碳酸锂提纯处理工艺优势剖析

碳酸锂提纯处理工艺优势剖析
碳酸锂提纯处理工艺优势剖析

碳酸锂提纯处理工艺优势剖析

随着新能源汽车的发展,锂电池行业高速发展,同时对碳酸锂的需求量日益增长,应用范围不断扩大,对碳酸锂的纯度越来越高。工业级碳酸锂提纯生产电池级或者高纯碳酸锂势在必行。

工业碳酸锂提纯一般采用碳化分解法。该方法操作简单、提纯效率高、生产成本低、污染小等特点,而且热分解后的母液部分可返回调浆循环利用,有效提高了锂的回收率。

碳酸锂是锂化合物中重要的锂盐,是制备高纯锂化合物的主要原料,在玻璃和陶瓷制造、医药、有色金属冶炼、锂电池电极材料等领域具有广阔的应用前景。目前,生产碳酸锂原料主要有锂辉石、盐湖卤水、海水等,因生产原料不同,生产工艺也有所不同。

目前锂的生产需要经过长达18至24个月的曝晒蒸发,待锂矿中所有其他元素被提取完之后只剩下锂元素,开采才算完成。最大的问题在于,扩大锂产量十分困难,需要兴建数以千计的蒸发塘。

吸收法将蒸发塘从锂的整个生产环节去除掉。该技术将能把提取时间减少至24小时。更棒的是,其锂提取率将从40%提升至90%。

传统方式需先去除锂矿中的其他元素,而这项新技术可直接从锂矿中提取锂。技术的核心思想是基于连续性基础对锂进行提取。该技术在流动的盐卤水中

收集锂元素,并忽略掉其他杂质,最终获得经过稀释的氯化锂。整个提取过程耗时24小时,这意味着人们可以告别传统方法的18至24个月的提取周期。这无疑是锂提炼技术的一次变革。

常见金属表面处理的种类

金属表面处理的种类 电镀 镀层金属或其他不溶性材料做阳极,待镀的工件做阴极,镀层金属的阳离子在待镀工件表面被还原形成镀层。为排除其它阳离子的干扰,且使镀层均匀、牢固,需用含镀层金属阳离子的溶液做电镀液,以保持镀层金属阳离子的浓度不变。电镀的目的是在基材上镀上金属镀层,改变基材表面性质或尺寸。电镀能增强金属的抗腐蚀性(镀层金属多采用耐腐蚀的金属)、增加硬度、防止磨耗、提高导电性、润滑性、耐热性、和表面美观。 电泳 电泳是电泳涂料在阴阳两极,施加于电压作用下,带电荷涂料离子移动到阴极,并与阴极表面所产生之碱性作用形成不溶解物,沉积于工件表面。 电泳表面处理工艺的特点: 电泳漆膜具有涂层丰满、均匀、平整、光滑的优点,电泳漆膜的硬度、附着力、耐腐、冲击性能、渗透性能明显优于其它涂装工艺。电泳工艺优于其他涂装工艺。 镀锌 镀锌是指在金属、合金或者其它材料的表面镀一层锌以起美观、防锈等作用的表面处理技术。现在主要采用的方法是热镀锌。 电镀与电泳的区别 电镀就是利用电解原理在某些金属表面上镀上一薄层其它金属或合金的过程。 电泳:溶液中带电粒子(离子)在电场中移动的现象。溶液中带电粒子(离子)在电场中移动的现象。利用带电粒子在电场中移动速度不同而达到分离的技术称为电泳技术。 电泳又名——电着 (著),泳漆,电沉积。 发黑 钢制件的表面发黑处理,也有被称之为发蓝的。其原理是将钢铁制品表面迅速氧化,使之形成致密的氧化膜保护层,提高钢件的防锈能力。

发黑处理现在常用的方法有传统的碱性加温发黑和出现较晚的常温发黑两种。但常温发黑工艺对于低碳钢的效果不太好。A3钢用碱性发黑好一些。 在高温下(约550℃)氧化成的四氧化三铁呈天蓝色,故称发蓝处理。在低温下(约3 50℃)形成的四氧化三铁呈暗黑色,故称发黑处理。在兵器制 造中,常用的是发蓝处理;在工业生产中,常用的是发黑处理。 采用碱性氧化法或酸性氧化法;使金属表面形成一层氧化膜,以防止金属表面被腐蚀,此处理过程称为“发蓝”。黑色金属表面经“发蓝”处理后所形成的氧化膜,其外层主要是四氧化三铁,内层为氧化亚铁。 发蓝(发黑)的操作流程: 工件装夹→去油→清洗→酸洗→清洗→氧化→清洗→皂化→热水煮洗→检查。 所谓皂化,是用肥皂水溶液在一定温度下浸泡工件。目的是形成一层硬脂酸铁薄膜,以提高工件的抗腐蚀能力。 金属表面着色 金属表面着色,顾名思义就是给金属表面“涂”上颜色,改变其单一的、冰冷的金属色泽,代之以五颜六色,满足不同行业的不同需求。 给金属着色后一般都增加了防腐能力,有的还增加了抗磨能力。但表面彩色技术主要的应用还在装饰领域,即用来美化生活,美化社会。 抛丸 抛丸的原理是用电动机带动叶轮体旋转(直接带动或用V型皮带传动),靠 离心力的作用,将直径约在0.2~3.0的弹丸(有铸钢丸、钢丝切丸、不锈钢丸 等不同类型)抛向工件的表面,使工件的表面达到一定的粗糙度,使工件变得 美观,或者改变工件的焊接拉应力为压应力,提高工件的使用寿命。通过提高工件表面的粗糙度,也提高了工件后续喷漆的漆膜附着力。其寓意即为抛丸处理可以为喷漆工艺的前道工序。 喷砂 喷砂是采用压缩空气为动力,以形成高速喷射束将喷料(铜矿砂、石英砂、金刚砂、铁砂、海南砂)高速喷射到需要处理的工件表面,使工件表面的外 表面的外表或形状发生变化,由于磨料对工件表面的冲击和切削作用,使工件

