第六章 小波变换的几个典型应用

第六章 小波变换的几个典型应用
第六章 小波变换的几个典型应用

第六章 小波变换的几个典型应用

6.1 小波变换与信号处理

小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。本部分将举例说明。

6.1.1 小波变换在信号分析中的应用

[例6-1] 以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。已知信号的表达式为

???????≤≤++-≤≤++-=1000501)()3.0sin(500

10005001)()3.0sin(500

1

)(t t b t t t t b t t t s

应用db5小波对该信号进行7层分解。xiaobo0601.m

100

200

300

400500600

700

800

900

1000

-4-3-2-1012345

6样本序号 n

幅值 A

图6-1含躁的三角波与正弦波混合信号波形

分析:

(1) 在图6-2中,逼近信号a7是一个三角波。

(2) 在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4)

与正弦信号相关。

01002003004005006007008009001000

-101a 7

01002003004005006007008009001000

-202a 6

01002003004005006007008009001000

-202a 5

01002003004005006007008009001000

-202a 4

01002003004005006007008009001000

-505a 3

01002003004005006007008009001000

-505a 2

010*******

4005006007008009001000

-5

05a 1

样本序号 n

图6-2 小波分解后各层逼近信号

01002003004005006007008009001000

-101d 7

01002003004005006007008009001000

-101d 6

01002003004005006007008009001000

-101d 5

01002003004005006007008009001000

-202d 4

01002003004005006007008009001000

-202d 3

01002003004005006007008009001000

-202d 2

010*******

4005006007008009001000

-5

05d 1

样本序号 n

图6-3 小波分解后各层细节信号

6.1.2 小波变换在信号降躁和压缩中的应用

一、信号降躁

1.工程中,有用信号一般是一些比较平稳的信号,噪声通常表现为高频信号。 2.消躁处理的方法:首先对信号进行小波分解,由于噪声信号多包含在具有较高频率的细节中,我们可以利用门限、阈值等形式对分解所得的小波系数进行处理,然后对信号进行小波重构即可达到对信号的消躁目的。 小波分析进行消躁处理的3种方法:

(1)默认阈值消躁处理。该方法利用ddencmp 生成信号的默认阈值,然后利用wdencmp 函数进行消躁处理。

(2)给定阈值消躁处理。在实际的消躁处理过程中,阈值往往可通过经验公式获得,且这种阈值比默认阈值的可信度高。在进行阈值量化处理时可利用函数wthresh 。

(3)强制消躁处理。该方法时将小波分解结构中的高频系数全部置为0,即滤掉所有高频部分,然后对信号进行小波重构。方法简单,消躁后信号比较平滑,但易丢失信号中的有用成分。

小波阈值去噪方法是目前应用最为广泛的小波去噪方法之一。 3.信号降噪的准则:

1.光滑性:在大部分情况下,降噪后的信号应该至少和原信号具有同等的光滑性。

2.相似性:降噪后的信号和原始信号的方差估计应该是最坏情况下的方差最小。

4.一维信号消躁的步骤:

(1) 一维信号的小波分解。选择一个小波并确定分解的层次,然后进行分解计算。

(2)小波分解高频系数的阈值量化。对各个分解尺度下的高频系数选择一个阈值进行软阈值量化处理。

(3)一维小波重构。根据小波分解的最低层系数和各层高频系数进行一维小波重构。 关键:如何选择阈值和进行阈值量化。在某种程度上,它关系到信号消躁的质量。 5.消躁阈值选取规则

硬阈值法:.,,,,0,

j k j k j k

j k ωωλωωλ

≥?=?

软阈值法:,,,,,()(),0

j k j k j k j k

j k sign ωωλωλωωλ

??-≥?=?

图(a) 硬阈值图(b) 软阈值

图6-4估计小波系数的软阈值与硬阈值方法

图6-4表明了软阈值和硬阈值法的区别,图中横坐标表示小波分解系数ω,纵坐标表示由阈值法得到的小波系数估计值ω?,λ为阈值。可以看出,硬阈值法的ω?函数在λ点处不连续,这会给重构信号带来震荡;软阈值法虽然ω?函数连续

ω≥时,由性较好,但其导数并不连续,这就限制了它的进一步应用。并且当λ

软阈值法得出的估计值ω?与小波系数ω存在着恒定的偏差。

这些分析表明,软阈值法通常会使去噪后的信号平滑一些,但是也会丢掉某些特征;而硬阈值可以保留信号的特征,但是在平滑方面有所欠缺。一般来说,去噪中软阈值的作用会更多一些,但是到底选取哪种处理方法,还应视具体情况而定。

6.应用一维小波分析进行信号消躁处理的MATLAB函数

小波函数:wden和wdencmp

[例6-2] 利用小波分析对含躁正弦波进行消躁。xiaobo0602.m

分析:

(1)消躁后的信号大体上恢复了原信号的形状,并明显去除了噪声所引起的干扰。

(2)恢复后的信号与原信号相比有明显的改变。主要原因是,在进行消躁处理的过程中所用的分析小波和细节系数阈值不恰当。

010*******

4005006007008009001000

-1

1样本序号 n

(原始信号)幅值 A

010*******

4005006007008009001000

-2

2样本序号 n

( 含躁信号)幅值 A

010*******

4005006007008009001000

-2

2样本序号 n

( 消躁信号)幅值 A

[例6-3] 在电网电压值监测过程中,由于监测设备出现了一点故障,致使所采集到的信号受到噪声的污染。现在利用小波分析对污染信号进行消躁处理以恢复原始信号。

050010001500

200400

600原始信号

幅值 A

500100015000

200400

600强制消躁后的信号

样本序号 n

幅值 A

50010001500

200400

600默认阈值消躁后的信号样本序号 n

幅值 A

50010001500

200400

600给定软阈值消躁后的信号

样本序号 n

幅值 A

分析:

(1)强制消躁处理后信号比较光滑,但可能丢失有用信息。

(2)默认阈值消躁和给定软阈值消躁这两种处理方法在实际中应用的更广泛。

阈值函数图形如下:xiaobo0604.m

50100-1-0.8-0.6-0.4-0.200.20.40.60.8

1原始信号样本序号 n

幅值 A

50100-1

-0.8

-0.6

-0.4-0.200.20.40.60.8

1硬阈值信号样本序号 n

幅值 A

50100-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

软阈值信号样本序号 n

幅值 A

二、信号压缩 1.压缩依据: 一个比较规则的信号是由一个数据量很小的低频系数和几个高频系数所组成的。这里对低频系数的选择有一个要求,即需要在一个合适的分解层上选择低频系数。

