均值不等式定理求最值

均值不等式定理求最值
均值不等式定理求最值

均值不等式定理求最值

复习目标:熟练掌握均值不等式求最值的思想方法和实际应用

一、 基础知识

1、 均值不等式定理

(1)、ab b a b a 2R,22≥+∈、 (当且仅当b a =时取“=”)

(2)、

ab b a R b a 2,≥+∈+、 (当且仅当b a =时取“=”) (3)、2

2,,2

2b a b a ab R b a +≤+≤∈+

(当且仅当b a =时取”=”) 此定理六个方面的应用要多体会掌握。

(4)、abc c b a R c b a 3,333≥++∈+、、 (当且仅当c b a ==时取“=”) (5)、3

3,abc c b a R c b a ≥++∈+、、 (当且仅当c b a ==时取”=”)

2、 均值不等式定理求最值的基本原则

(1)、“一正”:要求在正数条件下或能转化为正数条件的情况下才用均值不等式定理。

(2)、“二定”:即“和定积大与积定和小”原则,这一原则要求:求某些变量的和的最小

值问题应使变量的乘积为定值;而求变量的乘积的最大值问题应转化到变量的和为定值。反之,变量的和为定值必转化为求变量积的最大值问题,变量的积为定值必转化为求变量和的最小值问题。总之,使用均值不等式定理后使变量消去成常数是均值不等式定理求最值的指导思想,也是产生各种技巧的力量源泉。

(3)、“三相等”:即“二”成立原则,这一原则要求验算“二”成立的充要条件,这是保

证所求最值正确与否的关键。完成这一步骤主要看两点:一看“二”成立的充要条件是否有解;二看“二”成立的充要条件有解时的解是否在函数定义域内。如这两点均符合要求,所求函数最值就正确无疑了。

3、均值不等式定理及在求函数最值中的应用是高考热点之一。均值定理的运用最为灵活,往往需灵活变形才能使用。用均值不等式求最值应着重注意三原则:一正、二定、三相等,其中“三相等”就是等号成立的充要条件,这是求解变量取什么值可有最值的唯一途径,应该注意求得的变量是否在函数的定义域内或满足题中的限制条件下,这也是验证这种方法是否可行的唯一办法。如不满足三相等条件,要及时调整解题思路,另寻解题方法。而转到函数单调性和数型结合是常见和有效的方法。其中函数x

b ax y += )0,0(>>b a 型(对a 、b 其它情况可类似讨论)在求函数最值中的应用要掌握,该函数是奇函数且在],0(a b 单调递减,在),[+∞a

b 单调递增。

二、基础训练

1、 函数)0(16>+=x x x y 的最小值是____________,相应=x _____________

2、 函数1222++=x x y 的最小值是____________,相应=x _____________

3、 函数)0(42>+=x x x y 的最小值是____________,相应=x ______________

4、函数

x x y 132+=)0(>x 的最小值是____________,相应=x _____________

5、 函数)10)(1(<<-=x x x y 的最大值是____________,相应=x ___________

6、0、设0

7、 设a,b (0,)∈+∞,且a+b=1, 求

11a b

+的最小值。

8、若x>0,求函数y = 2

1x x x

++的最小值。

9、若x>3, 求函数y = 13

x - + x 的最小值。

10、函数

)310)(31(<<-=x x x y 的最大值是____________,相应=x _________

三、巩固练习

1、求数

)10)(1(2<<-=x x x y 的最大值及相应的x 值。

2、若正数b a 、满足302=++ab b a ,求ab 的最大值及相应的b a 、值。

3、若函数]),0[,0,0,0)((c x b a s bx x a s y ∈>>>+=,求y 的最小值及相应的x 值。

4、求函数)0(2443232>++=x x x x y 的最小值。

5、求函数)0(2sin )cos 1(π<<+=x x x y 的最大值。

6、求函数222)

1(164++

=x x y 的最小值。

7、设b a ,是正常数,y x ,+∈R ,且

2=+y b x a ,求y x +的最小值。

8、设b a ,是正常数,10<

b x a -+12

2的最小值。

9、已知正数,a b 满足1=+b a ,求b

a b a 11222+++的最小值。

10、已知a >b >0,求)

(162b a b a -+的最小值。

11、设计一幅宣传画,要求画面面积为24840cm ,画面的宽与高的比为λ)1(<λ,画面的上下各留cm 8空白,左右各留cm 5的空白。怎样确定画面的宽与高尺寸,能使宣传画所用纸张最小?

