甲醇合成工艺

第一章概述

1.1甲醇的用途及在化学工业中的地位

甲醇俗称“木精”,是重要的有机化工产品,也是重要的有机化工原料,其分子式为

CH

OH,是碳化工的基础。甲醇产品除少量直接用于溶剂,抗凝剂和燃料外,绝大多数被用3

于生产甲醛,农药,纤维,医药,涂料等。

长期以来,人们一直把甲醇作为农药、染料、医药等工业的原料。随着科学技术的不

断发展与进步,突破了甲醇只作传统原料的范围,甲醇的应用领域不断地被开发出来,广

度与深度正在发生深刻变化。随着甲醛等下游产品的不断开发,甲醇在化学工业中的作用

必将越来越重要[1]。

1.2甲醇市场的状况及建厂的可行性

近几十年来,由于传统加工工业的发展和世界能源结构的变化,以甲醇为原料的新产

品的不断开发,世界对甲醇的生产和需求量都大幅增加,表1.1是世界甲醇市场状况,表

1.2是国内甲醇市场状况。

表1.1 世界甲醇生产能力及消耗量及开工率

Table 1.1 World methyl alcohol productivity and consumption, utilization of capacity

年度1987 1991 1993 1995 2000 2020 生产能力万T/年1999 2300 2470 2600 5000 20000

总消耗量万T/年1718 2010 2141 2390

开工率 % 86 87 86.7 92

表1.2 国内甲醇生产能力及消耗量

Table 1.2 Domestic methyl alcohol productivity and consumption

年度1985 1987 1990 1994 1995 2000 生产能力万T/年69 71.1 71.1 125.53 146.9 197.5

生产量万T/年44.3 49.5 64.0 100

消耗量70.7 120 121.4 200 根据预测,世界范围内的生产与需求将持续发展,主要原因是:甲醇下游产品市场的

扩大、甲醇作为燃料的使用将大大增加[2]。

1.3甲醇的性质

1.3.1一般性状

甲醇蒸汽在空气中的浓度随温度的升高而迅速增大。空气中甲醇蒸汽的最高允许浓度为0.05mg/L。甲醇具有明显的麻醉性,甲醇对呼吸道和粘膜有强烈的刺激作用,流经皮肤也能使人发生中毒迹象[3]。

常温常压下,甲醇是易挥发,易燃的无色液体,具有类似酒精的气味。甲醇能与水任意比混溶,但不能形成共沸物,故可用分馏的方法分离甲醇和水。甲醇是良好的有机溶剂,能溶解多种树脂,但不能溶解脂肪。甲醇蒸汽能与空气形成爆炸性混合物,爆炸极限为6.0~36.5%(V),燃烧时为蓝色火焰。甲醇比水轻,有很强的毒性,误饮能导致眼睛失明,甚至死亡。

1.3.2甲醇的物理性质

①甲醇的物理常数如下表所示

表1.1甲醇的物理常数

Table 1.1 Thephysicsdateofmethanol

项目数值项目数值

沸点64.5℃~64.7℃(0.1013MPa)膨胀系数0.00119 1/℃

凝固点-97℃~-97.8℃表面张力0.00221kg/m(20 ℃)

自燃点473℃~461℃蒸汽压力-44℃ 131.45Pa

相对密度0.7915(20℃)-20℃ 839.9Pa

闪点12℃~16℃0℃ 3572.98Pa

粘度液体:0.0005945Pa.S(20℃)

气体:0.0000114Pa.S(65℃)

10℃ 6679.3Pa

64.5℃ 101323.2Pa

折光系数 1.32874(20 ℃) 100℃ 320634.6Pa

②甲醇的热力学常数如下表所示

表1.2甲醇的热力学常数

Table 1.2 Thethermo-dynamice date of methanol

项目数值项目数值

临界压力0.076985Pa 蒸发潜热1129.5kJ/kg

临界温度240℃液体热容 2.49-2.53kJ/kg(20-25℃)燃烧热726.55kJ/mol(25℃)气体热容 1.63kJ/kg(77℃)

1.3.3甲醇的化学性质

甲醇不具酸性,也不具碱性,对酚酞和石蕊试液均呈中性。分子式CH

3

OH,分子量32.04。

①氧化反应

完全氧化:CH

3OH+

2

3

O

2

→CO

2

+2H

2

O+726.55kJ/mol

不完全氧化:CH

3OH+

2

1

O

2

→HCHO+H

2

O+159kJ/mol

②脱氢反应

CH

3OH→HCHO+H

2

-86.38kJ/mol

③与有机酸反应

CH

3OH+CH

3

COOH→CH

3

COOCH

3

+H

2

O

④与无机酸反应

CH

3OH+HCl→CH

3

Cl+H

2

O

CH

3OH+H

2

SO

4

→CH

3

SO

2

OH+H

2

O

⑤与氨反应生成甲胺

CH

3OH+NH

3

→CH

3

NH

2

+H

2

O+20.75kJ/mol

2CH

3OH+NH

3

→(CH

3

)

2

NH+2H

2

O+60.88kJ/mol

3CH

3OH+NH

3

→(CH

3

)

3

N+3H

2

O+407.35kJ/mol

⑥与苯作用生成甲苯

CH

3OH+C

6

H

6

→C

6

H

5

CH

3

+H

2

O

⑦与CO 作用生成醋酸

CH

3OH+CO→CH

3

COOH

⑧与乙炔作用

CH

3OH+C

2

H

2

→CH

3

OCHCH

2

⑨与金属Na作用

2CH

3OH+2Na→2CH

3

ONa+H

2

⑩与苯胺作用,生成二甲基苯胺

2CH

3OH+C

6

H

5

NH

2

→C

6

H

5

N(CH

3

)

2

+2H

2

O

1.4甲醇发展历史

1661年英国玻义耳(BoyIe)首次从木材干馏的液体产品中发现了甲醇,木材干馏成了制取甲醇最古老的方法,至今甲醇仍称木醇或木精。1834年,杜马(Dumas)和彼利哥(Peligot)制得甲醇纯品。1857年法国贝特洛(Berthelot)用一氯甲烷为原料水解制得甲醇。

化学合成法生产甲醇开始于1923年。德国巴登苯胺纯碱(BASF)公司首先建成了一套为原料、年产300吨的高压法甲醇合成装置,在全世界开拓乐意合成气作为一以CO和H

2

种工业合成原料的生产史。从20世纪20年代到60年代中期,世界各国甲醇合成装置都用高压法,采用锌铬催化剂。

1966年,英国卜内门化学工业(I.C.I)公司研制成功低压甲醇合成铜基催化剂,并开发了低压甲醇合成工艺,简称I.C.I低压法,被世界上许多国家采用。1971年,德国鲁奇(Lurgi)公司开发了另一种低压甲醇合成工艺,简称Lurgi低压法。20世纪70年代以后,各国新建与改造的甲醇装置几乎全部用低压法。

合成甲醇的原料路线在几十年中经历了很大变化。20世纪50年代前,甲醇生产多以煤和焦炭为原料,采用固定床气化的方法生产水煤气作为甲醇原料气。50年代以来,天然气和石油资源大量开采,由于天然气便于输送,适合于加压操作,可降低甲醇装置的投资与成本,在蒸汽转化技术发展的基础上,以煤为原料的甲醇生产流程被广泛采用,至今仍为甲醇生产的最主要原料。估计今后在相当长一段时间中,国外的甲醇仍以烃类原料为主。从发展趋势来看,今后以煤炭为原料生产甲醇的比例会上升,这是因为从世界能源结构分析,固体燃料的贮藏量远多于液体与气体,而煤又不能直接用作汽车、柴油机的燃料,必须通过加工为甲醇才能成为汽车、柴油机燃料。煤制甲醇作为液体燃料颇具吸引力,将成为其主要用途之一。由煤生成甲醇被称为煤的间接液化,是煤炭利用的重要方向。

我国甲醇工业始于20世纪50年代,兰州、吉林、太原由原苏联授建了高压法锌铅催化刑甲醇生产技术。60至70年代,上海吴径化工厂先后自建了以焦炭和以石脑油为原料的甲醇装置,同时,南京化学工业公司研究院研制了联醇用中压铜基催化剂,推进了我国合成氮联产甲醇工业的发展。70至80年代,我国四川维尼纶厂从I.C.I公司引进了以乙炔尾气为原料的低压甲醇装置,山东齐鲁石化公司第二化肥厂从Lurgi公司引进了以渣油为原料的低压甲醇装置。80年代,上海吴径等中型氮肥厂在高压下将锌铬催化剂改为使用铜基催化剂,同时,淮南化工总厂等许多联酵装置为增加效益,提高了生产中的醇/氮比。

90年代,上海焦化厂三联供工程中年产20万吨低压甲醇装置的建设和一些省市年产3~10万吨低压甲醇装置的建设,以及许多中、小氮肥厂联醇装且的投产,使我国甲醇生产跃上新的台阶。目前我国有甲醇生产企业200多家,主要集中在几个较大的生产企业,其产能均在10万吨/年左右。2005年1~11月,我国甲醇产量已达到484.6万吨,同比增长21.5%;进口量为124.8万吨,同比增长0.4%,出口量5.1万吨,同比增长57.2%;1~11月国内甲醇表观消费量已达到604.3万吨,同比增长16.2%。照此增长速度,预计全年甲醇产量有望达到570万吨,表观消费量将达到620万吨左右,产量和表观消费量仍呈稳步增加的趋势[1]。

