小麦受谷蠹危害后储藏品质的变化

小麦受谷蠹危害后储藏品质的变化
小麦受谷蠹危害后储藏品质的变化

小麦受谷蠹危害后储藏品质的变化

谷蠹(Sitophilus zeamais Motschulsky),属鞘翅目,长蠹科,是一种世界性分布的储粮害虫。谷蠹属于隐蔽性害虫,可以危害完整粮粒,其幼虫是蛀食性的,在粮粒内部发育,被害的粮粒能被蛀成空洞,同时能将储粮啮碎,产生大量粉屑,严重时粉屑能达到储粮重量的20%~30%。现在谷蠹的危害程度已远远超过了被视为头号储粮害虫的玉米象和米象,成为我国主要储粮害虫之一。

小麦在储藏期间由于自身的呼吸氧化作用和各种酶的作用,以及微生物、仓库害虫的侵害等等,其品质将随储藏时间的延长或保管不善而陈化、劣变。其中,储粮害虫危害所造成的损失是非常普遍而严重的。小麦是一种抗虫性差、染虫率高的粮种,除少数豆类专食性害虫外,几乎所有的储粮害虫均能对其产生危害,如谷蠹、印度谷螟、玉米象、麦蛾、米象、锈赤扁谷盗等。这些害虫的危害是引起小麦储藏品质劣变的主要原因之一。

中储粮新疆分公司郭长征等人对小麦受谷蠹危害后储藏品质的变化情况进行了研究。

1小麦受谷蠹危害后干、湿面筋含量及面筋吸水量的变化

被谷蠹危害的小麦干、湿面筋含量及面筋吸水量呈下降趋势,随谷蠹虫口密度的增大和危害时间的延长,这种趋势越来越明显,面筋的质量严重劣变,面筋的结构也遭到严重破坏。

小麦品质的好坏主要取决于面筋的质量和含量,它既反映营养品质性状,又反映加工食用品质性状。面筋是小麦所具有的独特性质,它主要是面粉中原来存在的一种醇溶蛋白和麦谷蛋白混合体系通过吸水膨胀形成的高度水化产物。如果这种体系遭到破坏,面筋就不能形成。小麦蛋白主要包括:

水溶性蛋白、盐溶性蛋白、醇溶蛋白和麦谷蛋白,其中醇溶蛋白和麦谷蛋白占小麦总蛋白含量的80%~90%,它们是小麦籽粒中的储藏性蛋白,主要存在于小麦的胚乳中,小麦胚乳重量占麦粒的87%~89%。而谷蠹的幼虫是蛀食性的,它在粮粒内部发育,被害粮粒常被蛀成空洞,其胚乳遭到严重损害,导致面筋的产出率下降。另外,谷蠹在对小麦进行危害时,分泌大量可分解面筋蛋白的蛋白酶,对面筋的产出率也造成很大的影响。

在用被谷蠹侵染过的小麦样品进行面筋揉洗的过程中,发现被谷蠹侵蚀越严重的小麦,洗出的面筋越易碎,且其粘附性越差,延展性和弹性也明显降低。同时在揉洗过程中还发现,有粒状的小面块落下,并且不能被揉洗的面筋所粘附,用碘—碘化钾溶液对该粒状面块进行染色,不呈蓝色,而且随着虫口密度的增大和危害时间的延长,这种现象越来越明显。其原因可能是:

小麦籽粒中的醇溶蛋白和麦谷蛋白与水结合后形成的面筋蛋白呈网络状结构,麦谷蛋白是高分子蛋白,其肽键链间有二硫键连接,加上许多次级键共同作用,容易产生共价力的聚合作用,起着骨架的作用;而分子量较低的醇溶蛋白,具有紧密的三维结构,在面筋的形成中它只能形成不太牢固的聚合体,从而为面团提供了流动性和延展性。当害虫侵食小麦时,其所分泌的蛋白酶严重破坏了面团的面筋结构。虫蚀粒小麦粉形成的面团既软又粘,其形成的面包品质很差。因此,谷蠹在危害小麦时所分泌的蛋白酶类会分解小麦籽粒中的蛋白质,致使蛋白质的肽键断裂,破坏了面筋结构,影响了面团的流变学特性。

2小麦受谷蠹危害后发芽率、发芽势的变化

种子发芽势是指种子发芽实验初期,在规定的发芽数内正常发芽的种子数占供试种子数的百分率。种子发芽率则是种子发芽实验终期在规定日期内正常发芽的种子数占供试种子数的百分率。

发芽率高,则无生命的种子少;发芽势高,则种子发芽快。

谷物种子的发芽是从胚部开始的。胚中储存了包括蛋白质、酶、维生素等生物活性物质,而这些生物活性成分正是种子发育的重要前提,当谷蠹进入种子内部之后,主要对胚部产生危害。据报道,害虫在粮食籽粒内部的首选营养物质是蛋白质,包括酶。因此当小麦被害虫感染后,其胚中的生物活性物质会被害虫破坏或利用,从而使种子最终丧失活力。被谷蠹危害的小麦的发芽率、发芽势呈下降趋势,并且随着虫口密度的增大和危害时间的延长,下降幅度增大。3小麦受谷蠹危害后脂肪酸值的变化

被谷蠹危害的小麦的脂肪酸值变化比较明显,随着谷蠹虫口密度的增大和危害时间的延长,脂肪酸值也随之升高,且升高的幅度逐渐增大。

自1930年代发现劣质玉米含有较高的脂肪酸以来,明确了脂肪酸与谷物储藏品质有着很强的相关性。小麦游离脂肪酸含量增高导致粮食酸败、发苦,严重影响了小麦的加工和食用品质。一般来说,原粮中由于种子含有天然抗氧化剂,起到保护作用,所以正常条件下氧化变质的现象不明显。谷蠹在蛀食储粮的同时能将其啮碎,破碎的粮粒直接暴露于空气中,此时其所含的天然氧化剂也不能发挥作用,粮粒所含的部分脂肪很快被空气中的氧气氧化,形成游离脂肪酸。随着谷蠹虫口密度的增大和危害时间的延长,谷蠹对小麦籽粒的破坏就越严重,暴露于空气中的破碎粮粒也越多,所以小麦中游离脂肪酸含量也越高。小麦的食用品质、加工品质等都受到极大影响。

4小麦感染谷蠹后被害百分率的变化

被谷蠹感染的小麦其被害百分率是升高的,随着谷蠹虫口密度的增大,被害百分率升高的幅度也越来越明显。现在,关于小麦虫蚀粒增加对面包焙烤品质及面团流变学特性影响的研究比较多,据国外的相关报道,当小麦虫蚀粒超过被查粮粒总数的5%以上时,将影响其面团流变学特性及面包的焙烤品质,此时该小麦已不再适于作面包焙烤了。随着小麦被害百分率的增加,小麦面筋、发芽势及脂肪酸值都有所变化,所以虫蚀粒增加对小麦储藏品质有很大影响。

总之,导致粮食品质劣变的因素是多方面的,既有内因引起的陈化,又有虫蚀、霉变等外因,是一个多因子的具有动态性的复合变化。因此,要想从这些纵横交错的内外因素中找出有规律性的东西,实非易事。对小麦受谷蠹危害后的品质变化进行分析,为研究储粮害虫对小麦品质的影响程度及其变化规律,粮食品质劣变中的诸多因素如何选择和量化提供一些借鉴,以期共同探讨。(2007-04-24中国粮食储藏科技网)

