浅谈具有高程补偿面的独立坐标系在工程上的应用

浅谈具有高程补偿面的独立坐标系在工程上的应用
浅谈具有高程补偿面的独立坐标系在工程上的应用

浅谈具有高程补偿面的独立坐标系在工程上的应用关键字:长度投影变形高程补偿面独立坐标系GPS基线

0 引言

某工程为石油管线带状地形图测量。为此需做一个带状地形控制网。用于带状地形图的绘制。其目的为以后施工建设提供控制依据,并为线路定测和中线放样提供依据。因测区地形多为山区。地形条件复杂,作业季节为盛夏,山区树林茂密,通视条件极差。为此,平面控制采用GPS测量,高程控制采用水准测量。由于平面控制网不仅要满足测图的需要,还要满足改扩建工程施工测量的要求,在进行GPS工程控制网坐标系的选择时,二者需同时兼顾。测区位于国家坐标系三度带边缘,且和国家控制点联测较为困难。本次工程对GPS工程控制网坐标系的选择和对短边GPS高程测量的精度分析得到结论,对工程控制网的建立有一定的借鉴作用。

1 长度投影变形来源

长度投影变形是在两个过程中产生的,我们知道,通过GPS采集测量数据必须通过高程归化平差,归化到参考椭球面上。在这过程中长度产生了高程归化投影变形。然后是由参考椭球体面上的长度投影到高斯平面上时产生了高斯投影长度变形。这样通过平差解算出的基线长度往往和实地量测长度值不同。这就是长度变形的来源。这时,必须人为加入长度变形改正数,为了避免在日常测绘工作中进行大量而繁琐的长度改正计算,必须对长度投影变形给予必要控制。

2 长度投影变形分析

由于该工程平面控制网不但作为大比例尺侧路的控制基础,还要满足后续改扩建工程施工放样测量的需要。为保证施工放样工作的顺利进行,要求由控制点坐标直接反算的边长与实地量得边长尽量相等,也就是说,由高程归算和高斯投影两项改正而带来的长度变形或者改正数,不得大于施工放样的精度要求。按《工程测量规范》要求,每公里长度改正数不大于2.5cm。

设地面实测边长归算到参考椭球面上的长度变形值为,则:

= (1)

式中:为归算边高出参考椭球面的平均高程,S为归算边的长度,R为归算边方向参考椭球的法截线的曲率半径。由(1)式可知:的绝对值与成正比关系。当越大,越大。而与其他参数无关。当S=1km,=160m,=-2.5cm,即测区平均海拔超过160m,长度变形值每公里2.5cm。说明当测区平均海拔超过160m 时,若不采取解决办法。就不满足《工程测量规范》的要求。当为负值时,表明地标实测长度归算到参考椭球面上总是缩短的。

常用坐标系与高程系简介

常用坐标系与高程系简介 2009-09-27 10:06:45| 分类:GIS技术| 标签:|字号大中小订阅 坐标系的概念 1.坐标系的定义: P的位置,可以用一组基于某一时间系统时刻t的空间结构的数学描述来确定,则这个空间结构可以称为坐标系,数学描述称为P点在该坐标系中的坐标。牛顿运动学原理要求坐标系是惯性的,惯性是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性,基于这个特性,惯性坐标系的定义需与时间无关,通常这样的坐标系需要三个属性来描述(这应该是三维空间的本性吧),首先一个是原点(O),就是坐标系的中心点,第二个是过原点的任意直线(这里称为Z轴),第三个是过原点且与Z轴不重合的任意直线(这里称为X轴),如果X轴与Z轴垂直,会带来较优美的数学描述,我们称这样的坐标系是笛卡尔坐标系。P点的位置可以用P到原点的距离r,OP与Z轴的夹角,OP与X 轴的夹角来描述(当然也可以有其它等价描述),可以证明这个描述确定的P点是唯一的。 2.GPS领域常用坐标系模型: GPS测量中,最常用的坐标系模型是协议地球坐标系,该坐标系随同地球一起旋转,讨论随地球一起自转的目标位置,用这类坐标系方便;另外一类是协议天球坐标系,这个坐标系随同太阳系一同旋转,与地球自转无关,讨论卫星轨道运动时,用这类坐标系方便。 的,原点是地球质心(O),Z轴指向地球自转轴(天极,向北为正),X轴指向春分点,根据春分点的定义可以证明X轴与Z轴互相垂直,且X轴在赤道面上,同时为数学描述方便,引入与XOZ成右手旋转关系的Y轴。因为地球自转轴受其它天体影响(日、月)在空间产生进动,使得春分点变化(章动和岁差),导致用“瞬时天极”定义的坐标系不断旋转,而旋转的坐标系表现出非惯性的特性,不能直接应用牛顿定律。我们可以用某一历元时刻的天极和春分点(协议天极和协议春分点)定义一个三轴指向不变的天球 坐标系,称为固定极天球坐标系。 (O),Z轴为地球自转轴,X轴指向地球上赤道的某一固定“刚性”点,所谓“刚性”是指其自转速度与地球一致,同时也为数学描述方便,引入与XOZ成右手旋转关系的Y轴。地球不是一个严格刚性的球体,Z轴在地球上随时间而变,称为极移,同天球坐标系一样,需要指定一个固定极为Z轴,这样的地球坐标系称为固定极地球坐标系。可以证明当观察地球上的物体时,该坐标系是惯性的。如果一个坐标系OXYZ,O不是地球质心,Z轴与地球自转轴平行,则这个坐标系具有与地球相同的自转角速度,我们也把此类坐标系称为地球坐标系。 3.协议坐标系统: 系呢?通常,理论上坐标系由定义的坐标原点和坐标轴指向来确定。坐标系一经定义,任意几何点都具有唯一一组在该坐标系内的坐标值,反之,一组该坐标系内的坐标值就唯一定义了一个几何点。实际应用中,在已知若干参考点的坐标值后,通过观测又可反过来定义该坐标系。可以将前一种方式称为坐标系的理论定义。而由一系列已知点所定义的坐标系称为协议坐标系,这些已知参考点构成所谓的坐标框架。在点位坐标值不存在误差的情况下,这两种方式对坐标系的定义是一致的。事实上点位的坐标值通常是通过一定的测量手段得到,它们总是有误差的,由它们定义的协议坐标系与原来的理论定义的坐标系会有所不同,凡依据这些点测定的其它点位坐标值均属于这一协议坐标系而不属于理论定义的坐标系。由坐标框架定义的固定极天球坐标系和固定极地球坐标系,称为协 议天球坐标系和协议地球坐标系。