碳酸锂氢化提纯实验方案.docx

碳酸锂氢化提纯实验方案 一、实验目的 .................................................................................................错误 ! 未定义书签。 探究碳酸锂氢化提纯工艺的可行性。........................................错误 ! 未定义书签。 摸索除 Ca、Mg 、 Cl、 Na 的最优方法。 .....................................错误 ! 未定义书签。 摸索 Li2CO3与 CO2料配比。 ........................................................错误 ! 未定义书签。 探究可加工原料 Li CO 质量范围。 ............................................错误 ! 未定义书签。 23 摸索最优锂损。 ............................................................................错误 ! 未定义书签。 摸索生产 Li2CO3最优范围。 ........................................................错误 ! 未定义书签。 探索最佳反应条件:T、 P、 t。 ..................................................错误 ! 未定义书签。 摸索最优反应设备。....................................................................错误 ! 未定义书签。 二、实验原理 .................................................................................................错误 ! 未定义书签。 三、实验试剂及仪器 .....................................................................................错误 ! 未定义书签。 实验试剂 ........................................................................................错误 ! 未定义书签。 实验仪器 ........................................................................................错误 ! 未定义书签。 四、实验内容 .................................................................................................错误 ! 未定义书签。 探究温度对氢化反应的影响 ........................................................错误 ! 未定义书签。 探究 CO 速率对氢化反应的影响 ................................................错误 ! 未定义书签。 2 探究搅拌速度对氢化反应的影响................................................错误 ! 未定义书签。 探究反应时间的氢化反应的影响................................................错误 ! 未定义书签。 探究固液比对氢化反应的影响 ....................................................错误 ! 未定义书签。 探究 732 树脂对 Ca2+、Mg 2+金属离子的吸附效果 ....................错误 ! 未定义书签。 探究 717 强碱阴离子树脂除 Cl-效果 ...........................................错误 ! 未定义书签。 热解碳酸氢锂 ................................................................................错误 ! 未定义书签。 探究生产 Li2CO3最优范围 ............................................................错误 ! 未定义书签。 五、实验表格 .................................................................................................错误 ! 未定义书签。 六、实验结果及分析 .....................................................................................错误 ! 未定义书签。

碳酸锂行业上市公司研究报告

碳酸锂行业上市公司研究报告 编号:XSJYB(2016)-002澄泓研究理念:让研报变诚实,使投资更简单。 澄泓研究?新视界工作室成员:@简放、@Jirachi、@大徐、@明日花开、@后来居上_dioyan、@杨长雍 导读 2015年是新能源汽车行业高速发展的一年,根据工信部统计,2015年1~11月,新能源汽车累计生产27.92万辆,同比增长4倍。新能源汽车的高速增长,带动了整个产业链的高景气度,位于产业链上游的碳酸锂行业,更是迎来了春天。我们统计了2015年碳酸锂主要上市公司的涨幅:通过上表可以看出,平均涨幅超过200%,同期沪深300涨幅仅为5.58%,足以证明碳酸锂行业的投资热情高涨,持续受到资金关注。今天,我们就对碳酸锂以及该行业的上市公司近期全面梳理分析。 一、碳酸锂行业概述 1.1碳酸锂简介 碳酸是生产二次锂盐和锂制品的基础材料,因而成为了锂行业中用量最大的锂产品,其他锂产品其本上都是碳酸锂

的下游产品。碳酸锂不仅可以直接使用,还可以作为原料制备各种附加值高的锂盐及其化合物,广泛应用于锂电池、催化剂、半导体、陶瓷、电视、医药、原子能工业等领域,但是在高技术应用领域如彩色萤光粉、药用及锂电池等电子材料对碳酸锂质量的要求很高,工业级碳酸锂必须通过精制除去其中的无机盐类等杂质才能达到各种不同专用品的质量 指标要求。碳酸锂的应用已经超过了100种用途,目前大家对它的关注则主要是跟新能源汽车和新能源挂钩。根据用途可以进行如下分类: 注:1、含量中的区间是用来区分在各自规格中的产品级别,级别越高碳酸锂含量的最低要求越高;2、产品规格质量要求高低排列:工业级<萤光级<电池级<医药级<高纯级。 1.2 碳酸锂行业产业链 1.3碳酸锂资源分布简述 国际锂电池协会专家介绍,盐湖锂主要分布在南美、北美和亚洲,在全世界的储量当中,玻利维亚最大为42%、智利占34%、阿根廷占12%,中国为12%。矿山锂资源主要分布在美国、加拿大、澳大利亚、俄罗斯、中国和部分非洲地区。据中国地质科学院矿产资源研究所刘喜方研究员介绍,我国的矿石锂资源主要分布在四川、江西和新疆。“四川主要是

