汽车发动机热管理仿真系统

汽车发动机热管理仿真系统
汽车发动机热管理仿真系统

图4发动机热负荷和冷却水泵转速随时间的变化

3)、发动机舱内外流动与传热仿真系统…

发动机舱内流场及温度分布对热管理系统的性能具有十分关键的影响,而发动机舱内流动和发动机舱外的汽车周围流场具有强烈的相互耦合作用。通过对汽车绕流和发动机舱内的复杂离旋涡流动结构特点和机理进行研究,发展相应算法,对ICEM—CFD、STAR—CD和FLUENT进行二次开发,初步建立了适用于汽车绕流和发动机舱内流动与传热的仿真系统,可对发动机舱内外流动与传热进行分析(如图5和图6所示)。该系统具有如下特点:

围5发动机舱内外流动

①精度高,计算量小。采用求解域分区、结构/非结构网格耦合等技术,可根据流场结构特点有效控制网格疏密,提高流场计算精度,减少所需网格量,可减小高达80%的计算量。应用该平台对Ahmed模型流场进行计算,与实验结果的误差仅为1.85%。

②专业化。物理数学模型应用了汽车空气动力学与热管理的最新研究成果,包括地面效应、适应发动机舱内外分离流动的湍流模型等,专业程度高。

③实用性好.一定程度自动化。整个仿真系统具有良好的适应性和操作性,能对各种类型、大小和行驶工况的汽车外部和发动机舱内流动与传热进行分析。所有操作步骤完全程序

化和模块化,将设计与研究人员从繁杂的建模中解放出来,且有利于非专业的人员应用。例如,该平台所生成的外部区域网格和基于网格上的定解条件可重复应用,工作量减小,工作效率提高。对于不同车型可生成自适应网格,在读入相关车身及发动机、热管理系统几何数据后,可自动根据缺省设置的初始条件和边界条件,对典型工况的发动机舱内外流动与传热作出计算分析,并得出主要数据结果。

图6发动机舱内流动与传热特性

3小结

(i).先进的汽车发动机热管理系统设计须同时考虑发动机、冷却系统、润滑系统、空调系统及发动机舱内外的相互影响。发动机热管理仿真已成为热管理研究与设计的基本工具。同实验相比,仿真具有可预先研究、无条件限制、信息丰富、成本低、周期短等~些显著特点。

(ii)开发的仿真系统可对发动机热管理流体网络系统及发动机舱内外的流动与传热特性进行联合仿真分析,为热管理系统的集成优化设计、运行和控制提供理论基础,揭示系统复杂动力学过程的机理,并可为热管理系统的故障诊断提供依据。

参考文献

MahmoudKG,LoibnerE.wieslerB.Simulation—basedvehiclsthermal

managementsystemconceptandmethodology.SAEPaper2003一01—0276

A11snDA,LaseckiMP.ThermalmanagementevolutionandcontrolledcoolantflowSAEPaper2001—.01—-1732

ZhaegYJ,Ouyang啪,LuoJX,ghangg,WangYJ,Mathematicalmodelingofvehiclefuelcellpowersystemthermalmanagement.SAEInternationalSP一1741,2003:259—264

ZhangYJ,LvZH,xieJM,TUSR.Incompressibleflowcomputationsaroundvehiclebodiesusingun8tructuredhybridgrids.SAEInternationalSP一1667.2002:129—136

汽车发动机热管理仿真系统

作者:张扬军, 张钊

作者单位:清华大学汽车工程系;汽车安全与节能国家重点实验室(北京)被引用次数:1次

本文链接:https://www.360docs.net/doc/5016931827.html,/Conference_4405096.aspx

2018年新能源汽车热管理系统分析报告

2018年新能源汽车热管理系统分析报告

投资聚焦 研究背景 汽车电动化浪潮下,新能源汽车热管理系统的需求高增长;与传统汽车热管理系统相比,新能源汽车热管理系统的单车价值量更高。我们在本篇报告中深度研究了汽车电动化浪潮下热管理行业的变化,并结合分析推导出投资策略。 创新之处 (1)在本报告中,我们从空调系统、电池热管理系统及整体解决方案三个方面,对电动车和传统燃油车热管理系统的异同进行了定性和定量分析,进而对电动车热管理系统的市场需求进行了测算。 (2)本报告投资策略的标的选择范围更广,我们在A股和新三板两个市场中选择优质标的。 投资观点 汽车电动化趋势下,热管理行业迎来变革期。微观角度来看,与传统燃油汽车相比,电动车热管理系统的变化包括:(1)热管理模块新增电池热管理系统、电机电控热管理系统等;(2)空调系统动力源由发动机变为电能,系统复杂程度明显提升;(3)热管理整体解决方案需更加重视功能实现和能耗管理的平衡。以上变化反应在行业层面为:(1)热管理系统的单车价值量明显提升,行业空间也相应增加;(2)行业格局或将出现变化。 根据我们的测算,2020年全球电动车热管理系统需求约300亿元,CAGR约50%,其中,中国市场需求约125亿元(CAGR44%),海外市场需求约175亿元(CAGR59%)。 我们认为在汽车电动化浪潮中,既有的汽车热管理竞争格局已有松动迹象,国内企业存在弯道超车的可能性。我们首次给予汽车热管理行业“买入”评级,建议关注: 1、A股:三花智控(002050.SZ,全球空调阀门龙头)、奥特佳(002239.SZ,汽车空调压缩机龙头)、松芝股份(002454.SZ,客车空调龙头)、银轮股份(002126.SZ,汽车热交换器龙头)、中鼎股份(000887.SZ,密封件龙头)等; 2、新三板:昊方机电(831710.OC)、瑞阳科技(834825.OC)等。风险因素 (1)新能源汽车政策变化影响行业发展的风险:新能源汽车行业仍在早期发展阶段,政策会对行业发展产生较大影响,若监管部门发布相关政策,可能会冲击行业发展。 (2)技术路线更替风险:技术进步是新能源汽车行业发展的驱动力之一,新产品的产业化可能会对上一代产品产生冲击,进而替代原有的技术路线。 (3)市场竞争加剧风险:新能源汽车行业拥有很大发展空间,有大量企业参与竞争,行业产能可能在短期内超过需求,从而出现产能过剩的风险。

