口 器 C RX± 1、RJ45和变压器之间的距离应当尽可能的缩短. 2、RTL8201的复位信号Rtset 信号(RTL8201 pin 28 )应当尽可能靠近RTL8021,并且,如果可能的话应当远离TX+/-,RX+/-, 和时钟信号。 3、RTL8201的晶体不应该放置在靠近I/O 端口、电路板边缘和其他的高频设备、走线或磁性 元件周围. 4、RTL8201和变压器之间的距离也应该尽可能的短。为了实际操作的方便,这一点经常被放弃。但是,保持Tx±, Rx±信号走线的对称性是非常重要的,而且RTL8201和变压器之间的距离需要保持在一个合理的范围内,最大约10~12cm。 5、Tx+ and Tx- (Rx+ and Rx-) 信号走线长度差应当保持在2cm之内。 二、布线 1、走线的长度不应当超过该信号的最高次谐波( 大约10th) 波长的1/20 。例如:25M的时钟走线不应该超过30cm,125M信号走线不应该超过12cm (Tx ±, Rx ±) 。 2、电源信号的走线( 退耦电容走线, 电源线, 地线) 应该保持短而宽。退耦电容上的过孔直径 最好稍大一点。 3、每一个电容都应当有一个独立的过孔到地。 4、退耦电容应当放在靠近IC的正端(电源),走线要短。每一个RTL8201 模拟电源端都需要退耦电容(pin 32, 36, 48). 每一个RTL8201 数字电源最好也配一个退耦电容。 5、Tx±, Rx ±布线应当注意以下几点: (1)Tx+, Tx- 应当尽可能的等长,Rx+, Rx- s 应当尽可能的等长; (2) Tx±和Rx±走线之间的距离满足下图: (3) Rx±最好不要有过孔, Rx ±布线在元件侧等。

以太网交换机配置基础

实验1以太网交换机配置基础 一、实验内容与目标 完成本实验,您应该能够: ●掌握以太网交换机的基本配置方法 ●掌握以太网交换机的常用配置命令 二、实验组网图 三、实验设备 PC:两台有以太网接口和COM口的PC 线缆:普通网线两根,Console线缆一根 以太网交换机:Quidway S3100-26C-SI或Quidway S3610-28TP 四、实验过程 实验任务一:使用以太网交换机的console口进行配置Console口配置是路由器最基本、最直接的配置方式,当路由器第一次被配置时,console口配置成为配置的唯一手段。因为其它配置方式都必须预先在交换机上进行一些初始化配置。 1、console配置线缆的连接。 ①将配置电缆的DB-9(或DB-25)孔式插头接到要对路由器进行配置的微机或终端的串口上; ②将配置电缆的RJ45一端连到路由器的配置口(console)上。 2、运行主机上的终端软件。 ①首先启动超级终端,点击windows的开始→程序→附件→通讯→超级终端,启动超级终端; ②根据提示输入连接描述名称后确定,在选择连接时使用相应的COM口后单击“确

定”按钮,在弹出的COM1属性窗口中单击“还原为默认值”按钮后单击“确定”按钮。 ③此时,我们已经成功完成超级终端的启动。如果您已经将线缆按照要求连接好,并且交换机已经启动,此时按Enter 键,将进入交换机的用户视图并出现如下标识符:。否则您将启动交换机,超级终端会自动显示交换机的整个启动过程。 实验任务二:交换机的用户界面配置 1、 进入用户视图 交换机开机直接进入用户视图,此时交换机在超级终端中的标识符为。在该视图下可以查询交换机的一些基础信息,如版本号(display version ) %May 18 08:04:16:482 2000 AL3SW1 SHELL/4/LOGIN: Console login from aux0 display version H3C Comware Platform Software Comware software, Version 5.20, Release 0001P02 Copyright (c) 2004-2007 Hangzhou H3C Tech. Co., Ltd. All rights reserved. H3C S3610-28TP uptime is 3 weeks, 0 day, 14 hours, 51 minutes …… 从上面的信息中我们可以看到该S3610-28TP 三层以太网交换机的版本号为:

SDH网络组网、配置、操作和管理及以太网业务配置实验

专业实习 题目:SDH网络组网、配置、操作和管理及以太网业务配置 实验 2016-5-13

一、实验目的 (1)利用ZXONM E300网管组建传输网络,了解SDH传统业务组网配置和网元的配置 (2)创建网元,并完成各网元之间的业务配置 (3)完成时钟源和公务配置,修改网元网元状态、下载网元数据 (4)掌握以太网业务配置 二、实验器材 (1)ZXONM E300一台; (2)实验终端电脑一台。 三、实验内容 (一)SDH传统组网配置及网元配置 (1)按照ZXONM E300配置手册将设备与PC机互联; (2)连接网管 ①使用交叉网线连接网管计算机和网元A子架接口区的网管接口Qx(此步骤跳过)。 ②修改网管计算机IP地址为193.55.1.5、掩码为255.255.255.0、网关为193.55.1.18。 (3)创建网元 表6-3 各网元信息表 网元 A B C D E 参数 网元名称NET01 NET02 NET03 NET04 NET05 网元标识 1 2 3 4 5 网元地址196.1.1.18 196.1.2.18 196.1.3.18 196.1.4.18 196.1.5.18 系统类型ZXMP S200 ZXMP S325 ZXMP S325 ZXMP S3325 ZXMP S200 设备类型ZXMP S200 ZXMP S325 ZXMP S325 ZXMP S325 ZXMP S200 网元类型ADM® ADM® ADM® ADM® TM 速率等级STM-4 STM-16 STM-16 STM-16 STM-4 在线/离线离线离线离线离线离线自动建链自动建链自动建链自动建链自动建链自动建链配置子架主子架主子架主子架主子架主子架(4)安装单板 ①在客户端操作窗口中,双击拓扑图中的网元图标,进入单板管理对话框 ②所有网元单板安装完成保存后,再次双击该网元,各网元的单板管理对话框中的模拟子架应显示所安装单板 (5)建立连接

以太网通道

以太网通道(EthernetChannel)(端口汇聚) 一、基本定义 将两台设备之间的多个物理以太网接口进行逻辑绑定,形成一条虚拟链路,以便增加带 宽。实现负载均衡、主备备份等的一种链路技术,必须是双数链路. 以太网通道必须遵循的一些规则 ●参与捆绑的端口必须都处于同一个VLAN。 ●如果端口配置的是中继模式,那么,应该在链路两端将通道中的所有端口配置成相同的中继模式。 ●所有参与捆绑的端口的物理参数设置必须相同。应该有同样的速度和全双工或者半双工模式设置。也就是说,参与捆绑的链路,速率必须相同。 二、配置 注意事项: Speed Duplex 要一致 相关特性要一致 具体配置: 配置2层以太网通道 Switch(config)#interface fastEthernet 0/1 Switch(config-if)#switchport mode access Switch(config-if)#switchport access vlan 2 Switch(config-if)#channel-group 5 mode ? active Enable LACP unconditionally auto Enable PAgP only if a PAgP device is detected desirable Enable PAgP unconditionally on Enable Etherchannel only passive Enable LACP only if a LACP device is detected Switch(config-if)#channel-group 5 mode auto Switch#show run 配置3层以太网通道 在3750及以前系列中应该首先通过全局命令手动创建一个端口通道逻辑接口 然后使用channel-group 接口配置命令把逻辑接口添加到通道组中 Switch(config-if)#interface port-channel 15 Switch(config-if)#no switchport Switch(config-if)#ip address 192.168.2.2 255.255.255.0 Switch(config-if)#end Switch# 把物理接口添加到通道组中 Switch(config)#interface fastEthernet 0/3 Switch(config-if)#no ip address Switch(config-if)#no switchport

