卷积码实验教材

卷积码实验教材
卷积码实验教材

天津理工大学实验报告学院(系)名称:计算机与通信工程学院

这次的实验是实现汉明码的编码与译码,达到纠错功能。通过信息论的课程,我基本了解了汉明码编译的原理和方法,但在编程的过程中遇到了不小的困难。首先还是理解汉明码概念的问题,因为还存在纠错的功能,所以汉明码的编码方式和以前学的哈夫曼编码或Fano 编码比起来要复杂不少,开

始的时候理解起来有些困难。不过通过仔细看PPT,很快就弄懂了汉明码的原理。但是最开始编出来的程序运行的结果总是不正确,和书上的码字不一样,后来发现是在校验矩阵上出了问题,自己对矩阵方面的知识一直把握得不是很好。经过调试,程序很快就能够正确运行了。

到现在为止,我已经学了C语言程序设计、数据结构等课程,这次的信息论与编码实验让我感觉到以前学习的东西有了用武之地,把知识和理论付诸实践才能有所提高。在编程的过程中,我发现自己的编程能力还非常有待提高,以前C语言课程里的很多知识掌握还不牢,

移动通信实验线性分组码卷积码实验

实验二抗衰落技术实验(4学时) 1.线性分组码实验 2.卷积码实验 姓名: 学号: 班级: 日期: 成绩:

1、线性分组码实验 一、实验目的 了解线性分组码在通信系统中的意义。 掌握汉明码编译码及其检错纠错原理,理解编码码距的意义。二、实验模块 主控单元模块 2号数据终端模块 4号信道编码模块 5号信道译码模块 示波器 三、实验原理

汉明码编译码实验框图 2、实验框图说明 汉明码编码过程:数字终端的信号经过串并变换后,数据进行了分组,分组后的数据再经过汉明码编码,数据由4bit变为7bit。 注:为方便对编码前后的数据进行对比观测,本实验中加入了帧头指示信号。帧头指示信号仅用于线性分组码编码时将输入信号的比特流进行分组,其上跳沿指示了分组的起始位置。 四、实验步骤 (注:实验过程中,凡是涉及到测试连线改变或者模块及仪器仪表的更换时,都需先停止运行仿真,待连线调整完后,再开启仿真进行后续调节测试。) 任务一汉明码编码规则验证 概述:本项目通过改变输入数字信号的码型,观测延时输出,编码输出及译码输出,验证汉明码编译码规则。 1、登录e-Labsim仿真系统,创建实验文件,选择实验所需模块和示波器。 2、按表格所示进行连线。 3、调用示波器观测2号模块的DoutMUX和4号模块的编码输出TH4编码数据,

6、此时系统初始状态为:2号模块提供32K编码输入数据,4号模块进行汉明码编码,无差错插入模式,5号模块进行汉明码译码。 7、实验操作及波形观测。 0000 0001 0010

0100 0101

0111 1000

卷积码在通信系统中的应用

卷积码在通信系统中的应用 一、基本概念 卷积码是一种性能优越的信道编码。(n,k,N)表示把k个信息比特编程n 个比特,N为编码约束长度,说明编码过程中互相约束的码段个数。卷积码编码后的n个码元不仅与当前组的k个信息比特有关,而且与前N-1个输入组的信息比特有关。编码过程中相互关联的码元有N乘以n个。R/n是卷积码的码率,码率和约束长度是衡量卷积码的两个重要参数。 二、应用 卷积码因其编码器he译码器都比较容易实现,同时具有较强的纠错能力,卷积码在通信系统中被广泛采用。 2.1、卷积码在无线通信中的应用 在无线信道中,由于环境的影响及外来无线信号的干扰,通信质量较有线信道差许多。接收机收到的数据会出现随机噪声引起的随机错误和衰弱引起的突发错误,为了提高系统的抗噪声和抗衰弱性能,必须设计合理的信道编译码部分,增加码字的冗余度和码字间的码距,而且要求不仅可以纠正随机错误,更重要的是还可以纠正突发错误。因此,在无线通信中,信道编码得到了广泛的应用。这里将以NRF401芯片为通信收发电路来介绍卷积码在无线通信中的应用。NRF401收发电路芯片,采用蓝牙核心技术,芯片内部包含了高频发射、高频接收、PLL合成、FSK调制、FSK解调、多频道切换等功能。 如上图所示,这里介绍了一个采用(2,1,7)的卷积码编码,图为无线通信系统的结构。