1.5甲醇的生产方法

1.5.1由CO和H

2

合成甲醇

用CO和H

2

在加热压力下,在催化剂作用下合成甲醇。其中包括高压法(340~420℃,30~50MPa,用Zn-Cr催化剂);中压法(235~275℃,5MPa左右,用Cu-Zn-Al催化剂);低压法(220~280℃,5MPa左右,用Cu-Zn-Cr催化剂)及联醇(220~270℃,10~13MPa)。

图1.1甲醇合成流程框图

Figure 1.1 Methyl alcohol synthesis flow diagram

1.5.2其他合成方法

①甲烷直接氧化法:在催化剂作用下发生,2CH

4+O

2

→2CH

3

OH

②液化石油气氧化法

③煤气氧化法

1.6甲醇生产技术的发展趋势

近年来,国外甲醇生产技术发展有以下几个趋向:原料路线多样化、生产规模大型化、合成压力从高压转为低压、多采用铜基催化剂、节能降耗,充分利用余热,降低能耗、过程控制自动、联合生产普遍化[1]

第二章低压鲁奇法制甲醇的原理方法及流程2.1反应方程式

合成工段,5MPa下铜基催化剂作用下发生一系列反应

主反应: CO+2H

2→CH

3

OH+102.37kJ/kmol

副反应: 2CO+4H

2→(CH

3

)2O+H

2

O+200.3kJ/kmol

CO+3H

2→CH

4

+ H

2

O+115.69kJ/kmol

4CO+8H

2→C

4

H

9

OH+3H

2

O+49.62kJ/kmol

CO+H

2→CO+H

2

O-42.92kJ/kmol

除副反应中第三个外,副反应的发生,都增大了CO的消耗量,降低了产率,故应尽量减少副反应。

2.2合成法反应机理

本反应采用铜基催化剂,5MPa,250℃左右反应,清华大学高森泉,朱起明等认为其机理为吸附理论,反应模式为:

H

2

+2e˙→2H˙

CO+H→HCO˙

HCO˙+H˙→H

2

CO˙˙

H

2CO˙˙+2H˙→CH

3

OH+3e˙

CH

3OH˙→ CH

3

OH+ e˙

前两个反应为控制,即吸附控制。

由一氧化碳加氢合成甲醇,是一个可逆反应

CO+2H

2=CH

3

OH(气)

反应物中有二氧化碳存在时,亦可发生下列反应

CO

2+3H

2

= CH

3

OH+H

2

O

反应热效应:一氧化碳加氢合成甲醇是放热反应,在25℃时反应热△H

T

=-90.8kJ/h 常压下不同温度的反应热可按下式进行计算:

△H

T =

4.186(17920-1

5.84T+1.142×10-2T2-2.699×10-6T3)

其中△H

T

—常压下合成甲醇的反应热,J/mol

T —开氏温度,K

由上式计算得到不同温度下的反应

表2.1温度与焓值表

Table 2.1Temperatures and enthalpy value tables

温度 K 298 573 473 573 673 773 △H T

90.8

93.7

97

99.3

101.2

102.5

平衡常数由一氧化碳加氢合成甲醇的平衡常数K f 与标准自由焓△θG T 关系如下表示: K f =f CH3OH / f co ×f H22 =exp(-△θG T /RT) 其中:△θG T -----标准自由焓

T-----反应温度 f----- 逸度

由上式可以看出平衡常数K f 只是温度的函数,当反应温度一定时,可以由△θG T 值直接求出K f 值。不同温度的△θG T 与K f 值如下表:

表2.2温度的△θ

G

T

与K f 值表

Table 2.2 Temperatures △θ

G

T and K f value table

温度K △θ

G T J/mol K f 温度K △θ

G T J/mol

K f

273 -29917 527450 623 51906 4.458×10-5

373 -7367 10.84 673 63958 1.091×10-5

473 16166 1.695×10-3

723 75967 3.625×10-6

523 27925 1.629×10-2 773 88002 1.134×10

-6

573

39892

2.316×10

-4

结论:由上表中可以看出,随着温度的升高,自由焓△θG T 增大,平衡常数变小,就

说明在低温下反应对甲醇合成有用。由一氧化碳加氢合成甲醇,是一个可逆反应

CO+2H 2=CH 3OH (气)

对反应有K P =P CH3OH /(P CO ×P H22)式中P CH3OH 、P CO 、P H2分别是CH 3OH 、CO 及H 2的分压 K N =N CH3OH /(N CO ×N H22),式中N CH3OH 、N CO 及N H 分别是CH 3OH 、CO 及H 2的摩尔分率 K Y =Y CH3OH /(Y CO ×Y H2 ),式中Y CH3OH 、Y CO 及Y H2分别为CH 3OH 、CO 及H 2的逸度。

表2.3甲醇合成反应的平衡常数表

Table 2.3 Methyl alcohol building-up reactions balanced chart

从表中可以看出不同温度下的平衡常数值,以及不同压力下的K P 和 K N 值,由表中K N 数据可以看出在同一温度下,压力越大K N 值越大,即甲醇平衡产率越高。在同一压力下,温度越高K N 值越小。所以从热力学观点来看,低温高压对甲醇合成有利。若反应温度高,则必须采用高压,才能有足够大的K N 值。降低反应温度,则所需的压力就可相应的降低。但是实际上还要考虑催化剂的活性温度及耐受程度[6]。

2.3铜基催化剂(CuO 、ZnO 、Al 2O 3的组合)

铜基催化剂大多数采用共沉淀法制备,使用需进行还原,使用温度在280℃左右。温度过高会造成其失活。因此使用中应防止温度过大的波动。目前,国内有C-207系,C-301系和CNJ-202系;国外有英国I.C.I 的51-1型,前苏联的CHM-1型和BASF 等。资料显示,每吨催化剂约能生产500~600吨粗甲醇,催化剂成本中,催化剂占5~7%[8]。

2.3.1造气工段 ①对甲醇原料气的要求

度℃

MPa

Y CH3OH Y CO Y H2 K f K Y K P

K N 200

10.0 20.0

30.0 40.0 0.52 0.34 0.26 0.22 1.04 1.09 1.15 1.29 1.05 1.08

1.13 1.18 1.909×10

-2

0.453 0.292

0.117 1.130 4.21×10-2

6.53×10-2

10.8×10

-2

14.67×10-2

4.20 26 97 234 300

10.0 20.0

30.0 40.0 0.76 0.60

0.47 0.40 1.04 1.08

1.13 1.20 1.04 1.07

1.11 1.15

2.42×10

-4

0.676 0.486

0.338 0.252 3.58×10

-4

4.97×10-4

7.15×10-4

9.60×10-4 3.58 19.9 64.4 153.6 400

10.0 20.0

30.0 40.0

0.88 0.77

0.68 0.62

1.04 1.08

1.12 1.19

1.04 1.07

1.10 1.14

1.079×10

-5

0.782 0.625 0.502 0.400

1.378×10

-5 1.726×10-5

2.075×10-5

2.695×10-5

0.14 0.69 1.87 4.18

合理的氢碳比例

要求f=(H 2—CO 2)/(CO+CO 2)=2.10~2.15用半水煤气为原料,氢过量,需要补加CO 2

以适应以上要求。经脱硫、变换后,尚含有相当量的二氧化碳,CO CO 2

之比太高,气体组

成不符合

=+-2

2

2CO CO CO H 2.1~2.2。甲醇合成的要求,而且经变换后,COS 、CS 2等有机硫转化为

H 2S ,也需在送往甲醇合成工序前预以清除。因此在甲醇生产总流程中必须设置脱除二氧化碳(同时也可脱除残余硫化氢)的工序,简称脱碳工序。

合理的CO 和CO 2比例

合成甲醇原料气中应保持一定量的CO 2,能促进铜基催化剂上甲醇合成的反应速率,使用铜基催化剂时原料气中CO 2应大于5%;CO/CO 2>2(摩尔比),使放热减少,从而保持铜基催化剂,延长其寿命。

原料气对毒物与杂质的要求

原料气需净化,除去油,水,尘粒,羰基铁,氯化物,硫化物。其中主要是硫化物的危害较大,其危害大致有造成催化剂中毒、造成管道设备的羰基腐蚀、造成粗甲醇质量下降等,Lurgi 法要求原料气中硫的含量小于0.1ppm [10]。

②造气的工艺流程

普遍采用加压操作,同时水蒸气过量,以提高甲烷的转化率,反应温度为 800℃,压力2~3MPa ,水/碳摩尔比为 3.5~4.5。

③原料气的净化

以煤为原料制甲醇,原料气的净化实际就是一个脱硫的问题,脱硫的方法很多,本设计采用钴钼催化加氢和ZnO 吸收串联脱硫。钴钼催化加氢就是使有机硫化物转变为可被吸收的H 2S ;ZnO 吸收脱硫的实质为: H 2S+ZnO →ZnS+H 2O

2.3.2甲醇合成工段 ①甲醇的合成

合成工序配置:经过净化的原料气,经预热加压,于5Mpa 、220℃下,从上到下进入Lurgi 反应器,在铜基催化剂的作用下发生反应,出口温度为250℃左右,甲醇7%左右,因此,原料气必须循环,则合成工序配置原则为图2.1。

粗甲醇驰放气

图2.1合成合序配置原则

The Figure 2.1 Syntheses gathers the foreword disposition principle

②甲醇的分离

甲醇在高压下容易冷凝,基于这个原理,甲醇的分离采用冷凝分离法,高压下与液相甲醇呈平衡的气相甲醇含量随温度降低,压力增加而下降,表2.1为不同温度下气相甲醇的饱和含量[11]。