生活污水处理的三种方法

污水处理——生活污水处理方法 1.活性污泥法 生活污水多采用活性污泥法,它是世界各国应用最广的一种生物处理流程,具有处理能力高,出水水质好的优点。该方法主要由曝气池、沉淀池、污泥回流和剩余污泥排放系统组成。废水和回流的活性污泥一起进入曝气池形成混合液。曝气池是一个生物反应器,通过曝气设备充入空气,空气中的氧溶入混合液,产生好氧代谢反应,且使混合液得到足够的搅拌而呈悬浮状态,这样,废水中的有机物、氧气同微生物能充分接触反应。随后混合液进入沉淀池,混合液中的悬浮固体在沉淀池中沉下来和水分离,流出沉淀池的就是净化水。沉淀池中的污泥大部分回流,称为回流污泥,回流污泥的目的是使曝气池内保持一定的悬浮固体浓度,也就是保持一定的微生物浓度。曝气池中的生化反应引起微生物的增殖,增殖的微生物量通常从沉淀池中排除,以维持活性污泥系统的稳定运行,这部分污泥叫剩余污泥。活性污泥除了有氧化和分解有机物的能力外,还要有良好的凝聚和沉降性能,以使活性污泥能从混合液中分离出来,得到澄清的出水。 由于污水处理是一项侧重于环境效益和社会效益的工程,因此在建设和实际运行过程中常受到资金的限制,使得治理技术与资金问题成为我国水污染治理的“瓶颈”。归纳起来,目前在城市生活污水处理研究和应用领域,普遍存在的问题有:(1)采用传统的活性污泥法,往往基建费、运行费高,能耗大,管理复杂,易出现污泥膨胀现象;设备不能满足高效低耗的要求;(2)随着污水排放标准的不断严格,对污水中氮、磷等营养物质的排放要求较高,传统的具有脱氮除磷功能的污水处理工艺多以活性污泥法为主,往往需要将多个厌氧和好氧反应池串联,形成多级反应池,通过增加内循环来达到脱氮除磷的目的,这势必增加基建投资的费用及能耗,并且使运行管理较为复杂;(3)目前城市污水的处理多以集中处理为主,庞大的污水收集系统的投资远远超过污水处理厂本身的投资,因此建设大型的污水处理厂,集中处理生活污水,从污水再生回用的角度来说不一定是唯一可取的方案。 因此,如何使城市污水处理工艺朝着低能耗、高效率、少剩余污泥量、最方便的操作管理,以及实现磷回收和处理水回用等可持续的方向发展,已成为目前水处理技术研究和应用领域共同关注的问题。这要求污水处理不应仅仅满足单一的水质改善,同时也需要一并考虑污水及所含污染物的资源化和能源化问题,且所采用的技术必须以低能耗和少资源损耗为前提。 2.生物膜法。 在污水生物处理的发展和应用中,活性污泥和生物膜法一直占据主导地位。生物膜法主要用于从废水中去除溶解性有机污染物,主要特点是微生物附着在介质“滤料”表面,形成生物膜,污水同生物膜接触后,溶解的有机污染物被微生物吸附转化为H2O、CO2、NH3和微生物细胞物质,污水得到净化,所需氧化一般直接来自大气。生物膜法处理系统适用于处理中小规模的城市废水,采用的处理构筑物有高负荷生物滤池和生物转盘,生物滤池在我国南方更为适用。随着新型填料的开发和配套技术的不断完善,与活性污泥法平行发展起来的生物膜法处理工艺在近年来得以快速发展。由于生物膜法具有处理效率高、耐冲击负荷性能好、产泥量低、占地面积少、便于运行管理等优点,在处理中极具竞争力。

磷酸铁锂材料的制备方法

磷酸铁锂材料的制备方法主要有: (1)高温固相法:J.Barker等就磷酸盐正极材料申请了专利,主要采用固相合成法。以碳酸锂、氢氧化锂等为锂源,草酸亚铁、乙二酸亚铁,氧化铁和磷酸铁等为铁源,磷酸根主要来源于磷酸二氢铵等。典型的工艺流程为:将原料球磨干燥后,在马弗炉或管式炉内于惰性或者还原气氛中,以一定的升温加速加热到某一温度,反应一段时间后冷却。高温固相法的优点是工艺简单、易实现产业化,但产物粒径不易控制、分布不均匀,形貌也不规则,并且在合成过程中需要使用惰性气体保护。 (2)碳热还原法:这种方法是高温固相法的改进,直接以铁的高价氧化物如Fe 2O 3 、LiH 2 PO 4 和碳粉为原料,以化学计量比混合,在箱式烧结炉氩气气氛中于70 0℃烧结一段时间,之后自然冷却到室温。采用该方法做成的实验电池首次充放电容量为151mAh/g。该方法目前有少数几家企业在应用,由于该法的生产过程较为简单可控,且采用一次烧结,所以它为LiFePO 4 走向工业化提供了另一条途径。但该法制备的材料较传统的高温固相法容量表现和倍率性能方面偏低。 (3)水热合成法:S.F.Yang等用Na 2HPO 4 和FeCL 3 合成FePO 4 .2H 2 O,然后与CH 3 C OOLi通过水热法合成LiFePO 4 。与高温固相法比较,水热法合成的温度较低,约 150度~200度,反应时间也仅为固相反应的1/5左右,并且可以直接得到磷酸铁锂,不需要惰性气体,产物晶粒较小、物相均一等优点,尤其适合于高倍率放电领域,但该种合成方法容易在形成橄榄石结构中发生Fe错位现象,影响电化学性能,且水热法需要耐高温高压设备,工业化生产的困难要大一些。据称Pho stech的P 2 粉末便采用该类工艺生产。 (4)液相共沉淀法:该法原料分散均匀,前躯体可以在低温条件下合成。将Li OH加入到(NH 4) 2 Fe(SO 4 ) 3 .6H 2 O与H 3 PO 4 的混合溶液中,得到共沉淀物,过滤 洗涤后,在惰性气氛下进行热处理,可以得到LiFePO 4 。产物表现出较好的循环稳定性。日本企业采用这一技术路线,但因专利问题目前尚未大规模应用。(5)雾化热解法:雾化热解法主要用来合成前躯体。将原料和分散剂在高速搅拌下形成浆状物,然后在雾化干燥设备内进行热解反应,得到前躯体,灼烧后得到产品。 (6)氧化-还原法: 该法能得到电化学优良的纳米级的磷酸铁锂粉体,但其工艺很复杂,不能大量生产,只适合实验室研究。