无线通信系统的通信距离与传输损耗和接收机灵敏度相关。传输损耗包括自由空间损耗和其他传输损耗,自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件,自由空间传播损耗与距离和工作频率有关。下面的公式说明在自由空间下电波传播的损耗: Los是传播损耗,单位为dB;d是距离,单位是km;f是工作频率,单位是MHz。 由上式可见,自由空间中的电波传播损耗只与工作频率f和传播距离d有关,当f或d增大1倍时,Los讲分别增加6dB。 下面举例nRF401采用环形低增益天线时的通信距离R的计算: f0=434MHz() 发射功率 发射天线增益 接收天线增益 接收机灵敏度S=-105dBm 这是理想状况下的传输距离,实际应用中低于该值,这是因为无线通信受到各种外界因素的影响,如大气、阻挡物、多径等造成的损耗,将上述损耗的参考值计入上式中,即可计算出近似通信距离。实际应用时,在50m传输距离内有效。 由上表可知(7,1,2)卷积码有3.8dB的编码增益,相当于接收机的灵敏度可提高3.8dB,故此S=-108.8dBm,Lp=S-Pt-=-74.8dB,可推算出在卷积码

实验九 (2,1,5)卷积码编码译码技术

实验九 (2,1,5)卷积码编码译码技术 一、实验目的 1、掌握(2,1,5)卷积码编码译码技术 2、了解纠错编码原理。 二、实验内容 1、(2,1,5)卷积码编码。 2、(2,1,5)卷积码译码。 三、预备知识 1、纠错编码原理。 2、(2,1,5)卷积码的工作原理。 四、实验原理 卷积码是将发送的信息序列通过一个线性的,有限状态的移位寄存器而产生的编码。通常卷积码的编码器由K级(每级K比特)的移位寄存器和n个线性代数函数发生器(这里是模2加法器)组成。 若以(n,k,m)来描述卷积码,其中k为每次输入到卷积编码器的bit数,n 为每个k元组码字对应的卷积码输出n元组码字,m为编码存储度,也就是卷积编码器的k元组的级数,称m+1= K为编码约束度m称为约束长度。卷积码将k 元组输入码元编成n元组输出码元,但k和n通常很小,特别适合以串行形式进行传输,时延小。与分组码不同,卷积码编码生成的n元组元不仅与当前输入的k元组有关,还与前面m-1个输入的k元组有关,编码过程中互相关联的码元个数为n*m。卷积码的纠错性能随m的增加而增大,而差错率随N的增加而指数下降。在编码器复杂性相同的情况下,卷积码的性能优于分组码。 编码器 随着信息序列不断输入,编码器就不断从一个状态转移到另一个状态并同时输出相应的码序列,所以图3所示状态图可以简单直观的描述编码器的编码过程。因此通过状态图很容易给出输入信息序列的编码结果,假定输入序列为110100,首先从零状态开始即图示a状态,由于输入信息为“1”,所以下一状态为b并输出“11”,继续输入信息“1”,由图知下一状态为d、输出“01”……其它输入信息依次类推,按照状态转移路径a->b->d->c->b->c->a输出其对应的编码结果“110101001011”。 译码方法 ⒈代数 代数译码是将卷积码的一个编码约束长度的码段看作是[n0(m+1),k0(m+1)]线性分组码,每次根据(m+1)分支长接收数字,对相应的最早的那个分支上的信息数字进行估计,然后向前推进一个分支。上例中信息序列 =(10111),相应的码序列 c=(11100001100111)。若接收序列R=(10100001110111),先根据R 的前三个分支(101000)和码树中前三个分支长的所有可能的 8条路径(000000…)、(000011…)、(001110…)、(001101…)、(111011…)、(111000…)、(110101…)和(110110…)进行比较,可知(111001)与接收

卷积信号实验报告

信号与系统上机实验报告一连续时间系统卷积的数值计算 140224 班张鑫学号 14071002 一、实验原理 计算两个函数的卷积 卷积积分的数值运算实际上可以用信号的分段求和来实现,即: 如果我们只求当 t = n? t1 是r ( t )的值,则由上式可以得到: ?t足够小时,r(t2)就是e(t)和f(t)卷积积分的数值近似值由上面的公式可 当1 以得到卷积数值计算的方法如下: (1)将信号取值离散化,即以为周期,对信号取值,得到一系列宽度间隔为 的矩形脉冲原信号的离散取值点,用所得离散取值点矩形脉冲来表示原来的连续时间信号; (2)将进行卷积的两个信号序列之一反转,与另一信号相乘,并求积分,所得为t=0时的卷积积分的值。以为单位左右移动反转的信号,与另一信号相乘求积 分,求的t<0和t>0时卷积积分的值; (3)将所得卷积积分值与对应的t标在图上,连成一条光滑的曲线,即为所求卷积积分的曲线。 1

信号与系统上机实验报告一二、处理流程图 三、C程序代码 #include"stdafx.h" #include"stdio.h" //#include "stdilb.h" float u(float t) { while (t>= 0) return(1); while (t<0) return(0); } float f1(float t) { return(u(t+2)-u(t-2)); } float f2(float t) { return(t*(u(t)-u(t-2))+(4-t)*(u(t-2)-u(t-4))); } int_tmain(int argc, _TCHAR* argv[]) {