食品贮藏中的变化

食品贮存中由微生物引起的变化有哪些 食品含有丰富营养,是微生物繁殖的良好条件,在贮存中往往由于微生物的污染而发生腐败、霉变和发酵等生物学变化。 (一)腐败 腐败多发生在那些富含蛋白质的动物性食品中,如肉类、禽类、鱼类、蛋品等;在植物性食品中的豆制品也容易发生腐败。引起食品腐败的主要微生物是细菌,特别是那些能分泌体外蛋白质分解酶的腐败细菌。 (二)霉变 霉变是霉菌在食品中繁殖的结果。霉菌能分泌大量的糖酶,因此,富含糖类的食品容易发生霉变,如粮食、糕点、面包、饼干、淀粉制品、水果、蔬菜、干果、干菜、茶叶、卷烟等。霉变的食品,不仅营养成分损失、外观颜色因菌落的寄生被污染,而且食品带有霉味。如果被含毒素的黄曲霉菌株污染,还会产生致癌性的黄曲霉毒素。所以,贮存中要防止食品的霉变。 引起食品霉变的霉菌有多种,危害性较大的是:青霉属的白边青霉、扩张青霉;毛霉属的丝状毛霉;根霉属的黑根霉;曲霉属的灰绿曲霉、烟曲霉、棒曲霉和黑曲霉等。 (三)发酵 发酵在食品发酵工业中有广泛的应用,但是在食品贮存中它却能引起食品的变质。发酵是在微生物的酶作用下,使食品中的单糖发生不完全氧化的过程。食品贮存中常见的发酵有酒精发酵、醋酸发酵、乳酸发酵和酪酸发酵等。 1.酒精发酵 含糖分的食品(如水果、蔬菜、果汁、果酱、果蔬罐头等)在贮存中发生酒精发酵后会产生不正常的酒味。水果、蔬菜在严重缺氧的条件下由于缺氧呼吸的结果,也会产生酒味。这都表明它们的质量已发生变化。 2.醋酸发酵 某些食品因醋酸发酵导致完全失去食用价值,如果酒、啤酒、黄酒、果汁、果酱、果蔬罐头等。 3.乳酸发酵 食品在贮存中发生乳酸发酵不仅能使风味变劣,而且还因乳酸能改变食品的pH值,造成蛋白质凝固、沉淀等变化,鲜奶的凝固就是一例。 4.酪酸发酵 酪酸发酵是食品的糖在酪酸菌的作用下产生酪酸的过程。食品贮存中因酪酸发酵产生的酪酸,会使食品带有令人讨厌的气味,如鲜奶、奶酪、豌豆等食品变质时就有这种酪酸气味。 影响微生物引起变化的因素有水分、温度、pH值、氧和光线等,其中水分和温度是微生物繁殖最重要的因素。含水量大、水分活性高的食品处在高温之下便容易腐坏变质,或者原来含水量不大,水分活性较低的食品处在高温、高湿之下也容易腐坏变质。因此,控制食品水分和空气的温湿度是防止微生物对食品造成危害的主要措施。对于含水量低或干燥的食品应在相对湿度低于70%的条件下存放,尽量保持其原有的安全水分含量。对于含水量较大的生鲜食品应控制在低温条件下贮存,因为危害食品的微生物多属于嗜温性菌,一般在20~25℃条件下发育,

第三节 小麦品质的检验方法

第三节小麦品质的检验方法 一、籽粒硬度的测定(研磨时间法) (1)适用范围本方法适用于快速测定小麦及其他谷物籽粒的硬度。 (2)方法提要本方法利用小麦籽粒的研磨特性来测定其硬度。因为硬麦研磨后得到粗的颗粒粉易于从磨体间隙中流出,而软麦研磨后得到细的颗粒粉不易从磨体间隙中流出,故研磨一定数量不同硬度的小麦所用时间不同,硬麦时间短,软麦时间长。此方法称为研磨时间法(ground time),简称GT法,以秒数表示小麦的硬度。数值越小,籽粒越硬。 (3)仪器设备使用国产ZL Y-1型自动粮食硬度计(牡丹江市机械研究所和北京市粮食科,学研究所联合研制)或联邦德国布拉本德( Brabender)公司制造的微型硬度计(micro-hardness Tester)。 ZI_Y-1型自动粮食硬度计的结构和技术参数:‘ ①结构仪器包括主机和天平两个组成部分。主机由锥形磨体,磨隙调节环,传动机构,电器控制,时间显示器等部分组成,如图2-2所示。 ②技术参数厂_一 380V:圆锥50Hz磨隙可调o.0~1.50mm。电源380V±10%,50Hz,具有水冷却系统可保证磨体工作温度稳定(要另配恒温水浴或使用自来水龙头供水)。 天平:称量范围0-20g,精度±0.Olg。 时间测量:液晶数系显示000.0~999. 9s,精度±0.1s. ③安装。将仪器从包装箱中取出,将底座⑩与主机用6个M8螺钉连接起来,将电源导线与天平信号导线分别接入相应的插孔,天平放在主机下部。将仪器安装在靠近水龙头的地方,但不得靠近振动大的振源,以防影响仪器精度。使用前检查仪器是 (4)样品制备选取有代表性的小麦样品种子,去杂后按四分法缩分,取样量不得少于30g。样品种子要干燥,含水量相对一致。 (5)测定步骤 ①接通电源,将电源开关(12)置于“l”的位置,此时电源开关上指示灯亮,液晶显示器⑤显示数字,天平上的取少灯(13)亮。 ②将天平的一个托盘对准仪器磨体的下斜口,并调整天平的水平位置。在另一天平托盘上放4g砝码。 ③将磨隙调节环的螺丝③放松,把刻度调节到6.O的位置,拧紧固定螺丝。 ④将仪器后面的冷却水管分别与恒温水浴的出水口和入水口连接,或与自来水龙头连接,向仪器通入恒温水20min。 ⑤在正式测定样品前,为了预热和清理仪器,取非供试小麦20g,投入进料口④ 中,按下磨起动钮⑧,研磨完后,按下磨停止钮⑨,使仪器处于待测工作状态。 ⑥按下液晶显示器清零钮(14)使显示器显示ooo.O。 ⑦用精度为0. lg的天平(用户自备)称量6g供试样品,放入仪器进料口④中。 按下起动钮⑥,磨体开始转动,计时器也开始工作。当粉碎物由磨体下口流人天平托(PSD)。此法比较准确,应用最多。研磨功耗法使用硬度一结构仪测定研磨小麦时所需要的力和功,需与粉质/阻力测定仪( farinogranh/resistograph)配合使用。此法更为精确,但用样量大,每次测定需要50g,且费工时。研磨时间法即本书引用的方法,其准确性较差,但有快速,微量的优点,适于大批样品,特别适于育种工作者使用。d.近红外法,它可以快速测定谷物的蛋白质、脂肪、水分含量等。在1680nm处的反射光密度与研磨时间法的GT值或研磨细度法的PSI值都有较好的相关性,因此可用来测定小麦的硬度,已有应用的报道。 ③用研磨时间法测定小麦硬度,其结果会受到样品含水量、环境温度和湿度等的影响。