以太网通信接口电路设计规范

目录 1目的 (3) 2范围 (3) 3定义 (3) 3.1以太网名词范围定义 (3) 3.2缩略语和英文名词解释 (3) 4引用标准和参考资料 (4) 5以太网物理层电路设计规范 (4) 5.1:10M物理层芯片特点 (4) 5.1.1:10M物理层芯片的分层模型 (4) 5.1.2:10M物理层芯片的接口 (5) 5.1.3:10M物理层芯片的发展 (6) 5.2:100M物理层芯片特点 (6) 5.2.1:100M物理层芯片和10M物理层芯片的不同 (6) 5.2.2:100M物理层芯片的分层模型 (6) 5.2.3:100M物理层数据的发送和接收过程 (8) 5.2.4:100M物理层芯片的寄存器分析 (8) 5.2.5:100M物理层芯片的自协商技术 (10) 5.2.5.1:自商技术概述 (10) 5.2.5.2:自协商技术的功能规范 (11) 5.2.5.3:自协商技术中的信息编码 (11) 5.2.5.4:自协商功能的寄存器控制 (14) 5.2.6:100M物理层芯片的接口信号管脚 (15) 5.3:典型物理层器件分析 (16) 5.4:多口物理层器件分析 (16) 5.4.1:多口物理层器件的介绍 (16) 5.4.2:典型多口物理层器件分析。 (17) 6以太网MAC层接口电路设计规范 (17) 6.1:单口MAC层芯片简介 (17) 6.2:以太网MAC层的技术标准 (18) 6.3:单口MAC层芯片的模块和接口 (19) 6.4:单口MAC层芯片的使用范例 (20) 71000M以太网(单口)接口电路设计规范 (21) 8以太网交换芯片电路设计规范 (21) 8.1:以太网交换芯片的特点 (21) 8.1.1:以太网交换芯片的发展过程 (21) 8.1.2:以太网交换芯片的特性 (22) 8.2:以太网交换芯片的接口 (22) 8.3:MII接口分析 (23) 8.3.1:MII发送数据信号接口 (24) 8.3.2:MII接收数据信号接口 (25) 8.3.3:PHY侧状态指示信号接口 (25) 8.3.4:MII的管理信号MDIO接口 (25) 8.4:以太网交换芯片电路设计要点 (27) 8.5:以太网交换芯片典型电路 (27) 8.5.1:以太网交换芯片典型电路一 (28)

MSTP设备间开放以太网专线业务配置规范

附件1. 不同厂家MSTP设备间开放以太网 专线业务配置规范 1.SDH配置规范 1.1 时隙对应关系 省际间开放以太网专线业务时,TU12的时隙顺序应以表1中时隙结构1为准,如采用时隙结构2(华为厂家设备),需调整为时隙结构1的排列方式。

表1. 时隙对应表

1.2 开销字节设置 1.2.1 C2、V5信号标记字节 高阶信号(如VC4映射)模式下,C2字节为0x1B。 低阶信号(如VC12映射虚级联)模式下,V5字节的应发和应收都应为0x0D。 1.2.2 J0字节 部分厂家设备要求J0字节的期望值与应收值一致,否则会产生告警,并向对端回告RDI告警。在调测过程中如遇到此类问题,需将期望值与对端发送值改为一致。 1.2.3 J1、J2字节 部分厂家设备要求J1、J2字节的期望值和应收值一致。 注:一些厂家采用J1、J2值进行环回测试,如果对端返回的J1、J2值和本端设备的发送值相同,会导致设备环回检测而将端口阻塞,造成业务中断。 1.3 GFP字节设置 如无特殊要求GFP字节不需处理,互通时使用默认值即可。 GFP规范字节如下:

表2. GFP字节设置

2.以太网配置规范 2.1 FCS选项 FCS选项应为“0”,即“检验字节长度”应设为“没有” 2.2 LCAS选项 启用LCAS功能 3.路由器设置 MSTP设备与用户端路由器相连时,需要注意端口协商模式,对应关系表如下: 表3. 端口协商模式对应表 建议采用手动设置速率及双工模式的方法。当用户租用10Mbps、100Mbps带宽线路时,把所有的传输端口都设置为10Mbps全双工或者100Mbps全双工。当配置完成后,若与对端端口无法配合工作,则把此端口配置成自适应,如果仍旧无法满足要求,则需进一步手动修改配置,直到速率和双工模式匹配。