12、已知函数|lg |)(x x f =。若b a ≠,且)()(b f a f =,则b a +的取值范围是(

) )(A ()+∞,1 )(B [)+∞,1 )(C ()+∞,2 )(D [)+∞,2

13、已知函数|lg |)(x x f =。若b a <<0,且)()(b f a f =,则b a 2+的取值范围是(

) )(A ()+∞,22 )(B [)+∞,22 )(C ()+∞,3 )(D [)+∞,3

14、已知函数|lg |)(x x f =。若a b <<0,且)()(b f a f =,则b a 2+的取值范围是(

)

(A()+∞,22)(B[)+∞,22)(C()+∞,3)(D[)+∞,3

.

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

用均值不等式求最值的类型及方法

高三理应培优 (用均值不等式求最值的类型及解题技巧) 均值不等式是《不等式》一章重要内容之一,是求函数最值的一个重要工具,也是高考常考的一个重要知识点。要求能熟练地运用均值不等式求解一些函数的最值问题。 一、几个重要的均值不等式 ①,、)(2 22 22 2 R b a b a ab ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3 + ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b ab +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,]b a -∞- ,[,)b a +∞;单调递减区间:(0,]b a ,[,0)b a -. 三、用均值不等式求最值的常见类型与解题技巧 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1)y x x x =+ >-的最小值。 (技巧1:凑项)解:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1) x x x x --=+++>- x a b ab 2-ab 2a b - o y

均值不等式求最值的方法

均值不等式求最值的方法 均值不等式是求函数最值的一个重要工具,同时也是高考常考的一个重要知识点。下面谈谈运用均值不等式求解一些函数的最值问题的方法和技巧。 一、几个重要的均值不等式 ①,、)(2 22 22 2 R b a b a ab ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3 + ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=” 号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112 +2a b +≤≤≤ 2 2 2b a +。 二、用均值不等式求最值的常见的方法和技巧 1、求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+>-的最小值。 解析: 21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1) x x x x --=+++>- 1 ≥312≥+52=,当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是5 2 。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 2、求几个正数积的最大值。 例2、求下列函数的最大值: ①23 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析: ①30,3202x x <<->∴,∴23 (32)(0)(32)2 y x x x x x x =-<<=??-

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.360docs.net/doc/5018530990.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.360docs.net/doc/5018530990.html,) 原文地址: https://www.360docs.net/doc/5018530990.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

均值不等式求最值的常用技巧及习题

利用基本不等式求最值的常用技巧及练习题(含解答)(经典) 一.基本不等式的常用变形 1.若0x >,则12x x + ≥ (当且仅当1x =时取“=” );若0x <,则1 2x x +≤- (当且仅当 _____________时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当____________时取“=”) 2.若0>ab ,则2≥+a b b a (当且仅当____________时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当_________时取“=” ) 注:(1)当两个正数的积为定植时,可以求它们和的最小值,当两个正数的和为定植时, 可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等” 二、利用基本不等式求最值的技巧: 技巧一:直接求: 例1 已知,x y R + ∈,且满足 134 x y +=,则xy 的最大值为 ________。 解:因为x >0,y>0 ,所以 34x y +≥=当且仅当34x y =,即x=6,y=8时取等 号) 1, 3.xy ∴≤,故xy 的最大值3. 变式:若44log log 2x y +=,求11 x y +的最小值.并求x ,y 的值 解:∵44log log 2x y += 2log 4=∴xy 即xy=16 2 1211211==≥+∴xy y x y x 当且仅当x=y 时等号成立 技巧二:配凑项求 例2:已知5 4x < ,求函数14245 y x x =-+-的最大值。

均值不等式求最值的十种方法

用均值不等式求最值的方法和技巧 一、几个重要的均值不等式 ①,、)(2 22 2 2 2 R b a b a a b ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(3 33 33 3 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④) (333 3 +∈? ? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112+ 2a b ab +≤≤≤ 2 2 2 b a +。 一、拼凑定和 通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。 例1 (1) 当时,求(82)y x x =-的最大值。 (2) 已知01x <<,求函数3 2 1y x x x =--++的最大值。 解:()()()()()()2 22 111111y x x x x x x x =-+++=+-=+- ()()3 11111322241422327 x x x x x x ++?? ++- ?++=???-≤= ? ??? 。