小麦品质

小麦 小麦是制粉厂的原料,它是制粉厂工业生产中四大因素——原料、制粉设备、工艺流程、生产操作管理之一。良好的小麦质量将有利于制粉厂生产出质量佳、出粉率高的面粉,足够的小麦数量将有利于制粉厂发展生产。制粉厂的经济效益的来源和增长,除了具有良好的工艺设备、合理的粉路、精心的操作管理外,首先取决于原料的选择和管理。对于一个制粉操作者来说,应对小麦的工艺品质和质量有一个较全面地了解,才能在制粉生产中采用较合理的加工方法,并采取相应的操作措施,从而达到最有效的利用小麦,提高出粉率,保证面粉质量,降低加工成本,均衡发展生产。 一、小麦的籽粒结构与工艺意义 小麦籽粒又皮层、胚乳和胚三部分所组成,一端是胚部,另一端是顶部,生有茸毛(称麦毛),背部隆起,呈弓形,腹部扁平,中间凹陷成腹沟,腹沟的两侧部分叫做颊,两颊不对称。 1、皮层 皮层共分为6层,各层组织结构依次如下: 表皮是皮层的最外一层,由一层纵向排列的细长形厚壁细胞组成,略呈透明。 外果皮由几层纵向排列的薄壁细胞组成,紧贴表皮的一层细胞,形状与表皮相似。另外1~2层细胞比较薄,颜色较表皮为黄。 内果皮有横细胞层和管状细胞层组成。横细胞层是一层横向排列的厚壁细胞,内壁比外壁厚;管状细胞层是一层纵向排列的薄壁细胞,希

堡呈管状,分散排列而不规则。本层在籽粒不成熟时呈青色,成熟后无色。 种皮极薄,看不出明显的细胞结构,实际上是由内外两层斜向(对于麦粒长轴)而又垂直排列的成形薄壁细胞组成。外层无色透明,称透明层;内层含有色素,称色素层。麦粒的皮色主要由内层细胞的色素决定。 珠心层很薄,呈透明状,细胞构成不明显,与种皮紧密结合,不易分开。 糊粉层是皮层的最里层,由一层排列整齐、近似方形的厚壁细胞组成,与其他皮层结合紧密,不易分离。 小麦的整个皮层约为小麦籽粒重量的14.5~18.5%,而糊粉层的重量又占皮层的40~50%。由于小麦皮层的结构紧密,并且由一条包含整个麦皮组织1/4~1/3的腹沟,要想把皮层剥下来是比较困难的,腹沟中的皮层庚难剥去。因此,制粉是采用逐步研磨和筛理的方法进行的。小麦的皮层外面5层含粗纤维多,人体难以消化,并且影响面粉的粉色,是制粉过程中首先除去的部分。糊粉层比其他5层具有较丰富的营养价值,粗纤维含量较少。在磨制低等粉时,应设法将糊粉层磨入粉中,但应尽量减少其他皮层混入粉中,这样可提高出粉率,又能保证面粉质量。在磨制高等粉时,由于糊粉层中还含有部分不易消化的纤维素和较高的灰分,因此,不宜将它磨入粉中。小麦的皮层色泽不同,制粉时,其工艺性质不同。白皮麦由于皮层薄而色浅,磨制的面粉色泽好,出粉率较同等的红皮麦高,所以具有较好的工艺性质。不

品质基本规则(1)

品质基本规则 前言 生产活动中会发生各种变化和异常。本基本规则是在点滴积累过去发生的不良原因、已明确的不合格因素等经验中得出的,是为了防止同样错误的再度发生。因此,这个规则是在过去的失败和渡过那失败时所得到的经验中归纳出来的,所以要切实掌握并灵活运用。 彻底遵守基本规则 1、作为确保产品品质的基本规则,4个基本条件非常重要。每项的遵守程度关系到基本品质的确保,并进一 步影响全数的保证。 2、基本规则的彻底遵守需要上至管理者、监督者、下至作业员在明确职责和责任的同时,在难度大的作业 (有X有弛)、用目视判别断正常与异常等方面下工夫,全员在各个领域、立场发挥才能,对于进行改善是非常重要的。 3、以前因在变化点担当作业的监督者和购入管理者的不熟悉及违反规则而导致辞发生的不良情况居多,因 此为了从管理者到监督者彻底遵守并执行各项规则,当场反复验证是非常重要的。 4、制定正确、易于执行的标准基本规则,若一旦制定,就必须遵守。 基本的4个条件 一、作业程序(Q重点)规则 (监督者用) 1、1A一次性合格确认前必须制成含数量增减在内的《作业标准书》。 2、指示作业员如何抓住品质重点、程式序或时机并在生产中的作业方法和全数检查的记录中体现。 3、在变更设计、工程、不良发生等(变化点)的更改须及时进行。 4、要充分理解产品的重要性和机能。 5、须亲自试作感觉后教导其他人,让分阶段也试作5次以上,确认他人对作业的理解度和熟练度。 6、《作业标准书》要摆放在临近生产线的醒目位置上,以便于随时查看,并要随时确认有无遵守作业规则。 (作业者用) 1、无《作业标准书》时不可生产。 2、理解《作业标准书》并熟练掌握,无论何进何地都要严格遵守程序。 3、难以遵守《作业标准书》内容时,即时向监督人申请变更。 4、作业前需确认相应的《作业标准书》的内容。 二、红箱规则 (一般用) 1、掉落在地面的部品、产品要作为不良品放进“红箱”。 (监督者用) 1、“红箱”必须放在操作员伸手可及的地方,以便发生不良时能立即投入。 2、“红箱”要记录负责人的XX。 3、“红箱”的记录要由当值的负责人管理。(必须分工确认、报废、修理或退还给前工程的负责人) (作业者用) 1、发现不良品时要标时不良处,以避免刮伤、混料等二次不良的发生,并作为异常处理,放进“红箱”内。 2、觉得与平时异常的产品,要作为不良品放进“红箱”内,并报告给负责人。

食品贮藏与保鲜思考题及答案

思考题 第2章食品原料的生理代谢与控制 1.生鲜食品贮藏过程中主要发生哪些生理生化变化? 答:僵直和软化。 2. 什么是呼吸作用,衡量呼吸作用强弱的指标有哪些? 答:呼吸作用是在许多复杂的酶系统参与下,经由许多中间反应环节进行的生物氧化过程,能把复杂的有机物逐步分解成简单的物质,同时释放能量。 3.呼吸作用对果蔬贮藏保鲜的意义? (1)呼吸作用对果蔬贮藏的积极作用 提高果蔬耐藏性和抗病性 ?提供果蔬生理活动所需能量 ?产生代谢中间产物 ?呼吸的保卫反应 (2)呼吸作用对果蔬贮藏的消极作用 呼吸作用消耗有机物质 ?分解消耗有机物质,加速衰老; ?产生呼吸热,使果蔬体温升高,促进呼吸强度增大,同时会升高贮藏环境温度,缩短贮藏寿命。 4.试分别举出三种以上跃变型果实和非跃变型果实 (1)跃变型果实 苹果、梨、杏、无花果、香蕉、番茄等。