新农村生活污水处理工艺

前言 “十一五”规划提出了建设社会主义新农村的重大历史任务,并明确了“生产发展、生活宽裕、村容整洁、管理民主”的建设目标。加强农村生活污水的处理,是村容整治的组成部分,也是社会主义新农村建设的重要内容。2008年10月初,市委涂勇副书记调研西湖村,提出了要以西湖村为示范典型的“政府引导、农民主体、社会参与、部门支持、城乡共建”的新农村建设模式。 农村生活污水造成的环境污染不仅是农村水源地潜在的安全隐患,还会加剧淡水资源危机,使耕地危机得不到有效保障,危害农村的生存发展。因此,加强农村生活污水收集、处理与资源化设施建设,避免因生活污水直接排放二引起的农村河道、土壤和农产品污染,确保农村水源的安全和农民身心健康,是新农村建设中加强基础设施建设、推进村庄整治工作的重要内容,也是农村人居环境改善需要解决的迫切问题。 全国农村每年产生生活污水约80多亿吨,而96%的村庄没有排水渠道和污水处理系统。生活污水随意排放,严重污染了农村的生态环境,直接威胁广大农民群众的身体健康以及农村的经济发展。一方面,未经处理的生活污水自流到地势低洼的河流、湖泊和池塘等地表水体中,严重污染各类水源;另一方面,生活污水也是疾病传染扩散的源头、容易造成部分地区传染病、地方病和人畜共患疾病的发生与流行。目前全国农村的自来水普及率只有34%左右,还有3亿多农民存在饮水安全问题。在浙江省丽水市农民家庭用水水质的抽样检测结

果中,63个水样中大肠杆菌、浑浊度等主要指标超标的占72%。水源地水质低的状况与农村生活污水未经处理直接排放有直接因果关系。 与城市生活污水相比较,农村生活污水具有自身特色: 1、农村人口居住相对分散; 2、无统一污水收集管网; 3、以家庭生活污水为主(部分区域有农家乐); 4、部分地区存在小型工厂和作坊。 目前这部分农村生活污水(部分生活污水中混有工业废水)不经处理均直排入周边河道中,对农村周边水环境造成严重污染,造成水体发黑发臭,对周边农村居民的身体健康造成巨大的威胁,严重影响了周边农村居民的正常生活与农耕,直接阻碍了农村经济的快速发展,因此必须尽快完成这些自然村落的污水整治与改造。 一、工程概况 1.1工程名称 ×××××××生活污水处理工程。 1.2编制依据 ⑴《城镇污水处理厂污染物排放标准》GB18918-2002; ⑵设计大你为对周围环境状况的调查与监测资料; ⑶“七五”国家重点科技攻关项目成果《城市污水土地处理利用设计手册》,中国标准出版社;

碳酸锂的生产工艺及研究进展

碳酸锂的生产工艺及研究进展 生产碳酸锂因其原料的不同,生产工艺也有所不同。以下详细介绍以锂辉石、盐湖卤水、海水各为原料,制取碳酸锂的生产工艺以及各工艺的优缺点。 2.1 以锂辉石为原料制取碳酸锂的生产工艺 近年来我国在积极开发盐湖锂资源。但由于我国盐湖卤水中的镁含量较高,镁和锂这两种元素较难分离,前几年还没有大规模的产业化生产,所以我国一直从锂矿石中提取锂盐。由于不同的锂矿物其性质差别很大,从锂矿物中提取碳酸锂的工艺也各不相同,其主要工艺有如下几种。 2.1.1 硫酸法生产工艺…其工艺流程图如图2.1所示。 图2.1 硫酸法生产碳酸锂的工艺流程图 硫酸法生产碳酸锂收率较高,并可处理Li2O含量仅1.0~1.5%的矿石。但是相当数量的硫酸和纯碱变成了价值较低的Na2SO4,应尽可能降低硫酸的配量。此方法最大优点是浸取烧结所得的溶液中含有110~150g/ L硫酸锂,经过浸取即可得到比较纯净的溶液。硫酸法也可用来处理锂云母和磷铝石。 2.1.2 锂辉石与硫酸盐混合烧结生产工艺 将锂辉石精矿与K2SO4(或CaSO4或两者混合物),在一定温度下混合烧结,经一系列物理、化学反应后,所配人的硫酸盐中的金属元素将矿石中锂置换生成可溶性的硫酸盐,主要杂质则生成难溶于水的化合物,然后将烧结后的熟料浸出分离,锂离子进人溶液,经净化、浓缩、沉淀后得到碳酸锂产品。 在处理锂辉石时,先使α-型转换成结构较疏松、易反应的β-型。这种相变实际上是结合在烧结过程中同时进行的。总的反应是:…