发动机热管理系统优化外文文献翻译、中英文翻译、外文翻译

Optimization of engine thermal management system Engine thermal management is from the angle of the whole system, integrated control engine, turbocharger and exhaust, cooling system and engine cabin heat transfer etc., improve circulation efficiency, reducing heat load, change control engine components of high and low temperature limit, temperature distribution and regularity, improves the cooling capacity of the engine's colleagues, keep the engine in good power nature, economy and emission performance and reliability. Application of engine thermal management system technology, can effectively heat transfer system involved in the engine as a comprehensive system of consideration and get the accurate boundary parameters of the engine each fluid system, precise control of temperature and heat flux of each system, can guarantee the safe and efficient operation of the key components and system control. And the optimization of the heat transfer process, reduce the size and power consumption of cooling system, reasonable utilization of heat energy, reduce waste emissions, improve energy efficiency, reduce environmental pollution. There is significant difference between engine thermal management and traditional engine cooling system. From engine cooling to engine thermal management is not only a technological progress, but also a breakthrough in management and design ideas. Engine thermal management technology has become an important measure of engine energy saving, emission reduction, power performance, reliability and engine life. The cooling fan mechanical drive cooling system in the traditional fan from the engine crankshaft through a belt drive, the cooling air depends on engine speed and engine speed is proportional to, rather than the actual engine operation cooling capacity, unable to accurately control the air flow through the radiator, thereby it is difficult to make the engine work in the best temperature, resulting in emissions is too high, the fuel economy and engine performance deterioration. In addition to the outside of the traditional cooling fan cooling sensitivity adjustment is not high, the power loss is also large, serious power consumption, such as power consumption of the fan can reach the total output power of the engine 10%. In order to

电动汽车电池组热管理系统的关键技术

第22卷 第3期 2005年3月 公 路 交 通 科 技 Journal of Highway and T ransportation Research and Development V ol 122 N o 13 Mar 12005 文章编号:1002Ο0268(2005)03Ο0119Ο05 收稿日期:2004Ο03Ο16 基金项目:国家高技术研究发展计划(863计划)重大专题项目(2003AA501100) 作者简介:付正阳(1978-),男,北京人,清华大学汽车工程系硕士研究生,主要从事电动汽车方面的研究1 电动汽车电池组热管理系统的关键技术 付正阳,林成涛,陈全世 (清华大学 汽车安全与节能国家重点实验室,北京 100084) 摘要:电池组热管理系统的研究与开发对于电动汽车的安全可靠运行有着非常重要的意义。本文分析了温度对电池组性能和寿命的影响,概括了电池组热管理系统的功能,介绍了电池组热管理系统设计的一般流程,并对设计热管理系统提出了建议。文章重点分析了设计电池组热管理系统过程中的关键技术,包括电池最优工作温度范围的确定、电池生热机理研究、热物性参数的获取、电池组热场计算、传热介质的选择、散热结构的设计等。关键词:电动汽车;电池组;热管理系统 中图分类号:T M911141 文献标识码:A K ey Technologie s of Thermal Management System for EV Battery Packs FU Zheng Οyang ,LIN Cheng Οtao ,CHEN Quan Οshi (S tate K ey Laboratory of Autom otive Safety and Energy ,Tsinghua University ,Beijing 100084,China ) Abstract :Research and development of battery thermal management system (BT MS )is very im portant for the operation safety and relia 2bility of electric vehicle (E V )1In this paper ,by analyzing the in fluence of tem perature on the per formance and service life of batteries ,the desired function of a BT MS was outlined ,a procedure for designing BT MS was introduced 1Several key technologies during designing a BT MS were introduced and analyzed ,including optimum operating tem perature range of a battery ,heat generation mechanism ,ac 2quisition of the therm odynamic parameters ,calculation of tem perature distribution ,selection of heat trans fer medium ,design of cooling structure and s o on 1 K ey words :E lectric vehicle ;Battery pack ;Thermal management system 0 引言 能源与环境的压力使传统内燃机汽车的发展面临前所未有的挑战,各国政府、汽车公司、科研机构纷纷投入人力物力开发内燃机汽车的替代能源和动力,这大大促进了电动汽车的发展。 电池作为电动汽车中的主要储能元件,是电动汽车的关键部件[1,2],直接影响到电动汽车的性能。电池组热管理系统的研究与开发对于现代电动汽车是必需的,原因在于:(1)电动汽车电池组会长时间工作 在比较恶劣的热环境中,这将缩短电池使用寿命、降 低电池性能;(2)电池箱内温度场的长久不均匀分布将造成各电池模块、单体性能的不均衡;(3)电池组的热监控和热管理对整车运行安全意义重大。 清华大学从承担国家“八五”电动汽车攻关项目以来,在电动汽车、混合动力汽车和燃料电池汽车关键技术的研究中,积极开展了电池组热管理系统的研究,并在样车上进行了道路试验,目前电池组热管理系统的优化设计与改进工作正在进行中。本文是对前阶段研究工作的总结和今后工作的展望。