RTK测量中独立坐标系的建立

R T K测量中独立坐标系的建立 RTK测量中独立坐标系的建立 摘要:介绍GPS-RTK测量中WGS-84大地坐标系与独立坐标系转换的方法及南方测绘工程之星数据处理中坐标转换的方法,同时结合工程实例予以验证。 关键词:GPS-RTK测量;WGS-84大地坐标系;独立坐标系;坐标转换 1 引言 在水利工程测量中,多数情况下工程所处位置地形复杂,交通不便,通视条件较差,采用以经纬仪、全站仪测量为代表的常规测量常常效率低下。随着GPS-RTK测量系统的使用,由于它具有观测速度快,定位精度高,经济效益高等特点,现在我院多数水利工程测量都是采用RTK测量技术来完成。对于GPS-RTK系统来说,由于它采用的是WGS-84固心坐标系,而在实际工程应用中,由于顾及长度变形、高程异常等影响而采用独立坐标系,这就需要将RTK测量采集的数据在两坐标系中进行转换。 2 国家坐标系及独立坐标系的建立 2.1 国家坐标系的建立 在我国,由于历史原因先后采用不同的参考椭球体和大地起算数据而形成多个国家坐标系,主要国家坐标系有1954北京坐标系、1980西安坐标系、2000国家坐标系和WGS-84坐标系。前两个是参心坐标系,后两个是固心坐标系。由于他们采用不同的椭球体参数,所以地面上同一个点在不同的坐标系中有不同的坐标值。 国家坐标系的主要作用是在全国建立一个统一的平面和高程基准,为发展国民经济、空间技术及国防建设提供技术支撑,也为防灾、减灾、环境监测及当代地球科学研究提供基础资料。 2.2 独立坐标系的建立

在工程应用中,由于起算数据收集困难、测区远离中央子午线及满足特殊要求等诸多原因,如在水利工程测量中,常要测定或放样水工建筑物的精确位置,要计算料场的土石方贮量和水库的库容。规范要求投影长度变形不大于一定的值(如《工程测量规范》为2.5cm/km,《水利水电工程测量规范(规范设计阶段)》为5.0cm/km)。如果采用国家坐标系统在许多情况下(如高海拔地区、离中央子午线较远地方等)不能满足这一要求,这就要求建立地方独立坐标系。 在常规测量中,这种独立坐标系只是一种高斯平面直角坐标系,而在采用GPS-RTK采集数据时,独立坐标系就是一种不同于国家坐标系的参心坐标系。 跟国家坐标系一样,建立独立坐标要确定的主要元素有:坐标系的起算数据、中央子午线、参考椭球体参数及投影面高程等。对于起算数据,可以采用国家坐标系的坐标和方位角或任意假设坐标和方位角。在RTK测量中,我们常采用基线的某一端点的单点定位解作为起点,然后以另一点定向,用测距仪测出基线边长,经改正后算出基线端点的坐标;中央子午线常采用测区中央的子午线;投影面常采用测区的平均高程面。参考椭球体一般是基于原来的参考椭球体做某种改动,使改变后的参考椭球面与投影面拟合最好,投影变形可以减到最小,也便于与国家坐标系统进行换算。 3 坐标系的转换 GPS-RTK接收机采集的坐标数据是基于WGS-84椭球下的大地坐标,而我们经常使用的独立坐标系是基于某种局部椭球体下的平面直角坐标,这两种坐标是不同坐标基准下的两种表现形式。利用WGS-84下的大地坐标来推求独立坐标系中的平面直角坐标,必然要求得两坐标系之间转换参数。求取转换参数的基本思路是利用两坐标系中必要个数的公共点,根据相应的椭球参数及中央子午线采用最小二乘法严密平差解算转换参数,具体操作是由转换模型把不同坐标基准下的坐标转换为同基准下的不同坐标形式,再进行同基准下不同坐标形式的转换,从而得到所要的独立坐标系中的平面直角坐标。转换的难点是WGS-84椭球与独立坐标系局部椭球的变换。 3.1 常用的坐标转换方法