图2.2是硫酸钾烧结法处理锂辉石的工艺流程图。 图2.2 硫酸钾烧结法生产碳酸锂的工艺流程图 … 2.1.3 碳酸钠加压浸出生产工艺… 2.1.4 氯化焙烧生产工艺 此工艺主要是利用氯化剂使矿石中的锂及其它有价金属转化为氯化物进行提取的。氯化焙烧法生产工艺有两种:一种是中温氯化法。 在低于碱金属氯化物沸点的温度下制得含氯化物的烧结块,经过溶出使之与杂质分离;另一种是高温氯化或氯化挥发焙烧。在高于其沸点的温度下进行焙烧,使氯化物成为气态挥发出来与杂质分离。这两种方法都可用来处理各种含锂矿石。氯化剂为钾、钠、铵和钙的氯化物。 氯化焙烧的反应为:… 图2.3是处理锂辉石的高温氯化法生产碳酸锂的工艺流程。 … 图2.3 氯化挥发物焙烧法生产碳酸锂的工艺流程图 … 2.1.5 石灰石焙烧法生产工艺 …其工艺流程图如图2.4所示。 图2.4 石灰石焙烧法生产碳酸锂的工艺流程图 石灰法的主要优点是实用性很普遍,因为它适用于分解几乎所有的锂矿物。反应过程不需要稀缺的试剂(分解时使用天然产物——石灰石);可以利用媒、石油或煤气作燃料。缺点是浸出液中锂含量低,蒸发能耗大,锂的回收率较低,并

粗级碳酸锂提纯工艺过程分析

粗级碳酸锂提纯工艺过程分析 发表时间:2018-11-14T20:47:29.847Z 来源:《基层建设》2018年第28期作者:陈贵娥[导读] 摘要:碳酸锂是一种广泛应用于医药、冶金、陶瓷等行业的复合材料。 中国恩菲工程技术有限公司北京 100038 摘要:碳酸锂是一种广泛应用于医药、冶金、陶瓷等行业的复合材料。它是锂盐相关产品中最受欢迎的产品之一。高纯碳酸锂广泛应用于电力技术、有机合成、存储食品和玻璃添加剂等领域,具有十分重要的意义。 关键词:粗级碳酸锂;提纯工艺;分析前言 近年来,伴随着我国科学技术的不断发展,使得无论是企业还是研究部门,都是对于碳酸锂的提纯浓度提出越来越高的要求,这样也给提纯精度带来挑战。然而就现实情况来说,大部分的初级碳酸锂产品并不能很好的满足市场需求。因此可以发现,我们针对新型的碳酸锂提纯方法进行理论性的研究分析,无论是对于工程应用,还是对于理论研究,都存在有非常积极地现实意义。 1工艺方案对比 1.1电解法 以粗碳酸锂为原料,将Li2CO3溶于HCL,经沉降和其它处理,除去Ca、Mg等绝大多数阳离子杂质后用作电解槽的阳极液。该电解过程可很完全地进行,能得到很高纯度的Li2CO3尤其是其它方法难于处理的Ca2+、Mg2+等杂质可降到更低的范围。该方法虽流程较短,但对膜的要求较高,电耗也大,近年来在盐湖提锂过程中尚未见使用报道。 1.2重结晶法 由于Li2CO3在水中的溶解度在高温下反而低于常温(加Li2CO3溶解度),而其它杂质很少有这种性质,因此可用加热溶解Li2CO3,然后冷却析出的方法精制Li2CO3,从而获得产品,但Li2CO3溶解度极低,溶解也较缓慢,在加热煮沸析出的过程中,要强烈搅拌使产品不至于粘壁过多。该方法一次回收率约40%,母液量极大,但视杂质情况可反复循环使用以提高回收率。该方法简单易行,除杂效果极佳,但Li2CO3溶解度很小,物料流通量过大,能耗也很大,生产量受设备限制,母液循环时还需要一定的降温时间,生产周期较长。 1.3碳酸氢化分解法 该方法与Li2CO3重结晶的方法有类似之处,利用了Li2CO3能碳酸氢化生成溶解度大得多的LiHCO3的性质,而其它大部分杂质不被氢化,不溶性碳酸盐可通过过滤除去,为提高收率,母液可循环使用,流程基本可实现全封闭。需注意的是LiHCO3分解过程若搅拌强度不够,粘壁十分严重,而且分解剧烈并放出大量的CO2气体,生产过程若控制不当,易于发生“冒槽”事故。此外,在该工艺中因Ca2+与Li+有着几乎完全相同的性质,需采取其它的除Ca2+方法,才能得到更好的产品。 1.4碳酸氢化沉淀法 鉴于碳酸氢化分解法流通量仍然较大,且分解释放出大量的CO2,若在此过程中加入纯净的LiOH溶液,不但能提高产能和收率,而且能充分利用CO2气体,把气-液反应转化成了液-液反应,易于控制产品纯度和粒度。经证实,本工艺得到的产品质量与碳酸氢化分解法相比,虽有一些差距,但优点也是明显的,使用大约一半相对价廉的工业Li2CO3原料,比直接碳酸氢化节省CO2气体用量,成本较低。不过这种方法所制得的Li2CO3的杂质含量仍然较高。 2工艺方法及流程将粗碳酸锂经研磨粉碎后加水配制成料浆,搅拌、过滤、洗涤,得碳酸锂精矿;所得碳酸锂精矿加水配制成碳酸锂料浆,加入氧化钙进行苛化反应,过滤得粗氢氧化锂溶液;粗氢氧化锂溶液浓缩后过滤,向滤液中加入络合剂除去杂质金属离子,得精制氢氧化锂溶液;精制氢氧化锂溶液中通入CO2进行碳化反应,后过滤得碳酸氢锂溶液;碳酸氢锂溶液加热进行脱碳反应,后过滤并洗涤,滤饼经干燥得高纯碳酸锂;合并滤液和洗液,加入氢氟酸调节其为酸性或中性,生成沉淀后过滤并洗涤,滤饼经干燥即得氟化锂。 3结果与讨论 3.1锂精矿制备 利用碳酸锂溶解度随温度升高逐渐降低的特性,将粗品碳酸锂和水按照不同比例混合配制成混合浆料,在一定温度下搅拌1h后过滤,除去产品中可溶性盐。影响锂精矿的工艺条件包括粗品碳酸锂与水配比和反应温度等。将粗品碳酸锂与水以不同质量比混合,将体系温度升至100℃保温1h,过滤,对比不同质量比条件下锂精矿产品质量,通过增加水的用量,可显著降低可溶性盐的量,但是当水用量提升至粗品碳酸锂质量5倍以上,水洗效果提升不明显,因此初步确定粗品碳酸锂与洗水质量比为1:5。 3.2苛化 初步提纯的锂精矿软膏与一定量的氧化钙反应形成氢氧化锂溶液,同时锂精矿中的Ca、Mg等难溶性杂质进一步脱除,该过程中氧化钙的用量对反应条件影响明显,锂精矿产品质量中Li、Na、K、Ca、Mg、Fe含量对应需要氧化钙的量计算理论所需氧化钙用量,后配制成石灰乳,不同氧化钙用量得到苛化液质量不同。通过对比苛化液中杂质的变化可以看出,适量增加氧化钙用量有利于脱除苛化液中的难溶性盐。但是氧化钙用量过高,会造成苛化液中Ca含量提高,氧化钙用量过多对于提升Li收率效果并不明显,综合苛化液质量和收率,初步确定氧化钙用量过量30%较为适宜。 3.3碳化液 EDTA除钙镁将苛化液调整至一定浓度后通入CO2,制备成LiHCO3溶液,LiHCO3、Li2CO3、CO2在水溶液中的溶解度呈现随温度升高而降低的趋势,因此随着温度升高,LiHCO3会分解生成Li2CO3,同时CO2的利用率也会降低,综合考量后确定生产过程中碳化温度为25-30℃。单纯通过碳化一精密过滤一脱碳过程可初步脱除碳酸锂中的难溶性杂质,但却难以将碳酸锂产品中杂质尤其是Ca质量分数控制到5x10-6以下。本实验过程中,使用EDTA,EDTA在溶液中与Ca、Mg离子形成可溶性络合物,后通过加热分解,LiHCO3形成Li2CO3沉淀,可溶性的杂质以络合物形式存留于溶液中,得到高纯碳酸锂产品。对比了不同EDTA用量对高纯碳酸锂产品质量的影响。通过对比可以看出,使用EDTA可明显降低产品中的Ca、Mg杂质含量,当EDTA用量增加至理论量4倍时,脱除杂质效果已经不明显,综合考量,确定EDTA用量为理论量4倍。 3.4脱碳