表2.4 5MPa下不同温度气相甲醇的饱和含量(%)

Table 2.4 5MPa different temperature gas phase methyl alcohol saturated content(%)T ℃0 10 20 30

Y % 0.286 0.445 0.673 0.990 由表2.4可见,通过水冷(水冷后气体温度为30℃左右),可以使气相甲醇含量下降到0.99%(5MPa),补充新鲜气后可使这一值下降到0.5%以下,故分离甲醇只要水冷已足够,不需要氨冷,水冷后设分离器,并定期将冷凝下来的甲醇排入粗甲醇贮槽。

③气体的循环

气体在合成系统内的循环是依靠联合压缩机提供动力以克服流动阻力。

④新鲜气的补充和惰性气的排放

新鲜气在粗甲醇分离后补充,一般在联合压缩机出口处加入。在合成过程中,未反应的惰性气体累集在系统中,需要进行排放,该气体一般在压缩机前,甲醇分离器后排放[6]。

图2.2甲醇合成的工艺流程

Figure 2.2 Methyl alcohol synthesis technical process

1.透平压缩机

2.热交换器

3.锅炉水预热器

4.水冷却器

5.甲醇合成塔

6.汽包

7.甲醇分离器

8.粗甲醇贮槽

这个流程是德国Lurgi公司开发的甲醇合成工艺,流程采用管壳式反应器,催化剂装在管内,反应热由管间沸腾水放走,并副产高压蒸汽,甲醇合成原料在离心式透平压缩机内加压到5.2MPa(以1:5的比例混合)循环,混合气体在进反应器前先与反应后气体换热,升温到220℃左右,然后进入管壳式反应器反应,反应热传给壳程中的水,产生的蒸汽进入汽包,出塔气温度约为250℃,含甲醇7%左右,经过换热冷却到40℃,冷凝的粗甲醇经分离器分离。分离粗甲醇后的气体适当放空,控制系统中的惰性气体含量。这部分空气作为燃料,大部分气体进入透平压缩机加压返回合成塔,合成塔副产的蒸汽及外部补充的高压蒸汽一起进入过热器加热到50℃,带动透平压缩机,透平后的低压蒸汽作为甲醇精馏工

段所需热源[13]。

第三章 甲醇合成生产工艺计算

工艺计算作为化工工艺设计,工艺管道,设备的选择及生产管理,工艺条件选择的主要依据,对平衡原料,产品质量,选择最佳工艺条件,确定操作控制指标,合理利用生产的废料,废气,废热都有重要作用。

3.1甲醇合成工艺流程概要

合成系统是甲醇厂的核心车间,因为上游的很多工序一长串流程制取的新鲜合成气都是为合成反应要求而配备的,合成技术的变化必然影响全局。若在合成不能充分利用制取甲醇,不论是在物料和能量上都是巨大的损失。

合成系统的设备和管路都是在高压下操作,为了安全,防漏,防爆, 对设备的设计和制造,以及生产操作都有很高的要求[12]。

3.1.1甲醇合成流程主线

因CO 、H 2 、CO 2在合成塔内反应不能达到平衡且单程转化率很低,出塔气体有大量为未反应的CO 、H 2 、CO 2,甲醇必须分离出系统才可以继续参与循环反应。甲醇合成流程主线方框图如下所示:

图3.1甲醇合成流程主线方框图

Figure 3.1 Methyl alcohol synthesis flow master line block diagram

从图中可以看出主要合成工艺主要是合成,分离,及循环气压缩,三大核心过程组成,更进一步的过程都是在此基础上附加的反应辅助及维持系统的稳定而配备的,例如出塔气

合成

分离

循环机

粗甲醇

循环气

新鲜气

弛放气

换热分离弛放气排放等过程组成。再进一步精细的过程即在此系统附加的仪表监控管道配制等。甲醇合成流程有很多种,但是最基本的步骤(单元过程)是共同具备的。

3.1.2 原则流程简介

新鲜气进入新鲜气压缩机,循环气进入循环气压缩机,生至所需压力,两股气体混合后进入塔外换热器与出合成塔的气体进行换热,换热至所需的压力进入甲醇合成塔进行反应,出塔的气体经换热后进入水冷却器,降至醇分所需的温度,并在醇分器中分离出粗甲醇,未反应的气体再次经过排放部分弛放气后,再次进入循环气压缩机增压后再次进行循环操作。由此可见:

①甲醇合成流程采用的是循环流程,即分离出产品,未反应的气体再次参与反应,这一点与其他流程不同。

②合成系统主要由两部分组成,即甲醇的合成与甲醇分离,前者在合成塔中完成,后者在一系列的传热与汽液分离设备中完成。

③合成气流经过设备时,必有阻力,存在压降,使其压力逐渐降低,要其循环必须设循环压缩机升压。

3.1.3流程探讨分析

①采用循环流程的原因

由于平衡和速率的限制,甲醇合成单程转化率很低,约4﹪ ~ 7﹪导致未反应的原料气较多。对甲醇合成而言较好的办法是,分离出甲醇后把未反应的气体返回合成塔重新利用。循环流程之所以必要是有“合成率低”与要求“原料气利用高”二者之间的矛盾是共同决定的。

②关于新鲜气补入的位置

最有利的位置是在合成塔的进口处,而不宜在合成塔出口或甲醇分离之前,以免甲醇分压降低,减少甲醇收率。循环机放在合成塔之前是最有利的因为在整个循环中,循环机出口压力最大,压力高对合成反应有利。

③关于弛放气排放的位置

采用循环流程的一个必然结果是惰性气体在系统中的积累。为了维持系统稳定必须排放部分弛放气,因为惰性气体不参与反应但积累在系统中会降低有效合成气的分压,降低了甲醇合成速率,为此应该设放空管线,防空时应避免尽可能减少有效成分的损失,因此放空位置应选择循环中惰性气体浓度最大的地方,即醇分后应该是合适的[9]。

3.2 甲醇生产的物料平衡计算

新鲜气 循环气

出塔气 粗甲醇

图3.2合成塔物料流程图[10]

Figure 3.2 Synthetic tower material flow chart

已知 按年产3万吨精甲醇,以8000小时计 惰性气体指O 2、CH 4、N 2、AR 等

水煤气中硫化氢含量0.2%,惰性气体含量7.72% 新鲜气中惰性气体含量8%

出塔气中惰性气体含量23.3%(不含粗甲醇)

入塔气组分:CO CO 2 H 2 惰性气体

13.8% 3% 61.7% 21.5%

粗醇组分(摩尔百分比): 甲醇 二甲醚 丁醇 水分 93% 0.8% 0.32% 5.88% 设入塔气2n =100kmol

合成塔中:副反应 4CO+8H 2→(CH 3)2CHCH 2OH +3H 2O 2CO+4H 2→(CH 3)2O+H 2O 主反应 CO+2H 2→CH 3OH CO 2+3H 2→CH 3OH+H 2O 以惰性成分为基准:

2

3

21.5%23.3%n n ?=?

解得

3

n

=92.27kmol

设生成的甲醇为p n kmol ,则粗甲醇中其他组分为: 异丁醇(CH 3)2CHCH 2OH 0.0034npkmol 二甲醚(CH 3)2O 0.0086npkmol 水份H 2O 0.0630npkmol

CO 2生成的水份=0.063p n -0.0034p n ×3-0.0086p n =0.044p n kmol CO 2生成的甲醇=0.044p n kmol CO 生成的甲醇=0.96p n kmol

对进出合成塔的各气体组分列物料平衡方程:

则有100×13.8%=92.273CO x +0.96p n +4×0.0034p n +2×0.0086p n ①

100×3%=92.272

3co x +0.044p n ②

23H 10061.7%=92.27x 80.003440.008620.9630.044np np np np ?+?+?+?+? ③

22

33co 3123.3%H CO x x

x ++=- ④

联立①、②、③、④解得

p n =2.54kmol ,3CO x =12.2%,2

3co x =3.1%,23H x =61.4%

甲醇产量3万吨/年,以8000小时计,则甲醇时产量为3.75t/h 则入塔气量 V 2=(100×3750/32×22.4)/2.54=1033463/Nm h 出塔气量 V 3=0.9227×V 2=953573/Nm h 令V 1为新鲜气,V 4为循环气

以惰性成分为基准:103346×21.5﹪=23.3﹪×V 4 + V 1 ×8﹪ ⑤ 以总物料为基准:103346= V 4 + V 1 ⑥ 联立⑤、⑥,解得 V 1=120823/Nm h V 4=912643/Nm h 驰放气、循环气组分与出塔气的相同,则有: 驰放气V 5=V 3-V 4=95357-91264=40933/Nm h

103346×13.8﹪= 91264×12.2﹪+120823CO x ⑦

103346×3﹪= 91264×3.1﹪+1208221CO x ⑧ 103346×61.7﹪= 91264×61.4﹪+ 1208221H x ⑨ 联立解得:21H x =64%,21CO x =2.2%,3CO x =25.9%

水煤气净化过程中,惰性组分流量不变,即V 0惰=V 1惰=V 1×8﹪=9673/Nm h 水煤气 V 0=967/7.72﹪=125303/Nm h V 0 H2S =12530×O.2﹪=25.063/Nm h 变换反应方程式:CO+H 2O →CO 2+H 2