我国四大常用坐标系及高程坐标系学习资料

我国四大常用坐标系及高程坐标系 1.北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2.西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3.WGS-84坐标系 WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),

工程独立坐标系的建立

工程独立坐标系的建立 摘要:在工程建设地区布设测量控制网时,其成果不仅要满足大比例尺地形图测图的需要,还要满足一般工程放样的需要。施工放样时要求控制网中两点的实测长度与由坐标反算的长度应尽可 能相符,而采用国家坐标系其坐标成果大多数情况下是无法满足这些要求的。本文主要阐述了工程独立坐标系的建立方法,通过在乾县和靖边供水工程可研阶段测量中的应用,得出了一些有益的结论和建议。 关键词:国家坐标系,独立坐标系,中央子午线,抵偿高程面abstract: in the engineering construction area layout measure control network, its results not only meets the large scale topographic map surveying the need, but also meet the needs of the general projects layout. when construction lofting requirements in the two control net by the length and the length of the coordinates should as far as possible and is consistent with national coordinate system and the coordinate results in most cases is unable to meet these requirements. this paper mainly expounds the methods to set up the independent coordinate system engineering, through in situations water supply project of qian county and feasibility study stage of the application of the measurement and draw some useful conclusions and suggestions.

平面直角坐标系的简单应用(20201109211742)

I教学准备 1. 教学目标 根据新课标要求和学生现有的认知水平以及教材内容,我确定了本节课以下三个方面的教学目标: (一)知识与技能目标: 能建立适当的直角坐标系,用坐标表示地理位置 (二)过程与方法目标: 通过学生的动手探究得出实际问题中建立平面直角坐标系的基本方法,并能结合具体情境运用坐标描述地理位置。 (三)情感、态度价值观目标: 1、通过体会平面直角坐标系在解决问题中的作用,加深学生对数学重要性的认识,激发学生学习数学的热情。 2、通过同学之间,师生之间的交流讨论,培养学生与人合作的良好品质。 重点:根据具体情境建立直角坐标系,用坐标描述地理位置 难点:根据具体情境建立适当的平面直角坐标系 2. 教学重点/难点 建立适当的直角坐标系,用坐标表示地理位置 3. 教学用具 4. 标签 |教学过程 环节一:创设情境,导入新课 为了激发学生学习兴趣和求知欲,为学习新知识创造一个最佳的心理和认知环境。为此我设计了以下问题: 问题:同学们,我们在学习地理的时候,曾经学习过经纬网。我这里就有一幅地图,

你能根据地图中所给出的数据,估计我们家乡的经纬度吗?(幻灯片放映) 根据学生们学习的地理知识,学生会估算出一定的范围或大概的位置,可能是北纬37°或38°,东经117°或118°左右,虽然度数不是非常的准确,但大多会估算得比较接近。 根据学生的说法,教师出示准确的经纬度,并提问:我在地图上记录经纬度的方式与数学中我们所学的哪一部分知识很相似呢?学生会联想到有序数对或平面直角坐标系。既然我们可以用这样的方法来表示滨州的位置,那么我们能不能用坐标来表示地理位置呢?这就是我们这节课要探究的问题。出示并板书课题,由此导入新课。 意图: 从学生已知的知识和熟悉的情境入手导入新课,一方面可以激发学生的学习兴趣,同时又能自然的引出本节课要探究的内容。 环节二师生互动,探索新知 问题:我要去三位同学的家,他们家的位置如图所示(出示动画,让学生叙述三名同学家应该如何去走,间接地让学生感受到,数学知识与各学科之间存在着一定的联系)。请根据以下条件建立平面直角坐标系,标出学校和小刚家、小强家、小敏家的位置,并写出坐标. 小刚家:出校门向东走150 米. 小强家:出校门向西走200 米,再向北走100 米. 小敏家:出校门向南走100 米,再向东走300 米,最后向南走50 米. 为激发学生探究的欲望,我用学生熟悉的环境设计问题,而通过这一问题,探究如何建立平面直角坐标系用坐标表示地理位置,是本节课的重点、难点, 为了突出重点、突破难点,我设计了以下五步: 1、学生自己动手实践,亲身体验建系的过程。 本问题是由一个动画开始,让学生先感受一个实际的运动过程,并根据示意图用文字叙述,然后再结合示意图建立坐标系,用坐标描述地理位置。这对学生来说犹如做游戏一般,既清晰直观,又好理解,因此,在此过程中,学生可以独立进行探究,有效地解决问题。 意图:我之所以这样处理是因为解决此问题的过程是一个由实际情境到文字再到图形的过程,因此让学生先通过亲身体验,经历实际问题数学化的过程,来感受数学语言间的相互转化,体验数形结合的思想,同时对用坐标表示地理位置有一个初步的感