(2)非呼吸跃变型果实 柑桔、葡萄、樱桃、菠萝、荔枝、黄瓜等 5.影响果蔬呼吸强度的因素有哪些? (1) 种类与品种 (2) 成熟度 (3) 温度 (4) 气体的分压 (5) 含水量 (6) 机械损伤 (7) 其他 6.控制果蔬蒸腾生理的措施有哪些? ?降低温度:迅速降温是减少果蔬蒸腾失水的首要措施; ?提高湿度:直接增加库内空气湿度或增加产品外部小环境的湿度,但高湿度贮藏时需注意防止微生物生长; ?控制空气流动:减少空气流动可减少产品失水; ?蒸发抑制剂的涂被:包装、打蜡或涂膜。 7.什么是果实的成熟、生理成熟、完熟和后熟? 果实的成熟:果实达到生理成熟到完熟的过程。 生理成熟(maturation):果实生长的最后阶段,在此阶段,果实完成了细胞、组织、器官分化发育的最后阶段,充分长成时,达到生理成熟,也称为“绿熟”或“初熟”。 完熟(ripening):果实停止生长后还要进行一系列生物化学变化逐渐形成本产品固有的色、香、味和质地特征,然后达到最佳的食用阶段。

浅论药物的贮藏质量

浅论药物的贮藏质量 发表时间:2010-12-01T10:18:06.297Z 来源:《心理医生》2010年第10期供稿作者:刘灿先[导读] 药物贮藏质量的高低关系到其临床疗效和不良反应的发生。 刘灿先(四川省丹棱县人民医院四川丹棱 620200)【中图分类号】R96 【文献标识码】A 【文章编号】1007-8231(2010)10-022-02 【摘要】药物贮藏质量的高低关系到其临床疗效和不良反应的发生。近年来某些药品临床疗效不尽人意,不良反应的报道也不断增加。经调查研究,其重要原因之一是与药品的仓贮质量有关。故应重视药品的仓贮,并进行监管。【关键词】药品仓贮质量临床疗效不良反应 1 临床疗效与不良反应 药品不良反应,是指合格药品在正常用法用量下出现的与用药目的无关的或意外的有害反应。如使用不合格药品出现的不良反应不属此意义。但合格药品,因不按国家有关法规进行贮藏,使其变质、变性,就成为不合格药品。就目前情况来看,相当部分药品临床疗效下降和发生药品不良反应均是因不科学仓贮使其物理、化学性质改变所致。 2 药品贮藏质量 如何降低药品潜在的风险、保证药品质量、依法规范贮藏医疗药品是保证医疗质量的基础工作之一。化学药、中药(中药材、中药饮片、中成药)在临床应用之前要经过采收、干燥、销售、运输、加工、炮制、制药等一系列制药工艺流程,经过相当一段时间的贮藏及调配后方可用于临床。其中一个至关重要的问题是药物的贮藏问题。由于药物的来源广泛,成分复杂,尤其是化学药物品种繁多,剂型复杂,各种药物的贮藏条件要求各异等,如果贮藏不当,则易发生变质,失去应有的临床疗效和发生不良反应,出现“症准、方对、药不灵”的怪现象。 为了保证临床药品质量,提高其临床疗效,国家就药品的贮藏条件颁发了严格的法律法规:《中华人民共和国药品管理法》第4章医疗机构药剂管理第28条规定:“医疗机构必须制定和执行药品管理制度,采取必要的冷藏、防冻、防潮、防虫、防腐等措施,保证药品质量。”《医院中药饮片管理规范》第5章第22条规定:“中药饮片仓库应当与使用量相适应的面积,具备通风、调温、调湿、防潮、防虫、防鼠等条件及设施。”《中国药典》对药品(化学药、中药饮片)的贮藏和保管的温度要求作了明确的法律规定[1]:阴凉处(阴凉库):系指不超过20℃;凉暗处(避光阴凉库):系指避光并不超过20℃;冷处(冷库):系指2—20℃;常温:系指10—30℃。另外,对个别品种做出了特殊的温度要求。 近年来,临床医生反映药品质量下降,患者普遍反映临床效果差,除了其他诸多因素外还与药品生产、经营单位和医疗机构不按国家法定要求贮藏药品有关,从而使药品质量得不到保证,严重影响了药品临床疗效和引起不良反应。 3 药品仓贮内在质量变化因素 3.1内在因素药品质量变化的内在因素是药品的自然属性,而自然属性由药品的成分及其成分的化学性质和物理性质所决定的。药物的内在质量变化与其成分的物理、化学性质有关。如绿矾(FeSO4·7H2O),在高温下风化的产物为碱式硫酸铁,这是因为FeSO4·7H2O 中的二价铁不稳定,在空气中极易氧化成三价铁,从而失去了原有的自然属性和应有的临床疗效。 3.2外在因素药品仓贮内在质量变化的外在因素很多,如温度、湿度、日光、空气等,其中温度尤为重要。《中国药典》规定了各种药品的贮藏温度,现列举几例如下:

主要造林树种的生物生态学特性及适宜栽培的立地条件

主要造林树种的生物生态学特性及适宜栽培的立地条件 树种生物学特性生态学特性适宜栽培的立地条件 马尾松 为先锋树种。树冠 稀疏、主干通直圆满, 尖削度小,形数大,材 质好,出材量高。针叶 旱生结构,抗旱力强, 灰分含量低,对土壤改 良作用不大;根系庞大, 垂直根系明显,侧根水 平伸长,吸收根分散, 菌根共生。雌雄同株, 隔年结实。 强喜光植物,不耐 庇荫,林下更新不良, 整个生长发育过程中, 对光照条件要求都很 高;喜温树种,对热量 条件要求高;耐干旱, 马尾松不耐长期水渍, 应避免选择水湿地。马 尾松针叶灰分含量低, 属低营养型树种,能耐 贫瘠土壤,但在肥沃的 土壤上生产力高,因此, 在肥力水平低的土壤施 肥能促进生长。 在玄武岩、紫色砂岩、变 余砂岩上发育的土体生长最 好。变质板岩、花岗岩、长石 石英砂岩低山的马尾松林生 产力较高,泥质页岩、第四纪 土及石英砂岩低山的马尾松 林生长较差,生产力较低。马 尾松对土壤适应性很强,分布 区内除碱性紫色土、碱性石灰 土外,各种酸性砖红壤、赤红 壤、红壤、黄红壤、黄壤、黄 棕壤、酸性紫色土及淋溶性石 灰土均适宜马尾松生长,但土 层厚。 杉木 杉科常绿乔木。高可 达33米,胸径3米,树 干端直,树形整齐;雌雄 同株。春夏开花,雄球 花柱形,雌球花圆形, 球果直立,卵圆至圆球 形;花期4月,果10 月下旬成熟。杉木根系 强大,易生不定根,萌 芽更新能力亦强,虽经 火烧,亦可重新生出强 壮萌蘖;其在生长过程 中,表现出很强的干性, 各侧主枝在郁闭的情况 下,自然整枝良好,下 枝会迅速枯死。 杉木属中性偏阳树 种,幼树和幼苗阶段有 一定的耐阴性,幼林进 人速生阶段(3—4年)就 不耐阴,需光量明显增 加。杉木对小环境要求 比较严格,喜生在群山 的低山、丘陵的背风、 空气湿度较大的阴坡、 山谷、山冲、山麓、山 坡中下部,坡度在10 度一25度的凹形坟地 段上。而在山顶、山 脊、阳坡或山坡上部, 由于日照长、温差大、 湿度小、风力强、土层 薄、肥力低,因而杉木 生长最差。 杉木为阳性树种,喜温暖湿润 气候,不耐寒,绝对最低气温 以不低于-9℃为宜,但亦可抗 -15℃低温。雨量以1800mm 以上为佳,但在600mm以上 处亦可生长,杉木的耐寒性大 于其耐旱力。在气候条件基本 一致的地区内,土壤条件是影 响杉木生 长发育的主导因子。要求琉 松、肥沃、深厚而富有腐范质 朗土壤,最适于杉 木生长的松土层厚度应在 40~50cm,30~40cm的厚度生 长一般,而低于25cm时杉木 生长较差。土壤湿度要比较 大,但排水必须良好。瘠薄干 燥和过于粘重的土坡则生长 很差。杉木适生于酸性土壤 上,酸碱土PH值五至七为好。常绿性乔木。高可达50 米,树龄成百上千年, 可称为参天古木,为优 秀的园林绿化林木。樟 香樟树喜光,稍耐荫; 喜温暖湿润气候,耐寒 性不强,对土壤要求不 严,较耐水湿,不耐干 适宜生长在砂质土壤,含腐殖 质较多,肥沃疏松,土层深厚, 呈微酸性反应,PH5~6。地下 水位稳定在1~1.5m以下,林