脱碳反应方程式:K 2CO 3+CO 2+H 2O →2KHCO 3

脱碳反应掉的CO2 V co 2脱=12530-12082-25.06=422.943/Nm h

0CO V 3129=773220H V ① 20CO V +7732-20H V =422.94 ② 2210.2%7.72%co co H x x x ++=-- ③

12530×20H x = 20H V ④ 12530×0co x =0CO V ⑤ 12530×20co x =20CO V ⑥

联立①、②、③、④、⑤、⑥,解得

20H V =133103/Nm h 0CO V =47823/Nm h 20CO V =10993/Nm h 20H x =63.86% 0co x =22.95% 20co x =5.27%

年产3万吨甲醇物料平衡结果如下

表3.1年产3万吨甲醇物料平衡表

Table 3.1 Yearly produces 30,000 ton methyl alcohol balance sheet of materials

物料单位

组分

合计CO CO2H2惰性成分H2S

水煤气

V% 22.95 5.27 63.86 7.72 0.2 100

Nm3/h 2875.6 660.3 8001.7 967 25.06 12530 新鲜气

V% 25.9 2.1 64 8 100

Nm3/h 3129.2 253.7 7732.5 966.6 12082 入塔气

V% 13.8 3 61.7 21.5 100

Nm3/h 14261.7 3100.4 63764.5 22219.4 103346 出塔气

V% 12.2 3.1 61.4 23.3 100

Nm3/h 11633.5 2956.1 58549.2 22218.2 95357 循环气

V% 12.2 3.1 61.4 23.3 100

Nm3/h 11134.2 2829.2 56036.1 21264.5 91264 驰放气

V% 12.2 3.1 61.4 23.3 100

Nm3/h 499.3 126.9 2513.1 953.7 4093

甲醇3.75t/h

3.3 甲醇的能量平衡计算

已知:合成塔入塔气为220℃,出塔气为250℃,热损失以5%计,壳层走4MPa的沸水。

查《化工工艺设计手册》得[13],4MPa下水的气化潜热为409.7kmol/kg,即1715.00kJ/kg,密度799.0kg/m3,水蒸气密度为19.18kg/m3,温度为250℃。入塔气热容见3.2。

表3.2 5MPa,220℃下入塔气除(CH3OH)热容

Table 3.2 5MPa,220℃ under enters the tower gas to eliminate (CH3OH) heat capacity 组分流量:Nm3比热:kJ/kmol℃热量:kJ/℃CO 33052.49 30.15 44488.06

CO

2

10943.9 45.95 22449.65

H

2

244020.3 45.95 319623.02

N

2

8232.61 30.35 11154.44 Ar 5572.17 21.41 5325.9

CH

4

12073.7 47.05 25360.16

合计313848.8 428495.2

查得220℃时甲醇的焓值为42248.46kJ/kmol,流量为1537.57Nm3。

所以:Q

入=42248.46?

4.

22

57

.

1537

+428495.2?220 =2899998.4+94268944

=97168942.4kJ

出塔气热容除(CH

3

OH)见表3.3

表3.3 5MPa,220℃下出塔气除(CH3OH)热容

Table 3.3 5MPa,220℃ under tower gas eliminate (CH3OH) heat capacity 组分流量:Nm3比热:kJ/kmol℃热量:kJ/℃CO 1508.024 30.132040.54 CO2728.49746.581514.88 H216259.1229.3921332.83 N2628.4430.41853.16 Ar 456.2421.36443.64 CH4941.0848.392032.98 (CH3)2O 2.03095.858.69合计20688.06 28841.19查得250℃时甲醇的焓值为46883.2kJ/kmol,流量为19766.9 Nm3

所以:Q

出=46883.2?

4.

22

9.

19766

+428495.2?250 =131401096.7 kJ

由反应式得:

Q

反应=[

4.

22

33

.

18229

?102.37+

4.

22

62

.

25

?200.39+

4.

22

568

.

211

?115.69

+

4.

22

20204

?49.62+

4.

22

1.

2116

?(-42.92)] ?1000

=(83309.67+229.2+1092.7+4.88-4054.6)?1000 =80581850 kJ

Q

热损失=(Q

+Q

) ?5%=(97168942.4+80581850) ?5%

=888759.62 kJ 所以:壳程热水带走热量

Q

传= Q

+Q

反应

-Q

-Q

热损失

=97168942.4+80581850-131401096.7-888759.62 =37462156.08 kJ

又:Q

传=G

热水

r

热水

所以:G

热水=

99

.

1714

08

.

37462156

=21843.8 kg/h

即时产蒸气:

18

.

198.

21843

=1138.88 m3

第四章主要设备的选型

设备是化工工艺运作的载体,选择合适的设备,对于提高生产率,降低原料,能量的消耗有着重要的作用。

4.1甲醇合成塔

甲醇合成塔是合成甲醇最重要的核心设备,合成工序的“心脏”设备,它的设计好坏直接决定了合成的工艺水平。甲醇合成塔的内件的形式有很多种,在很长一段时间内甲醇合成塔和氨合成塔是共用的。因为二者在反应放热形式是一样的,只是甲醇合成放热量比合成氨大,温度的控制较为不易。下图是典型的三套管甲醇合成塔基本的构成:由简体、催化剂支承装置、换热构件和气体分布器等组成。

甲醇合成反应是强放热过程,反应温度较高,可用高压、中压和低压不同的工艺。由于工艺及反应热的移出方法不同,有不同形式的合成塔[1]。

图4.1甲醇合成塔[10]

Figure 4.1 methyl alcohol synthetic tower

1-催化剂2-筒体3-冷却管4-换热器5-分布器6-环隙

煤制甲醇工艺设计

煤制甲醇工艺流程化设计 主反应为:C + O 2 → C O + C O 2 + H 2 → C H 3O 副反应为: 1 造气工段 (1)原料:由于甲醇生产工艺成熟,市场竞争激烈,选用合适的原料就成为项目的关键,以天然气和重油为原料合成工艺简单,投资相对较少,得到大多数国家的青睐,但从我国资源背景看,煤炭储量远大于石油、天然气储量,随着石油资源紧缺、油价上涨,在大力发展煤炭洁净利用技术的形势下,应该优先考虑以煤为原料,所以本设计选用煤作原料。 图1-1 甲醇生产工艺示意图 (2)工艺概述:反应器选择流化床,采用水煤浆气化激冷流程。原料煤通过粉碎制成65%的水煤浆与99.6%的高压氧通过烧嘴进入气化炉进行气化反应,产生的粗煤气主要成分为CO ,CO 2,H 2等。 2423CO H CH H O +?+2492483CO H C H OH H O +?+222CO H CO H O +?+

2 净化工段 由于水煤浆气化工序制得粗煤气的水汽比高达1.4可以直接进行CO变换不需加入其他水蒸气,故先进行部分耐硫变换,将CO转化为CO2,变换气与未变换气汇合进入低温甲醇洗工序,脱除H2S和过量的CO2,最终达到合适的碳氢比,得到合成甲醇的新鲜气。 CO反应式: CO+H O=CO+H 222 3 合成工段 合成工段工艺流程图如图1。 合成反应要点在于合成塔反应温度的控制,另外,一般甲醇合成反应10~15Mpa的高压需要高标准的设备,这一项增加了很大的设备投资,在设计时,选择目前先进的林达均温合成塔,操作压力仅5.2MPa,由于这种管壳式塔的催化剂床层温度平稳均匀,反应的转化率很高。在合成工段充分利用自动化控制方法,实行连锁机制,通过控制壳程的中压蒸汽的压力,能及时有效的掌控反应条件,从而确保合成产品的质量。 合成主反应: CO+2H=CH OH 23 主要副反应: CO+3H=CH OH+H O 2232 4 精馏工段 精馏工段工艺流程图见图2。 合成反应的副产主要为醚、酮和多元醇类,本设计要求产品达质量到国家一级标准,因此对精馏工艺的合理设计关系重大,是该设计的重点工作。设计中选用双塔流程,对各物料的进出量和回流比进行了优化,另外,为了进一步提高精甲醇质量,从主塔回流量中采出低沸点物继续进预塔精馏,这一循环流程能有效的提高甲醇的质量。

001合成甲醇工艺流程

、工艺流程 A?联氨工艺流程图: 1.Ф2600煤气炉固定层间歇气化、生产的低氮煤气经集中余热回收,集中洗涤降温除尘去气柜。 2.出气柜的低氮煤气罗茨鼓风机加压后经冷却湿法脱硫静电除焦一部分气体进原压缩机一段、二段加压后,去变换将多余的CO变换为氢气,变换率和气体组成由集散控制,如果原小氮肥厂产品为碳铵经碳化系统脱碳并生产碳酸氢铵,碳化气仍然进原压缩系统 3.4段将气体压缩至5.0MPa 。 3.脱硫后大部分低氮煤气经低压机、脱硫、脱碳除去CO2经低压机将煤气压缩至5.0MPa与碳化气汇合去低压甲醇合成。 4.低压甲醇新鲜气组成H2:69.61%,CO:20.33%,N2:9.01%经低压甲醇合成后生产粗甲醇,放空气组成 H2:72.49%,CO:5.4%,CO2:0.33%,N2:20.12% 经原压缩机,将原料气压缩至30.0Mpa经甲醇化将CO,CO2净化并生产粗甲醇,微量的CO,CO2经甲烷化进行氨的合成。