地理坐标系及我国大地坐标系和高程系

地理坐标系及我国大地坐标系和高程系 地理坐标系是指用经纬度表示地面点位的球面坐标系。在大地测量学中,对于地理坐标系统中的经纬度有三种描述:即天文经纬度、大地经纬度和地心经纬度。 大地控制的主要任务是确定地面点在地球椭球体上的位置。这种位置包括两个方面:一是点在地球椭球面上的平面位置,即经度和纬度;二是确定点到大地水准面的高度,即高程。为此,必须首先了解确定点位的坐标系。 1.地理坐标系 对地球椭球体而言,其围绕旋转的轴叫地轴。地轴的北端称为地球的北极,南端称为南极;过地心与地轴垂直的平面与椭球面的交线是一个圆,这就是地球的赤道;过英国格林威治天文台旧址和地轴的平面与椭球面的交线称为本初子午线。以地球的北极、南极、赤道和本初子午线等作为基本要素,即可构成地球椭球面的地理坐标系统(图2-3)。其以本初子午线为基准,向东,向西各分了1800,之东为东经,之西为西经;以赤道为基准,向南、向北各分了900,之北为北纬,之南为南纬。 地理坐标系是指用经纬度表示地面点位的球面坐标系。在大地测量学中,对于地理坐标系统中的经纬度有三种描述:即天文经纬度、大地经纬度和地心经纬度。 (1)天文经纬度 天文经度在地球上的定义,即本初子午面与过观测点的子午面所夹的二面角;天文纬度在地球上的定义,即为过某点的铅垂线与赤道平面之间的夹角。天文经纬度是通过地面天文测量的方法得到的,其以大地水准面和铅垂线为依据,精确的天文测量成果可作为大地测量中定向控制及校核数据之用。 (2)大地经纬度 地面上任意一点的位置,也可以用大地经度L、大地纬度B表示。大地经度是指过参考椭球面上某一点的大地子午面与本初子午面之间的二面角,大地纬度是指过参考椭球面上某一点的法线与赤道面的夹角(图2-3)。大地经纬度是以地球椭球面和法线为依据,在大地测量中得到广泛采用。

工程独立坐标系的建立与统一

龙源期刊网 https://www.360docs.net/doc/503213903.html, 工程独立坐标系的建立与统一 作者:卢自来 来源:《中国新技术新产品》2015年第21期 摘要:本文论述了工程测量为什么要建立工程独立坐标系,工程独立坐标系中高程投影 变形和高斯平面投影变形的综合影响,有时需要建立多个工程独立坐标系,在这里浅谈一下工程独立坐标系的统一问题。 关键词:工程测量;工程独立坐标系;投影变形;统一 中图分类号:P223 文献标识码:A 众所周知,国家坐标系的中央子午线为固定的几条经线(3°带的中央经线为3N,6°带的 中央经线为6N-3,N为国家坐标系的带号)。高程投影为0m。工程独立坐标系的中央子午线一般选用测区平均经度,高程投影面一般选用测区的平均高程面。而国家坐标系的中央子午线则往往偏离测区平均经度较远,不能满足要求。因此工程建设必须建立工程独立坐标系,对于一些较大的工程,由于经度跨度较大以及高差较大,一个独立坐标系也不能满足要求,有时需要建立多个工程独立坐标系,而业主为了施工方便,又要求把几个工程独立坐标系统一到一个工程独立坐标系下,这里又牵涉到工程独立坐标系的统一问题。 一、高斯平面投影变形的影响 根据高斯投影原理,高斯平面上长度投影变形的大小与距离中央子午线的横坐标值密切相关。计算公式为: 式中: -长度相对误差; y-边两端点的平均横坐标值; R-为地球曲率半径。 由坐标换带计算可算得不同投影带边缘的横坐标值,并由上式计算出长度投影变形值(边缘距中央子午线的距离以纬度32°为基础)。 由表1可以看出,为了限制投影变形值,工程测量不能简单的使用国家3度带和6度带的国家坐标系,因为工程测量一般要求投影变形不大于1/40000。为使投影变形不大于1/40000,按照上面公式反算,工程独立坐标系的带宽应为45101米,即57′。

测量坐标和高程(完)