食品加工、贮藏中维生素发生变化及其对食品品质的影响

食品加工、贮藏中维生素发生变化及其对食品品质的影响 应091-4 任晓洁 2 一.水溶性维生素: A. 维生素C 1、成熟度:果实不同成熟期,抗坏血酸含量不同;未成熟含量较高;蔬菜相 反,成熟度越高,维生素含量越高——辣椒成熟。 2、部位:(不同部位含量不同)根部最少、其次果实和茎,叶含量最高;果 实:表皮最高,向核心依次递减。 3、采后、宰后处理的影响——变化很大:室温处理或放置24h,Vc损失。所 以正确处理方法:采后、宰后立即冷藏,氧化酶被抑制维生素损失减少。 4、加工程度(修整和研磨)的影响:植物组织经修整或细分(水果除皮)均导 致维生素损失;谷物研磨过程,营养素不同程度受到破坏 5、浸提:水溶性维生素损失的主要途径:切口或易破坏表面流失;洗涤、漂烫、冷却、烹调等:营养素损失;损失程度:pH、T、水分、切口表面积、成熟度 等有关 6、热加工的影响:淋洗、漂烫:水溶性维生素损失严重;微波:加热升温快,无水分流失,维生素损失少;热处理:维生素大量损失 7.化学药剂处理的影响: (1),添加剂——漂白剂或改良剂(面粉),降低A、C、E含量;亚硫酸盐 (或SO 2) 防止果蔬变,保护C,对B 1 有害;硝酸盐、亚硝酸盐:破坏胡萝卜素、 B l 、叶酸、C等;碱性提取Pr 、碱性发酵剂:B 1 、C、泛酸被破坏。 8、变质反应的影响: (1),脂质氧化产生H 2O 2 、过氧化物、环氧化物;氧化类胡萝卜素、生育酚、 抗坏血酸,导致损失。糖类非酶褐变:生成高活性羰基化合物,B 1、 B 6 、 泛酸等损失。 (2),食品加工配料:引入一些酶(V C 氧化酶、硫氨素酶)导致C 、B 1 等损 失。 B. 维生素B 7 (生物素) 稳定性:相当稳定,加热少量损失; 空气、中性微酸性稳定. 生鸡蛋:抗生物素糖Pr,VB 7 损失。 C. 叶酸 (1).热、酸较稳定,中、碱性很快破坏,光照易分解

小麦质量及储存品质检测.

小麦质量及储存品质检验 一、质量及储存品质检验流程: 二、质量检验 执行标准:《小麦》GB 1351 —2008。 (一)混合、分样按GB/T 5491—1985执行。 (二)色泽、气味检验按GB/T 5492—2008执行。 注意事项: 1. 环境应符合GB/T10220和GB/T22505的规定,实验室应符合GB/T13868的规定。 2. 试验室应保持通风良好,无异味,避免阳光直射,应在散射光线条件下操作。

3. 检验者色觉、嗅觉应正常,检验前严禁吸烟、喝酒和使用化妆品等。人员搭配应合理,对于色泽、气味不正常的样品,至少应经5人以上检验确认。 (三水分检验按GB/T 5497—1985执行。 注意事项: 1. 水分检验按GB/T5497—1985中规定的105℃恒质法执行,也可以用130℃定温定时法检验,但当检验结果超过本次查库规定的判定标准时,应用105℃恒质法确认。 2. 样品粉碎应使用测水用水分磨,每份样品粉碎前应将磨膛清理干净。样品粉碎过程中磨膛温度明显高于室温时,应停止粉碎,待温度降至室温继续操作。粉碎细度应达到标准规定的要求。称量时应用角匙将样品充分混合。 3. 称量前应将天平调平,称量时应将样品放置于天平托盘中心,天平门应关闭,称量过程中应避免震动,天平、干燥器中的变色硅胶保持蓝色。 4. 选用的烘箱温度均匀性应满足要求。烘盒应围绕烘箱中心位置摆放,一般每次不超过8~10个烘盒并放置在上一层为宜,防止异物掉入烘盒。送取烘盒后应立即关闭烘箱门,放入烘盒后5分钟内将烘箱温度升至所需温度。 5. 称样量应尽量一致,烘盒规格应一致。

(四)杂质检验按GB/T 5492—2008执行。 1. 杂质 除小麦粒以外的其它物质,包括筛下物、无机杂质和有机杂质。 (1)筛下物:通过直径1.5mm 圆孔筛的物质。 筛下物 (2无机杂质:砂石、煤渣、砖瓦块、泥土等矿物质及其他无机类物质。无机杂质 (3有机杂质: 无使用价值的小麦、异种粮粒及其他有机类物质。

第二章 第三节 小麦籽粒的形态结构

第三节小麦籽粒的形态结构 一、小麦籽粒的形态特征(Morphological Characteristics of Wheat Kernels) 小麦籽粒的形态如图1-2-1所示,因为小麦的穗轴韧而不脆,脱粒时颖果很容易与颖分离,所以收获所得的小麦籽粒是不带颖的裸粒(颖果)。小麦籽粒的顶端生长着茸毛(称麦毛),下端为麦胚,胚的长度约为籽粒长度的1/4~1/3。在有胚的一面称为麦粒的背面,与之相对的一面称为腹面。麦粒的背部隆起呈半圆形,腹面凹陷,有一沟槽称为腹沟。腹沟的两侧部分称为颊,两颊不对称。 麦皮 图1-2-1小麦籽粒的结构示意图 小麦籽粒的形态特征包括籽粒形状、粒色、整齐度、饱满度、透明度等。这些形态指标不仅直接影响小麦的商品价值,而且与加工品质、营养品质关系密切。