关于电池级碳酸锂制备工艺研究

龙源期刊网 https://www.360docs.net/doc/505259985.html, 关于电池级碳酸锂制备工艺研究 作者:倪文亮杨青海 来源:《中国化工贸易·中旬刊》2018年第07期 摘要:碳酸锂是工业生产中利用到的重要原材料,保证其品质对于具体的产业发展来讲 具有重要的意义。就当前的具体分析来看,药物,瓷器等的制作中会使用碳酸锂,但是其最为突出的利用还是锂电池的生产。在电子产品日益普及的今天,锂电池作为电子产品利用的重要支撑,强化锂电池的质量发展十分的必要。简单来讲,碳酸锂在锂电池生产中的重要性显著,所以分析研究电池级的碳酸锂制备工艺,这可以为碳酸锂的质量化生产提供保障。所以本文就电池级碳酸锂制备工艺做简要分析。 关键词:电池级碳酸锂;制备工艺;技术 碳酸锂是生产二次锂盐和金属锂制品的基础材料,因而成为了锂行业中用量最大的锂产品,其他锂产品其本上都是碳酸锂的下游产品。碳酸锂的生产工艺根据原料来源的不同可以分为盐湖卤水提取和矿石提取。目前,国外主要采用盐湖卤水提取工艺生产碳酸锂,我国则主要采用固体矿石提取工艺。虽然我国也在积极开采盐湖锂资源,但由于技术、资源等因素的限制,开发速度相对缓慢。本文分析总结当前利用比较普遍的碳酸锂制备工艺,主要目的是深化对碳酸锂制备工艺的认识。 1 电池级碳酸锂 碳酸锂是工业生产,药剂制造中利用的重要原材料,对于现代化工生产有着重要的意义。具体分析生产实践中利用的碳酸锂原料,根据纯度的高低可以区分为工业级碳酸锂和电池级碳酸锂。和工业级碳酸锂进行比较会发现电池级碳酸锂的纯度更高,杂质更少,性能也更为优越。具体分析当前的碳酸锂应用,许多行业对碳酸锂原料的明确要求是电池级,比如制药和锂电池生产,所以掌握电池级碳酸锂的制备工艺,实现电池级碳酸锂的规模化生产现实意义十分的显著。 2 电池级碳酸锂流程与生产工艺 电池级碳酸锂的制备是一步步完成的,也就是说要最终获得电池级碳酸锂需要经历一个制备的过程。只有这个过程保持完整性,最终的电池级碳酸锂生产才会满足要求的标准。 2.1 矿石提取工艺 就目前的电池级碳酸锂具体生产分析来看,其主要利用的一种工艺方法是矿石提取工艺。此种方法的主要利用表现在从锂辉石、锂云母等固体锂矿石中提取碳酸锂及其他的锂产品。就此种工艺的具体分析来看,其在我国的应用历史比较悠久,所以整体技术的成熟度比较的高。