发动机管理系统习题2

第一章习题 一、填空题 1.电控燃油喷射系统用英文表示为____________,怠速控制系统用英文表示为___________。 2.目前,应用在发动机上的子控制系统主要包括电控燃油喷射系统、____________和其他辅助控制系统。 3.在电控燃油喷射系统中,除喷油量控制外,还包括喷油正时控制、______________和_____________控制。 4.电控点火系统最基本的功能是________________。此外,该系统还具有_____________控制和______________控制功能。 5.排放控制的项目主要包括废气再循环控制、活性炭罐电磁阀控制、氧传感器和___________、____________控制等。 6.传感器的功用是____________________________________________。 7.凸轮轴位置传感器作为_____________控制和_______________控制的主控制信号。 8.爆燃传感器是作为_____________控制的修正信号。 9.电子控制单元主要是根据__________确定基本的喷油量。 10.执行元件受________控制,其作用是__________________。 11.电控系统由、、三大部分组成。 12.电控系统有、两种基本类型。 13.应用在发动机上的电子控制技术有:电控燃油喷射系统、、、、、进气控制系统、增压控制系统、巡航控制系统、警告提示、自诊断与报警系统、失效保护系统、应急备用系统。 14._________________是采集并向ECU输送信息的装置。 15.__________________是发动机控制系统核心。 16.汽车电控系统的执行元件主要有、、、、____________________元件。 17.STA信号主要作用是______________________________________。 18.STA信号和起动机的电源连在一起,由__________________控制。 19.动力转向开关信号表示_____________________________________的信息。 20.空挡起动开关信号的作用是____________________________________________。 二、判断题 1.现代汽车广泛采用集中控制系统,它是将多种控制功能集中到一个控制单元上。() 2.在电控燃油喷射系统中,喷油量控制是最基本也是最重要的控制内容。() 3.电子控制系统中的信号输入装置是各种传感器。() 4.闭环控制系统的控制方式比开环控制系统要简单。() 5.开环控制的控制结果是否达到预期的目标对其控制的过程没有影响。() 6.空气流量计可应用在L型和D型电控燃油喷射系统中。() 7.空气流量计与进气管绝对压力传感器相比,检测的进气量精度更高一些。() 8.曲轴位置传感器只作为喷油正时控制的主控制信号。() 9.发动机集中控制系统中,一个传感器信号输入ECU 可以作为几个子控制系统的控制信号。() 10.点火控制系统还具有通电时间控制和爆燃控制功能。() 11.ECU收不到点火控制器返回的点火确认信号时,失效保护系统会停止燃油喷射。()

发动机管理系统

发动机管理系统 Company Name 公司名 排名 研发中心 工厂 Bosch 博世 1 苏州 联合电子(上海、西安和无锡)、无锡博世威孚(柴油) Delphi 德尔福 2 上海 北京德尔福发动机、北京德尔福万源 Continental 大陆汽车 3 上海 原SiemensVDO 的芜湖、长春工厂;原Freescale 的天津工厂Magnetti Marelli 马瑞利 4 芜湖工厂、上海工厂 Visteon 伟世通 5 上海 重庆工厂 Hitachi 日立 6 Denso 电装 7 仅供Toyota Valeo 法雷奥 8 Eontronic 意昂神州 美国 北京总部、上海分部 TroiTec 锐意泰克 Vagon 华夏龙晖 阳光泰克 Woodward 伍得沃德 成都汪氏威特电喷 成都易控高科 中联汽车电子 无锡油泵油嘴研究所 美国MotoTron 公司是Woodward 公司的子公司,主要从事发动机电控 系统的开发与生产。该公司针对汽油发动机设计了一套完整的控制策略 快速开发平台,此平台从设计开发到生产贯穿一体,可有效地缩短开发 时间,加速产品化进程,降低开发费用。 美国精确技术公司(Accurate Technologies Inc)是车载嵌入式电控系统 ECU 开发、标定与测试工具技术的知名提供商。该公司的ECU 标定系统 (VISION)功能强大,好学易用,而且和Matlab/Simulink 开发平台无缝连接, 多年来被福特(Ford)汽车公司、德尔福公司(Delphi)、沃尔沃卡车公司等指 定为标准匹配标定系统。该公司的No-Hooks 软件是ECU 控制策略快速开 发领域的重大突破。用户只用标定文件(*.a2l 与*.hex 文件),而不需要控制 策略源代码即可对控制逻辑进行修改。修改过的代码自动灌装进原来的 ECU 内进行测试运行。该技术已在美国、欧洲与日本得到了广泛的应用。 美国RMS(Rinehart Motion System)是一家专门从事功率驱动产品与方案 的公司。该公司提供或定制5-500KW 级应用于混动或纯电动控制系统、能 源贮藏系统和大功率设备的电机驱动器、静变流器、DC/DC, DC/AC, AC/DC 等产品。现有客户主要为军工、汽车或跑车、农业机械、工业控制 等行业的世界知名制造公司或主机厂。RMS 与意昂科技将为国内客户提供 产品技术、项目咨询、定制开发等服务。 美国Drivven, Inc, 公司自2003年起提供汽车控制和数据采集解决方案, 已经成为发动机和车辆电子系统开发新标准的领导者之一。基于FPGA 汽