2.压缩手段:小波分析和小波包分析两种手段。 3.压缩步骤:

(1)信号的小波(包)分解。

(2)对高频系数进行阈值量化处理。对第1层到第N 层的高频系数,均可选择不同的阈值,并且用硬阈值进行系数的量化。 (3)对量化后的系数进行小波(包)重构。 4.两种比较有效的信号压缩方法:

第一种方法:对信号进行小波尺度的扩展,并且保留绝对值最大的系数。在这种情况下,可以选择全局阈值,此时仅需输入一个参数即可。

第二种方法:根据分解后各层的效果来确定某一层的阈值,且每一层的阈值可以互不相同。

[例6-4] 利用小波分析对给定信号进行压缩处理。xiaobo0605.m

100

200

300400

500

600

100

200300400

500原始信号

样本序号 n 幅值 A

100

200

300400

500

600

100

200300400

500压缩后的信号

样本序号 n

幅值 A

6.2 小波变换在电力负载信号的应用

电力系统在线检测信号含有大量的现场背景噪声,给传统方式的数据采集与故障诊断带来很大的困难。将以处理瞬态信号、含宽带噪声信号等见长的小波分析应用于电力系统在线监测是大有前途的。

本小节的测量数据是从一个复杂的设备上采集的电力负载信号,每分钟采集一个样本,持续了5个星期,总共50400个数据样本。测量数据受到传感器误差和状态噪声两种噪声的影响。本小节将分析其中的两段数据,其中第一段是上午12:30至下午1:00间采集的样本,由于这段时间处于用电高峰,因此数据很复杂;第二段是下半夜采集的样本,数据比较简单。 一、信号分解

[例6-5] 利用小波分解分析第一段数据的信号成分。xiaobo0606.m

3600

3610

3620

3630

3640365036603670

3680

3690

3700

295300305310315320325330335340

345样本序号 n

幅值 A

图1

36003650

3700

250300

350a 5

36003650

3700

250300

350

a 4

36003650

3700

250300

350

a 3

36003650

3700

250300

350

a 2

3600

36503700

250300

350

a 1

样本序号 n

36003650

3700

-200

20d 5

36003650

3700

-200

20

d 4

36003650

3700

-100

10

d 3

36003650

3700

-50

5

d 2

3600

36503700

-50

5

d 1

样本序号 n

图2

分析:第一段电力载波信号如图1所示,利用db3小波对其进行5层小波分解,得到逼近信号和细节信号如图2所示。可以看出:

(1)细节信号d1和d2的值较小,可以认为是由传感器和状态噪声的高频分量引起的局部干扰;

(2)细节信号d4包含了3个相连的主要信号模式,它最接近于原始数据的曲线;

(3)细节信号d5含有的信息不多,因此第4层贡献最大,它提取了原始数据曲线的形状。 二、暂态信号检测

为保证电力系统的安全可靠运行,必须对电力设备进行状态监测根据电力信号来判别其运行的状态。电力系统暂态故障信号往往在故障时刻发生突变,若能捕获设备故障信息突变时刻和大小,有利于在故障初期及早采取措施使系统恢复正常,这对提高设备运行可靠性具有重要意义。

[例6-6] 利用小波分解分析检测第二段信号的突变点成分。xiaobo0607.m

1560

1580

1600

1620

164016601680

1700

1720

210220230240250260270280290300

310样本序号 n

幅值 A

分析:利用db3小波对其进行5层分解,得到逼近信号和细节信号如图所示。可以看出:

由细节信号d2可以检测突变点位置t=1625,由细节信号d1也能隐约看出t=1600处的突变点。

15501600

1650

1700

1750

200250

300a 5

15501600

1650

1700

1750

200250

300

a 4

15501600

1650

1700

1750

200300

400

a 3

15501600

1650

1700

1750

200300

400

a 2

1550

160016501700

1750

200300

400

a 1

样本序号 n

15501600

1650

1700

1750

-100

10d 5

15501600

1650

1700

1750

-50

5

d 4

15501600

1650

1700

1750

-50

5

d 3

15501600

1650

1700

1750

-200

20

d 2

1550

160016501700

1750

-50

5

d 1

样本序号 n

三、传感器故障检测

[例6-7] 利用小波分析检测传感器故障。xiaobo0608.m

2200

24002600

28003000320034003600

100150200250300350400450

500样本序号 n

幅值 A

22002400260028003000320034003600

-20020

40d 3

22002400260028003000320034003600

-500

50d 2

2200

24002600

28003000320034003600

-200

20

d 1

样本序号 n

利用db3小波对信号进行5层分解,得到第1~3层细节信号如图所示。可以看出每个细节信号都显示了在t =2400~t =3600之间的信号由于传感器故障而引入了传感器误差噪声。 四、奇异点定位消除

[例6-8] 利用小波分析检测信号中的奇异点并消除。xiaobo0609.m

由原始信号波形可以看出在t =1193和t =1215两处存在奇异值点。进一步利用db3小波对信号进行5层分解,得到第1、2、3层细节信号如图所示。发现奇异值点包含在细节信号d1和d2中,且与原信号中的奇异点是同步的。为了消除奇异点,重构信号时令细节信号d1、d2和d3等于零,得到的波形如图所示,比较可见奇异值点已经很不明显了。

1160

117011801190

12001210122012301240

320330340350360370380390

400样本序号 n

幅值 A

图 原信号

116011701180119012001210122012301240

-20020

40d 3

116011701180119012001210122012301240

-20020

40d 2

1160

117011801190

12001210122012301240

-200

20d 1

样本序号 n

图 小波分解的细节信号

1160

1170

1180

1190

120012101220

1230

1240

320325330335340345350355360365

370样本序号 n

幅值 A

图 消除奇异点后的波形

6.3 小波分析在图像消躁中的应用

图像消躁在信号处理中是一个经典问题,传统的消躁方法是采用平均或线性方法进行,常采用的是维纳滤波,但是消躁效果不好。随着小波理论日益完美,它以自身良好的时频特性在图像消躁领域受到越来越多的关注,开辟了用非线性方法消躁的先河。具体说来,小波能够消躁主要得意于小波变换具有如下特点: (1) 低熵性:小波系数的稀疏分布,使图像变换后的熵降低。