1. 水准面:液体受重力而形成的静止表面称为水准面。 是一个处处与重力方向垂直的连续曲 面。有无数个水准面。同一水准面上的重力位处处相等;同一水准面上任一点的铅垂线都与水准面相正交。 2. 与平静的平均海水面相重合、并延伸通过陆地而形成的封闭曲面称为大地水准面. 大地水准面包围的形体称为大地体(Geoid )。水准面和铅垂线是野外观测的基准面和基准线。 3. 代表地球形状和大小的旋转椭球成为地球椭球。地球椭球分类 a) 总地球椭球:与全球范围内的大地水准面最佳拟合 b) 参考椭球:与某个区域的大地水准面最佳拟合,其椭球面成为参考椭球面。 参考椭球有许多个,总地球椭球只有一个。 4. 大地水准面差距:地球椭球与大地水准面的距离 垂线偏差:地面一点对大地水准面的垂线和对于地球椭球面的法线夹角. 5. 大地原点:确定大地水准面和参考椭球面的相互关系。 6. 参考椭球的作用: 参考椭球面:一个以椭圆的短轴为旋转轴的旋转椭球体的表面。椭球体的大小和大地体十分接近。参考椭球面可用数学模型表示。 1、代表地球的数学表面; 2、大地测量计算的基准面; 3、研究大地水准面的参考面; 4、地图投影的参考面。 地球的形状是一个南北极稍扁的,类似于一个椭圆绕其短轴旋转的椭球体。 7. 测量工作的基准线和基准面 测量工作的基准线—铅垂线 。 测量工作的基准面—大地水准面。 测量内业计算的基准线—法线。 测量内业计算的基准面—参考椭球面。 8. 测量工作及基本原则 1、 从整体到局部; 2、先控制后碎部 ; 3、复测复算、步步检核。前一步工作未检核不进行后一步工作 优点:① 减少误差积累;② 避免错误发生; ③ 提高工作效率。 9. ρo=180o/π=57.3o ρ ′=3438′ ρ " =206265 " 10. 水准面曲率对水平距离的影响 结论:当D=10km 时,所产生的相对误差为1:120万,最精密距离测量的容许误差位1/100万,这样小的误差,对精密量距来说也是允许的。因此,在10km 为半径的圆面积之内进行距离测量时,可以把水准面当作水平面看待,而不考虑地球曲率对距离的影响。 11. 水准面曲率对水平角度的影响 球面角超 2R D 31D ΔD ??? ??=206265:6371::''2 ''ρρεkm R P R P 地球的半径 球面多边形的面积 =

第07章 重点突破训练:平面直角坐标系应用问题举例-简单数学七年级下册同步讲练(原卷版)(人教版)

第07章重点突破训练:平面直角坐标系应用问题举例 典例体系(本专题39题27页) 考点1:平面直角坐标系中的规律探究 典例:(2020·山西晋中市·八年级期末)在平面直角坐标系中,横、纵坐标均为整数的点叫做整数点,设坐标轴的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题: (1)填表: 点P从O点出发的时间可以到达的整坐标可以到达整数点的个数 1秒(0,1),(1,0)2 2秒(0,2),(2,0),(1,1)3 3秒()()(3)当点P从O点出发____________秒时,可得到整数点(10,5).

方法或规律点拨 此题考查的是点坐标的平移规律,设到达的整坐标为(x ,y ),推导出点P 从O 点出发的时间=x +y 是解决此题的关键. 巩固练习 1.(2021·青岛实验学校九年级期末)在平面直角坐标系中,点A 从原点O 出发,沿x 轴正方向按半圆形弧线不断向前运动,其移动路线如图所示,其中半圆的半径为1个单位长度,这时点1234,,,A A A A 的坐标分别 为()()()()12340,0,1 ,12,03,1A A A A -,按照这个规律解决下列问题: ()1写出点5678,,,,A A A A 的坐标; ()2点2018A 的位置在_____________(填“x 轴上方”“x 轴下方”或“x 轴上”); ()3试写出点n A 的坐标(n 是正整数). 【答案】()()514,0A ,()65,1A ,()76,0A ,()87,1A -;()2x 轴上方;()3 A (n -1,0)或()1,1A n -或2.(2020·涡阳县高炉镇普九学校八年级月考)如图,一只蚂蚁在网格(每小格边长为1)上沿着网格线运动.它从格点A(1,2)处出发去看望格点B 、C 、D 等处的蚂蚁,规定:向上向右走均为正,向下向左走均为负.如:从A 到B 记为:A→B ( +1,+3 ),从B 到A 记为:B→A ( -1,-3 ),其中第一个数表示左右方向,第二个数表示上下方向. 填空: (1)图中A→C ( , ) C→ ( , ) (2)若这只蚂蚁从A 处去M 处的蚂蚁的行走路线依次为(+3,+3),(+2,-1),(-3,-3),(+4,+2),则点M 的坐标为( , ) (3)若图中另有两个格点P 、Q ,且P→A ( m+3,n+2),P→Q(m+1, n -2),则从Q 到A 记为( , )