电动汽车热管理系统

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201710538323.X (22)申请日 2017.06.29 (71)申请人 知豆电动汽车有限公司 地址 315600 浙江省宁波市宁海县力洋镇 储家山路1号 (72)发明人 尹湘林 鲍文光 王红梅 闫优胜  樊晓浒 何志刚  (74)专利代理机构 杭州杭诚专利事务所有限公 司 33109 代理人 尉伟敏 (51)Int.Cl. B60H 1/00(2006.01) B60H 1/32(2006.01) B60H 1/22(2006.01) B60L 11/18(2006.01) (54)发明名称 电动汽车热管理系统 (57)摘要 本发明公开了一种电动汽车热管理系统,包 括乘员舱热管理模块和动力系统热管理模块,乘 员舱热管理模块包括电动压缩机、冷凝器、冷凝 风扇、膨胀阀、HVAC系统、第一水泵、水PTC加热器 和连接管路,动力系统热管理模块包括动力电池 包、水壶、第二水泵、散热器、散热器风扇、第三水 泵、控制器、逆变器、电机、热电板式换热器和连 接管路。动力系统热管理模块采用热电板式换热 器来实现。热电板式换热器根据珀耳帖效应,具 有加热和制冷功能。本发明具有结构简单,可靠 性好,控温精确,热利用率高,能有效提高电动汽 车电池使用效率和延长电动汽车行驶里程的特 点。权利要求书1页 说明书4页 附图3页CN 107310344 A 2017.11.03 C N 107310344 A

1.一种电动汽车热管理系统,其特征是,包括乘员舱热管理模块和动力系统热管理模块,乘员舱热管理模块包括制冷循环密闭系统和采暖循环密闭系统,制冷循环密闭系统包括电动压缩机(1)、冷凝器(2)、冷凝风扇(3)、膨胀阀(4)、HVAC系统(5)和连接管路,采暖循环密闭系统包括第一水泵(6)、水PTC加热器(7)和连接管路,动力系统热管理模块包括第一流体循环密闭系统和第二流体循环密闭系统,第一流体循环密闭系统包括动力电池包(8)、水壶(9)、第二水泵(10)、热电板式换热器(17)和连接管路,第二流体循环密闭系统包括散热器(11)、散热器风扇(12)、第三水泵(13)、控制器(14)、逆变器(15)、电机(16)、热电板式换热器(17)和连接管路。 2.根据权利要求1所述的电动汽车热管理系统,其特征是,动力系统热管理模块中的热电板式换热器包括第一流体进口(21)、第一流体出口(22)、第二流体进口(23)和第二流体出口(24),第一流体进口通过连接管路与第二水泵出口连接,第一流体出口通过连接管路与动力电池包进口连接,第二流体进口通过连接管路与第三水泵出口连接,第二流体出口通过连接管路与控制器进口连接。 3.根据权利要求1所述的电动汽车热管理系统,其特征是,热电板式换热器和散热器对动力系统热管理模块进行热管理。 4.根据权利要求2所述的电动汽车热管理系统,其特征是,第一流体和第二流体同时经过热电板式换热器进行加热或制冷,第一流体从热电板式换热器流出时的温度与第二流体从热电板式换热器流出时的温度差可以通过热电板式换热器工作电流大小进行调节,温度差调节在5℃-10℃比较合适。 5.根据权利要求1所述的电动汽车热管理系统,其特征是,当动力电池包不需要制冷或加热时,热电板式换热器停止工作,仅作流通通道,控制器、逆变器和电机依靠散热器和散热风扇进行降温。 6.根据权利要求1或2或3或4或5所述的电动汽车热管理系统,其特征是,HVAC系统包括蒸发器(18)、鼓风机(19)、暖风芯体(20)和连接管路,蒸发器进口通过连接管路与膨胀阀出口连接,蒸发器出口通过连接管路与电动压缩机进口连接,暖风芯体进口通过连接管路与水PTC加热器出口连接,暖风芯体出口通过连接管路与第一水泵进口连接。 权 利 要 求 书1/1页CN 107310344 A

汽车发动机管理系统检修

第8 次课模块一发动机管理系统的检修 项目1.8 发动机管理系统的仪器诊断? 目的要求掌握使用故障检测仪对发动机管理系统进行检测与诊断。 ? 教学重点使用故障检测仪对发动机管理系统进行检测与诊断。 ? 学习难点 使用故障检测仪对发动机管理系统进行检测与诊断。 ? 教具及工具 桑塔纳轿车 2辆,各种传感器若干,通用工具 2 套,万用表 2 块,汽车诊断仪 2 台。 ? 教学内容及时间安排( 180分钟) 1. 问题的引入约 10 分钟 2.汽车电控系统诊断方法约 40 分钟 3.使用 1552 对上海大众桑塔纳 2000 型轿车进行检测与诊断 约 130 分钟