1.形状 小麦籽粒的长度一般为4~10毫米,随品种和在小穗上着生的位置有所不同。籽粒形状是小麦的品种特性,有长圆形、卵圆形、椭圆形和圆形等,以长圆形和卵圆形为多,其腰部断面形状都呈心脏形。圆形籽粒的长宽相似;椭圆形籽粒中部宽,两端小而尖。与其它谷物相比,小麦籽粒形态特征最显著特点的是具有腹沟。腹沟的深浅及沟底宽度随品种和生长条件的不同而异,一般而言,腹沟面积占麦皮总面积的15%~25%。小麦腹沟的形状和深浅是衡量籽粒形状优劣的重要指标:腹沟开裂型的品种,麦皮面积和质量占籽粒的比例相对较大,出粉率低;而腹沟闭合型的品种,籽粒的皮层面积和重量占籽粒的比例相对较小,且能较好地抵御外界微生物的侵染,有利于抗穗发芽和延长贮藏期,在磨粉过程中也可使润麦均匀,受力平衡,方便研磨。因此,就籽粒形状而言,在小麦育种中,以选择近圆形且腹沟较浅的籽粒为优。 2.粒色 小麦籽粒的颜色有红色、琥珀色、白色、黄白色、浅黄色、金黄色、深黄色、紫色等。最近几年,我国育种家还培育出黑色、蓝色等彩色小麦新品种。小麦籽粒颜色的深浅不同,主要由于种皮色素层细胞所含色素不同的缘故,也受气候条件、收获季节以及胚乳结构的影响。红皮小麦具有休眠期长、抗穗发芽能力强等特点,比白皮小麦广泛分布。白皮小麦因加工的面粉麸星颜色浅、粉色白而受面粉加工业和消费者的欢迎;但国内外研究表明,小麦籽粒颜色与品质无必然联系。法国、美国、加拿大、阿根廷等主要小麦出口国种植的绝大多数优质小麦品种都是红皮小麦。墨西哥国际玉米小麦改良中心1950~1987年培育的21个矮秆小麦品种都是红皮小麦。因此,在优质小麦生产中不能单纯追求籽粒颜色,而应根据具体生态条件和最终用途决定种植的小麦品种;面粉(胚乳)的颜色才是最关键的,与面团颜色、食品特别是蒸煮食品的颜色密切相关。 3.整齐度 是指小麦籽粒大小和形状的一致性。同样形状和大小的籽粒占总量90%以上者为整齐,小于70%为不整齐。籽粒越整齐,出粉率越高;反之,出粉率低。在世界小麦市场,加拿大和澳大利亚商品小麦其良好的整齐度具有很高的知名度。 4.饱满度 多用腹沟深浅、容重和千粒重来衡量。腹沟浅,容重和千粒重高,小麦籽粒饱满,出粉率高。籽粒饱满度与品质关系尚无定论,但有试验表明,同一品种内,千粒重提高,蛋白质含量降低。习惯上用目测法将成熟干燥的小麦籽粒分为五级,即饱满度一级:胚乳充实,种皮光滑;饱满度二级:胚乳充实,种皮略有皱褶;饱满度三级:胚乳充实,种皮皱褶明显;饱满度四级:胚乳明显不充实,种皮皱褶明显;饱满度五级:胚乳极不充实,种皮皱褶极明显。 5.透明度

微生物生态学复习资料讲解学习

Microbial Ecology 绪论 1. 名词解释: 微生物生态学:是研究微生物与其周围生物和非生物环境之间相互关系的一门科学。 微生态学:是生态学的一个层次,是研究正常微生物在细胞或分子水平上相关关系的科学环境、自然环境+生物环境 生境、指生物的个体、种群或群落生活地域的具体环境。生物+非生物 栖息地、生物生活或居住的范围的物理环境。如林地生境中的不同树冠层、树干 生态位、一个种群在生态系统中,在时间空间上所占据的位置及其与相关种群之间的功能关系与作用。 基础生态位、一个物种能够占据的生态位空间,由物种的变异和适应能力决定,而非其地理因素。基本生态位是实验室条件下的生态位,里面不存在捕食者和竞争。 实际生态位、自然界中真实存在的生态位。 物种流是指物种的种群在生态系统内或系统之间时空变化的状态。 2.微生物生态学的研究意义有哪些? ①发现新的在工农业(如固氮)、食品(如发酵)、医药(如抗生素)和环境保护(如生物修复)方面有重要用途的微生物菌株(包括极端环境中微生物资源的发掘); ②微生物在地球物质化学循环中具有重要作用; ③开发和利用自然界中的微生物资源,保护好微生物基因资源; ④控制有害微生物,利用微生物净化环境,保护环境,维持环境生态平衡; ⑤保护人类健康和保护生态平衡发挥微生物的最佳作用。 3.微生物生态学主要研究内容有哪些? ①正常自然环境中的微生物种类、分布及变化规律; ②极端自然环境中的微生物; ③微生物之间、微生物与动植物相互关系; ④微生物在净化污染环境中的作用; ⑤现代分子微生物生态学的研究方法。 4.生态系统的功能有哪些? 物种流能量流食物链营养级信息流 5.什么是微生物生态系统?其特点是什么? 是指各种环境因子如物理、化学及生物因子对微生物区系(即自然群体)的作用和微生物区系对外界环境的反作用。 特点:微环境稳定性适应性 7.简述物种流的含义及其特点。 是指物种的种群在生态系统内或系统之间时空变化的状态。不同生态系统间的交流和联系。主要有三层含义: 生物有机体与环境之间相互作用所产生的时间、空间变化的过程; 物种种群在生态系统内或系统之间格局和数量的动态,反映了物种关系的状态,如寄生、捕食、共生等; 生物群落中物种组成、配置、营养结构变化,外来种和本地种的相互作用,生态系统对物种增加和空缺的反应等。

小麦品质分析

实验四小麦品质分析 一、实验目的 通过练习,初步掌握小麦面筋含量和面筋品质的测定方法及沉降试验的方法。 二、内容说明 面筋即面粉经加水揉成面团后,放入水中静止一段时间,然后在水中反复洗涤,淀粉和麸皮等物质与面团分离,可溶性物质溶于水中,最后剩下具有延展性和粘弹性的物质就是湿面筋。面筋主要由麦胶蛋白和麦谷蛋白组成,其中还含有淀粉、糖类、脂肪、灰分和其它蛋白质等。麦胶蛋白(约占干面筋的40%)不溶于水、乙醇和无机盐溶液,能溶于70%酒精。湿的麦胶蛋白粘力甚强,富有延伸性。麦谷蛋白(约占干面筋的40%),不溶于水、乙醚和无机盐溶液,能溶于稀碱和稀酸溶液,湿的麦谷蛋白凝结力甚强,但无粘力。由于它们不溶于水,吸水力强,吸水后发生膨胀,分子互相连接形成网络状整体,因此测定面筋含量一般采用面团揉洗法获得面筋,然后测定其含量和品质。 面筋是衡量小麦品质的一个重要指标,小麦品质的好坏主要取决于面筋的含量和质量,它既反映小麦的营养品质性状,又反映其加工品质性状。面筋含量多,且其延伸性和弹性都好的小麦面粉能做出疏松多孔的面包和馒头。不同小麦品种面筋含量和品质不同,同一品种栽培在不同生态地区,面筋含量和品质也不同。我国北方麦区小麦品种的湿面筋含量平均为30%,变幅为17~50%,绝大部分小麦品种的湿面筋含量在24~40%之间。加工不同食品对面粉的蛋白质、面筋的含量和质量都有特别的要求,不同专用粉标准中对面筋含量的规定见表4-1。 表4-1 不同专用粉标准中面筋含量 沉淀值或沉降指数,是指沉淀试验中一定量的面粉在弱有机酸溶液中的沉降体积(ml),原理是在一定的条件下,用乳酸处理小麦面粉的悬浮液时,面粉中面筋蛋白颗粒发生膨胀,使悬浮面粉的沉降速度受到影响。面粉的面筋含量较高,面筋质量较好,都会导致沉淀较慢,从而在特定时间内的沉降体积较大,沉淀值较高。沉淀值与小麦的食用加工品质,尤其与面筋含量及烘焙品质呈显著正相关,从而在评价小麦品种品质的