地方独立坐标系介绍

1.2大地测量学的作用 ?大地测量学是一切测绘科学技术的基础,在国民经济建设和社会发展中发挥着决定性的基础保证作用。 ?大地测量学在防灾,减灾,救灾及环境监测、评价与保护中发挥着特殊作用。 ?大地测量是发展空间技术和国防建设的重要保障。 ?在地球科学中的地位。 2.3.3 地方独立坐标系 在城市测量和工程测量中,若直接在国家坐标系中建立控制网,有时会使地面长度的投影变形较大,难以满足实际或工程上的需要。为此,往往需要建立地方独立坐标系。 在常规测量中,这种地方独立坐标系一般只是一种高斯平面坐标系,也可以说是一种不同于国家坐标系的参心坐标系[7]。 建立地方独立坐标系,就是要确立坐标系的一些有关的元素,并根据这些元素和地面观测值求定各点在该坐标系中的坐标值。 (1)独立坐标系的中央子午线: 确定地方独立坐标系的中央子午线一般有三种情况: ①尽量取国家坐标系三度带的中央子午线作为它的中央子午线; ②当测区离三度带中央子午线较远时,应取过测区中心的经线或取过某个起算点的经线作为中央子午线; ③若已有的地方独立坐标系没有明确给定中央子午线,则应该根据实际情况进行分析,找出该地方独立坐标系的中央子午线。 (2)起算点坐标[8]: 一般有以下几种情况: ①以某些在国家坐标系中的坐标为起算点坐标,如果中央子午线不同,可以通过 换带计算求得; 参数名称数值 地球椭球扁率f = 1/ 298.257 赤道上的正常重力= 978.032 ×10?2ms? 2 e γ 极点的正常重力= 983.212×10?2ms ?2 p γ 正常重力公式中的系数0.005302, 0.0000058 1 β= β= ? 正常椭球面上的重力位2 20 U = 62636830m s ? 2 地球椭球与坐标系之基本理论 ②直接以某些点在国家坐标系中的坐标为任意带独立坐标系中的起算点坐标; ③将起算点坐标取为某个特定值。例如取为:xk= 0,yk=0。 (3)坐标方位角: ①以两个点在国家坐标系中的坐标方位角为起始方位角;当采用任意带时,一般 是先将这两个点的坐标通过换带计算求得它们的任意带的坐标值,然后反算得到起算方位角; ②测定两点的天文方位角作起算方位角;

平面直角坐标系和应用

平面直角坐标系(基础)知识讲解 【学习目标】 1.理解平面直角坐标系概念,能正确画出平面直角坐标系. 2.能在平面直角坐标系中,根据坐标确定点,以及由点求出坐标,掌握点的坐标的特征. 3.由数轴到平面直角坐标系,渗透类比的数学思想. 【要点梳理】 要点一、有序数对 定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b). 要点诠释: 有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号. 要点二、平面直角坐标系与点的坐标的概念 1. 平面直角坐标系 在平面画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1). 要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的. 2. 点的坐标 平面任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b 分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2. 要点诠释: (1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.

(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离. (3) 对于坐标平面任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面都有唯一的一点与它对应,也就是说,坐标平面的点与有序数对是一一对应的. 要点三、坐标平面 1. 象限 建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图. 要点诠释: (1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限. (2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方. 2. 坐标平面的结构 坐标平面的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点. 要点四、点坐标的特征 1.各个象限和坐标轴上点的坐标符号规律 要点诠释: (1)对于坐标平面任意一个点,不在这四个象限,就在坐标轴上. (2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0. (3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况. 2.象限的角平分线上点坐标的特征 第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a); 第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a). 3.关于坐标轴对称的点的坐标特征 P(a,b)关于x轴对称的点的坐标为 (a,-b); P(a,b)关于y轴对称的点的坐标为 (-a,b); P(a,b)关于原点对称的点的坐标为 (-a,-b). 4.平行于坐标轴的直线上的点

举例浅谈斜坐标系的应用

举例浅谈斜坐标系的应用 少二(1)邱天异 平面上的斜坐标系不同于平面直角坐标系,组成它的两条数轴不一定互相垂直。下面将从两个例子来看斜坐标系的应用。 一:六边形镶嵌 在如图的正六边形组成的平面镶嵌中,假定六边形对边中点连线长度为2。 解: 如图,建立一个坐标系,其中的坐标轴夹30°角。 定义一个点P的坐标为: 过点P作x轴的平行线,与y轴交于点A。 记点A在y轴(y轴看成是数轴)上的对应数值是a; 用类似的方法,做y轴平行线,与x轴交于B,B在x轴上的对应数值是b。 那么,P的坐标记作(a,b)。 如图,过A作两坐标轴平行线,分别交另一坐标轴于P , Q。 易知AP=4,AQ=4 ∴A(-4,4) 易知B在y轴上,OB=2 ∴B(0,2) 往上走一格,横坐标减4,纵坐标加4; 往右上走一格,纵坐标加2。 所以,此人的位置是(-12,16) 如果使用平面直角坐标系解决这个问题,需要了解特殊三角形的三边之比,还需要进行带根号的计算。在这个例子中,我们看到,利用斜坐标系来贴合题目的特征,某些时候可以避免分数、实数计算,大大减小计算的复杂性和难度。

二:目视确定位置 人眼观察物体的原理,是从两个不同方向(左右眼)观察同一个物体,综合所得结果而找到最终实际位置。其实,从一个方向观察一个物体,相当于用平行光作出它的一个投影。我们逆向研究这个问题,抽象后如下: 在前一个问题中,我们考虑了往某一个方向前进1单位时,坐标的增量,例如,往六边形的上方前进一单位的增量是(-4,4),右上方则是(0,2)。我们也发现这个“增量”是可以叠加的,例如往上前进1单位,再往右上前进1单位,总的增量就是(-4,6)。 直接求在OA 、OB 组成的斜坐标系中的“增量”较为困难,尝试逆向求解。 考虑在平面直角坐标系中的“增量”,则读图易知: 往OB 方向前进个单位(从P 到P')的增量是(1,b) 往OA 方向前进个单位(从P 到P'')的增量是(1,a) 那么可以看作P 从原点O 开始,沿OA 走了BP 单位,沿OB 走了AP 单位,到达(c,d)。所以可以列方程求解AP 、BP 。 解:设AP=x ,BP=y ,记k 1=, ,k 2= 。 由题意得 解得 答句略去。 x