卷积编码实验报告

实验名称:___ 卷积编码_______ 1、使用MATLAB进行卷积编码的代码编写、运行、仿真等操作; 2、熟练掌握MATLAB软件语句; 3、理解并掌握卷积编码的原理知识。 二、实验原理 卷积码是由Elias于1955 年提出的,是一种非分组码,通常它更适用于前向纠错法,因为其性能对于许多实际情况常优于分组码,而且设备较简单。 卷积码的结构与分组码的结构有很大的不同。具体地说,卷积码并不是将信息序列分成不同的分组后进行编码,而是将连续的信息比特序列映射为连续的编码器输出符号。卷积码在编码过程中,将一个码组中r 个监督码与信息码元的相关性从本码组扩展到以前若干段时刻的码组,在译码时不仅从此时刻收到的码组中提取译码信息,而且还可从与监督码相关的各码组中提取有用的译码信息。这种映射是高度结构化的,使得卷积码的译码方法与分组译码所采用的方法完全不同。可以验证的是在同样复杂度情况下,卷积码的编码增益要大于分组码的编码增益。对于某个

特定的应用,采用分组码还是卷积码哪一种更好则取决于这一应用的具体情况和进行比较时可用的技术。 (一)卷积编码的图形表示 卷积码的编码器是由一个有k 个输人位,n 个输出位,且有m 个移位寄存器构成的有限状态的有记忆系统,其原理如图1所示。 图1 卷积码编码器的原理图 描述这类时序网络的方法很多,它大致可分为两大类型:解析表示法与图形表示法。在解析法中又可分为离散卷积法、生成矩阵法、码多项式法等;在图形表示法中也可分为状态图法、树图法和网络图法等。 图2给出的是一个生成编码速率为1/2 卷积码的移位寄存器电路。输人比特在时钟触发下从左边移人到电路中,每输入一位,分别去两个模2加法器的输出值并复用就得到编码器的输出。对这一编码,每输入一比特就产生两个输出符号,故编码效率为

数字通信基础与应用(第二版)课后答案7章答案要点

第七章 7.1画出K =3,效率为1/3,生成多项式如下所示的编码状态图、树状图和网格图: g 1(X ) = X + X 2 g 2(X ) = 1 + X g 3(X ) = 1 + X + X 2 + + + 状态图如下: 10 01 11 00 000 001 010100 101 011 111 110 树状图如下: 21)(x x x g += x x g +=1)(2 231)(x x x g ++=

1 a 000011a b 011111100 000011111100101110010001 a b c d 000 网格图如下: b=10 d=11 000 011 101 110 111 100010 001 a=00 c=01 7.2假定K =3,效率为1/2的二进制卷积码,其部分状态图如图P7.1所示,画出完整的状态图,并画出编码器的示意图。

图P7.1 g02 g12 g22 g21 g 11g 01 假设一初始状态00→10,分支字为11,此脉冲为10201==g g 。 接下来设状态变为01,分支字为10,脉冲变为0,11211==g g 。 再设状态变化为11→11,分支字为00,此脉冲为1,02221==g g 。 因此,编码器、完整的状态图如下:

+ + 10 01 11 00 00 00 1101 01 11 10 10 7.3画出图P7.2方框图描述的卷积码编码器的状态图、树状图和网格图。

图P7.2 状态图: 10 01 11 00 00 10 0001 11 10 11 01 树状图:

MATLAB实现卷积码编译码-

本科生毕业论文(设计) 题目:MATLAB实现卷积码编译码 专业代码: 作者姓名: 学号: 单位: 指导教师: 年月日

目录 前言----------------------------------------------------- 1 1. 纠错码基本理论---------------------------------------- 2 1.1纠错码基本理论 ----------------------------------------------- 2 1.1.1纠错码概念 ------------------------------------------------- 2 1.1.2基本原理和性能参数 ----------------------------------------- 2 1.2几种常用的纠错码 --------------------------------------------- 6 2. 卷积码的基本理论-------------------------------------- 8 2.1卷积码介绍 --------------------------------------------------- 8 2.1.1卷积码的差错控制原理----------------------------------- 8 2.2卷积码编码原理 ---------------------------------------------- 10 2.2.1卷积码解析表示法-------------------------------------- 10 2.2.2卷积码图形表示法-------------------------------------- 11 2.3卷积码译码原理---------------------------------------------- 15 2.3.1卷积码三种译码方式------------------------------------ 15 2.3.2V ITERBI译码原理---------------------------------------- 16 3. 卷积码编译码及MATLAB仿真---------------------------- 18 3.1M ATLAB概述-------------------------------------------------- 18 3.1.1M ATLAB的特点------------------------------------------ 19 3.1.2M ATLAB工具箱和内容------------------------------------ 19 3.2卷积码编码及仿真 -------------------------------------------- 20 3.2.1编码程序 ---------------------------------------------- 20 3.3信道传输过程仿真-------------------------------------------- 21 3.4维特比译码程序及仿真 ---------------------------------------- 22 3.4.1维特比译码算法解析------------------------------------ 23 3.4.2V ITERBI译码程序--------------------------------------- 25 3.4.3 VITERBI译码MATLAB仿真----------------------------------- 28 3.4.4信噪比对卷积码译码性能的影响 -------------------------- 28