小麦品质研究

专业文献综述 题目: 小麦优质蛋白亚基与小麦品质的研究进展 姓名: 赵娇娇 学院: 农学院 专业: 种子科学与工程 班级: 种子72班 学号: 1127219 指导教师: 王秀娥职称: 教授 2010年5 月31 日 南京农业大学教务处制

小麦优质蛋白亚基与小麦品质的研究进展 赵娇娇指导老师:王秀娥 (南京农业大学农学院种子科学与工程72班, 江苏南京 210095) 摘要:小麦籽粒蛋白质含量约为 8%-20%,主要包括谷蛋白和醇溶蛋白,是面团弹性和延伸性的物质基础。蛋白质组分与格组分的分布是影响小麦品质的重要因素,特别是高分子量麦谷蛋白(HMW-GS),因此提高蛋白质含量和改进 HMW-GS 组成一直是我国小麦加工品质改良的重要途径。目前推广的优质强筋小麦基本都携带优质亚基,然而真正适合烘焙优质面包的强筋小麦并不多,贮藏蛋白组分的含量及比例不合理是主要原因,改进贮藏蛋白亚基的质量组成是进一步提高我国小麦加工品质的有效途径。 关键词:谷蛋白、醇溶蛋白、品质、加工品质 Wheat proteins and their subunits and quality of wheat flour ZHAO Jiaojiao (Seed Science and Engineering 72, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095) Abstract: Key words: 前言(引言):×××××(标题用小四号黑体,其它文字用小四宋体)××××××××××××××××××……… 正文:×××××(标题用小四号黑体,其它文字用小四宋体)××××××××××××××××××××××……… 结论:××××××(小四宋体)××××××××××××××××××××××××××××××××××××……… 参考文献: [1] 作者姓名,作者姓名.参考文献题目. 期刊或杂志等名称,年份,(期数). [2] 刘凡丰. 美国研究型大学本科教育改革透视[J] . 高等教育研究,2003,(1) [3] 作者姓名,作者姓名. 参考文献题目. 期刊或杂志等名称,年份,(期数).

质量管理的进化规律(杨少杰)

——组织形态管理理论具体应用 ——新组织管理模式构建方略 质量管理的进化规律 难道质量管理也在进化吗?是的,企业一直在进化,质量管理自然也会进化,只不过进化的是质量管理形式,质量管理的核心思想并没有改变。理解质量管理的进化规律,有助于把握企业变革的方向与节奏,推动各项变革措施顺利实现。 企业形态的进化规律 在市场生态中,企业形态沿着产业价值链不断演变,经历了股东价值形态、精英价值形态、客户价值形态、利益相关者价值形态等四种典型组织形态(见《图解工业时代四种企业形态进化规律》),实现了从低级组织形态向高级组织形态进化。四种企业形态特征分别可以用四种平面图形代表,股东价值形态形如三角形,一般采取直线型组织结构;精英价值形态形如梯形,一般采取职能型组织结构;客户价值形态形如链条形(八边形),一般采取流程型组织结构;利益相关者价值形态形如圆形,一般采取网络型组织结构。其中精英价值形态就是人们常说的“金字塔”形,这也是中国传统企业形态。

企业形态进化规律 客户价值形态则是新商业时代的最佳企业形态,也可以称之为新组织形态,西方一些先进企业已经进化到这一组织形态。从传统企业形态迈向客户价值形态,是企业进化过程中的分水岭,这是一次质的飞跃,企业将从封闭型组织进化为开放型组织,组织形态特征、管理模式都将是一种颠覆式的变化,进化难度不言而喻。 企业形态不断发生变化,必然导致管理模式的改变,用10S企业形态分析模型可以清晰的发现这种变化规律,这是组织形态管理理论中用来分析、构建新组织管理模式重要工具,产品结构的演变规律则是本文需要说明的内容。

10S企业形态分析模型 产品结构的进化规律 产品结构是构成企业形态的必要组成部分,因此当企业形态进化时,产品结构必然发生演变。 产品结构是指一种产品组合,而不是单一产品,只不过在不同的企业形态中,其产品结构的特征不同,产品结构的变化与企业形态的进化规律具有一致性。与客户结构的分散度、变化度相对应,我也从两方面描述价值创造的特征,一是产品的品种,二是产品的更新换代速度,产品结构的变化与客户结构的变化规律相同,价值需求越集中,产品种类越少,产品更新换代越慢,相反的是价值需求越分散,产品种类越多,产品更新换代越快。在企业形态进化过程中,产品结构分别经历了成熟型产品、标准化产品、创新型产品和个性化产品四种类型。 这四种产品类型恰好对应四种客户类型。一般情况下,四种产品类型同时存在于企业中,并且构成了一种结构形式,并且随着不同的企业形态的演变,这种结构形式将发生改变。 产品(服务)结构演变规律

小麦品质研究

小麦优质蛋白亚基与小麦品质的研究进展 赵娇娇 1127219 : 王秀娥职称: 教授

小麦优质蛋白亚基与小麦品质的研究进展 摘要:小麦籽粒蛋白质含量约为 8%-20%,主要包括谷蛋白和醇溶蛋白,是面团弹性和延伸性的物质基础。蛋白质组分与格组分的分布是影响小麦品质的重要因素,特别是高分子量麦谷蛋白(HMW-GS),因此提高蛋白质含量和改进 HMW-GS 组成一直是我国小麦加工品质改良的重要途径。目前推广的优质强筋小麦基本都携带优质亚基,然而真正适合烘焙优质面包的强筋小麦并不多,贮藏蛋白组分的含量及比例不合理是主要原因,改进贮藏蛋白亚基的质量组成是进一步提高我国小麦加工品质的有效途径。 关键词:谷蛋白、醇溶蛋白、品质、加工品质 1.优质小麦品质指标 小麦是一种世界性的重要的粮食作物。小麦品质主要包括营养品质、加工品质以及形态品质[1]。小麦加工品质通常用出粉率、灰分含量、动力消耗和面粉百度等磨粉品质衡量;还包括烘焙品质、蒸煮品质及制作品质在内的食品加工品质。小麦籽粒蛋白含量及其氨基酸组成的平衡程度决定小麦的营养价值,因此小麦各种品质都与它所含蛋白质的种类与含量有关。对于小麦的一次加工品质,存在于小麦胚乳中的麦醇溶蛋白和麦谷蛋白是小麦面筋的主要成分,约占面筋总量的90%,评价小麦品质不能忽略蛋白质的质与量。目前对品质性状的评价主要是对一下三点进行分析研究。 1.1高分子量谷蛋白亚基 (HMW-GS) HMW-GS是由小麦第1组染色体长臂上基因编码形成。近年来研究表明[2],面包的烘烤品质与蛋白质的不同组分,特别是与一些HMW-GS有关,在Glu-D1位点编码的5 +10、Glu2B1位点的7OE +8﹡及17 +18、Glu-A1位点1及2﹡,对面团强度、沉降值和面包体积贡献较大。国外种质资源特别是含 5 +10的HMW-GS,在品质育种中起了重要作用。近年来新发现的亚基Glu-B1a (7OE+8﹡) 可显著提高HWM-GS总量和面团强度,7OE+8﹡可作为优质亚基用于强筋小麦育种。 但是,HMW-GS只能解释30%~79%的品质差异。HMW-GS的表达量、LMW-GS亚基以及醇溶蛋白等组成的不同,也是造成沉淀值和面筋弹性差异的重要原因。栗站稳[2]对443份国内外材料的分析结果表明,与国外品种相比优质亚基的频率明显偏低,是我国小麦加工品质差的重要原因之一;另外,中国品种醇溶蛋白谱带数目较少,且含有非优质谱带,可能是烘烤品质较差的另一个原因。目前,对小麦高分子量谷蛋白亚基(HMW-GS)的深入研究通过基因工程技术改善小麦品质已成为选育优质品种的一种方法。 1.2沉淀值(沉降值) 沉淀值即小麦面粉蛋白参加沉淀反应的沉淀体积,沉淀值测定法包括Zaleny法和微量SDS沉淀法。大量研究表明,沉淀值与面包体积、面团流变性参数、比沉淀值及高分子量麦谷蛋白亚基品质评分等都存在显著或极显著正相关,沉淀值是反应蛋白质含量和品质的综合指标,国际上已将沉降值作为鉴定小麦品质的重要标准。沉降值遗传力较高,高于蛋白质含量遗传力,比其他方法能更深刻地反映出遗传差异。所以,沉降值具有高遗传力,并与面粉品质呈显著相关,可作为品质育种的早代选择指标。 1