当且仅当1 12x x +=-,即13 x =时,上式取“=”。故max 3227 y = 。 评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。 例2 求函数)01y x x =<<的最大值。 解: y ==。 因 ()()3 2222221122122327x x x x x x ??++- ???-≤= ? ? ? ?? , 当且仅当 ()2 212 x x =-,即3x =时,上式 取“ =”。故max 9 y = 。 评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。 例3 已知02x <<,求函数()2 64y x x =-的最大值。 解:()()()2 2 2 22 2 2 36418244y x x x x x =-=?-- ()()3 2223 24418818327x x x ??+-+-?? ?≤=???? 。 当且仅当()2 2 24x x = -,即3x =时,上 式取“=”。

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

利用基本不等式求最值的类型及方法

利用基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3 + ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112 +2a b ab +≤≤≤ 2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,]b a -∞,[,)b a +∞;单调递减区间:(0,b a ,[,0)b a . 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1)y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 3 2 111 31 222(1)x x x --≥??-312≥+52=, 当且仅当 211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是5 2 。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①23 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 30,3202 x x <<->∴, ∴23(32)(0)(32)2y x x x x x x =-<<=??-3 (32)[]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2 x x x =??22231sin sin 2cos 4()2327x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π << tan 2x ?=2x arc = “=”号成立,故 23 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则 x a b ab 2-ab 2a b - o y

三元均值不等式求最值及绝对值不等式

三元均值不等式求最值 三元均值不等式: 例1、求函数)0(,322>+=x x x y 的最大值 例2、求函数)01y x x =<<的最大值。 例3、 已知01x <<,求函数321y x x x =--++的最大值。 例4、已知02x <<,求函数()264y x x =-的最大值。 练习: 1、求函数)(,422+∈+=R x x x y 的最小值。 2、0>x 时,求236x x y += 的最小值。 3、求函数)20(,)2(2a x x a x y <<-= 的最大值。 4、若10<>b a ,求证:) (1b a b a -+的最小值。

绝对值不等式 例1、证明(1) b a b a +≥+,(2)b a b a -≥+ 例2、证明 b a b a b a +≤-≤-。 例3、证明 c b c a b a -+-≤-。 例4、已知 2,2c b y c a x <-<-,求证.)()(c b a y x <+-+ 例5、已知 .6,4a y a x <<求证:a y x <-32。 练习: 1、已知 .2,2c b B c a A <-<-求证:c b a B A <---)()(。 2、已知 .6 ,4c b y c a x <-<-求证:c b a y x <+--3232。

解含绝对值不等式 例1、解不等式213+<-x x 。 例2、解不等式x x ->-213。 例3、解不等式 52312≥-++x x 。 例4、解不等式 512≥-+-x x 。 例5、不等式 31++-x x >a ,对一切实数x 都成立,求实数a 的取值范围。 练习: 1、423+≤-x x . 2、x x -≥+21. 3、1422<--x x 4、212+>-x x . 5、 42≥-+x x 6、.631≥++-x x 7、 21<++x x 8、.24>--x x

不等式的常见证明方法

不等式常见的三种证明方法 渠县中学 刘业毅 一用基本不等式证明 设c b a ,,都是正数。求证:.c b a c ab b ac a bc ++≥++ 证明:.22c b ac a bc b ac a bc =?≥+ .22b c ab a bc c ab a bc =?≥+ .22a c ab b ac c ab b ac =?≥+ ).(2)(2c b a c ab b ac a bc ++≥++ .c b a c ab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。 思维训练:设c b a ,,都是正数。求证: .222c b a c b a a c b ++≥++ 二 放缩法证明不等式 已知,对于任意的n 为正整数,求证: 1+221+321+K +n 21<4 7 分析:通过变形将数列{n 21 }放缩为可求数列。 解:Θ n 21=n n ?1<)1(1-n n =11-n —n 1(n ≥2) ∴1+221+321+K +n 21<1+2 21+231?+341?+K +)1(1-n n =1+ 41+(21—31+31—41+K +11-n —n 1) =45+21—n 1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。 思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>c c +1