B·低压甲醇工艺 1.小氮肥目前新建低甲醇工程一般方法是保持原化肥生产工艺路线,新建一套低压甲醇生产线,将低压甲醇的放空气回到合成氨系统。 2.煤气、脱硫、变换等必须二个系统,生产二种煤气(半水煤气和水煤气),操作和管理较复杂。 C·工艺流程特点 1.联氨新工艺流程既保留了原小氮肥厂合成氨工艺流程,又发挥了低压甲醇的优越性,避免了低压甲醇煤气化隋性气体过高,合成循环量较大,放空气量大,能耗较高等缺点。 2.采用固定层气化、低氮煤气脱硫等组成个系统,操作和生产管理方便,气体成份容易调节。 3.醇氨比容量调节,根据市场需求,甲醇生产能力或氨生产能力可以增加或减少便于季节调节。 4.由于生产低氮煤气,煤气炉操作与原小氮肥厂相同,工艺指标和气体组成根据醇氨比进行调节,煤气炉生产效率和煤利用率煤气炉发气量均要比单醇高,目前市场原料煤的价格较高,这对降低甲醇的成本有较大的优越性。 5.小氮肥厂工艺流程不变,原有设备全部可以利用,增加煤气炉设备及改造原湿法脱硫,增加低压甲醇圏、低压机、脱碳等,投资省,建设周期短等优点。 6.在合成高压圈内增加了等高压甲醇甲烷化工艺,甲醇化既作为净化装置又生产了部分甲醇,甲烷化代替了铜洗,使合成气净化度大大提高,延长了合成触媒使用寿命,取消铜洗,保护了环境。 7.联氨工艺与单醇比由于气化系统煤利用率高,低压合成圈循环比小,合成率要求低,没有放空气,投资省,因此甲醇的成本低,经估算二者相差150-200元/吨单醇。

合成气制备甲醇原理与工艺

合成气制备甲醇原理与工艺 简要概述 班级:xxxxxxxxxxxxxxxxxxxxx 专业:化学工程与工艺 姓名:xxxxx 学号:201473020108 指导教师:xxxxx

一、甲醇的认识 1.物理性质 无色透明液体,易挥发,略带醇香气味;易吸收水分、CO2和H2S,与水无限互溶;溶解性能优于乙醇;不能与脂肪烃互溶,能溶解多种无机盐磺化钠、氯化钙、最简单的饱和脂肪醇。 2.化学性质 3.甲醇的用途 (1)有机化工原料 甲醇是仅次于三烯和三苯的重要基础有机化工原料 (2)有机燃料 (1)、甲醇汽油混合燃料;(2)、合成醇燃料;(3)、与异丁烯合成甲基叔丁基醚(MTBE)、高辛烷值无铅汽油添加剂;(4)、与甲基叔戊基醚(TAME)合成汽油含氧添加剂

4.甲醇的生产原料 甲醇合成的原料气成分主要是CO 、 CO2、 H2 及少量的N2 和CH4。主要有煤炭、焦炭、天然气、重油、石脑油、焦炉煤气、乙炔尾气等。 天然气是生产甲醇、合成氨的清洁原料,具有投资少、能耗低、污染小等优势,世界甲醇生产有90%以上是以天然气为原料,煤仅占 2%。 二、合成气制甲醇的原理 1.合成气的制备 a.煤与空气中的氧气在煤气化炉内制得高 CO 含量的粗煤气; b.经高温变换将 CO 变换为 H2 来实现甲醇合成时所需的氢碳比; c.经净化工序将多余的 CO2 和硫化物脱除后即是甲醇合成气。 说明: 由于煤制甲醇碳多氢少,必需从合成池的放气中回收氢来降低煤耗和能耗,回收的氢气与净化后的合成气配得生产甲醇所需的合成气, 即( H2-CO2) /( CO+CO2)=2.00~2.05。 2.反应机理 主反应 OH CH H CO 322→+ △H 298=-90.8kJ/mol CO 2 存在时 O H OH CH H CO 23222+→+ △H 298=-49.5kJ/mol 副反应 O H OCH CH H CO 233242+→+ O H CH H CO 2423+→+ O H OH H C H CO 2942384+→+ O H CO H CO 222+→+ 增大压力、低温有利于反应进行,但同时也有利于副反应进行,故通过加入催化剂,提高反应的选择性,抑制副反应的发生。 3. 影响合成气制甲醇的主要因素 (1)合成甲醇的工业催化剂

年产50万吨甲醇合成工艺初步设计

年产50万吨甲醇合成工艺初步设计 摘要 本设计重点讨论了合成方案的选择,首先介绍了国内外甲醇工业的现状、甲醇原料的来源和甲醇本身的性质及用途。其次介绍了合成甲醇的基本原理以、影响合成甲醇的因素、甲醇合成反应速率的影响。在合成方案里面主要介绍了原料路线、不同原料制甲醇的方法、合成甲醇的三种方法、生产规模的选择、改善生产技术来进行节能降耗、引进国外先进的控制技术,进一步提高控制水平,来发展我国甲醇工业及简易的流程图。在工艺条件中,主要介绍了温度、压力、氢与一氧化碳的比例和空间速度。主要设备冷激式绝热反应器和列管式等温反应器介绍。最后进行了简单的物料衡算。 关键词:甲醇,合成塔

一、综述 (一)国内外甲醇工业现状 甲醇是重要的化工原料,应用广泛,主要用于生产甲醛,其消耗量约占甲醇总量的30%~40%;其次作为甲基化剂,生产甲胺、丙烯酸甲酯、甲基丙烯酸甲酯、甲基叔丁基醚、对苯二甲酸二甲酯;甲醇羰基化可生产醋酸、酸酐、甲酸甲酯、碳酸二甲酯等。其次,甲醇低压羰基化生产醋酸,近年来发展很快。随着碳化工的发展,由甲醇出发合成乙二醇、乙醛、乙醇等工艺正在日益受到重视。国内甲醇装置规模普遍较小,且多采用煤头路线,以煤为原料的约占到78%;单位产能投资高,约为国外大型甲醇装置投资的2倍,导致财务费用和折旧费用高,这些都会影响成本。据了解,我国有近200家甲醇生产企业,但其中10万吨/年以上的装置却只占20%,最大的甲醇生产装置产能也就是60万吨/年,其余80%都是10万吨/年以下的装置。根据这样的装置格局,业内普遍估计,目前我国甲醇生产成本大约在1400,1800元/吨(约200美元/吨),一旦出现市场供过于求的局面,国内甲醇价格有可能要下跌到约2000元/吨,甚至更低。这对产能规模小,单位产能投资较高的国内大部分甲醇生产企业来讲会加剧增。 而以中东和中南美洲为代表的国外甲醇装置普遍规模较大。目前国际上最大规模的甲醇装置产能以达到170万吨/年。2008年4月底,沙特甲醇公司170万吨/年的巨型甲醇装置在阿尔朱拜勒投产,使得

甲醇合成工艺

甲醇合成工艺 当今甲醇的生产主要采用低压法和中压法这两种,很少采用高压法,目前高压法的发展已处于停滞的状态,主要以低压法为主。用中压法和低压法这两种工艺生产出来的甲醇约占世界甲醇总产量的一半以上。 1. 低压合成工艺(5.0- 8. 0MP a) 是20世纪50年代后期发展起来的一种甲醇合成技术。低压法主要采用CuO- ZnO- Al2 O3- V2O5 催化剂,其活性较高,能耗低,反应温度最佳,一般反应温度在(240- 265)℃,在压力较低的的条件下即可获得较高的甲醇产率。并且其选择性好,减少了很多副反应的发生,降低了原料的损耗,并且提高了甲醇的质量。除此之外,由于压力要求较高,可以有效的减少动力的消耗,使工艺设备的制造更加容易。这一方法被英国ICI公司在1966 年研究使用成功,从而打断了甲醇合成高压法的垄断制度。这一制度的应用,在很大程度上提高了甲醇的产量,为日后甲醇的高产带来了合适的方法。 2. 中压合成工艺(9.8- 12. 0MP a) 随着社会的不断发展,甲醇的需求越来越大,如果继续采用低压法就要改造工艺管道,使工艺管道变得更大,设备也就变得更大,这样就浪费了空间和成本,因此在低压的基础上适当的加大压力,即发展为中压法。中压法采用的催化剂和低压法的相 同,都为C uO- ZnO- Al2O3 - V2O5催化剂,因此反应温度与低压法大致相同,由于压力的提高使动能的消耗也增加了。齐鲁石化公司第二化肥厂引进了联邦德国公司的中压甲醇合成装置。使得该公司的日产量有了很大程度的提高。 3. 高压合成工艺(30- 32 MP a) 是比较原始的一种方法,采用ZnO- C r 2O3 催化剂,其活性远不如铜系催化剂,反应温度在(350- 400)℃。随着科学技术的发展,高压法也开始逐步采用活性相对较高的铜系催化剂,以改善合成的条件。高压法虽然存在了70 多年,但由于材质苛刻,投资高,能耗物高,反应温度高,且生成的粗甲醇中杂志含量较多不易提纯,所以其发展前景不可观,目前处于停滞状态。