(2) 多分辨率特性:由于采用多分辨率的方法,所以可以非常好地刻画信

号的非平稳性,如突变和断点等,可以在不同分辨率下根据信号和噪声的分布来去除噪声。

(3) 去相关性:小波变换可以对信号去相关,且噪声在变换后有白化趋势,

所以小波域比时域更利于去躁。

(4) 基函数选择灵活:小波变换可以灵活选择基函数,也可根据信号特点

和消躁要求选择多带小波、小波包等,对不同场合,可以选择不同的小波母函数。

一、小波图像消躁的基本原理

常用的图像消躁方法是小波阈值消躁方法,它是一种实现简单而效果好的消躁方法。阈值消躁方法的思想很简单,就是对小波分解后的各层系数模大于和小于某阈值的系数分别进行处理,然后利用处理后的小波系数重构出消躁后的图像。在阈值消躁中,阈值函数体现了对小波分解系数的不同处理策略以及不同估计方法,常用的阈值函数有硬阈值函数和软阈值函数。硬阈值函数可以很好的保留图像的边缘等局部特征,但图像会出现伪吉布斯效应等视觉失真现象;软阈值处理相对较平滑,但可能会造成边缘模糊等失真现象,为此人们又提出了半软阈

值函数。

小波阈值消躁方法处理阈值的选取,另一个关键因素是阈值的具体估计。如果阈值太小消躁后的图像仍然存在噪声;相反如果阈值太大,重要图像特征又将滤掉,引起偏差。直观上将,对给定的小波系数,噪声越大,阈值就越大。

图像信号的小波消躁步骤有三步,同一维信号的消躁步骤完全相同,不同的是二维小波变换代替一维小波变换。二维小波分析用于图像消躁的步骤如下:

步骤1:二维图像信号的小波分解

步骤2:对分解后的高频系数进行阈值量化。 步骤3:二维小波重构图像信号。 二、例程分析

[例6-9] 利用小波分析对给定一个二维含躁图像进行消躁处理。

xiaobo0610.m

原始图像

50

100

150

200

250

50100150200

250

含躁图像

50

100

150

200

250

50100150200

250

第1层重构图像

50

100

150

200

250

50100150200

250

第2层重构图像

50100150200250

50100150200

250

[例6-10] 利用二维小波变换对给定图像进行消躁处理。xiaobo0611.m

原始图像

50

100

150

200

250

50100150200

250

含躁图像

50

100150200250

50100150200

250

第一次消躁后的图像

50

100

150

200

250

50100150200

250

第二次消躁后的图像

50100150200250

50100150200

250

6.4 小波分析与图像压缩

所谓图像压缩就是去掉各种冗余,保留重要信息。虽然图像的数据是非常巨大的,但是可以采用适当的坐标变换去除相关从而达到压缩数据的目的。 [例6-11] 利用二维小波变换对给定图像进行压缩处理。

xiaobo0612.m

原始图像

5010015020025050100150200

250

分解后的低频和高频信息

100

200

300

400

500

100200300400

500

第一次压缩后的图像20406080100120

20406080100

120

第二次压缩后的图像

20

40

60

2040

60

第一次压缩后图像的大小:

Name Size Bytes Class

ca1 135x135 145800 double array

Grand total is 18225 elements using 145800 bytes

第二次压缩后图像的大小:

Name Size Bytes Class

ca2 75x75 45000 double array

Grand total is 5625 elements using 45000 bytes

分析:

第一次压缩,压缩比较小,约为4

1;

第二次压缩,压缩比较大,约为14

1。视觉效果也可以。

我们一般不仅在前两层压缩,理论上可以获得任意压缩比的压缩图像,但在对压缩比和图像质量要求较高的情况下,不如其他的编码方法。

小波分析还可以用于图像平滑、融和、增强以及边缘检测等。

小波变换的几个典型应用

第六章小波变换的几个典型应用 6.1 小波变换与信号处理 小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。本部分将举例说明。 6.1.1 小波变换在信号分析中的应用 [例6-1] 以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。已知信号的表达式为 应用db5小波对该信号进行7层分解。xiaobo0601.m 图6-1含躁的三角波与正弦波混合信号波形 分析: (1)在图6-2中,逼近信号a7是一个三角波。 (2)在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4)与正弦信号相关。 图6-2 小波分解后各层逼近信号 图6-3 小波分解后各层细节信号 6.1.2 小波变换在信号降躁和压缩中的应用 一、信号降躁 1.工程中,有用信号一般是一些比较平稳的信号,噪声通常表现为高频信号。2.消躁处理的方法:首先对信号进行小波分解,由于噪声信号多包含在具有较高频率的细节中,我们可以利用门限、阈值等形式对分解所得的小波系数进行处理,然后对信号进行小波重构即可达到对信号的消躁目的。 小波分析进行消躁处理的3种方法: (1)默认阈值消躁处理。该方法利用ddencmp生成信号的默认阈值,然后利用wdencmp函数进行消躁处理。 (2)给定阈值消躁处理。在实际的消躁处理过程中,阈值往往可通过经验公式获得,且这种阈值比默认阈值的可信度高。在进行阈值量化处理时可利用函数wthresh。 (3)强制消躁处理。该方法时将小波分解结构中的高频系数全部置为0,即滤掉所有高频部分,然后对信号进行小波重构。方法简单,消躁后信号比较平滑,但易丢失信号中的有用成分。 小波阈值去噪方法是目前应用最为广泛的小波去噪方法之一。 3.信号降噪的准则: 1.光滑性:在大部分情况下,降噪后的信号应该至少和原信号具有同等的光滑性。

小波分析及其在通信中的应用 张天雷

小波分析及其在通信中的应用 专业:电子信息工程 姓名:张天雷 学号:123408148 河南城建学院 2011年05月29日

小波分析及其在通信中的应用 摘要:小波分析是傅里叶分析的重大突破,是当今许多领域研究的热点。从小波分析的发展历程出发,介绍了小波在现代通信中的一些应用,并指出了未来的一些研究方向。 关键词:小波变换;傅里叶变换;小波应用;通信 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。小波分波是自1986年以来由于Meyer、Mallat和Daubechies等的奠基工作而迅速发展起来的一门新兴学科,它是傅立叶分析划时代的发展结果。与Fourier 变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier 变换的困难问题, 小波分析的目的是“既要看到森林(信号的概貌) ,又要看到树木(信号的细节) |”。因此,它被誉为“学显微镜”。 小波分析已经在图像处理、语音识别,声学,信号处理,神经生理学,磁性谐振成像,地震测量,机械故障诊断,生物医学,医疗卫生,以及一些纯数学应用如解决一些微分方程式等领域取得一系列重要应用。小波变换理论在通信中的应用研究在国际上日益受到重视。小波函数提供的一系列正交基非常适合通信系统中的信号波形设计,扩频特征波形设计,多载波传输系统的正交子信道划分等。 小波变换技术在通信系统中的信源编码、信道编码、调制、均衡、干扰抑制和多址等方面具有广阔的应用前景。 一、小波分析在通信系统中的研究动态 如何在各种信道环境下实现有效可靠的信息传输一直是通信领域关注的课