卷积码实验报告

苏州科技大学天平学院电子与信息工程学院 信道编码课程设计报告 课设名称卷积码编译及译码仿真 学生姓名圣鑫 学号1430119232 同组人周妍智 专业班级通信1422 指导教师潘欣欲 一、实验名称 基于MAATLAB的卷积码编码及译码仿真 二、实验目的 卷积码就是一种性能优越的信道编码。它的编码器与译码器都比较容易实现,同时它具有较强的纠错能力。随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。本实验简明地介绍了卷积码的编码原理与Viterbi译码原理。并在SIMULINK模块设计中,完成了对卷积码的编码与译码以及误比特统计整个过程的模块仿真。最后,通过在仿真过程中分别改变卷积码的重要参数来加深理解卷积码的这些参数对卷积码的误码性能的影响。经过仿真与实测,并对测试结果作了分析。 三、实验原理

1、卷积码编码原理 卷积码就是一种性能优越的信道编码,它的编码器与解码器都比较易于实现,同时还具有较强的纠错能力,这使得它的使用越来越广泛。卷积码一般表示为(n,k,K)的形式,即将 k个信息比特编码为 n 个比特的码组,K 为编码约束长度,说明编码过程中相互约束的码段个数。卷积码编码后的 n 各码元不经与当前组的 k 个信息比特有关,还与前 K-1 个输入组的信息比特有关。编码过程中相互关联的码元有 K*n 个。R=k/n 就是编码效率。编码效率与约束长度就是衡量卷积码的两个重要参数。典型的卷积码一般选 n,k 较小,K 值可取较大(>10),但以获得简单而高性能的卷积码。 卷积码的编码描述方式有很多种:冲激响应描述法、生成矩阵描述法、多项式乘积描述法、状态图描述,树图描述,网格图描述等。 2、卷积码Viterbi译码原理 卷积码概率译码的基本思路就是:以接收码流为基础,逐个计算它与其她所 有可能出现的、连续的网格图路径的距离,选出其中可能性最大的一条作为译码估值输出。概率最大在大多数场合可解释为距离最小,这种最小距离译码体现的正就是最大似然的准则。卷积码的最大似然译码与分组码的最大似然译码在原理上就是一样的,但实现方法上略有不同。主要区别在于:分组码就是孤立地求解单个码组的相似度,而卷积码就是求码字序列之间的相似度。基于网格图搜索的译码就是实现最大似然判决的重要方法与途径。用格图描述时,由于路径的汇聚消除了树状图中的多余度,译码过程中只需考虑整个路径集合中那些使似然函数最大的路径。如果在某一点上发现某条路径已不可能获得最大对数似然函数,就放弃这条路径,然后在剩下的“幸存”路径中重新选择路径。这样一直进行到最后第 L 级(L 为发送序列的长度)。由于这种方法较早地丢弃了那些不可能的路径,从而减轻了译码的工作量,Viterbi 译码正就是基于这种想法。对于(n, k, K )卷积码,其网格图中共 2kL 种状态。由网格图的前 K-1 条连续支路构成的路径互不相交,即最初 2k_1 条路径各不相同,当接收到第 K 条支路时,每条路径都有 2 条支路延伸到第 K 级上,而第 K 级上的每两条支路又都汇聚在一个节点上。在Viterbi译码算法中,把汇聚在每个节点上的两条路径的对数似然函数累加