甲醇合成的工艺方法介绍

甲醇合成的工艺方法介绍 自1923年开始工业化生产以来,甲醇合成的原料路线经历了很大变化。20世纪50年代以前多以煤和焦碳为原料;50年代以后,以天然气为原料的甲醇生产流程被广泛应用;进入60 年代以来,以重油为原料的甲醇装置有所发展。对于我国,从资源背景来看,煤炭储量远大于石油、天然气储量,随着世界石油资源的紧缺、油价的上涨和我国大力发展煤炭洁净利用技术的背景下,在很长一段时间内煤是我国甲醇生产最重要的原料。下面简要介绍一下甲醇生产的各种方法。按生产原料不同可将甲醇合成方法分为合成气(CO+H2方法和其他原料方法。 一、合成气(CO+H2生产甲醇的方法 以一氧化碳和氢气为原料合成甲醇工艺过程有多种。其发展的历程与新催化剂的应用,以及净化技术的进展是分不开的。甲醇合成是可逆的强放热反应,受热力学和动力学控制,通常在单程反应器中,CO和CO2的单程转化率达不到100%,反应器出口气体中,甲醇含量仅为6~12%,未反应的CO、CO2和H2需与甲醇分离,然后被压缩到反应器中进入一步合成。为了保证反应器出口气体中有较高的甲醇含量,一般采用较高的反应压力。根据采用的压力不同可分为高压法、中压法和低压法三种方法。 1、高压法 即用一氧化碳和氢在高温(340~420℃高压(30.0~50.0MPa下使用锌-铬氧化物作催化剂合成甲醇。用此法生产甲醇已有八十多年的历史,这是八十年代以前世界各国生产甲醇的主要方法。但高压法生产压力过高、动力消耗大,设备复杂、产品质量较差。其工艺流程如图所示。 经压缩后的合成气在活性炭吸附器1中脱除五羰基碳后,同循环气一起送入管式反应器2中,在温度为350℃和压力为30.4MPa下,一氧化碳和氢气通过催化剂层反应生成粗甲醇。含粗甲醇的气体经冷却器冷却后,迅速送入粗甲醇分离器3中分离,未反应的一氧化碳与氢经压缩机压缩循环回管式反应器2。冷凝后的粗甲醇经粗

煤气化制甲醇工艺流程

煤气化制甲醇工艺流程 1 煤制甲醇工艺 气化 a)煤浆制备 由煤运系统送来的原料煤干基(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~ 53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。 气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。 气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。 c)灰水处理 本工段将气化来的黑水进行渣水分离,处理后的水循环使用。 从气化炉和碳洗塔排出的高温黑水分别进入各自的高压闪蒸器,经高压闪蒸浓缩后的黑水混合,经低压、两级真空闪蒸被浓缩后进入澄清槽,水中加入絮凝剂使其加速沉淀。澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼由汽车拉出厂外。 闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器分离掉冷凝液,然后进入变换工段汽提塔。 闪蒸出的低压气体直接送至洗涤塔给料槽,澄清槽上部清水溢流至灰水槽,由灰水泵分别送至洗涤塔给料槽、气化锁斗、磨煤水槽,少量灰水作为废水排往废水处理。 洗涤塔给料槽的水经给料泵加压后与高压闪蒸器排出的高温气体换热后送碳洗塔循环

合成气生产甲醇工艺流程讲课教案

编号:No.20课题:合成气生产甲醇工艺流程 授课内容:合成气制甲醇工艺流程 知识目标: ●了解合成气制甲醇过程对原料的要求 ●掌握合成气制甲醇原则工艺流程 能力目标: ●分析和判断合成气组成对反应过程及产品的影响 ●对比高压法与低压法制甲醇的优缺点 思考与练习: ●合成气制甲醇工艺流程有哪些部分构成? ●对比高压法与低压法制甲醇的优缺点 ●合成气生产甲醇对原料有哪些要求?如何满足? 授课班级: 授课时间:年月日

四、生产甲醇的工艺流程 (一)生产工序 合成气合成甲醇的生产过程,不论采用怎样的原料和技术路线,大致可以分为以下几个工序,见图5-1。 图5-1 甲醇生产流程图 1.原料气的制备 合成甲醇,首先是制备原料氢和碳的氧化物。一般以含碳氢或含碳的资源如天然气、石油气、石脑油、重质油、煤和乙炔尾气等,用蒸汽转化或部分氧化加以转化,使其生成主要由氢、一氧化碳、二氧化碳组成的混合气体,甲醇合成气要求(H2-CO2)/(CO+CO2)=2.1左右。合成气中还含有未经转化的甲烷和少量氮,显然,甲烷和氮不参加甲醇合成反应,其含量越低越好,但这与制备原料气的方法有关;另外,根据原料不同,原料气中还可能含有少量有机和无机硫的化合物。 为了满足氢碳比例,如果原料气中氢碳不平衡,当氢多碳少时(如以甲烷为原料),则在制造原料气时,还要补碳,一般采用二氧化碳,与原料同时进入设备;反之,如果碳多,则在以后工序要脱去多余的碳(以CO2形式)。 2.净化 净化有两个方面: 一是脱除对甲醇合成催化剂有毒害作用的杂质,如含硫的化合物。原料气中硫的含量即使降至1ppm,对铜系催化剂也有明显的毒害作用,因而缩短其使用寿命,对锌系催化剂也有一定的毒害。经过脱硫,要求进入合成塔气体中的硫含量降至小于0.2ppm。脱硫的方法一般有湿法和干法两种。脱硫工序在整个制甲醇工艺流程中的位置,要根据原料气的制备方法而定。如以管式炉蒸汽转化的方法,因硫对转化用镍催化剂也有严重的毒害作用,脱硫工序需设置在原料气设备之前;其它制原料气方法,则脱硫工序设置在后面。 二是调节原料气的组成,使氢碳比例达到前述甲醇合成的比例要求,其方法有两种。

甲醇合成原理方法与工艺

甲醇合成原理方法与工艺 图1煤制甲醇流程示意图 煤气经过脱硫、变换,酸性气体脱除等工序后,原料气中的硫化物含量小于0.1mg/m3。进入合成气压缩机,经压缩后的工艺气体进入合成塔,在催化剂作用下合成粗甲醇,并利用其反应热副产3.9MPa中压蒸汽,降温减压后饱和蒸汽送入低压蒸汽管网,同时将粗甲醇送至精馏系统。 一、甲醇合成反应机理 自CO加氢合成甲醇工业化以来,有关合成反应机理一直在不断探索和研究之中。早期认为合成甲醇是通过CO在催化剂表面吸附生成中间产物而合成的,即CO是合成甲醇的原料。但20世纪70年代以后,通过同位素示踪研究,证实合成甲醇中的原子来源于CO2,所以认为CO2是合成甲醇的起始原料。为此,分别提出了CO和CO2合成甲醇的机理反应。但时至今日,有关合成机理尚无定论,有待进一步研究。 为了阐明甲醇合成反应的模式,1987年朱炳辰等对我国C301型铜基催化剂,分别对仅含有CO或CO2或同时含有CO和CO2三种原料气进行了甲醇合成动力学实验测定,三种情况下均可生成甲

醇,试验说明:在一定条件下,CO和CO2均可在铜基催化剂表面加氢生成甲醇。因此基于化学吸附的CO连续加氢而生成甲醇的反应机理被人们普遍接受。 对甲醇合成而言,无论是锌铬催化剂还是铜基催化剂,其多相(非匀相)催化过程均按下列过程进行: ①扩散——气体自气相扩散到气体一催化剂界面; ②吸附——各种气体组分在催化剂活性表面上进行化学吸附; ③表面吸附——化学吸附的气体,按照不同的动力学假说进行反应形成产物; ④解析——反应产物的脱附; ⑤扩散——反应产物自气体一催化剂界面扩散到气相中去。 甲醇合成反应的速率,是上述五个过程中的每一个过程进行速率的总和,但全过程的速率取决于最慢步骤的完成速率。研究证实,过程①与⑤进行得非常迅速,过程②与④的进行速率较快,而过程③分子在催化剂活性界面的反应速率最慢,因此,整个反应过程的速率取决于表面反应的进行速率。 提高压力、升高温度均可使甲醇合成反应速率加快,但从热力学角度分析,由于CO、C02和H2合成甲醇的反应是强放热的体积 缩小反应,提高压力、降低温度有利于化学平衡向生成甲醇的方向移动,同时也有利于抑制副反应的进行。 二、甲醇合成的主要反应 (1)甲醇合成主要反应 CH3OH CO+2H CO2CH3OH+H2O 同时CO2和H2发生逆变换反应 CO 2CO+H2O

甲醇合成的工艺条件

第十一章甲醇的合成 第三节甲醇合成工艺条件及工艺流程(大概讲课内容)煤化工生产技术2班甲醇合成最主要的工艺条件是反应温度、压力、原料气组成、空速 一、反应温度 对甲醇合成反应而言化学反应而言 CO+2H2=CH3OH+Q CO2+3H2=CH3OH+H2O+Q 反应特点属于放热反应 T升高的好处反应速率加快,甲醇合成速率加快; 弊端:1、合成属于放热可逆反应,温度太高,不利于合成向正反应方向进行; 2、cu基催化剂再合成塔内对温度敏感,高温容易使催化剂丧失活性; 3、温度过高,会导致过多的副反应,使生产出的粗甲醇中的杂质过多; 所以: Zn—cr催化剂活性温度320-400℃,适宜操作温度370-380℃ Cu基催化剂的活性温度200-290 ℃,适宜操作温度250-270 ℃ 为了保证温度适宜要将合成塔中的热量及时转移常采用的方法是反应器的设计a冷激式b间接换热式 二、压力:P升高,有利于向反应体积减小的方向进行;V降低,碰撞机会 增多,反应速率也会加快; 但是压力提高到一定程度①影响不明显;②过高压力给设备和工艺管理带来困难。 对合成过程目前工业上三种:高压法、中压法、低压法。 而在甲醇生产中比较常用的是中低压,压力一般控制5mp左右 三、气体组成 有用气体组分CO、CO2、H2 惰性气体组分CH4、N2 在生产中如何有效保证有用气体组成,减少惰性气体组成,给学生讲解清楚,特别注意:CO、CO2、H2三种成分的比例关系如何调配,是能否有效合成甲醇的重要因素,具体如何分配重点讲解。 四、空速 ①空速:气体与催化剂接触时间的长短; ②较低空速→催化剂的生产强度较低→单位时间内甲醇的产率低 较高空速→与催化剂的接触时间短,大部分气体来不及反应就循环回去→循环气体数量过多,压缩机负荷大,能耗高。 有效空速10000-30000h-1 对上述四个条件做出总结。 甲醇合成的工艺流程 一、甲醇合成的原则流程 ①甲醇合成的目的:CO和CO2与H2有效结合结合生成甲醇。 ②具体要求a氢碳比大于2; bCO2<9%