教学内容组织与过程设计备注

课程引入(约10分钟) 汽车电控系统诊断方法(约40分钟) 一、汽车故障诊断新技术 2.3.1案例法 传统的故障诊断中大部分是(,基于规则推理)、(,模式推理)的专家系统技术的研究。由于这些传统的专家系统是基于模型化驱动的(基于模型的诊断方法使用诊断对象的结构、行为和功能模型等深知识进行诊断推理),在模型的构建、信息的获取、信息的处理方面存在严重不足,有一些难以克服的缺点,如系统领域知识的规则提取困难;规则库、模式库的创建和管理复杂艰巨;推理过程中规则与模式难以准确选取等。 整个汽车故障诊断系统主要由知识库、故障案例库、征兆数据库和推理系统构成。其中主要部分的内容和功能描述如下: a)知识库。问题求解的知识、经验的集合,主要由专家提供,包括

汽车故障的分类信息及不同种类故障需要的各种关键特征属性及其权值,并以此构建故障案例库和征兆数据库。 b)故障案例库。由用户根据汽车故障日志和维修日志等历史数据填写的关于汽车故障的各种信息 ,是存储案例和产生新案例的仓库,为新问题的解决提供参考依据。 c)征兆数据库。汽车发生故障时经过数据采集的故障征兆数据 信息 ,是指故障发生的潜在特征 ,即故障发生时汽车运行状态发生的变 化,通常是故障发生时以汽车运行状态参数表示的特征属性。 d)推理系统。整个系统的核心,由案例检索、匹配,案例调整、 学习组成。它决定了诊断效率的高低以及对知识处理的高低 ,实现从已 有的案例集中找到与当前故障问题最为相似的案例 ,并提供相应的解决 方案(即故障维修方案)。同时不断获取新知识和改进旧知识 , 生成 新的维修方案 ,并按一定的存储策略添加到案例库中。这样 ,通过不断 地学习新案例和修改案例库中的旧案例 ,使案例库得到扩充和完善。 2.3.2 故障树分析法 故障树分析法—()是一种将系统故障形成原因按树枝状逐级细化的图形演绎方法,是 60 年代发展起来的用于大系统可靠性、安全性分析和风险评价的一种方法。它通过对可能造成系统故障的各种因素(包括硬件、软件、环境、人为因素等)进行分析,画出逻辑框图(即故障树),再对系统中发生的故障事件,作由总体至部分按树枝状逐级细化的分析,并对系统在方案与初步设计阶段进行可靠性、安全性分析,常用于系统的故障分析、预测和诊断,找出系统的薄弱环节,以便在设计、制造和使用中采取相应的改进措施。 基于故障树的诊断 ,采用面向对象的基于故障树的框架和广义规则的混合知识表示 ,把整个故障树当作一个对象 ,把故障树上所有子、父结点间形成的广义规则封装在一个独立的框架内 ,如某故障树上有结点异常 ,则启动与该故障树对应的框架 ,诊断时只把该框架内的广义规则调入内存 ,提高了诊断速度 .此外 ,该方法还可诊断多故障,因为在推理过程中采用反向遍历搜索 ,可找出所有故障及可能故障的部件 .对可能故障的部件 ,按照其与顶事件形成的通路的权值的大小进行排序 ,权值最大的元素其优先级最高 ,有利于诊断信息不足条件下的对故障源的最优搜索 ,为故障预测和快速维修指明方向 . 2.3.3 专家系统 专家系统是一种基于特定领域内大量知识与经验的智能程序系统,应用人工智能技术模拟人类专家求解问题的思维过程解决领域内的各种问题,是人工智能的一个重要分支。