以太网通道+VLAN+STP+HSRP+3层交换配置

以太网通道+VLAN+STP+HSRP+3层交换配置 由于水平有限,不对的地方还望高手指教,这里先谢过了。由于cisco的PACKET TRACER 5。2还不支持HSRP ,所以只写出了配置步骤。 1.先上拓扑图。 1.路由器RA的配置步骤,这里没有涉及到路由器的很多配置,都是很简单的基本配置,不在详细说明,直接上SHOW R RA#show s % Ambiguous command: "show s" RA#show r Building configuration... Current configuration : 838 bytes ! version 12.2 no service timestamps log datetime msec

no service timestamps debug datetime msec no service password-encryption ! hostname RA ! ! ! ! ! ! ! ! ! ! no ip domain-lookup ! ! ! ! ! ! interface FastEthernet0/0 ip address 192.168.2.1 255.255.255.0 duplex auto speed auto ! interface FastEthernet1/0 ip address 192.168.1.1 255.255.255.0 duplex auto speed auto ! interface Serial2/0 no ip address shutdown ! interface Serial3/0 no ip address shutdown ! interface FastEthernet4/0 no ip address shutdown ! interface FastEthernet5/0

RJ45以太网接口EMC防雷设计方案

以太网接口EMC设计方案 一、接口概述 RJ45以太网接口是目前应用最广泛的通讯设备接口,以太网口的电磁兼容性能关系到通讯设备的稳定运行。 二、接口电路原理图的EMC设计 百兆以太网接口2KV防雷滤波设计 图1 百兆以太网接口2KV防雷滤波设计 接口电路设计概述: 本方案从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计;从设计层次解决EMC问题;同时此电路兼容了百兆以太网接口防雷设计。 本防雷电路设计可通过IEC61000-4-5或GB17626.5标准,共模2KV,差摸1KV的非屏蔽平衡信号的接口防雷测试。 电路EMC设计说明: (1) 电路滤波设计要点: 为了抑制RJ45接口通过电缆带出的共模干扰,建议设计过程中将常规网络变压器改为接口带有共模抑制作用的网络变压器,此种变压器示意图如下。

图2 带有共模抑制作用的网络变压器 RJ45接口的NC空余针脚一定要采用BOB-smith电路设计,以达到信号阻抗匹配,抑制对外干扰的作用,经过测试,BOB-smith电路能有10个dB左右的抑制干扰的效果。 网络变压器虽然带有隔离作用,但是由于变压器初次级线圈之间存在着几个pF的分布电容;为了提升变压器的隔离作用,建议在变压器的次级电路上增加对地滤波电容,如电路图上C4-C7,此电容取值5Pf~10pF。 在变压器驱动电源电路上,增加LC型滤波,抑制电源系统带来的干扰,如电路图上L1、C1、C2、C3,L1采用磁珠,典型值为600Ω/100MHz,电容取值0.01μF~0.1μF。 百兆以太网的设计中,如果在不影响通讯质量的情况,适当减低网络驱动电压电平,对于EMC干扰抑制会有一定的帮助;也可以在变压器次级的发送端和接收端差分线上串加10Ω的电阻来抑制干扰。 (2) 电路防雷设计要点: 为了达到IEC61000-4-5或GB17626.5标准,共模2KV,差摸1KV的防雷测试要求,成本最低的设计方案就是变压器初级中心抽头通过防雷器件接地,电路图上的D1可以选择成本较低的半导体放电管,但是要注意“防护器件标称电压要求大于等于6V;防护器件峰值电流要求大于等于50A;防护器件峰值功率要求大于等于300 W。注意选择半导体放电管,要注意器件“断态电压、维持电流”均要大于电路工作电压和工作电流。 根据测试标准要求,对于非屏蔽的平衡信号,不要求强制性进行差模测试,所以对于差模1KV以内的防护要求,可以通过变压器自身绕阻来防护能量冲击,不需要增加差模防护器件。 接口电路设计备注: 如果设备为金属外壳,同时单板可以独立的划分出接口地,那么金属外壳与接口地直接电气连接,且单板地与接口地通过1000pF电容相连。