猪肉贮藏过程中的品质的变化

猪肉贮藏过程中的品质的变化 年级: 学号: 姓名: 专业: 指导老师:

摘要:本实验主要研究猪肉在(常温)贮藏过程中各项指标(包括PH值,肉色大理石纹,弹性,嫩度,色泽,失水率以及挥发性盐基氮)的变化。 关键词:猪肉贮藏变化品质 一.前言 1.研究的意义 肉中在室温下放置的时间稍久,因受外界微生物的侵染,以及肉内部自身酶的作用,会产生种种生理生化变化,以致腐败变质。但猪肉是日常生活的主要副食品,具有补虚强身,滋阴润燥、丰肌泽肤的作用。凡病后体弱、产后血虚、面黄赢瘦者,皆可用之作营养滋补之品。近年来 ,随着人们生活水平的提高和保健意识的增强 ,对猪肉品质的要求越来越高 ,那些价格低、品质差的猪肉制品越来越难以满足消费者的需求,猪肉品质是人们非常关注的话题。 研究目的是知道肉的品质包括那些方面;掌握肉的各种品质的检测方法;了解猪肉的特点及市场前景。 2.国内外研究现状 中国是猪肉的生产和消费大国,对于了解猪肉的储藏中肉品的质量变化,保持良好的卫生状况,保障猪肉的食品安全有着着重要意义。随着消费者和食品加工业对肉质的要求越来越高,猪肉品质的改良问题日益受到人们的重视,世界各国学者也相继从肌肉组织学、生理生

化指标和遗传学等方面对猪肉品质进行了相关研究。以及随着社会经济的发展、物质生活水平的提高、消费观念的改变,猪肉的品质越来越受到社会的关注,食品安全也越来越受到各方面的关注,近年的“瘦肉精”等事件已经引起社会的广泛关注。研究猪肉的品质变化,对于保障食品安全,为研究新的贮藏方法,保障肉的贮藏品质有着重要意义。 现在,国内外都在研究猪肉在储藏中的各种生理生化变化,肉品的颜色,组织状态、蛋白质、脂类、碳水化合物等发生变化都严重影响肉的品质。已经有研究表明肉的贮藏过程发生的质量变化,通过对肉制品的研究,制出相应的标准,研发出相应的保藏方法。发达国家在猪肉品质检测方面有大量的研究与应用,国内研究相对较少,导致许多非新鲜的猪肉在市场上大量销售。其中,国外先进的检测技术包括超声波检测技术,图像与光谱检测技术,电鼻子技术和核磁共振技术在猪肉品质检测中的应用情况,国内对猪肉无损检测技术有近红外光谱技术,人工嗅觉和人工味觉触觉检测技术、超声波检测技术等,在市场上多数使用嗅觉触觉视觉等技术检测但由于没有专人带领检 测或是培训使得许多检测不标准,结果偏差很大,近年猪肉市场的波动很大其中一个重要原因就是由于猪肉的品质没有的到很好的保障,所以国家在这方面也开始大力着手开发研制新技术。 另外,食品安全一直是社会关注的热点,关系到人民大众的健康,研究出肉制品质量变化链,找出肉品腐败临界点,对于预防肉制品的变化影响人们的生命健康有着重要意义。

食品贮藏与保鲜思考题与答案

思考题 第2章食品原料的生理代与控制 1.生鲜食品贮藏过程中主要发生哪些生理生化变化? 答:僵直和软化。 2. 什么是呼吸作用,衡量呼吸作用强弱的指标有哪些? 答:呼吸作用是在许多复杂的酶系统参与下,经由许多中间反应环节进行的生物氧化过程,能把复杂的有机物逐步分解成简单的物质,同时释放能量。 3.呼吸作用对果蔬贮藏保鲜的意义? (1)呼吸作用对果蔬贮藏的积极作用 提高果蔬耐藏性和抗病性 ?提供果蔬生理活动所需能量 ?产生代中间产物 ?呼吸的保卫反应 (2)呼吸作用对果蔬贮藏的消极作用 呼吸作用消耗有机物质 ?分解消耗有机物质,加速衰老; ?产生呼吸热,使果蔬体温升高,促进呼吸强度增大,同时会升高贮藏环境温度,缩短贮藏寿命。 4.试分别举出三种以上跃变型果实和非跃变型果实 (1)跃变型果实 苹果、梨、杏、无花果、香蕉、番茄等。 (2)非呼吸跃变型果实 柑桔、葡萄、樱桃、菠萝、荔枝、黄瓜等 5.影响果蔬呼吸强度的因素有哪些? (1) 种类与品种 (2) 成熟度 (3) 温度 (4) 气体的分压 (5) 含水量 (6) 机械损伤 (7) 其他 6.控制果蔬蒸腾生理的措施有哪些? ?降低温度:迅速降温是减少果蔬蒸腾失水的首要措施; ?提高湿度:直接增加库空气湿度或增加产品外部小环境的湿度,但高湿度贮藏时需注意防止微生物生长; ?控制空气流动:减少空气流动可减少产品失水; ?蒸发抑制剂的涂被:包装、打蜡或涂膜。 7.什么是果实的成熟、生理成熟、完熟和后熟? 果实的成熟:果实达到生理成熟到完熟的过程。 生理成熟(maturation):果实生长的最后阶段,在此阶段,果实完成了细胞、组织、器官分化发育的最后阶段,充分长成时,达到生理成熟,也称为“绿熟”或“初熟”。 完熟(ripening):果实停止生长后还要进行一系列生物化学变化逐渐形成本产品固有的色、

相关文档
最新文档