常见的生活污水处理工艺

安峰环保 一般情况下,生活污水处理设备的工艺有:0工艺,2工艺,mbr工艺,生物曝气过滤器,sbr工艺。 AAO工艺:AO工艺是AnoxicOxic的简称,AO工艺又叫厌氧好氧工艺。a(厌氧)是氮磷去除的厌氧阶段,o(厌氧)是水中有机物去除的好氧阶段。厌氧菌水解酸化生活污水中淀粉和碳水化合物的可溶性有机物,从而将大分子有机物降解为小分子有机物,提高后续好氧处理的能力。其优点不仅在于有机污染物的降解,还在于氮、磷的去除。AO法是一种改进的活性污泥预处理工艺,活性污泥采用厌氧水解技术预处理。ao工艺具有工艺简单、投资少、总氮去除率高于70%的特点。但由于没有独立的污泥回流系统,无法培养出具有独特功能的污泥,难以降解的废水处理效率较低。同时也难以提高脱氮效率,难以达到90%。 ②A2O工艺:又称厌氧、缺氧、好氧处理工艺。可以说,A2O工艺是AO工艺的改进版。与AO工艺相比,A2O工艺对生活污水中的氮、化学需氧量和有机物的去除率更高,并且在脱氮的同时可以去除磷,这是AO工艺所不具备的。A2O工艺目前在处理生活污水要求不是特别高的情况下是主流的生化处理方式。 ③MBR工艺:是活性污泥法和膜分离技术组合的新型工艺,最大特点就是,处理效率上升一个层次,处理后的水质标准高。mbr工艺也广泛应用于工业污水处理、难降解污水处理、建筑污水处理等行业,适用于难降解的有机污水和需要高水质处理的生活污水。 生物曝气过滤器:一种新型的污水处理生物膜工艺,可去除ss、cod、bod、硝化、脱氮和除磷。生物曝气式滤池适用范围广,可用于深水处理、微污染水处理、难降解有机物处理、低温硝化污水及低温微水处理等。 5sbr工艺,又称序批式活性污泥法,按照间歇曝气方式运行活性污泥处理技术,其主要特点是:有序间歇运行和间歇运行,特别是对于间歇排放和大流量场合,sbr工艺可用于校园污水处理,工业污水处理厂间歇排放,中小型污水处理厂。

1-磷酸铁锂合成方法比较

磷酸铁锂正极材料制备方法比较 A.固相法 一.高温固相法 1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等),磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFePO4分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFePO4粉体材料。 例1:C.H.Mi等采用一:步加热法得到包覆碳的LiFePO4,其在30℃,0.1 C 倍率下的初始放电容量达到160 mAh·g-1;例2:S.S.Zhang等采用二步加热法,以FeC:2O4·2H2O和LiH2PO4为原料,在氮气保护下先于350~380℃加热5 h形成前驱体,再在800℃下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放电容量为159 mAh·g-1;例3:A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4·2H2O和(NH4)2HPO4组成的前驱体先在真空电炉中于300℃下预热分解,再在氮气保护下先于450℃加热10 h,再于800℃烧结36 h,产物在放电电流密度为2.3 mA·g-1时放电,室温初始放电容量在136 mAh·g-1左右;例4:Padhi等以Li2CO3,Fe(CH3COO)2,NH4H2PO4为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA·h /g;Takahashi 等以LiOH·H2O, FeC2O4·2H2O,(NH4)2HPO4为原料,在675、725、800℃下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以At+5%H2为保护气氛,在700℃下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3·4-3·5V之间,0·05C首次放电比容量为150mA·h/g;例6:高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4前驱体,再通过高温煅烧合成LiFePO4/C正极材料,首次放电比容量最为139·4mA·h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0·15%;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯

金属热处理及表面处理工艺规范

北京奇朔科贸有限公司 部分金属材料热处理及表面处理工艺规范 第一版 编写:赵贵波 审核: 批准: 北京奇朔科贸有限公司 二零一二年六月

目录 1.0 热处理的工艺分类及代号---------------------------------------------------------------------3 1.1 基础分类-----------------------------------------------------------------------------------------------3 1.2 附加分类-----------------------------------------------------------------------------------------------3 1.3 热处理工艺代号--------------------------------------------------------------------------------------4 1.4 图样中标注热处理技术条件用符号--------------------------------------------------------------7 2.0 金属材料的热处理方法和应用目的-------------------------------------------------------8 2.1 钢的淬火-----------------------------------------------------------------------------------------------8 2.2 热处理的过程方法和应用目的--------------------------------------------------------------------9 3.0 部分金属材料的热处理规范-----------------------------------------------------------------17 3.1 渗碳钢的热处理工艺--------------------------------------------------------------------17 3.2 渗氮钢的热处理工艺--------------------------------------------------------------------------------20 3.3 调质钢的热处理工艺-------------------------------------------------------------------------------21 3.4 -弹簧钢的热处理工艺------------------------------------------------------------------------------23 3.5 轴承钢的热处理工艺-------------------------------------------------------------------------------25 3.6 合金工具钢的热处理工艺------------------------------------------------------------------------- 26 3.7 碳素工具钢的热处理工艺--------------------------------------------------------------------------29