以太网交换机设置

如何配置以太网交换机 串口通过配置电缆与以太网交换机的Console 口连接。 一、通过Console 口搭建配置环境 建立本地配置环境,只需将微机(或终端)的串口通过配置电缆与以太网交换机的Console 口连接。 (2)在微机上运行终端仿真程序(Windows 9x的超级终端等),设置终端通信参数为波特率9600bps、8位数据位、1位停止位、无校验和无流控,并选择终端类型为VT100。如图2-2至图2-4所示。 (3)给以太网交换机通电,终端上显示以太网交换机的自检信息,自检结束后提示用户键入回车,之后将出现命令行提示符(如)。 (4)键入命令,配置以太网交换机或查看以太网交换机运行状态。需要帮助可以随时键入“?”。

二、通过Telnet 搭建配置环境 如果用户已经通过Console 口正确地配置了以太网交换机管理VLAN 接口的IP 地址(在VLAN 接口视图E下使用ip address 命令),并已指定与终端相连的以太网端口属于该管理VLAN(在VLAN 视图E下使用port 命令),这时可以利用Telnet 登录到以太网交换机,然后对以太网交换机进行配置。 (1)在通过Telnet 登录到以太网交换机之前,需要通过Console 口在交换机上配置欲登录的Telnet 用户名和认证口令。 说明:Telnet 用户登录时,默认需要进行口令认证,如果没有配置口令而进行Telnet登录,则系统会提示“password required, but none set.”。可用下面的命令配置用户登录口令。 system-view Enter system view, return user view with Ctrl+Z. [Quidway] user-interface vty 0 [Quidway-ui-vty0] set authentication password simple xxxx(xxxx 是欲设置的Telnet 用户登录口令) (2)建立配置环境,只需将微机以太网口通过局域网与以太网交换机的以太网口连接。 (3)在微机上运行Telnet 程序,输入与微机相连的以太网口所属VLAN的IP地址。 (4)在终端上显示User Access Verification,并提示用户输入已设置的登录口令,口令输入正确后则出现命令行提示符(如)。 (5)使用相应命令配置以太网交换机或查看以太网交换机运行状态。需要帮助可以随时键入“?”。 说明: a. elnet 配置交换机时,不要删除或修改对应本Telnet 连接的交换机上的VLAN 接口的IP 地址,否则会导致Telnet 连接断开。 b. net 用户登录时,默认访问命令级别为0 级的命令。

交换机以太通道中继线路的配置

实验一 一.实验拓扑图 二.实验要求 1、在两台2950交换机上创立VLAN10、VLAN20、VLAN30和VLAN40。 2、把两个交换机上的interface f0/21 分配给VLAN10,interface f0/22 分配给VLAN20,interface f0/23 分配给VLAN30,interface f0/24 分配给VLAN40。 3、每台交换机的interface f0/5 配置为两台交换机的中继端口,实现VLAN数据传输。 4、配置两台交换机的interface f0/1 ,interface f0/2 的端口做以太通道中继线路。三.网络接口 2950A接口1<--→2950B接口1 2950A接口2<--→2950B接口2 2950A接口5<--→2950B接口5 四.实验配置 2950交换机的配置: Switch>en //进入特权模式 Switch#config t //进入全局配置模式 Switch(config)#hostname 2950A//设置主机名为2950A 2950A(config)#no ip do lo //关闭域名解析功能 2950A(config)#line con 0 //进入控制线0 2950A(config-line)#logg syn //光标同步 2950A(config-line)#exec-time 0 0 //对Console口进行空闲超时时间的配置2950A(config-line)#exit // 返回全局配置模式 2950A(config)#end //返回特权模式 2950A#vlan database //进入VLAN数据库 2950A(vlan)#vlan 10 //创建VLAN10 VLAN 10 added: Name: VLAN0010 2950A(vlan)#vlan 20 //创建VLAN20 VLAN 20 added: Name: VLAN0020 2950A(vlan)#vlan 30 //创建VLAN30 VLAN 30 added: Name: VLAN0030 2950A(vlan)#vlan 40 //创建VLAN40 VLAN 40 added: Name: VLAN0040