三 构造函数法证明 证明不等式3ln 3121112ln <+++++0有不等式x x 11ln - ≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则k k k ->+11ln ,即k k k k 1ln )1ln(11<-+<+,然后叠加不等式即可。 解:设函数x x x x f ln 1)(+-=,则易证0)(≥x f ,即不等式x x 11ln -≥对于x>0恒成立, 令x=k k 1+,则有111ln +>+k k k ,令x=1+k k ,则k k k ->+11ln ,即k k k 11ln <+成立。从而有k k k k 1ln )1ln(11<-+<+。 在不等式k k k 11ln <+中,分别令,3,,2,1n n n k K ++=得到一系列不等式相加为 )13ln()2ln()2ln()1ln(312111++++-+++->+++++n n n n n n n K K 即n n n 312111+++++K >113ln ++n n 2ln 1 22ln =++≥n n 在不等式1 11ln +>+k k k 中,分别令k=n,n+1,K 3n-1,并把所得的不等式相加,得 n n n 312111+++++K <3ln 3ln 3ln )1ln()1ln(ln ==++-++-n n n n n n K 即不等式3ln 3121112ln <+++++

利用均值不等式求最值

专题:利用均值不等式求最值 基本公式: 1.x ,y ∈R +,x+y ≥2xy (当且仅当x =y 时取“=”号) 2.x ,y ∈R +,xy ≤2()2x y +(当且仅当x =y 时取“=”号) 3. 222()22x y x y ++≤(当且仅当x =y 时取“=”号) 题型1:和型b ax x +的最值 例1.⑴若x >3,求函数1y x =+的最小值; ⑵若x >3,求函数231x y x +=-的最小值; 解: ⑴11333533y x x x x =+=-++≥=-- 当且仅当133x x -=-,即4x =时,等号成立. ⑵223134411261111 x x y x x x x x x +-+===++=-++≥---- 当且仅当411x x -=-,即3x =时, 等号成立. 点评:用均值求最值时,要注意“一正..,二定..,三相等... ” 练习:若0x <,求函数133y x x =+的最大值. 例2. 求函数2y 的最小值. 解 :2y 设2)t t ≥,则1y t t =+在[2,)+∞上单调递增, ∴当2t =,即0x =时,y 有最小值52 练习:该题不能使用均值不等式求最值(等号不成立) 错解: 22y 【练习】若k θπ≠,求函数24 sin sin y θθ=+的最小值. 题型2:积型()ax c dx -的最值 例3.⑴若00,1-x >0. ∴2(1)12(1)2[]22x x y x x +-=-≤= ∴当1x x =-,即12x =时, y 有最小值12 ⑵∵00,230x ->. ∴23(23)111(23)(3)(23)[]3323x x y x x x x +-=-=??-≤?= ∴当323x x =-,即1x =时, y 有最小值1 点评:利用均值不等式求函数最值,要注意构造“定值.. ”, 口诀:“和定积最大”,“积定和最小”。 题型3:分式型a b +的最值 例4.⑴若,x y R +∈且1x y +=,求12x y +的最小值; ⑵若,x y R +∈且191+=,求x y +的最小值; 解: ⑴12122()()33y x x y x y x y x y +=++=++≥+当且仅当2y x x y =, 即1x ,2y =,等号成立. ⑵199()()1016y x x y x y x y x y +=++=++≥ 当且仅当9y x =,即4x =,12y =,等号成立. 点评:解题时,必须先展开再利用均值不等式求最值. 例5.已知正数a ,b 满足a b=a +b+3,求a b 的最小值。 解法1: ∵a b +≥, ∴33ab a b =++≥. ∴30ab -≥ ?3,即9ab ≥ 解法2:∵a b=a +b+3,∴3(0,0,1)1a b a b a a +=>>>-由可知 ∴23444159111a a ab a a a a a +==++=-++≥--- 当且仅当41a -=,即3a =时, 等号成立. 练习:已知正数a ,b 满足a b=a +b+1,求a+b 的最小值。 题型4:根式型的最值 例6.已知,a b R +∈且1a b +=, 求: 解:⑴方法1:由222()22x y x y ++≤,可得 2122a b +≤=, 即12a b ==时 方法2: 122a + 122b +. 1122122a b +++= ? 即1a b ==时 11()22a ++≤ 11()22b ++≤. 111()1()22222a b +++++= 当且仅当12a b ==时, 有最大值2. 【易错题】 已知正数x ,y ,m ,n 满足22x y a +=,22m n b +=, 那么mx ny +的最大值为 ( ) A.2a b + B

均值不等式公式完全总结归纳(非常实用)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2 (22 2b a b a +≤+(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

应用一:求最值 例1:求下列函数的值域 (1)y=3x 2+1 2x 2(2)y=x+ 1 x

解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由 知, ,利用均值不等式求最值,必须和为定值或积为 定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当 ,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

相关文档
最新文档