合成气生产甲醇工艺流程

编号:No.20 课题:合成气生产甲醇工艺流程 授课内容:合成气制甲醇工艺流程 知识目标: ? 了解合成气制甲醇过程对原料的要求 ?掌握合成气制甲醇原则工艺流程 能力目标: ?分析和判断合成气组成对反应过程及产品的影响 ?对比高压法与低压法制甲醇的优缺点 思考与练习: ?合成气制甲醇工艺流程有哪些部分构成? ?对比高压法与低压法制甲醇的优缺点 ?合成气生产甲醇对原料有哪些要求?如何满足?

授课班级: 授课时间: 四、生产甲醇的工艺流程 (一)生产工序 合成气合成甲醇的生产过程,不论采用怎样的原料和技术路线,大致可以分为以下几个 工序,见图5-1。 图5-1 甲醇生产流程图 1.原料气的制备 合成甲醇,首先是制备原料氢和碳的氧化物。一般以含碳氢或含碳的资源如天然气、石 油气、石脑油、重质油、煤和乙炔尾气等,用蒸汽转化或部分氧化加以转化,使其生成主要由氢、一氧化碳、二氧化碳组成的混合气体,甲醇合成气要求(出—CO2)/(CO+CO2)=2.1 左右。合成气中还含有未经转化的甲烷和少量氮,显然,甲烷和氮不参加甲醇合成反应,其 含量越低越好,但这与制备原料气的方法有关;另外,根据原料不同,原料气中还可能含有 少量有机和无机硫的化合物。 为了满足氢碳比例,如果原料气中氢碳不平衡,当氢多碳少时(如以甲烷为原料),则 在制造原料气时,还要补碳,一般采用二氧化碳,与原料同时进入设备;反之,如果碳多,则在以后工序要脱去多余的碳(以CO2形式)。 2.净化 净化有两个方面: 一是脱除对甲醇合成催化剂有毒害作用的杂质,如含硫的化合物。原料气中硫的含量即 使降至1ppm,对铜系催化剂也有明显的毒害作用,因而缩短其使用寿命,对锌系催化剂也有一定的毒害。经过脱硫,要求进入合成塔气体中的硫含量降至小于0.2ppm。脱硫的方法 一般有湿法和干法两种。脱硫工序在整个制甲醇工艺流程中的位置,要根据原料气的制备方 法而定。如以管式炉蒸汽转化的方法,因硫对转化用镍催化剂也有严重的毒害作用,脱硫工

甲醇合成工艺

第一章概述 1.1甲醇的用途及在化学工业中的地位 甲醇俗称“木精”,是重要的有机化工产品,也是重要的有机化工原料,其分子式为 CH OH,是碳化工的基础。甲醇产品除少量直接用于溶剂,抗凝剂和燃料外,绝大多数被用3 于生产甲醛,农药,纤维,医药,涂料等。 长期以来,人们一直把甲醇作为农药、染料、医药等工业的原料。随着科学技术的不 断发展与进步,突破了甲醇只作传统原料的范围,甲醇的应用领域不断地被开发出来,广 度与深度正在发生深刻变化。随着甲醛等下游产品的不断开发,甲醇在化学工业中的作用 必将越来越重要[1]。 1.2甲醇市场的状况及建厂的可行性 近几十年来,由于传统加工工业的发展和世界能源结构的变化,以甲醇为原料的新产 品的不断开发,世界对甲醇的生产和需求量都大幅增加,表1.1是世界甲醇市场状况,表 1.2是国内甲醇市场状况。 表1.1 世界甲醇生产能力及消耗量及开工率 Table 1.1 World methyl alcohol productivity and consumption, utilization of capacity 年度1987 1991 1993 1995 2000 2020 生产能力万T/年1999 2300 2470 2600 5000 20000 总消耗量万T/年1718 2010 2141 2390 开工率 % 86 87 86.7 92 表1.2 国内甲醇生产能力及消耗量 Table 1.2 Domestic methyl alcohol productivity and consumption 年度1985 1987 1990 1994 1995 2000 生产能力万T/年69 71.1 71.1 125.53 146.9 197.5 生产量万T/年44.3 49.5 64.0 100 消耗量70.7 120 121.4 200 根据预测,世界范围内的生产与需求将持续发展,主要原因是:甲醇下游产品市场的

甲醇合成工段

甲醇合成工段 目前工业上几乎都是采用一氧化碳、二氧化碳加压催化氢化法合成甲醇。1. 工艺路线:典型的流程包括原料气制造、原料气净化、甲醇合成、粗甲醇精馏等工序。 煤与焦炭是制造甲醇粗原料气的主要固体燃料。用煤和焦炭制甲醇的工艺路线包括燃料的气化、气体的脱硫、变换、脱碳及甲醇合成与精制。用蒸汽与氧气(或空气、富氧空气)对煤、焦炭进行热加工称为固体燃料气化,气化所得可燃性气体通称煤气是制造甲醇的初始原料气,气化的主要设备是煤气发生炉,按煤在炉中的运动方式,气化方法可分为固定床气化法、流化床气化法和气流床气化法。国内用煤与焦炭制甲醇的煤气化——般都沿用固定床间歇气化法,煤气炉沿用UCJ炉。在国外对于煤的气化,目前已工业化的煤气化炉有柯柏斯-托切克(Koppers-Totzek)、鲁奇(Lurge)及温克勒(Winkler)三种。还有第二、第三代煤气化炉的炉型主要有德士古(Texaco)及谢尔-柯柏斯(Shell-Koppers)等。用煤和焦炭制得的粗原料气组分中氢碳比太低,故在气体脱硫后要经过变换工序。使过量的一氧化碳变换为氢气和二氧化碳,再经脱碳工序将过量的二氧化碳除去。原料气经过压缩、甲醇合成与精馏精制后制得甲醇。 甲醇生产中所使用的多种催化剂,如天然气与石脑油蒸气转化催化剂、甲醇合成催化剂都易受硫化物毒害而失去活性,必须将硫化物除净。气体脱硫方法可分为两类,一类是干法脱硫,一类是湿法脱硫。干法脱硫设备简单,但由于反应速率较慢,设备比较庞大。湿法脱硫可分为物理吸收法、化学吸收法与直接氧化法三类。 粗甲醇中存在水分、高级醇、醚、酮等杂质,需要精制。精制过程包括精馏与化学处理。化学处理主要用碱破坏在精馏过程中难以分离的杂质,并调节pH。精馏主要是除去易挥发组分,如二甲醚、以及难以挥发的组分,如乙醇高级醇、水等。

甲醇合成工艺仿真软件

仿真教学事业部二OO七年四月

目录 第一章甲醇概述··································第二章合成工段介绍································第一节概述···································第二节工艺路线及合成机理···························· 2.2.1工艺仿真范围······························· 2.2.2合成机理································· 2.2.3工艺路线································· 2.2.4设备简介·································第三节主要工艺控制指标····························· 2.3.1控制指标································· 2.3.2仪表··································· 2.3.3现场阀说明································第三章岗位操作··································第一节开车准备································· 3.1.1 开工具备的条件····························· 3.1.2 开工前的准备······························第二节冷态开车································· 3.2.1引锅炉水································· 3.2.2 N2置换·································· 3.2.3 建立循环································ 3.2.4 H2置换充压································ 3.2.5 投原料气································ 3.2.6 反应器升温······························· 3.2.7 调至正常································第三节正常停车································· 3.3.1 停原料气································ 3.3.2 开蒸汽································· 3.33 汽包降压································· 3.3.4 R601降温································ 3.3.5 停C/T601································ 3.3.6 停冷却水································第四节紧急停车································· 3.4.1 停原料气································ 3.4.2 停压缩机································ 3.4.3 泄压·································· 3.4.4 N2置换·································第四章事故列表··································第一节分离罐液位高或反应器温度高联锁······················第二节汽包液位低联锁······························第三节混和气入口阀FRCA6001阀卡·························