信 卷积实验报告

信号与系统实验报告学院:电子信息与电气工程学院 班级: 13级电信<1>班 学号: 20131060104 姓名:李重阳

实验三 信号卷积实验 一、实验目的 1、理解卷积的概念及物理意义; 2、通过实验的方法加深对卷积运算的图解方法及结果的理解。 二、实验原理说明 卷积积分的物理意义是将信号分解为冲激信号之和,借助系统的冲激响应,求解系统对任意激励信号的零状态响应。设系统的激励信号为x (t ),冲激响应为h (t ),则系统的零状态响应为()()()*y t x t h t ==()()x t h t d ττ∞-∞-?。 1、两个矩形脉冲信号的卷积过程 两信号x (t )与h (t )都为矩形脉冲信号,如图3-1所示。下面由图解的方法(图3-1)给出两个信号的卷积过程和结果,以便与实验结果进行比较。 图3-1 两矩形脉冲的卷积积分的运算过程与结果 2、矩形脉冲信号与锯齿波信号的卷积 信号f1(t )为矩形脉冲信号, f2(t )为锯齿波信号,如图3-2所示。根据卷积积分的运算方法得到f1(t )和f2(t )的卷积积分结果f (t ),如图3-2(c )所示。 图3-2 矩形脉冲信号与锯齿脉冲信号的卷积积分的结果 3、本实验进行的卷积运算的实现方法 在本实验装置中采用了DSP 数字信号处理芯片,因此在处理模拟信号的卷积积分运算时,是先通过A/D 转换器把模拟信号转换为数字信号,利用所编写的相应程序控制DSP 芯片实现数字信号的卷积运算,再把运算结果通过D/A 转换为模拟信号输出。结果与模拟信号的直接运算结果是一致的。数字信号处理系统逐步和完全取代模拟信号处理系统是科学技术发展的必然趋势。图3-3为信号卷积的流程图。 图3-3 信号卷积的流程图 三、实验内容 1、检测矩形脉冲信号的自卷积结果。 用双踪示波器同时观察输入信号和卷积后的输出信号,把输入信号的幅度峰峰值调节为4V ,再调节输入信号的频率或占空比使输入信号的时间宽度满足表中的要求,观察输出信号有何变化,判断卷积的结果是否正确,并记录表3-1。 实验步骤如下: ①将函数发生器的SW702置于“方波”上。 ②连接函数发生器H701与数字滤波器的PB01,在TPB01上可观察到输入波形。将示波器接在TPB01上观测输入波形,并调节函数发生器模块上的频率旋钮与幅度旋钮,使信号频率为1KHz ,幅度为4V 。(注意:输入波形的频率幅度要在H701与PB01连接后,在TPB01上测试。) ③将红色拨动开关SWB01调整为“0001”。 ④按下复位键S1。 ⑤将示波器的CH1接于TP901;CH2接于TP903。可分别观察到输入信号的波形与卷积后的输出信号的波形。 表3-1 输入信号卷积后的输出信号

213卷积码编码和译码

No.15 (2,1,3)卷积码的编码及译码 摘要: 本报告对于(2,1,3)卷积码原理部分的论述主要参照啜刚教材和课件,编程仿真部分绝对原创,所有的程序都是在Codeblocks 8.02环境下用C语言编写的,编译运行都正常。完成了卷积码的编码程序,译码程序,因为对于短于3组的卷积码,即2 bit或4 bit纠错是没有意义的,所以对正确的短序列直接译码,对长序列纠错后译码,都能得到正确的译码结果。含仿真结果和程序源代码。 如果您不使用Codeblocks运行程序,则可能不支持中文输出显示,但是所有的数码输出都是正确的。

一、 卷积码编码原理 卷积码编码器对输入的数据流每次1bit 或k bit 进行编码,输出n bit 编码符号。但是输出的分支码字的每个码元不仅于此时可输入的k 个嘻嘻有关,业余前m 个连续式可输入的信息有关,因此编码器应包含m 级寄存器以记录这些信息。 通常卷积码表示为 (n,k,m). 编码率 k r n = 当k=1时,卷积码编码器的结构包括一个由m 个串接的寄存器构成的移位寄存器(成为m 级移位寄存器、n 个连接到指定寄存器的模二加法器以及把模二加法器的输出转化为穿行的转换开关。 本报告所讲的(2,1,3)卷积码是最简单的卷积码。就是2n =,1k =,3m =的卷积码。每次输入1 bit 输入信息,经过3级移位寄存器,2个连接到指定寄存器的模二加法器,并把加法器输出转化为串行输出。 编码器如题所示。 二、卷积码编码器程序仿真 C 语言编写的仿真程序。 为了简单起见,这里仅仅提供数组长度30 bit 的仿真程序,当然如果需要可以修改数组大小。为了更精练的实现算法,程序输入模块没有提供非法字符处理过程,如果需要也可以增加相应的功能。 进入程序后,先提示输入数据的长度,请用户输入int (整型数)程序默认用户输入的数据小于30,然后提示输入01数码,读入数码存储与input 数组中,然后运算输出卷积码。经过实验仿真,编码完全正确。 以下是举例: a.课件上的输入101 输出11 10 00 的实验