浙江大学小波变换及工程应用复习题

小波分析复习题 1、简述傅里叶变换、短时傅里叶变换和以及小波变换之间的异同。 答:三者之间的异同见表 2、小波变换堪称“数学显微镜”,为什么? 答:这主要因为小波变换具有以下特点: 1)具有多分辨率,也叫多尺度的特点,可以由粗及精地逐步观察信号; 2)也可以看成用基本频率特性为)(ωψ的带通滤波器在不同尺度a 下对信号作滤波; 如果)(t ?的傅里叶变换是)(ωψ,则)(a t ?的傅里叶变换为)(||a a ω ψ,因此这组滤波 器具有品质因数恒定,即相对带宽(带宽与中心频率之比)恒定的特点。a 越大相当于频率越低。 3)适当的选择基本小波,使)(t ?在时域上位有限支撑,)(ωψ在频域上也比较集中,便可以使WT 在时、频两域都具有表征信号局部特征能力,因此有利于检测信号的瞬态或奇异点。 4)如)(t x 的CWT 是),(τa WT x ,则)(λt x 的CWT 是),( λ τ λλa WT x ;0>λ 此定理表明:当信号)(t x 作某一倍数伸缩时,其小波变换将在τ,a 两轴上作同一比例的 伸缩,但是不发生失真变形。 基于上述特性,小波变换被誉为分析信号的数学显微镜。 3、在小波变换的应用过程中,小波函数的选取是其应用成功与否的关键所在,请列举一些选择原则。 答:选择原则列举如下:(也即需满足的一些条件和特性) 1)容许条件

当?∞ +∞-∞<=ωω ωψ?d c 2 ) (时才能由小波变换),(τa WT x 反演原函数)(t x ,?c 便是对 )(t ?提出的容许条件,若∞→?c ,)(t x 不存在,由容许条件可以推论出:能用作基本小 波)(t ?的函数至少必须满足0)(0==ωωψ,也就是说)(ωψ必须具有带通性质,且基本小波 )(t ?必须是正负交替的振荡波形,使得其平均值为零。 2)能量的比例性 小波变换幅度平方的积分和信号的能量成正比。 3)正规性条件 为了在频域上有较好局域性,要求),(τa WT x 随a 的减小而迅速减小。这就要求)(t ?的 前n 阶原点矩为0,且n 值越大越好。也就是要求? =0)(dt t t p ?,n p ~1:,且n 值越大越好, 此要求的相应频域表示是:)(ωψ在0=ω处有高阶零点,且阶次越高越好(一阶零点就是容许条件),即)()(01 ωψω ωψ+=n ,0)(00≠=ωωψ,n 越大越好。 4)重建核和重建核方程 重建核方程说明小波变换的冗余性,即在τ-a 半平面上各点小波变换的值是相关的。 重建核方程:τττττ?? ?∞ +∞ ∞-=0 00200),,,(),(),(a a K a WT a da a WT x x ; 重建核:><== ?)(),(1)()(1),,,(0000* 00t t c dt t t c a a K a a a a ττ? ττ??????ττ 4、连续小波变换的计算机快速算法较常用的有基于调频Z 变换和基于梅林变换两种,请用 框图分别简述之,并说明分别适合于什么情况下应用。 答: 1)基于调频Z 变换 ),(2a j a n j e A e W ππ--== 运算说明: a .原始数据及初始化:原始数据是)(k ?(1~0-=N k )和a 值,初始化计算包括 a j e A π-=和a n j e W π2-=。 --- 1)(2N k r )2(am N π 12~2--N N 对应于:1~0-=N r

第二代小波变换及在不规则测点重磁资料处理中的应用

第二代小波变换及在不规则测点重磁 资料处理中的应用1 刘天佑,史辉,吴小羊 中国地质大学,湖北武汉(430074) E-mail:liuty4508@https://www.360docs.net/doc/509310131.html, 摘要:1994年swelden提出了基于提升算法的第二代小波,它继承了第一代小波的多分辨特性;不依赖傅立叶变换,小波变换后的系数是整数,运算速度快;并且可以实现不规则测网数据的小波分析。本文实现了基于提升算法的第二代小波变换,并把它应用于不规则测点的重力数据的处理,该方法比预先将不规则测点的重力数据经过二次插值网格化,再进行第一代小波分析的方法不仅精度高,而且失真小。它可用于1:5万~1:20万石油高精度重磁勘探中对不规则测网数据的处理。最后利用第二代小波变换处理了江南古陆CHAMP卫星磁测数据。 关键词:第二代小波提升算法高精度重磁勘探不规则测网江南古陆 CHAMP卫星磁测中图分类号:P3 1.引言 重磁勘探是方法理论成熟,覆盖面积广,应用领域十分广泛的两种地球物理方法。在1:20万或更小的比例尺重磁勘探的数据采集中,通常采用不规则测网。近年,随着人们绿色与环保理念的增强,为了在施工中不砍伐树木、破坏生态环境,在1:10万,1:5万比例尺的重磁数据采集中也常常采用不规则测网。在石油重磁勘探中,由于被探测的目标埋深大(通常密度界面、磁性界面深度在3~10km),产生的重磁异常弱,为了探测深部构造,近年国内已开始采用“高精度三维重磁采集方法”,其做法是沿测点号观测一次,再沿测线号观测一次,通过多次观测来提高观测精度。例如在我国南方复杂地形的石油重磁勘探,1:5万重力设计精度为0.09×10-5m/s2,而实际可达到0.065×10-5m/s2,在野外采集这一环节,目前国内已经可以达到相当高的精度。重磁资料数据处理,如利用傅立叶变换的频率域位场转换,小波分析等,都要求观测数据是等间距的,即规则测网数据。对于实测不规则测点数据,通常要先做网格化处理变为网格数据,由于对不规则测点重磁数据做了网格化(如采用距离平方反比、克吕金法等等),原本野外采集的数据其高精度将由于网格化过程而丧失。因此,寻找一种能够保持原始重磁观测数据高精度的处理方法具有十分重要的意义,它是实现野外采集与室内资料处理同时高精度的重要途径。本文介绍的第二代小波变换是一种能够直接对不规则测点重磁资料进行小波分析的新方法,由此可以对不规则测点重磁资料进行去噪,位场分离等等处理与解释。1994年,W.Sweldens等人针对第一代小波的局限性,提出了一种不依赖傅立叶变换的新的小波构造算法-提升算法(Lifting scheme)[1][2],称之为第二代小波变换,其主要特点有:继承了第一代小波的多分辨特性;不依赖傅立叶变换;小波变换后的系数是整数[3],;基于多项式内插的思想,所有运算都在空间域进行,从而摆脱了对频域的依赖[4]。由于无需傅立叶分析,运算速度大大加快,且逆变换也容易实现,它还简化了小波函数的构造(将小波构造转化为选用合适的插值算法)。对于重磁数据处理,第二代小波变换还有一个重要应用就是可以实现不规则点数据的小波分析。 2.第二代小波变换的基本原理 1本课题得到高等学校博士学科点专项科研基金(项目编号:20050491504)的资助。