平面直角坐标系---坐标方法的简单应用(含答案)

平面直角坐标系---坐标方法的简单应用 学习要求 能建立适当的平面直角坐标系描述物体的位置. 在同一直角坐标系中,感受图形变换后点的坐标的变化. (一)课堂学习检测 1.回答下面的问题. (1)如图表示赵明同学家所在社区的主要服务办公网点.点O表示赵明同学家,点A表示存车处,点B表示副食店.点C表示健身中心,点D表示商场,点E表示医院,点F表示邮电局,点H表示银行,点L表示派出所,点G表示幼儿园. 请以赵明同学家为坐标原点,建立平面直角坐标系,并用坐标分别表示社区的主要服务网点的位置.(图中的1个单位表示50m) (2)利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程是 ①建立______选择一个____________为原点,确定x轴、y轴的____________; ②根据具体问题确定适当的______在坐标轴上标出____________; ③在坐标平面内画出这些点,写出各点的______和各个地点的______. 2.如图是某乡镇的示意图,试建立直角坐标系,取100米为一个单位长,用坐标表示各地的位置:

3.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1). ①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点C1的坐 标; ②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2 的坐标; ③写出以AB、BC为两边的平行四边形ABCD的顶点D的坐标. (二)综合运用诊断 一、填空 4.在坐标平面内平移图形时,平移的方向一般是平行于______或平行于______. 5.将点(x,y)向右或向左平移a(a>0)个单位长度,得对应点的坐标为______或______; 将点(x,y)向上或向下平移b(b>0)个单位长度,得对应点的坐标为______或______.6.把一个图形上各点的横坐标都加上或减去一个正数a,则原图形向______或向______平移______.把一个图形上各点的纵坐标都加或减去一个正数b,则原图形向______或向______平移______. 7.把点(-2,3)向上平移2个单位长度所到达位置的坐标为______,向左平移2个单位长度所到达位置的坐标为______. 8.把点P(-1,3)向下平移1个单位长度,再向右平移2个单位长度,所到达位置的坐标为______. 9.点M(-2,5)向右平移______个单位长度,向下平移______个单位长度,变为M′(0,1). 10.把点P1(2,-3)平移后得点P2(-2,3),则平移过程是__________________________ _______________________________________________________________________.

浅谈2000国家大地坐标系向地方独立坐标系的转换

浅谈2000国家大地坐标系向地方独立坐标系的转换 摘要:大约在十年前,我国的国家级和省级的基础地理信息数据已经初步通过2000国家大地坐标系,然而通过国家坐标系统,在一些离中央子午线较远或者海拔较高的地区无法达到相关要求,这就需要将地方独立坐标系建立起来。本文对2000国家大地坐标系向地方独立坐标系的转化进行分析和研究,以供参考。 关键词:2000国家大地坐标系;地方独立坐标系;转换 1 2000国家大地坐标系与地方独立坐标系的建立 1.1 2000国家大地坐标系的建立 2000国家大地坐标系是全球地心坐标系在我国进行实践的具体体现,其原点 主要是大地和海洋的质量中心,z轴是根据相关规定协议地级方向,x轴表示的是相关规定当中定义的协议赤道和子午面的交点,y轴是依照右手坐标系而建立起 来的,通过2000国家大地坐标系能够加强定位系统的精确性,广泛应用于各个 领域。 1.2地方独立坐标系的建立 在工程测量及城市测绘过程中如果通过国家坐标系来进行控制网的建设,往 往会出现地面长度投影变形量较大等问题,无法达到工程的实际操作需求,所以 一定要建立起与实际情况相适应的地方独立坐标系。地方独立坐标系的建立,主 要是为了让高程归化和投影形变的情况造成的误差缩小,通过地方独立坐标系的 建设可以保证达到所需要的精度,不会由于精度无法达到要求,而对工程建设产 生影响。 2 2000国家大地坐标系与地方独立坐标系转换的理论基础 某市在建设的过程中选取四参数转换模型,对坐标转换参数进行控制,把2000国家大地坐标系的成果向地方独立坐标系的成果进行转化。 2.1重合点选取 在坐标系选用的过程中,两个坐标系都有坐标成果控制点,在选择的过程中,主要原则是覆盖整个转换区域,要求精度较高,而且具有较高的等级,分布均匀。 2.2转换参数计算 首先通过转换模型和重合点的选择,对转换参数进行计算,将残差大于三倍 的误差重合点剔除,对坐标转换参数进行重新计算,直到符合精度要求为止,通 过最小二乘法来对参数进行计算。 2.3精度评定 坐标转换精度一般通过外符合精度来进行评定,根据计算参数转换参数的重 合点残差中误差来对坐标转换精度进行评估,如果残差小于三倍,那么其定位精 度符合要求,在计算的过程中,外部的检核点的误差公式为 3转换方法 坐标转换模型需要与地方控制点和城市数字地图的转化相结合,通常条件下 通过平面四参数模型进行转换,如果重合点比较多,可以通过多元回归模型来进 行控制,如果数字地图和相对独立的平面坐标系统控制点都是三维地心坐标的时候,可以通过Bursa七参数转换模型进行转换。在转换的过程中,需要控制误差 不超过0.05米,并且需要对重合点的选取原则进行明确,首先需要对地方控制点 的高精度控制点和计算点进行择优选择,在一般情况下,在大中城市至少需要保 证使用五个重合点,这些重合点需要均匀的分布,包含在城市的各个区域当中,