14卷积码编解码

实验四 卷积码的编解码 一、实验目的 1、掌握卷积码的编解码原理。 2、掌握卷积码的软件仿真方法。 3、掌握卷积码的硬件仿真方法。 4、掌握卷积码的硬件设计方法。 二、预习要求 1、掌握卷积码的编解码原理和方法。 2、熟悉matlab 的应用和仿真方法。 3、熟悉Quatus 的应用和FPGA 的开发方法。 三、实验原理 1、卷积码编码原理 在编码器复杂度相同的情况下,卷积码的性能优于分组码,因此卷积码几乎被应用在所有无线通信的标准之中,如GSM , IS95和CDMA 2000 的标准中。 卷积码通常记作( n0 , k0 , m) ,它将k 0 个信息比特编为n 0 个比特, 其编码效率为k0/ n0 , m 为约束长度。( n0 , k0 , m ) 卷积码可用k0 个输入、n0 个输出、输入存储为m 的线性有限状态移位寄存器及模2 加法计数器来实现。 本实验以(2,1,3)卷积码为例加以说明。图1就是卷积码编码器的结构。 图1 (2,1,3)卷积码编码器 其生成多项式为: 21()1G D D D =++; 2 2()1G D D =+; 如图1 所示的(2,1,3)卷积码编码器中,输入移位寄存器用转换开关代替,每输入一个信息比特经编码产生二个输出比特。假设移位寄存器的初始状态为全0,当第一个输入比特为0时,输出比特为00;若输入比特为1,则输出比特为11。随着第二个比特输入,第一个比特右移一位,此时输出比特同时受到当前输入比特和前一个输入比特的影响。第三个比特输入时,第一、二个比特分别右移一位,同时输出二个由这三位移位寄存器存储内容所共同决定的比特。依次下去就完成了编码过程。 下面是卷积码的网格图表示。他是比较清楚而又紧凑的描述卷积码的一种方式,它是最常用的描述方

通信原理简答题标准答案.doc

通信原理第六版课后思考题 第 1 章绪论 1、何谓数字信号?何谓模拟信号?两者的根本区别是什么? 答:数字信号:电信号的参量仅可能取有限个值; 模拟信号:电信号的参量取值连续; 两者的根本区别在于电信号的参量取值是有限个值还是连续的。 2、画出模拟通信系统的一般模型。 3、何谓数字通信?数字通信有哪些优缺点? 答:数字通信即通过数字信号传输的通信,相对模拟通信,有以下特点: 1)传输的信号是离散式的或数字的; 2)强调已调参数与基带信号之间的一一对应; 3)抗干扰能力强,因为信号可以再生,从而消除噪声积累; 4)传输差错可以控制; 5)便于使用现代数字信号处理技术对数字信号进行处理; 6)便于加密,可靠性高; 7)便于实现各种信息的综合传输 3、画出数字通信系统的一般模型。 答: 4、按调制方式,通信系统如何分类? 答:分为基带传输和频带传输 5、按传输信号的特征,通信系统如何分类? 答:按信道中传输的是模拟信号还是数字信号,可以分为模拟通信系统和数字通信系统6、按传输信号的复用方式,通信系统如何分类? 答:频分复用(FDM),时分复用(TDM),码分复用( CDM) 7、通信系统的主要性能指标是什么?

第 3 章随机过程 1、随机过程的数字特征主要有哪些?它们分别表征随机过程的哪些特征? 答:均值:表示随机过程的n 个样本函数曲线的摆动中心。 方差:表示随机过程在时刻t 相对于均值a(t) 的偏离程度。 相关函数:表示随机过程在任意两个时刻上获得的随机变量之间的关联程度。 2、何谓严平稳?何谓广义平稳?它们之间的关系如何? 答:严平稳:随机过程(t) 的任意有限维分布函数与时间起点无关。 广义平稳: 1)均值与t 无关,为常数a。2)自相关函数只与时间间隔= -有关。 严平稳随机过程一定是广义平稳的,反之则不一定成立。 4、平稳过程的自相关函数有哪些性质?它与功率谱的关系如何? 答:自相关函数性质: (1) R(0)=E[ ] ——的平均功率。 (2) R( )=R(- ) ——的偶函数。 (3) —— R( ) 的上界。 (4) R( ∞ )= [ ]= ——的直流功率。 (5) R(0)- R( ∞ )= ——为方差,表示平稳过程的交流功率。 平稳过程的功率谱密度与其自相关函数是一对傅里叶变换关系: ( )= d 5、什么是高斯过程?其主要性质有哪些? 答:如果随机过程(t) 的任意 n 维分布服从正态分布,则成为高斯过程。 性质: (1) 高斯过程的n 维分布只依赖于均值,方差和归一化协方差。 (2)广义平稳的高斯过程是严平稳的。 (3)如果高斯过程在不同时刻的取值是不相关的,那么它们也是同级独立的。 (4)高斯过程经过线性变换后生成的过程仍是高低过程。 8、窄带高斯过程的包络和相位分别服从什么概率分布? 答:包络服从瑞利分布,相位服从均匀分布。 9、窄带高斯过程的同相分量和正交分量的统计特性如何? 答:若该高斯过程平稳,则其同相分量和正交分量亦为平稳的高斯过程,方差相同,同一时 刻的同相分量和正交分量互不相关或统计独立。 10、正弦波加窄带高斯噪声的合成包络服从什么分布? 答:广义瑞利分布(莱斯分布)。 11、什么是白噪声?其频谱和自相关函数有什么特点?白噪声通过理想低通或理想带通滤 波器后的情况如何? 答:噪声的功率谱密度在所有频率上均为一常数,则称为白噪声。 频谱为一常数,自相关函数只在R(0) 处为∞。 白噪声通过理想低通和理想带通滤波器后分别变为带限白噪声和窄带高斯白噪声。 12、何谓高斯白噪声?它的概率密度函数、功率谱密度如何表示? 答:白噪声取值的概率分布服从高斯分布,则称为高斯白噪声。