迈普MyPowerS3000系列以太网交换机配置介绍材料

目录 第1章交换机管理 (1) 1.1 管理方式 (1) 1.1.1 带外管理 (1) 1.1.2 带内管理 (5) 1.2 CLI界面 (10) 1.2.1 配置模式介绍 (10) 1.2.2 配置语法 (13) 1.2.3 支持快捷键 (13) 1.2.4 帮助功能 (13) 1.2.5 对输入的检查 (14) 1.2.6 支持不完全匹配 (14) 第2章交换机基本配置 (15) 2.1 基本配置 (15) 2.2 远程管理 (15) 2.2.1 Telnet (15) 2.2.2 SSH (17) 2.3 配置交换机的IP地址 (18) 2.3.1 配置交换机的IP地址任务序列 (18) 2.4 SNMP配置 (20) 2.4.1 SNMP介绍 (20) 2.4.2 MIB介绍 (21) 2.4.3 RMON介绍 (22) 2.4.4 SNMP配置 (22) 2.4.5 SNMP典型配置举例 (24) 2.4.6 SNMP排错帮助 (26) 2.5 交换机升级 (26) 2.5.1 交换机系统文件 (26) 2.5.2 BootROM模式升级 (27) 2.5.3 FTP/TFTP升级 (29) 第3章集群网管配置 (37) 3.1 集群网管介绍 (37)

3.2 集群网管基本配置 (37) 3.3 集群网管举例 (40) 3.4 集群网管排错帮助 (41)

第1章交换机管理 1.1 管理方式 用户购买到交换机设备后,需要对交换机进行配置,从而实现对网络的管理。交换机为用户提供了两种管理方式:带外管理和带内管理。 1.1.1 带外管理 带外管理即通过Console进行管理,通常情况下,在首次配置交换机或者无法进行带内管理时,用户会使用带外管理方式。例如:用户希望通过远程Telnet来访问交换机时,必须首先通过Console给交换机配置一个IP地址。 用户用Console管理的步骤如下: 第一、搭建环境: 图1-1 交换机Console管理配置环境 按照图1-1所示,将PC的串口(RS-232接口)和交换机随机提供的串口线连接,下面是连接中用到的设备说明: 设备名称说明 PC机有完好的键盘和RS-232串口,并且安装了终端仿真程序,如 Windows 系统自带超级终端等。 串口线一端与PC机的RS-232串口相连;另一端与交换机的 Console相连。 通过串口线连接

04-第4章 配置以太网LAN业务

目录 第4章配置以太网LAN业务.................................................................................................4-1 4.1 工程需求................................................................................................................... 4-1 4.2 工程准备................................................................................................................... 4-2 4.2.1 网元侧............................................................................................................. 4-2 4.2.2 OptiX iManager T2000侧................................................................................. 4-2 4.2.3 文档检查 ......................................................................................................... 4-2 4.3 工程规划................................................................................................................... 4-3 4.3.1 SDH组网图..................................................................................................... 4-3 4.3.2 以太网业务组网图............................................................................................ 4-3 4.3.3 各网元的单板信息............................................................................................ 4-4 4.3.4 SDH时隙分配图 .............................................................................................. 4-6 4.3.5 以太网业务连接关系对照表............................................................................... 4-6 4.3.6 各网元的业务配置图......................................................................................... 4-7 4.4 步骤.......................................................................................................................... 4-9 4.4.1 创建单板 ......................................................................................................... 4-9 4.4.2 创建以太网接口板.......................................................................................... 4-10 4.4.3 创建出子网光口 ............................................................................................. 4-10 4.4.4 配置以太网接口 ............................................................................................. 4-11 4.4.5 创建VB、配置Label标签 .............................................................................. 4-14 4.4.6 配置绑定通道................................................................................................. 4-20 4.4.7 创建VLAN过滤表.......................................................................................... 4-23 4.4.8 配置SDH路径............................................................................................... 4-24

相关文档
最新文档