汽车热管理综述

汽车热管理现状发展综述 自从汽车产生以来,排放以及燃油经济性有关先进科学技术陆续应用到了内燃机上,汽车性能得到了明显的改善。在内燃机燃烧系统、气体热交换系统以及发动机控制系统的发展与改进方面,我们都花费了大量的精力。为了提高发动机的性能,但是,在之后的35年,我们都在发动机及其动力总成上花费了很大的精力,收获却越来越小,成本越来越高。幸运的是,现代工业已经发现并探索出了“最后的领地”—汽车热管理。 何为汽车热管理系统?汽车热管理系统是从系统集成和整体角度出发,统筹热量与发动机及整车之间的关系,采用综合手段控制和优化热量传递的系统。先进的热管理系统设计必须同时考虑发动机冷却系统与润滑系统、暖通空调系统(HV AC)以及发动机舱内外的相互影响,采用系统化、模块化设计方法将这些系统进行设计集成、制造集成,集成为一个有效的热管理系统。其必须能根据行车工况和环境条件,自动调节冷却强度以保持相应的部件在最佳的温度范围内工作,改善汽车各方面的性能,例如燃油经济型、驾驶舒适性等。因此,开发高效可靠的汽车热管理系统已经成为发动机进一步提高功率、改善经济性所必须突破的关键技术问题。因此采用先进的热管理系统设计理念,应用汽车现代设计方法和手段,对汽车热管理系统进行深入研究具有十分重要的意义。 1.国内汽车热管理系统的研究现状 发动机冷却系统作为发动机正常稳定运行的重要辅助系统,国内学者和企业对其研究一直在不断地深入和扩展。在燃烧放热,活塞、缸套、气缸盖温度场与热负荷,缸内气体流动与传热,散热器设计,风扇设计优化,排气系统传热等方面做了大量的研究工作。 目前,国内对汽车整车或者整机的热管理研究并不成熟,还处于初级阶段。国内对整车或者整机的研究主要集中在某几个高校,如同济大学、浙江大学、西安交通大学、清华大学等;而只有几所高校研究发动机的整机热管理,并且还处于起步阶段;而对于整车的热管理研究,国内几乎没有可以承担的。国内大部分企业主要针对某些零部件做单一的研究,并没有把部件统一起来作为整体来考虑。 对于小型轿车来说,冷却系统趋于向高性能方向发展,电控应用技术越来越多;但是对于重型车辆来说,改变并不是很大。重型汽车热管理系统基本结构在过去的40—50年里变化不大,有些部件(冷却液泵和节温器)的设计基本上没改变过。传统的节温器通常采用的是注蜡式节温器,它只能在一定的冷却液温度(80一85℃)内进行单点控制(节温器在85℃时开启,80℃时关闭),不能满足未来的冷却系统对冷却液流量精确控制的要求。研究表明。在25℃大气温度时,路上运行的负载车辆,其节温器打开(大循环)时间仅占总时间的10%。另外,

发动机热管理系统及其优化

发动机热管理系统优化 1.发动机热管理系统概述 发动机热管理(ETMS, Engine Thermal Management System)是从系统整体角度,集成控制发动机的燃烧、增压与进排气、冷却系统和发动机舱等的传热,提高循环效率,减低热负荷,控制发动机部件高低温极限、温度分布及其规律变化,在提高发动机的冷却能力的同事,保持发动机良好的动力性、经济性、排放性能和可靠性。 应用发动机热管理系统技术,可以有效的将发动机中所涉及到的传热系统当作一个大的综合系统进行考虑并得到发动机各个热流系统的精确的边界参数,从而对各个热流系统的温度进行精确的控制,可以保证关键部件和系统安全高效运行,控制和优化热量传递过程,减小冷却系统的尺寸和功率消耗,合理利用热能,降低废热排放,提高能源利用效率,减少环境污染。发动机热管理与传统发动机的冷却系统有着显著区别。从发动机冷却到发动机热管理,不仅是技术上的进步,更是管理、设计思想的突破。发动机热管理技术已成为发动机节能、降低排放、提高动力性、可靠性及发动机寿命的重要措施。 2.发动机热管理的研究现状 国外大公司对动力系统主要部件及热管理部件如散热器、中冷器的研究已经相当成熟,系统匹配已经综合考虑整车动力性、经济性、排放、乘坐舒适性、可靠性等,并做到了智能化管理。并且国外整车公司于发动机公司都在做这方面的工作。而在国内将发动机热管理当作一个系统来进行考虑的比较少,这方面的工作基本局限于大学,整车企业和发动机企业只是刚开始,基本停留在冷却系统研究的初级阶段。主要还是对各子系统单独考虑,并在此基础上进行一些优化。整车和发动机企业缺乏合作研究,只是各自

发动机管理系统习题1

第三章习题 一、填空题 1.点火提前角的修正方法有_________________ 和________________两种方法。 2.在传统的汽油机点火系中,断电器触点的开闭是由__________________来控制的。 3.点火线圈初级电路的接通时间取决于__________________和_______________。 4.使发动机产生最大输出功率的点火提前角称为_________________。 5.电控点火系统一般由_________、__________ 、_______ 、________、点火线圈、分电器、火花塞等组成。 6.电源一般是由蓄电池和________共同组成。 7._________________是爆燃控制系统的主要元件,其功能是_________________________。 8.电感式爆燃传感器主要由_______ 、__________ 、_________及外壳等组成。 9.电感式爆燃传感器利用________________原理检测发动机爆燃。压电式爆燃传感器利用_______________原理检测发动机爆燃。 10.对应发动机每一工况都存在一个_____________点火提前角。 11.最佳点火提前角应使发动机气缸内的最高压力出现在上止点后_____________。 12.最佳点火提前角的数值与_______、______、______、______ 等很多因素有关。 13.汽油发动机的负荷调节是通过__________________________调节。 14.辛烷值较低的汽油抗暴性较__________。点火提前角则应_________。 15.发动机起动时,按___________________________对点火提前角进行控制。 16.日本丰田车系TCCS系统中,实际的点火提前角等于___________ 、_________ 和________之和。 17.点火提前角的修正方法有______________和____________。 18.点火提前角的主要修正项目有______________ 、__________、__________等。 19.水温修正可分为____________、_____________修正。 20.空燃比反馈控制系统是根据________________的反馈信号调整喷油量的多少来达到最佳空燃比控制的。 21.在传统的点火系中,由____________来控制断电器触点的开闭。 22.在现代电控点火系统中,用灵敏可靠的__________和__________取代了传统点火系中的断电器和分电器凸轮。 23.随发动机转速提高和电源电压下降,初级电流通电时间需__________。 24.爆燃传感器一般安装在_________,其功用是__________________________________。 25.爆燃传感器向ECU输入爆燃信号时,电控点火系统采用__________模式。 26.发动机工作时,ECU根据_______________信号判断发动机负荷大小。 27.蓄电池点火系统又称为____________点火系统。 28.蓄电池点火系统的主要缺点是:________________ 、_____________、______________。 29.火花塞的作用是_______________________________________。 30.起动时点火提前角的控制信号主要是__________________和______________。 31.发动机正常工作必须满足______________ 、____________、____________三方面条件。 32.点火系一般是由___________、__________、_________三部分组成。 33.初级电路包括__________、_____________、_____________及所有相关的电线和接头。 34.在点火系统中必须对____________、____________、___________三方面进行控制。 35.点火提前角随着发动机的负荷增大而________。 36.点火提前角的控制包括___________________ 、________________两种基本工况控制。 37.汽油机电控点火系统的功能主要包括、、及三个方面。