34卷积码编码原理分析与建模仿真

3/4卷积码编码原理分析与建模仿真 一、摘要 卷积码是一种性能优越的信道编码。它的编码器和译码器都比较容易实现,同时它具有较强的纠错能力。随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。本文简明地介绍了卷积码的编码原理和Viterbi译码原理。并在SIMULINK模块设计中,完成了对卷积码的编码和译码以及误比特统计整个过程的模块仿真。最后,通过在仿真过程中分析了卷积码误比特率与信噪比之间的关系,及卷积码与非卷积码的对比。经过仿真和实测,并对测试结果作了分析。 关键词:卷积码编码建模 SIMULINK仿真

目录 一、摘要 ................................................................................................................................................................. - 1 - 二、设计目的和意义 ............................................................................................................................................. - 2 - 三、设计原理 ......................................................................................................................................................... - 3 - 3.1 卷积码基本概念 ...................................................................................................................................... - 3 - 3.2 卷积码的结构 .......................................................................................................................................... - 3 - 3.3 卷积码的解析表示 .................................................................................................................................. - 4 - 3.4 卷积码的译码 .......................................................................................................................................... - 4 - 3.4.1 卷积码译码的方式........................................................................................................................ - 4 - 3.5.2 卷积码的Viterbi译码 .................................................................................................................. - 5 - 四、详细设计步骤 ................................................................................................................................................. - 6 - 4.1 卷积码的仿真 .......................................................................................................................................... - 6 - 4.1.1 SIMULINK仿真模块的参数设置及意义 ................................................................................. - 6 - 五、设计结果及分析 ........................................................................................................................................... - 11 - 5.1不同信噪比对卷积码的影响.................................................................................................................. - 11 - 5.2卷积码的对比 ........................................................................................................................................ - 12 - 六、总结 ............................................................................................................................................................... - 14 - 七、体会 ............................................................................................................................................................... - 14 - 八、参考文献 ....................................................................................................................................................... - 14 - 二、设计目的和意义 因为信道中信号不可避免会受到干扰而出错。为实现可靠性通信,主要有两种途径:一种

MATLAB实验报告卷积

实验报告 学院:机电班级:姓名:学号: 实验名称:连续时间信号卷积运算的MATLAB实现 1.实验目的:掌握卷积的概念及计算方法 2.熟悉通过调用conv()函数求解连续时间信号卷积的数值分析 法 实验环境:MATLAB 6.5.1软件 实验要求: 1、已知信号f1(t)=t/2*[ε(t)- ε(t-2)], f2(t)= [ε (t)- ε(t-1)],通过调用conv()函数编程实现卷积计算y(t)= f1(t)* f2(t),画出波形。 2、已知信号f(t)=e-t *ε(t), h(t)= t2 *e-2t *ε(t),y(t)= f(t)* h(t) (1)用符号分析法编程实现计算y(t)的理论解; (2)过调用conv()函数编程实现卷积计算y(t)的数值解并画图 实验程序及结果: 第一题: M文件 (1) function f=uCT(t) f=(t>=0); 主程序:

k1=0:p:2; k2=0:p:1; f1=k1/2.*[uCT(k1)-uCT(k1-2)]; f2=uCT(k2)-uCT(k2-1); y=conv(f1,f2)*p; k0=k1(1)+k2(1); k3=length(f1)+length(f2)-2; k=k0:p:k3*p+k0; subplot(311) plot(k1,f1); xlabel('t') ylabel('f1(t)') axis([-0.5 2.5 -0.5 1.5]) grid on subplot(312); plot(k2,f2) grid on axis([-0.5 2.5 -0.5 1.5]) xlabel('t') ylabel('f2(t)') subplot(313)