小波变换详解

基于小波变换的人脸识别 近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。 具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。 4.1 小波变换的研究背景 法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。在早期的信号处理领域,傅立叶变换具有重要的影响和地位。定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下: ()()dt e t f F t j ωω-? ∞ -∞ += (4-1) 傅立叶变换的逆变换为: ()()ωωπ ωd e F t f t j ? +∞ ∞ -= 21 (4-2) 从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率

的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。 尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进行分析,但却无法将两者有效地结合起来,因此傅立叶变换在信号的局部化分析方面存在严重不足。但在许多实际应用中,如地震信号分析、核医学图像信号分析等,研究者们往往需要了解某个局部时段上出现了哪个频率,或是某个频率出现在哪个时段上,即信号的时频局部化特征,傅立叶变换对于此类分析无能为力。 因此需要一种如下的数学工具:可以将信号的时域和频域结合起来构成信号的时频谱,描述和分析其时频联合特征,这就是所谓的时频局部化分析方法,即时频分析法。1964年,Gabor 等人在傅立叶变换的基础上引入了一个时间局部化“窗函数”g(t),改进了傅立叶变换的不足,形成窗口化傅立叶变换,又称“Gabor 变换”。 定义“窗函数”(t)g 在有限的区间外恒等于零或很快地趋于零,用函数(t )g -τ乘以(t)f ,其效果等同于在t =τ附近打开一个窗口,即: ()()()dt e t g t f G t j f ωττω-+∞ ∞--=?, (4-3) 式(4-3)即为函数f(t)关于g(t)的Gabor 变换。由定义可知,信号(t)f 的Gabor 变换可以反映该信号在t =τ附近的频谱特性。其逆变换公式为: ()()()ττωτωπ ωd G t g e d t f f t j ,21 ? ?+∞ ∞ --- = (4-4) 可见()τω,f G 的确包含了信号(t)f 的全部信息,且Gabor 窗口位置可以随着 τ的变化而平移,符合信号时频局部化分析的要求。 虽然Gabor 变换一定程度上克服了傅立叶变换缺乏时频局部分析能力的不

小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑∑ ∑∑+∞-∞=+∞ -∞ =+∞-∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

小波变换及其应用_李世雄

现代数学讲座 小波变换及其应用 李世雄 (安徽大学数学系 合肥 230039) 科学技术的迅速发展使人类进入了信息时代。在信息社会中人们在各种领域中都会涉及各种信号(语音,音乐,图像,金融数据,……)的分析、加工、识别、传输和存储等问题。长期以来,傅里叶变换一直是处理这方面问题最重要的工具,并且已经发展了一套内容非常丰富并在许多实际问题中行之有效的方法。但是,用傅里叶变换分析处理信号的方法也存在着一定的局限性与弱点,傅里叶变换提供了信号在频率域上的详细特征,但却把时间域上的特征完全丢失了。小波变换是80年代后期发展起来的新数学分支,它是傅里叶变换的发展与扩充,在一定程度上克服了傅里叶变换的弱点与局限性。本文从信号分析与处理的角度来介绍小波变换的基本理论与应用,使具有微积分基础的读者通过本文能对这一新的数学分支有一初步了解。小波变换在函数论、微分方程、数值计算等方面也有着重要的应用,有兴趣的读者可参看[1][4]。 (一)从傅里叶变换谈起 数学中经常用变换这一技巧将问题由繁难化为简易,初等数学中用对数将较繁难的乘除法化为简易的加减法就是很典型的一个例子。而傅里叶变换(简称FT )则是利用积分将一个函数f (t )(-∞

《小波分析及其应用》word版

现代数字信号处理作业 小波分析及其应用 电研111 梁帅

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反演公示,但当时该理论未能得到数学家的认可。1986年法国数学家YMcyer偶尔构造出一个真正的小波基,并与

离散小波变换的多分辨率分析

第10章 离散小波变换的多分辨率分析 在上一章,我们给出了连续小波变换的定义与性质,给出了在),(b a 平面上离散栅格上小波变换的定义及与其有关的标架问题。在这两种情况下,时间t 仍是连续的。在实际应用中,特别是在计算机上实现小波变换时,信号总要取成离散的,因此,研究b a ,及t 都是离散值情况下的小波变换,进一步发展一套快速小波变换算法将更有意义。由Mallat 和Meyer 自80年代末期所创立的“多分辨率分析”技术[87,88,8]在这方面起到了关键的作用。该算法和多抽样率信号处理中的滤波器组及图像处理中的金字塔编码等算法[34,33]结合起来,构成了小波分析的重要工具。本章将详细讨论多分辨率分析的定义、算法及应用。 10.1多分辨率分析的引入 10.1.1信号的分解近似 现以信号的分解近似为例来说明多分辨率分析的基本概念。 给定一个连续信号)(t x ,我们可用不同的基函数并在不同的分辨率水平上对它作近似。如图10.1.1(a)所示,令 ???=0 1)(t φ 其它 10<≤t (10.1.1) 显然,)(t φ的整数位移相互之间是正交的,即 )()(),(k k k t k t '-=?'--?δφφ Z k k ∈', (10.1.2) 这样,由)(t φ的整数位移)(k t -φ就构成了一组正交基。设空间0V 由这一组正交基所构成,这样,)(t x 在空间0V 中的投影(记作)(0t x P )可表为: )()()()()(,t k a k t k a t x P k 0k k 0φ φ∑∑=-= (10.1.3) 式中)()(,0k t t k -=φφ,)(k a 0是基)(,0t k φ的权函数。)(0t x P 如图10.1.1(b)所示,它可以看作是)(t x 在0V 中的近似。)(k a 0是离散序列,如图10.1.1(c)所示。