甲醇工艺流程

甲醇的工艺流程 目前工业上几乎都是采用一氧化碳、二氧化碳加压催化氢化法合成甲醇.典型的流程包括原料气制造、原料气净化、甲醇合成、粗甲醇精馏等工序. 天然气、石脑油、重油、煤及其加工产品(焦炭、焦炉煤气)、乙炔尾气等均可作为生产甲醇合成气的原料.天然气与石脑油的蒸气转化需在结构复杂造价很高的转化炉中进行.转化炉设置有辐射室与对流室,在高温,催化剂存在下进行烃类蒸气转化反应.重油部分氧化需在高温气化炉中进行.以固体燃料为原料时,可用间歇气化或连续气化制水煤气.间歇气化法以空气、蒸汽为气化剂,将吹风、制气阶段分开进行,连续气化以氧气、蒸汽为气化剂,过程连续进行. 甲醇生产中所使用的多种催化剂,如天然气与石脑油蒸气转化催化剂、甲醇合成催化剂都易受硫化物毒害而失去活性,必须将硫化物除净.气体脱硫方法可分为两类,一类是干法脱硫,一类是湿法脱硫.干法脱硫设备简单,但由于反应速率较慢,设备比较庞大.湿法脱硫可分为物理吸收法、化学吸收法与直接氧化法三类. 甲醇的合成是在高温、高压、催化剂存在下进行的,是典型的复合气-固相催化反应过程.随着甲醇合成催化剂技术的不断发展,目前总的趋势是由高压向低、中压发展. 粗甲醇中存在水分、高级醇、醚、酮等杂质,需要精制.精制过程包括精馏与化学处理.化学处理主要用碱破坏在精馏过程中难以分离

的杂质,并调节PH.精馏主要是除去易挥发组分,如二甲醚、以及难以挥发的组分,如乙醇高级醇、水等. 甲醇生产的总流程长,工艺复杂,根据不同原料与不同的净化方法可以演变为多种生产流程. 下面简述高压法、中压法、低压法三种方法及区别 高压法 高压工艺流程一般指的是使用锌铬催化剂,在 300—400℃,30MPa高温高压下合成甲醇的过程.自从1923年第一次用这种方法合成甲醇成功后,差不多有50年的时间,世界上合成甲醇生产都沿用这种方法,仅在设计上有某些细节不同,例如甲醇合成塔内移热的方法有冷管型连续换热式和冷激型多段换热式两大类,反应气体流动的方式有轴向和径向或者二者兼有的混合型式,有副产蒸汽和不副产蒸汽的流程等.近几年来,我国开发了25-27MPa压力下在铜基催化剂上合成甲醇的技术,出口气体中甲醇含量4%左右,反应温度230-290℃. 中压法 中压法是在低压法研究基础上进一步发展起来的,由于低压法操作压力低,导致设备体积相当庞大,不利于甲醇生产的大型化.因此发展了压力为10MPa左右的甲醇合成中压法.它能更有效地降低建厂费用和甲醇生产成本.例如ICI公司研究成功了51-2型铜基催化剂,

甲醇生产工艺操作规范完整版

甲醇生产工艺操作规范集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

甲醇生产工艺流程 本工程以焦炉煤气为原料,选用湿法加干法脱硫,纯氧催化部分氧化转化,低压合成,三塔精馏工艺。 工艺流程简述 湿法脱硫: 首先将来自焦化厂气柜加压站的粗脱硫煤气(H2S:200mg/Nm3)进入本工程脱硫塔,与塔顶喷淋下来的烤胶脱硫液逆流接触洗涤、补雾段除去雾滴后送至焦炉气压缩气柜。 焦炉气压缩: 将来自气柜H2S含量小于20mg/Nm3、200mmH2O、温度40℃的焦炉气,到一入总油水分离器分离油水,到一段入口缓冲器减压缓冲,进入一段气缸加压至0.2 3MPa(绝),温度130℃,经一段出口缓冲器减压缓冲,进入一段水冷却器冷却至40℃,一段油水分离器分离油水后,进入二段入口缓冲器减压缓冲,经二段气缸加压至0.491MPa(绝)温度130℃经二段出口缓冲器减压缓冲,二段水冷却器冷却至40℃,二段油水分离器分离油水后,进入三段入口缓冲器减压缓冲,经三段气缸加压至11.10MPa(绝),温度130℃经三段出口缓冲器减压缓冲,三段水冷却器冷却至40℃,三段油水分离器分离油水后,进入四段入口缓冲器减压缓冲,经四段气缸加压至2.5MPa,温度130℃,经四段出口缓

冲器减压缓冲,四段水冷却器冷却至40℃,四段油水分离器分离油水后,送精脱硫转化工段。 转化: 焦炉气来自压缩机的压力2.5MPa,温度40℃的焦炉气经过过滤器(F61201A/ B).过滤器分离掉油水与杂质。再经预脱硫槽脱除大部分无机硫后去转化工段焦炉气初预热器预热300℃、压力2.5MPa。回精脱硫的一级加氢转化器,气体中的有机硫在此进行加氢转化生成无机硫;不饱和烃生成饱和烃。加氢后的气体进入中温脱硫槽(D61203ABC)脱除绝大部分的无机硫;之后再经过二级加氢转化器(D61205)将残余的有机硫进行转化;最后经过中温氧化锌(D61204 AB)把关。使出口焦炉气中总硫<0.1ppm后送至转化工序。 精脱硫来的29196Nm3/h焦炉气总硫?0.1ppm和转化废热锅炉自产蒸气14.376t /h混合进入C60602焦炉气预热器〈壳程〉预热330℃,进入B60601预热炉预热至660℃,进入D60601转化炉混合室,与来自空分氧气5864m3/h,纯氧和经过B60601上段预热至300℃3.5t/h自产蒸汽的进入转化炉上段,进行纯氧蒸汽部分氧化燃烧、,温度达950-1250℃左右,高温气体在经催化剂床层进行甲烷蒸汽转化,控制出口气体CH4≤0.6%。温度≤985℃,经C60601废热锅炉回收热量,每小时产生2.95MPa的蒸汽:约22.371t/h,供转化和外管网用,废热锅炉出口气体温度降至540℃,进入C60602焦炉气预热器〈管程〉与壳程气体换热后温度降至370℃,再经过C60603焦炉气初预热器〈壳程〉与〈管程〉焦炉气换热后出口温度280℃,经C60604锅炉给水预热器〈管

煤气化制甲醇工艺流程

煤气化制甲醇工艺流程 煤气化制甲醇工艺流程简述 1)气化 a)煤浆制备 由煤运系统送来的原料煤**t/h(干基)(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。 出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。 煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。 用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。 煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。 气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。 气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。 c)灰水处理 本工段将气化来的黑水进行渣水分离,处理后的水循环使用。 从气化炉和碳洗塔排出的高温黑水分别进入各自的高压闪蒸器,经高压闪蒸浓缩后的黑水混合,经低压、两级真空闪蒸被浓缩后进入澄清槽,水中加入絮凝剂使其加速沉淀。澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼由汽车拉出厂外。 闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器分离掉冷凝液,然后进入变换工段汽提塔。

甲醇合成工艺

(一)简介 甲醇是结构最为简单的饱和一元醇,最早由木材和木质素干馏制得,故又称“木醇”或“木精”。甲醇很轻、挥发度高、无色、易燃且有毒。甲醇通常由一氧化碳与氢气反应制得。 甲醇是一种重要的需求量巨大的基本有机化工原料,也是一种新型的清洁能源。在工业发达国家,它是仅次于烯烃和芳烃的基础有机化工原料,其消费量仅次于乙烯、丙烯和苯,居第四位。甲醇应用十分广泛,在石油化工、医药、轻纺、生物化工以及能源交通运输等行业均有广泛用途,在国民经济中占有十分重要的地位。近年来,随着石油资源储量的日趋减少,甲醇应用逐渐扩展到石油补充领域,围绕甲醇产品开发出了烯烃等新的替代石油产品。 (二)甲醇的工业发展史及主要生产技术比较

甲醇的工业生产始于1923年,德国BASF公司首先建成一套以CO和H2为原料,年产300吨的高压法甲醇合成装置,在全世界开拓了以合成气作为一种工业合成原料的生产史。从20世纪20年代到60年代中期,世界各国甲醇合成装置都用高压法,采用锌-铬催化剂。 1966年,英国ICI公司研制成功甲醇低压合成的铜基催化剂,并开发了甲醇低压合成工艺,简称ICI低压法(即Davy法)。1971年,德国Lurgi公司开发了另一种甲醇低压合成工艺,简称Lurgi低压法。此外,丹麦托普索公司、日本三菱瓦斯公司、德国林德公司和美国凯洛格公司等也随后开发了节能型低压生产甲醇工艺技术。 与大型低压法相比,高压法能耗要高很多,因此高压法甲醇工艺已逐步被淘汰。20世纪70年代以后,各国新建与改造的甲醇装置几乎全部采用低压法工艺,主要有Davy、Lurgi、Tops?e等方法,前两种被认为是当今较为先进的甲醇技术,约80%的甲醇装置采用这两种方法生产。 Davy法、Lurgi法和Tops?e法甲醇生产技术比较 Davy法Lurgi法Tops?e法压缩离心式压缩机离心式压缩机离心式压缩机 合成?径向合成反应器 ?压力5~10MPa ?温度230~270℃, 副产蒸汽 ?管壳式合成塔 ?压力5~10MPa ?温度240~260℃, 副产蒸汽 ?三个径向合成塔串联 ?压力5~10MPa ?温度210~290℃, 预热锅炉水 精馏双塔/三塔三塔双塔 规模t/d 最大可到5000 最大可到6700 最大可到7500 (三)我国甲醇工业及技术的发展 我国甲醇工业始于上世纪50年代,在吉林、兰州和太原由原苏联援建了采用高压法锌铬催化剂的甲醇生产装置。60~70年代,上海吴泾化工厂先后自建了以

相关文档
最新文档