碳酸锂生产工艺

1、碳酸锂生产工艺 ①焙浸工段 转化焙烧:锂辉石精矿从精矿库人工送至斗式提升机提升至精矿仓,再经圆盘给料机和螺旋给料机加入碳酸锂回转窑窑尾,利用窑尾预热段高温气体干燥精矿,精矿在煅烧段约1200℃左右的温度下进行晶型转化焙烧,由α型(单斜晶系,密度3150kg/m3)转化为β型锂辉石(四方晶系,密度2400kg/m3,即焙料),转化率约98%。 酸化焙烧:焙料经冷却段降温后由窑头出料,再经自然冷却和球磨机研磨细到0.074mm(目数=25.4÷0.074x0.65)粒级在90%以上后,输送到酸化焙烧窑尾矿仓,再经给料机和螺旋输送机加入混酸机中与浓硫酸(93%以上)按一定比例(浓硫酸按焙料中锂当量过剩35%计,每吨焙料需浓硫酸约0.21t)混合均匀后,加入酸化焙烧室中,在250~300℃左右的温度下进行密闭酸化焙烧30~60min,焙料中β型锂辉石同硫酸反应,酸中氢离子置换β型锂辉石中的锂离子,使其中的Li2O与SO42-结合为可溶于水的Li2SO4,得到酸化熟料。 调浆浸出和洗涤:熟料经冷却浆化,使熟料中可溶性硫酸锂溶入液相,为减轻溶液对浸出设备的腐蚀,用石灰石粉浆中和熟料中的残酸,将pH值调至6.5~7.0,并同时除去大部分铁、铝等杂质,浸出液固比约2.5,浸出时间约0.5h。浸出料浆经过滤分离得到浸出液,约含Li2SO4 100g/L(Li2O 27g/L),滤饼即为浸出渣,含水率约35%。

浸出渣附着液中含硫酸锂,为减少锂损失,浸出渣经逆向搅拌洗涤,洗液再返回调浆浸出。

浸出液净化:焙料在酸化焙烧时,除碱金属能和硫酸起反应生产可溶性的相应硫酸盐外,其他的铁、铝、钙、镁等也与硫酸反应生产相应的硫酸盐。在浸出过程中虽能除去熟料中的部分杂质,但其余杂质仍留在浸出液中,需继续净化除去,才能保证产品质量。浸出液净化采用碱化除钙法,用碱化剂石灰乳(含CaO100~150g/L)碱化浸出液,将pH值提高至11~12,使镁、铁水解成氢氧化物沉淀。再用碳酸钠溶液(含Na2CO3 300g/L)与硫酸钙反应生产碳酸钙沉淀,从而除去浸出液中的钙和碱化剂石灰乳带入的钙。碱化除钙料浆经液固分离,所得溶液即为净化液,钙锂比小于9.6×10-4,滤饼即为钙渣,返回调浆浸出。 净化液蒸发浓缩:净化液因硫酸锂浓度低,锂沉淀率低,不能直接用于锂沉淀或制氯化锂,需先用硫酸将净化液调至pH6~6.5,经三效蒸发器蒸发浓缩,使浓缩液中硫酸锂浓度达200g/L(含Li2O 60g/L)。浓缩液经压滤分离,滤液即完成液供下工序使用,滤饼即完渣返回调浆浸出。 ②碳酸锂生产工段

金属表面处理工艺有哪些,常见金属表面处理方法

金属表面处理工艺有哪些_常见金属表面处理方法有哪些 金属表面在各种热处理、机械加工、运输的过程中,不可避免地会产生腐蚀、随着油污和杂质等,产生氧化现象,这就需要进行表面处理。 金属表面处理有很多种,按照其特性的不同可分为溶剂清洗、机械处理和化学处理三大类。根据不同氧化程度的金属表面,应采用不同的处理方式。如对于较薄的氧化层可采用溶剂清洗、机械处理和化学处理,或者直接采用化学处理,对于严重氧化的金属表面,由于氧化层较厚,如果直接采用溶剂清洗和化学处理,不但处理不彻底,还会浪费大量的清洗剂和化学剂,最好先采用机械处理。 溶剂清洗是对使用溶剂对金属表面进行清洗的一种处理方法,该方法可以有效去除工件表面的油污、杂质和氧化层,使工件表面获得清洁。经溶剂清洗后的金属表面具有高度活性,更容易受到灰尘、湿气的污染,所以处理后的工件还要进行喷涂、喷涂等表面处理,提高工件的抗腐蚀能力。 金属的表面处理有哪些? 不锈钢:电镀、抛光、拉丝、电泳、PVD、蚀刻、彩色钝化 铝合金:阳极氧化、电镀、蚀刻 镁合金:电镀、钝化皮膜 钛合金:电镀、阳极氧化 锌合金:电镀、钝化 铸铝:电镀、阳极氧化 钢铁:钝化、磷化 电镀 镀层金属或其他不溶性材料做阳极,待镀的工件做阴极,镀层金属的阳离子在待镀工件表面被还原形成镀层。为排除其它阳离子的干扰,且使镀层均匀、牢固,需用含镀层金属阳离子的溶液做电镀液,以保持镀层金属阳离子的浓度不变。电镀的目的是在基材上镀上金属镀层,改变基材表面性质或尺寸。电镀能增强金属的抗腐蚀性(镀层金属多采用耐腐蚀的金属)、增加硬度、防止磨耗、提高导电性、润滑性、耐热性、和表面美观。 电泳 电泳是电泳涂料在阴阳两极,施加于电压作用下,带电荷涂料离子移动到阴极,并与阴极表面所产生之碱性作用形成不溶解物,沉积于工件表面。 电泳表面处理工艺的特点: 电泳漆膜具有涂层丰满、均匀、平整、光滑的优点,电泳漆膜的硬度、附着力、耐腐、冲击性能、渗透性能明显优于其它涂装工艺。电泳工艺优于其他涂装工艺。 镀锌 镀锌是指在金属、合金或者其它材料的表面镀一层锌以起美观、防锈等作用的表面处理技术。现在主要采用的方法是热镀锌。 电镀与电泳的区别 电镀就是利用电解原理在某些金属表面上镀上一薄层其它金属或合金的过程。

相关文档
最新文档