小波变换及其应用

实验三小波变换及其应用 实验目的 1、通过观察小波变换系数建立对小波变换及其有关性质的感性认识。 2、掌握小波变换及重构方法;了解小波变换基本应用。 实验内容 1、图像二维离散小波变换及其重构; 2、小波变换在去噪、压缩、图像增强上的应用。 实验原理 1、“小波”就是小区域、长度有限、均值为0的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与 Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。 小波转换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续转换在所有可能的缩放和平移上操作,而离散转换采用所有缩放和平移值的特定子集。 小波变换的公式有内积形式和卷积形式,两种形式的实质都是一样的。它要求的就是一个个小波分量的系数也就是“权”。其直观意义就是首先用一个时窗最窄,频窗最宽的小波作为尺子去一步步地“量”信号,也就是去比较信号与小波的相似程度。信号局部与小波越相似,则小波变换的值越大,否则越小。当一步比较完成后,再将尺子拉长一倍,又去一步步地比较,从而得出一组组数据。如此这般循环,最后得出的就是信号的小波分解(小波级数)。 当尺度及位移均作连续变化时,可以理解必将产生大量数据,作实际应用时并不需要这么多的数据,因此就产生了离散的思想。将尺度作二进离散就得到二进小波变换,同时也将信号的频带作了二进离散。当觉得二进离散数据量仍显大时,同时将位移也作离散就得到了离散小波变换。 2、二维离散小波变换常用函数

小波变换理论及应用

2011-2012 学年第一学期 2011级硕士研究生考试试卷 课程名称:小波变换理论及应用任课教师:考试时间:分钟 考核类型:A()闭卷考试(80%)+平时成绩(20%); B()闭卷考试(50%)+ 课程论文(50%); C(√)课程论文或课程设计(70%)+平时成绩(30%)。 一、以图示的方式详细说明连续小波变换(CWT)的运算过程,分析小波变换的内涵;并阐述如何从多分辨率(MRA)的角度构造正交小波基。(20分) 二、综述小波变换理论与工程应用方面的研究进展,不少于3000字。(25分) 三、运用MATLAB中的小波函数和小波工具箱,分别对taobao.wav语音信号在加噪之后的taobao_noise.wav信号进行降噪处理,要求列出程序、降噪结果及降噪的理论依据。(25分) 四、平时成绩。(30分)

(一)连续小波变换(CWT )的运算过程及内涵 将平方可积空间中任意函数f (t )在小波基下展开,称这种展开为函数f (t )的连续小波变换(Continue Wavelet Transform ,简记CWT )其表达式为 t a b t t f a b a f W d )(*)(||1),(? ∞+∞--=ψψ ( 1.1) 其中,a ∈R 且a ≠0。式(1.19)定义了连续小波变换,a 为尺度因子,表示与频率相关的伸 缩,b 为时间平移因子。其中)(| |1)(,a b t a t b a -=ψψ为窗口函数也是小波母函数。 从式(1.1)可以得出,连续小波变换计算分以下5个步骤进行。 ① 选定一个小波,并与处在分析时段部分的信号相比较。 ② 计算该时刻的连续小波变换系数C 。如图1.5所示,C 表示了该小波与处在分析时段内的信号波形相似程度。C 愈大,表示两者的波形相似程度愈高。小波变换系数依赖于所选择的小波。因此,为了检测某些特定波形的信号,应该选择波形相近的小波进行分析。 图1.5 计算小波变换系数示意图 ③ 如图1.6所示,调整参数b ,调整信号的分析时间段,向右平移小波,重复①~②步骤,直到分析时段已经覆盖了信号的整个支撑区间。 ④ 调整参数a ,尺度伸缩,重复①~③步骤。 ⑤ 重复①~④步骤,计算完所有的尺度的连续小波变换系数,如图1.7所示。 图1.6 不同分析时段下的信号小波变换系数计算 图1.7 不同尺度下的信号小波变换系数计算 C =0.2247

小波分析及应用(附常用小波变换滤波器系数)

第八章 小波分析及应用 8.1 引言 把函数分解成一系列简单基函数的表示,无论是在理论上,还是实际应用中都有重要意义。 1822年法国数学家傅里叶(J. Fourier 1768-1830)发表的研究热传导理论的“热的力学分析”,提出并证明了将周期函数展开为正弦级数的原理,奠定了傅里叶级数理论的基础[1]。傅里叶级数理论研究的是把函数在三角函数系下的展开,使得对信号和系统的研究归结为对简单的三角函数的研究。傅里叶级数与傅里叶变换共同组成了平常所说的傅里叶分析[2]。傅里叶级数用于分析周期性的函数或分布,理论分析时经常假定周期是π2,定义如式(8.1-1)、(8.1-2) ()()π2,02 L x f ∈?,()∑∞ -∞ == k ikx k e c x f (8.1-1) 其中 ()dx e x f c ikx k -?=π π20 21 (8.1-2) 然而,被分析函数的性质并不能完整地由傅里叶系数来刻划,这里有一个例子来说明[3]:从任一个平方可和的函数)(x f 出发,为了得到一个连续函数)(x g ,只需或者增大f(x)的傅里叶系数的模,或者保持它不变并适当地改变系数的位相。因此,不可能仅根据傅里叶系数大小的阶就预知函数的性质(如大小、正则性)。 傅里叶变换的定义如式(8.1-3)、(8.1-4) ()()dx e x f F x j ωω? ∞∞ -= (8.1-3) ()()ωωπ ωd e F x f x j -∞∞-?= 21 (8.1-4) 通过引入广义函数或分布的概念,可获得奇异函数(如冲击函数)的傅里叶变换的存在。对于时域的常量函数,在频域将表现为冲击函数,表明具有很好的频域局部化性质。由式(8.1-3)可知,为了得到()ωF ,必须有关于f(x)的过去和未来的所有知识,而且f(x)在时域局部值的变化会扩散到整个频域,也就是()ωF 的任意有限区域的信息都不足以确定任意小区域的f(x)。在时域,哈尔(Haar)基是一组具有最好的时域分辨能力的正交基,它在时域上是完全局部化的,但在频域的局部化却很不好,这是由于哈尔系的两个缺点:缺乏正则性与缺乏振动性。研究者们希望寻找关于空间变量(或时间变量)与频域变量都同时好的希尔伯特(Hilbert)基,R. Balian 认为:“在通讯理论中,人们对于在完全给定的时间内,把一个振动信号表示成由其中每一个都拥有足够确定的位置与有一个频率的小波的叠加这件事感兴趣。事实上,有用的信息常常同时被发射信号的频率与信号的时间结构(如音乐)所传递。当把一个信号表达成时间的函数时,其中的频谱表现并不好;相反地,信号的傅里分析却显示不了信号每一分量发射信号的瞬时与持续时