《汽车发动机管理系统》A卷

2019—2020学年 第二学期期末考试试题 《发动机管理系统故障诊断与维修》试卷 A 卷 一、填空题(共10题,每空1分,共20分) 1、汽车故障按丧失工作能力程度进行分类,要分为___________ 和____________。 2、汽车故障的变化规律可分为3个阶段,早期故障期、_________________ 和___________。 3、凸轮轴位置传感器可分为____________、 ____________和光电式三种类型。 4.无分电器点火线圈与一般点火线圈不同,其___________ 与___________没有连接,为互感作用。 5、汽车每行驶___________公里或1至2年,应更换___________滤清器。 6、电控燃油喷射系统按进气量的计算方式不同可分为___________和________型两种。 7、排气再循环控制系统的作用是 。 8、电控燃油喷射系统由 、 、 三个子系统组成。 9、电控燃油喷射系统的类型按喷射时序分类可分为_________________ 、______________ 和______________________三种。 10、电控共轨喷射系统中有一条公共油管,用___________向共轨中泵油,用电磁阀进行压力调节并由压力传感器反馈控制。 二、选择题(共10题,每题2分,共20分) 1、下列哪项不是电控发动机的优点( )。 A 、良好的起动性能 B 、加速性能好 C 、功率大 D 、减速减油或断油 2、火花塞属于点火系统当中的( )。 A 、执行器 B 、传感器 C 、既是执行器又是传感器 D 、控制开关 3、以下哪项是汽车起动困难的机械方面的原因( )。 A 、气缸压缩压力不足 B 、高压火不足 C 、个别重要传感器有故障 D 、起动机故障 4、当汽车处于早期故障期也就是汽车的磨合期时,此时的汽车诊断一般是( )。 A 、总成损坏 B 、材料老化 C 、机械磨损 D 、电子元件损坏 5、标准OBD —II 诊断插座上有( )个插孔。 A 、16 B 、14 C 、12 D 、15 6、气缸内最高压缩压力点的出现在上止点后( )曲轴转角内为最佳。 A 、20°~25° B 、30°~35° C 、10°~15° D 、15°~25° 7 、影响初级线圈通过电流的时间长短的主要因素有( )。 A 、发动机转速和温度 B 、发动机转速和蓄电池电压 C 、发动机转速和负荷 D 、发动机转速和温度 8.电子控制柴油机系统在加注燃油时不小心误加汽油,会造成( )损坏。 A 、喷油器 B 、高压泵 C 、低压泵 D 、燃油泵 9.发动机不能起动,无着车迹象时,应首先进行( )。 A 、检查喷油器及电路 B 、检查高压火花 C 、解码仪读取故障码 D 、传感器 10.锥体形涡流发生器存在于以下( )空气流量传感器中。 A 、叶片式 B 、卡门旋涡式 C 、热线式 D 、热膜式 三、判断题(正确的在括号内画√,错的画×每题2分,共20分) 1.( )能较方便排除的故障,或不影响行驶的故障称为一般故障。 2.( )混合气的分配均匀性好是电控发动机的优点之一。