213卷积码编码和译码

(2,1,3)卷积码的编码及译码 摘要: ¥ 本报告对于(2,1,3)卷积码原理部分的论述主要参照啜刚教材和课件,编程仿真部分绝对原创,所有的程序都是在Codeblocks 环境下用C语言编写的,编译运行都正常。完成了卷积码的编码程序,译码程序,因为对于短于3组的卷积码,即2 bit或4 bit纠错是没有意义的,所以对正确的短序列直接译码,对长序列纠错后译码,都能得到正确的译码结果。含仿真结果和程序源代码。 如果您不使用Codeblocks运行程序,则可能不支持中文输出显示,但是所有的数码输出都是正确的。

一、 卷积码编码原理 卷积码编码器对输入的数据流每次1bit 或k bit 进行编码,输出n bit 编码符号。但是输出的分支码字的每个码元不仅于此时可输入的k 个嘻嘻有关,业余前m 个连续式可输入的信息有关,因此编码器应包含m 级寄存器以记录这些信息。 通常卷积码表示为 (n,k,m). 编码率 k r n = ( 当k=1时,卷积码编码器的结构包括一个由m 个串接的寄存器构成的移位寄存器(成为m 级移位寄存器、n 个连接到指定寄存器的模二加法器以及把模二加法器的输出转化为穿行的转换开关。 本报告所讲的(2,1,3)卷积码是最简单的卷积码。就是2n =,1k =,3m =的卷积码。每次输入1 bit 输入信息,经过3级移位寄存器,2个连接到指定寄存器的模二加法器,并把加法器输出转化为串行输出。 编码器如题所示。 二、卷积码编码器程序仿真 C 语言编写的仿真程序。 为了简单起见,这里仅仅提供数组长度30 bit 的仿真程序,当然如果需要可以修改数组大小。为了更精练的实现算法,程序输入模块没有提供非法字符处理过程,如果需要也可以增加相应的功能。 进入程序后,先提示输入数据的长度,请用户输入int (整型数)程序默认用户输入的数据小于30,然后提示输入01数码,读入数码存储与input 数组中,然后运算输出卷积码。经过实验仿真,编码完全正确。 } 以下是举例:

信息论与编码-卷积码

信息论与编码--卷积码 (掌握利用编码电路求生成矩阵和监督矩阵) 差错控制编码系统中除了使用分组码之外,另一类广泛应用的称为卷积码,在分组码的编码和译码过程中,每个码字的监督元只与本码字的信息元有关,而与其它码字的信息元无关,即分组码的编码器是一个无记忆的逻辑电路。 但是,卷积码的编码过程中,本码字的监督元不仅与本码字的信息元有关,而且与前m 个码字的信息元有关,因此卷积码的编码器是一个有记忆的时序电路。 卷积码由于更充分地利用码字之间的相关性,可以减少码字长度,简化编译码电路,并得到较好的差错控制性能,因此卷积码在通信领域,特别是卫星通信,空间通信领域得到广泛的应用。 7-1 卷积码的基本原理 7-1-1 卷积码的基本概念 [例子]:通过一个例子说明卷积码的一些基本概念; 下图给出了一个(3,2,2)卷积码编码器的原理图, 当某一时刻,编码器输入并行一个信息码字为mi=[mi(1),mi(2)],编码器并行输出由三个码元组成的卷积码的码字, c i (1) c (1) c i (2) c i (3) m i (1) m i (2)

[ci]=[ci(1),ci(2),ci(3)]=[mi(1),mi(2),pi]。[ci]称为一个码字。mi 为信息元,pi 为监督元。可以看出卷积码的输入输出关系为: ci(1)=mi(1) ci(2)=mi(2) ci(3)=mi(1)+mi(2)+mi-1(2)+mi-2(1) 可见,卷积码当前输出的码字的监督元不仅与当前输入的信息元有关而且还与前2个码元有关。这时编码器由2级移位寄存器构成。 定义:卷积码字中码元的个数为n0,码字中信息元个数为k0,由m 级移位寄存器构成的编码器称m 为编码码字约束长度。有的教材称m’=m+1为约束长度,(m+1)n0为编码码元约束长度。卷积码记为(n0,k0,m)。 定义:R=k0/n0为码率(Code rate)。它是表示卷积码的编码效率。 卷积码的编码器的一般形式为: 看以下卷积码的约束关系图: 在译码时,译码在ci 时要利用到ci-1,ci-2,同时译码字ci+1,ci+2时还要利用到ci 。因此译码约束长度一般要大于编码约束长度,因为:虽然一般理解译码字ci 时只利用ci+1,ci+2但实际上这时译出的ci 可能译错,当译ci+2时同样是对ci 的一种校验。还可以对cI 的译码进行修改。这是卷积码的特别之处。 m 1 m 2 … m k0 c 1 c 2 … c n0 … …

相关文档
最新文档