小波变换及应用

小波变换及应用 一. 为什么研究小波变换 傅立叶变换(Fourier Transform ,缩写为FT )由下列公式定义: 正变换公式 ?()()i t f f t e dt ωω∞ --∞ =?? (1) 逆变换公式 ? ∞ ∞ -?= dt e f t f t i ωωπ )(?21 )( (2) 分析: 1.对于确定信号和平稳随机过程,傅立叶变换把时间域与频率域联系起来,许多在时域内难以看清的问题,在频域中往往表现得非常清楚。 2.变换积分核t i e ω±的幅值在任何情况下均为1,即1=±t i e ω,因此,频 谱)(?ωf 的任一频率点值是由时间过程)(t f 在整个时间域),(∞-∞上的贡献决定的;反之,过程)(t f 在某一时刻的状态也是由)(?ωf 在整个频率域),(∞-∞上的贡献决定的。)(t f 与)(?ωf 彼此之间是整体刻画,不能够反映各自在局部区域上的特征,因此不能用于局部分析。特别是傅立叶变换的积分作用平滑了非平稳过程的突变成分。要知道所分析的信号在突变时刻的频率成分,傅立叶变换是无能为力的。 3.实际中存在许多信号具有局部时间范围(特别是突变时刻)内的信号特征(一般是频率成分),例如,在音乐和语音信号中,人们所关心的是什么时刻奏什么音符,发出什么样的音节;图像信号中的细节信息,如边缘特征。 4.为了对非平稳信号作较好的分析,可以对信号在时域上加一个窗函数 )(τ-t g ,使其对信号)(t f 进行乘积运算以实现在τ附近的开窗,再对加窗的信 号进行傅立叶分析,这就是短时傅立叶变换(Short Time Fourier Transform, 缩写为STFT ),或者称为加窗傅立叶变换(Windowed Fourier Transform )。STFT 定义如下: (,)()()i t f S f t g t e dt ωωττ∞ --∞ =-? (3)

小波变换快速算法及应用小结

离散小波变换的快速算法 Mallat算法[经典算法] 在小波理论中,多分辨率分析是一个重要的组成部分。多分辨率分析是一种对信号的空间分解方法,分解的最终目的是力求构造一个在频率上高度逼近L2(R)空间的正交小波基,这些频率分辨率不同的正交小波基相当于带宽各异的带通滤波器。因此,对于一个能量有限信号,可以通过多分辨率分析的方法把其中的逼近信号和细节信号分离开,然后再根据需要逐一研究。多分辨率分析的概念是S.Mallat在构造正交小波基的时候提出的,并同时给出了著名的Mallat 算法。Mallat算法在小波分析中的地位相当于快速傅立叶变换在经典傅立叶变换中的地位,为小波分析的应用和发展起到了极大的推动作用。 MALLAT算法的原理 在对信号进行分解时,该算法采用二分树结构对原始输入信号x(n)进行滤波和二抽取,得到第一级的离散平滑逼近和离散细节逼近x k1和d k1,再采用同样的结构对d k1进行滤波和二抽取得到第二级的离散平滑逼近和离散细节逼近x k2和d k2,再依次进行下去从而得到各级的离散细节逼近对x k1,x k2,x k3…,即各级的小波系数。重构信号时,只要将分解算法中的步骤反过来进行即可,但要注意,此时的滤波器与分解算法中的滤波器不一定是同一滤波器,并且要将二抽取装置换成二插入装置才行。 多孔算法 [小波变换快速算法及其硬件实现的研究毛建华] 多孔算法是由M.shen于1992年提出的一种利用Mallat算法结构计算小波变换的快速算法,因在低通滤波器h0(k)和高通滤波器h1(k)中插入适当数目的零点而得名。它适用于a=2j的二分树结构,与Mallat算法的电路实现结构相似。先将Mallat算法的电路实现的基本支路作一下变形。令h0k和h1(k)的z变换为H0(z)与H1(z),下两条支路完全等价,只不过是将插值和二抽取的顺序调换一下罢了。图中其它的上下两条支路也为等效支路,可仿照上面的方法证明。这样,我们便可由Mallat算法的二分树电路结构得出多孔算法的电路级联图,原Mallat算法中的电路支路由相应的等效支路所取代,所以整个电路形式与Mallat算法非常相似。如果舍去最后的抽取环节们实际上相当于把所有点的小波变换全部计算出来。 基干FFT的小波快速算法 [小波变换快速算法及其硬件实现的研究毛建华] Mallat算法是由法国科学家StephaneG.Mallat提出的计算小波分解与重构的快速算法,能大大降低小波分解与重构的计算量,因此在数字信号处理和数字通信领域中得到了广泛的应用。但是如果直接采用该算法计算信号的分解和重构,其运算量还是比较大。主要体现在信号长度较大时,与小波滤波器组作卷积和相关的乘加法的计算量很大,不利于信号的实时处理。

小波变换函数(自己总结)