我国三大常用坐标系区别

我国三大常用坐标系区别 (北京54、西安80和WGS-84) 北京, 西安, 坐标系 我国三大常用坐标系区别(北京54、西安80和WGS-84) Gis应用2009-09-27 10:06 阅读13 评论0 字号:大大中中小小我国三大常用坐标系区别(北京54、西安80和WGS-84) 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。1954年北京坐标系的历史: 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3、WGS-84坐标系 WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。 WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。 附: 我国常用高程系

地方独立坐标系的建立

地方独立坐标系的建立 2006年第2期地方独立坐标系的建立43 地方独立坐标系的建立 张胜利 (水利部陕西水利电力勘测设计研究院测绘总队陕西西安710002) 摘要坐标系统是所有测量工作的基础,它影响到测量成果的正确性和可靠性,对 于不同的测量工作选择恰当的独立坐标系能保证工程项目顺利实施.本文介绍了建 立独立坐标系的几种方法,并对其优缺点进行分析. 关键词独立坐标系;高斯投影;抵偿高程面;高程归化面 1引言 在工程建设地区布设测量控制网时,其成果不仅要满足大比例尺地形图测图的需要,还要 满足一般工程放样的需要.施工放样时要求控制网中两点的实测长度与由坐标返算的长度应 尽可能相符,而采用国家坐标系其坐标成果大多数情况下是无法满足这些要求的,这是因为国 家坐标系每个投影带都是按一定间隔(6.或3.)划分,其高程归化面为参考椭球面,工程建设所

在地区不可能正好落在国家坐标系某一投影带中央附近,其地面位置也与参考椭球面有一定 距离,这两项将产生高程归化改正和高斯投影变形改正,经过这两项改正后的长度不可能与实 测长度相等. 《工程测量规范》(GB5oo26--93)规定:平面控制网的坐标系统,应满足测区内高程归化改 正和高斯投影变形改正之代数和(即投影长度变形值)不大于2.5cm/km,即相对误差小于1/4 万.当测区的国家坐标系不能满足这一规定时,就要建立地方独立坐标系以减小投影长度变 形产生的影响,将它们的影响控制在微小的范围内,使计算出的长度在实际利用时不需作任何 改算. 2高程归化改正与高斯投影变形改化的计算 地面观测边长的归算可分为高程归化和高斯投影长度改化,其计算公式如下: (1)地面观测边长归算到参考椭球面上的长度归算公式 S—D十,:一—DH=(1) 式中:S——归化到参考椭球圆上的长度; D——地面上的观测长度; ——

CAD设计制图中的坐标系UCS怎样使用

CAD设计制图中的坐标系UCS怎样使用 在CAD设计中我们经常会调整坐标,更换作图平面,在这里就要试用【UCS】工具条了。 无论是AutoCAD软件,还是各系类的浩辰软件,在使用坐标【UCS】时操作方法都是一样的,下面我就以浩辰CAD机械软件,简单说一下CAD设计是【UCS】工具条的使用方法。 1、所有坐标命令,即【UCS】命令 次命令包含了CAD中所有的坐标命令,我们科以看命令行提示 [?/3点(3)/面(F)/删除(D)/对象(E)/原点(O)/前次(P)/还原(R)/保存(S)/视图 (V)/X/Y/Z/Z轴(ZA)/世界(W)]<世界(W)>: 在这里输入相应命令字母,就可以相应的调整坐标了。这些命令对应后续的几个命令,我就不多说了。 2、【世界坐标】命令 此命令的直接点击即可完成,用于坐标系调整后回到起初的状态,也就是无论你经坐标系做何调整后只要点击【世界坐标】它就会回到最初原点和状态。 3、【上一个UCS】命令 顾名思义,点击此命令,回到使用的上一个坐标系。 4、【对象ucs】 点击命令后,选择要定义坐标的对象即可将坐标系定义到我们想定义的位置,如图效果。 5、【视图坐标】 此功能应用较少,功能主要实现的是无论在那个视图坐标调整到xy平面作图。

6、【原点坐标】、【z轴矢量】和【3点】坐标命令 【原点坐标】:此命令以点定义坐标,点击命令后,直接点击某点,坐标系就会跟随移动到此点上。 【z轴矢量】:此命令以线定义坐标,点击命令后,直接点击两点确定一直线,坐标系z轴就会跟随一定到此两点确定的直线上。 【3点】此命令以面定义坐标,点击命令后,先点击一点确定原点,然后分别点击两点确定x轴、y轴,坐标系就会移动到相应的位置平面。 7、坐标旋转 此三个命令在更换作图平面式非常常用,用于坐标系的旋转,可分别根据x轴、y轴、z轴进行相应的坐标系旋转,操作较为简单,不做过多介绍。

相关文档
最新文档