2018年汽车热管理系统行业深度分析报告

2018年汽车热管理系统行业深度分析报告

投资要点: ?技术路线:从传统到新能源,热管理系统复杂性提升汽车热管理系 统广泛意义上包括对所有车载热源系统进行综合管理与优化,热管理系统主要是用于冷却和温度控制,例如对发动机、润滑油、增压空气、燃料、电子装置以及EGR的冷却,对发动机舱及驾驶室的温度控制。热管理系统工作性能的优劣,直接影响汽车的整体性能,对于整车的重要性不言而喻。新能源汽车的发展,对于汽车热管理系统是一场大的变革。传统燃油车的热管理架构主要包括了空调系统以及动力总成热管理系统。新能源汽车由于动力源发生了变化,新增了三电系统,因此要对电池、电机、电控等进行热管理的重新构建。此外,新能源汽车的空调系统因为动力方式的转变也产生较大的变革,从压缩机部件到制暖系统都需要进行技术的升级以及产品的替换。总体而言,从传统燃油车到新能源汽车,汽车热管理系统变得更加复杂,对于整车的重要性愈加提升。 ?产品空间:传统叠加新能源,热管理市场扩容1)节能减排带来传 统燃油车热管理部件新需求。节能推动涡轮增压器市场渗透率持续提升。针对2020年我国乘用车产品平均燃料消耗量达到5L/100km 的目标,涡轮增压(小排量化)成为提升发动机能量转化效率的重要技术,预计到2020年汽油机涡轮增压的比例会上升到40%。节能减排推动尾气处理(EGR)渗透率持续提升。到2020年,我们预测柴油车EGR装机率将逐步达到60%,汽油车EGR装机率达20%。涡轮增压器和尾气处理(EGR)市场渗透率的提升,将直接带动中冷器、电子水泵、EGR冷却器等热管理零部件需求量提升。 2)电动化趋势下,催生新能源汽车热管理新增量市场。目前电动化已经成为汽车行业最主要的趋势之一,各国政府出台相关政策推动,而各家车企也都不同程度的投入到新能源汽车的研发生产中。在政策与产业的联合助力下,新能源汽车发展迅速。单车价值方面,由于新能源汽车热管理系统相对于传统燃油车增加了电机电控冷却系统和电池热管理系统,形成新的产品需求如电子膨胀阀、电池冷却器、电池水冷板、电子水泵等,因此单车价值从传统车的2200元左右提升至4600元左右。3)预计到2020年,传统燃油车热管理系统全球市场规模超2200亿元,新能源汽车热管理系统全球市场规模超200亿元。 ?竞争格局:传统市场行业集中度较高,新能源市场中外厂商共谋未

宇通热管理系统

发动机热管理系统是如何节油的? 发动机热管理系统能够从节能降耗、运行更可靠、延长发动机及附件使用寿命三个方面起到降低油耗,减少维修费用的目的,并保障车辆的可靠运行。 1、燃油燃烧更充分(节能降耗) 通过优化客车发动机进排气系统,对发动机进排气阻力进行优化,给发动机最佳的空气燃油比例,实现燃油的更充分的燃烧,提升了燃油使用率,达到节省燃油的目的。 通过改进发动机温控系统,保证发动机在最适宜的温度环境80°C-95°C下工作,从而最大限度地发挥动力效能,并有效延长发动机寿命。 2、仓体散热更科学(延长使用寿命) 通过对空气流动路径的测量与仓体内结构布置的改进,提高车辆通过结构来改善仓体散热的能力,尽量减少附属件做工。 根据运行中车辆仓体内部温度分布的研究,将易高温老化的零部件的位置进行优化,提高发动机仓体内各部件的寿命。 3、动力利用更有效(运行可靠) 通过对发动机附件的优化管理,使发动机所产出的能量,在冷却风扇、气泵、空调压缩机等附属耗能设备中得以最合理的分配、应用,减少了能量的无效损耗,将更多能量集中供给客车行驶。 发动机热管理系统——降低进排气阻力 发动机进气量的大小决定了发动机燃烧是否充分,较大的进气阻力将导致功率降低、油耗增加。宇通掌握了多种发动机进气系统对油耗的影响规律,极大的满足了发动机对进气阻力的要求,使油耗更低,运营更经济。 进气阻力对整车油耗的影响规律是,在进气阻力远大于发动机要求时,影响作用很大,当进气阻力逐渐减小,对油耗的影响作用也逐渐减小,当进气阻力完全符合发动机要求时,降低油耗的效果递减。 通过对进气阻力的优化改进,在等速行驶过程中,油耗下降2.7升。

德尔福发动机管理系统技术手册模板

德尔福发动机管理系统技术手册

资料内容仅供参考,如有不当或者侵权,请联系本人改正或者删除。 MT20 EMS 系统技术手册 1

资料内容仅供参考,如有不当或者侵权,请联系本人改正或者删除。 目录 第一章系统介绍 第二章58齿同步逻辑及MAPCID 第三章燃油系统 第四章点火系统 第五章怠速系统 第六章空调控制系统 第七章碳罐电磁阀控制 第八章风扇控制 第九章里程累计系统 第十章故障诊断 2

3

第一章系统介绍 德尔福发动机管理系统是以德尔福MT20发动机控制模块(ECM)为核心的系统, 简称为MT20发动机管理系统。 一、发动机控制模块(ECM) 1.MT20发动机控制模块是德尔福专门为中国地区电喷市场开发的 ECM, 设计上运用了最新的电子硬件技术, 并同时采用了低价位的设计结构, 实现了较高的性价比。硬件上采用了16位微处理器( CPU) , 具有充分的内存, 高强的运算速度, 可灵活定义的I/O输入输出口。软件采用德尔福模块化C语言编写的第二代控制软件。MT20具备了满足当前欧3法规所需的所有技术规格。 2.MT20的系统功能包括: 1)速度密度空气计量法; 2)闭环控制多点顺序燃油喷射( 包括MAPCID压力判缸) ; 3)无分电器直接点火, 由ECM内置点火模块驱动分组点火( 也可支持4 缸顺序点火) ; 4)线性EGR控制; 5)步进马达怠速控制; 6)爆震控制; 7)空调、冷却系统控制; 8)里程记忆; 9)电压过高保护; 10)电子防盗; 11)CAN-BUS通讯接口可与自动变速箱控制模块( TCM) 或ABS系统 通讯。 4

相关文档
最新文档