2.1小波分析中的通用函数 1 biorfilt双正交小波滤波器组 2 centfrg计算小波中心频率 3 dyaddown二元取样 4 dyadup二元插值 5 wavefun小波函数和尺度函数 6 wavefun2二维小波函数和尺度函数 7 intwave积分小波函数fai 8 orthfilt正交小波滤波器组 9 qmf镜像二次滤波器(QMF) 10 scal2frg频率尺度函数 11 wfilters小波滤波器 12 wavemngr小波管理 13 waveinfo显示小波函数的信息 14 wmaxlev计算小波分解的最大尺度 15 deblankl把字符串变成无空格的小写字符串 16 errargn检查函数参数目录 17 errargt检查函数的参数类型 18 num2mstr最大精度地把数字转化成为字符串 19 wcodemat对矩阵进行量化编码 20 wcommon寻找公共元素 21 wkeep提取向量或矩阵中的一部分 22 wrev向量逆序 23 wextend向量或矩阵的延拓 24 wtbxmngr小波工具箱管理器 25 nstdfft非标准一维快速傅里叶变换(FFT) 26 instdfft非标准一维快速逆傅里叶变换 27 std计算标准差 2.2小波函数 1 biorwavf双正交样条小波滤波器 2 cgauwavf复Gaussian小波 3 cmorwavf复Morlet小波 4 coifwavf Coiflet小波滤波器 5 dbaux Daubechies小波滤波器 6 dbwavf Daubechies小波滤波器 7 fbspwavf频率分布B-Spline小波 8 gauswavf Gaussian小波 9 mexihat墨西哥小帽函数 10 meyer meyer小波11 meyeraux meyer小波辅助函数 12 morlet Morlet小波 13 rbiowavf反双正交样条小波滤波器 14 shanwavf 复shannon小波 15 symaux计算Symlet小波滤波器 16 symwavf Symlets小波滤波器 2.3一维连续小波变换 1 cwt一维连续小波变换 2 pat2cwav从一个原始图样中构建一个小波函数 2.4一维离散小波变换 1 dwt但尺度一维离散小波变换 2 dwtmode离散小波变换拓展模式 3 idwt单尺度一位离散小波逆变换 4 wavedec多尺度一维小波分解(一维多分辨率分析函数) 5 appcoef提取一维小波变换低频系数 6 detcoef提取一维小波变换高频系数 7 waverec多尺度一维小波重构 8 upwlex单尺度一维小波分解的重构 9 wrcoef对一维小波系数进行单支重构 10 upcoef一维系数的直接小波重构 11 wenergy显示小波或小波包分解的能量 2.5二维离散小波变换 1 dwt2单尺度二维离散小波变换 2 idwt2单尺度逆二维离散小波变换 3 wavedec2多尺度二维小波分解(二维分辨率分析函数) 4 waverec2多尺度二维小波重构 5 appcoef2提取二维小波分解低频系数 6 detcoef2提取二维小波分解高频系数 7 upwlev2二维小波分解的单尺度重构 8 wrcoef2对二维小波系数进行单支重构 9 upcoef二维小波分解的直接重构 2.6离散平稳小波变换 1 swt一维离散平稳小波变换 2 iswt一维离散平稳小波逆变换 3 swt2二维离散平稳小波变换 4 iswt2二维离散平稳小波逆变换

如果第一代小波变换没学好能否学好第二代小波变换答

如果有人问我,如果傅里叶变换没有学好(深入理解概念),是否能学好小波。答案是否定的。如果有人还问我,如果第一代小波变换没学好,能否学好第二代小波变换。答案依然是否定的。但若你问我,没学好傅里叶变换,能否操作(编程)小波变换,或是没学好第一代小波,能否操作二代小波变换,答案是肯定的。 一、基的概念。 我们要明确的是基的概念。两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基,是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEV AL定理。(时频能量守恒)。 二、离散化的处理。 傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。 下面我们谈谈小波。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。一般只将a二进离散化,此时b是任意的。这样小波被称为二进小波。第二步,离散b。怎么离散化呢?b取多少才合适呢?于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以b取尺度的整数倍就行了。也就是越胖的小波,对应频谱越窄,平移量应该越大,采样间隔越大。当然,第一二两步的频域理解,即在满足频域窗口中心是3倍的频域窗口半径的前提下,频域就在统计上是完美二分的。(但很多小波满足不了这个条件,而且频域窗口能量不集中,所以只是近似二分的)。这时的小波变换,称为离散二进小波变换。第三步,引入稳定性条件。也就是经过变换后信号能量和原信号能量有什么不等式关系。满足稳定性条件后,也就是一个小波框架产生成了可能。他是数值稳定性的保证。一个稍弱的稳定条件,就是0

小波变换算法应用

《软件开发》 课程设计 题目:小波算法的设计 【题目要求:将小波算法在MATLAB中实现,并将其应用于数字图像处理中。】 学院:数学学院 专业班级:应用数学09-2班 姓名:明 学号:20096312 指导教师:邢燕、何蕾 2013.3.5

小波算法的设计 一、小波变换背景 小波变换是当前应用数学中一个迅速发展的领域,是分析和处理非平稳信号的一种有力 工具。它是以局部化函数所形成的小波基作为基底而展开的,具有许多特殊的性能和优点。 小波分析是一种更合理的时频表示和子带多分辨分析,对它的研究开始于20世纪80年代, 理论基础奠基于20世纪80年代末。经过十几年的发展,它已在信号处理与分析、地震信号处理、信号奇异性监测和谱古迹、计算机视觉、语音信号处理、图像处理与分析,尤其是图像编码等领域取得了突破性进展,成为一个研究开发的前沿热点。 二、小波变换概念 小波变换是一窗口大小固定不变但其形状可改变的时频局部化分析方法。小波变换在信号的高频部分,可以取得较好的时间分辨率;在信号的低频部分,可以取得较好的频率分辨率,从而能有效地从信号〔语音、图像等)中提取信息。 设)(t f 是平方可积分函数,即)()(2R L t f ∈,则该连续函数的小波变换定义为: dt a b t t f a b a WT f )()(1 ),(*-=?+∞ ∞-ψ 0≠a 式中)()(1 ,*t a b t a b a ψψ=-称为母小波)(t ψ(基本小波)生成的位移和尺度伸缩,其中a 为尺度参数,b 为平移参数。 连续小波变换有明确的物理意义,尺度参数a 越大,则)(a t ψ越宽,该函数的时间分辨 率越低。)(t ab ψ前增加因子 a 1是为了使不同的a 下的)(t a b ψ能量相同。而),(b a WT f 在频域可以表示为ωωψωπωd e F a b a WT b j f )()(2),(*?=。)(ωψ是幅频特性比较集中的带通 函数,小波变换具有表征分析信号)(ωF 频域上局部性质的能力。采用不同的a 值做处理时,)(ωψ的中心频率和带宽都不同,但品质因数(中心频率/带宽)却不变。

相关文档
最新文档