无线电(高频)天线制作

无线电(高频)天线制作
无线电(高频)天线制作

常用的短波天线----天线爱好者(吕远庆)常用的短波天线主要分为3类,第一类是垂直天线(GP),第二类是偶级天线(DP),第三类为八木天线(YAGI)。除此之外,还有框型、钻石型、碟型等等,这里我们主要讨论前三类天线,其中重点探讨偶级天线及其变形。从使用来看,GP天线主要用于近距离—中距离通讯,尤其是近距离通讯依靠地波传送,效果非常好。而DP天线的近距离通讯效果惨不忍睹。由于高度的限制,普通爱好者不可能架设很高的天线,一般来说5-10米高度的GP 天线适合自己架设。但是对于短波波长来说,这样的高度是远远不够的,例如180米波,即使1/2波长也有90米高,对于普通爱好者来说这是根本不可能实现的。因此5-10米高的短波天线如果希望用于短波全段就必须加感,这样发射的效率就很低了。
通常GP天线用于21-29M频段较为普遍,再低的频段就不再使用GP天线了。此外,GP天线的防雷也比较难做,总不可能在天线旁边树一根比天线还高的铁管做避雷针吧?

这是一支典型的DP天线的结构,其中红色部分为绝缘子,和两端的牵引绳隔开。主振子长度为1/2波长*0.95缩短率。为何要采用1/2波长呢?这是因为1/2波长中心抽头后两端各为1/4波长,这样天线的阻抗为50欧姆,才能够和发射机相匹配。DP天线主要采用天波通讯,远距离通讯的效果非常好,且架设简单,不需要竖起很高的天线,制作成本低廉,因此为大多数无线电爱好者所采用。DP天线有许多变形,下面我向大家一一做个介绍。

倒“V”天线,这是DP天线的一种变形方式,这样做的一则可以节省天线的占地面积,另一方面,可以改善原先DP天线的近距离地波通讯效果。但这样做之后,天线具有了方向性,参见图中的最大辐射方向。

由于短波发射机可以工作在0-30M的各个波段,因此单一长度的天线就不能满足我们

的需要了,而为每一个波段分别制作一根天线又不现实。这样,我们就需要一根多波段的倒“V”天线。这样做的好处是节省占地面积,又不需要几根天线来回切换。但这样做的坏处是各波段振子相互影响,需要逐个修剪振子的长度,以达到最佳的匹配状态。

偶级天线需要制作两半一模一样的振子,对于有经验的HAM来说,一个小时就可以制作完成一副多波段天线。那么对于新手来说,有什么好办法可以立刻使用到手的机器呢?当然可以!下面我们就来谈谈单极天线。

图中所示的就是一根单极天线的原型。只要振子的长度足够长,就可以涵盖各个频段。单级天线只有一根振子,如果用作多频段天线,需要使用天线调谐器来适合不同的频段。

这也是单级天线的一种:WINDOM,译称温顿天线,又称偏馈天线。其振子长度为1/2波长*0.95,馈电点偏离中点14%,馈线为单根导线。

单极天线也可以做成多波段,这就是一支多波段单极天线,中心需要加1:5平衡/不平衡转换器。
值得注意的是,单极天线可能带有高压,因此发射机必须可靠接地,天线振子也要放置在无法触及的地方,以防触电。其实短波天线并不神秘,只要经过调整都可以很好地工作。例如我自制的“W”型天线,是倒“V”天线的一种变形,使用效果也很满意。因此,只要掌握原理,开动脑筋发挥您的想象,您也可以设计出优秀的短波天线!

来源:互联网

2013年10月

收音机磁性天线绕制方法

收音机磁性天线绕制方法 磁性天线是用来接收电磁波的。它是由一个铁氧体磁棒和线围绕组组成,对电磁波的吸收能力很强。磁力线通过它就好象很多棉纱线被一个铁箍束得很紧一样。因此,在线圈绕组内能够感应出比较高的高频电压,所以磁性天线兼有放大高频传号的作用。此外,磁性天线还有较强的方向性,能够提高收音机的抗干扰能力。 从磁棒所用的材料来看,目前常用的有两种:一种是初导磁率为400的Mn型锰锌铁氧体,呈黑色,工作频率较低而导磁率较高,适用于中波;另一种初导磁率为60的Ni型镍锌铁氧体,呈棕色,能工作于较高频率而导磁率较低,适用于短波。如果将Ni型用在中波,则接收效率比Mn型低;而Mn型用在短波、则因磁棒对高频的损耗很大,接收效率也很低。 磁棒的尺寸有很多种,主要是为了适应各种机壳的大小而设计的。普通有圆形和扁形两类。圆形磁棒的直径一般是10毫米、长度有100、140、170毫米等数种。扁形的有4x20x60、4x20xl 00、4x20x120毫米等。 磁性天线接收信号的能力与磁棒的长度L及截面积的大小有关。磁棒越长,截面积越大,其接收能力越强,收音机的灵敏度也越高。这是因为:由电台发射的电磁波的磁力线在天空中的分布是很密集的,磁棒的截面越大,它所容纳的数目就越多,线圈上感应的电压就越大,灵敏度就高。另一方面,磁棒越长,它所吸收的磁力线的强度就越大,在线圈上感应出的电压也就越高,所以收音机的灵敏度也就越高。扁形磁棒的作用与同等截面积的圆形棒相同,输出信号功率是一样的。 但仅依靠加粗加长磁棒来提高收音机的灵敏度是要受到限制的。首先,因为磁棒越粗越长,其铁氧体内部损耗就越大,质量因数Q就越低,从而使收音机的灵敏度和选择性变坏。其次,磁棒越粗越长,就要求收音机体积增大,这是不合适的。 线圈绕组是绕在一个纸管上,套在磁棒上的。接收中波段广播的线圈若是采用直径 0.1~0.35毫米单股纱包漆包线并排密绕,所绕圈数视磁棒尺寸不同而有所不同(见表)。 规格尺寸材料使用频率线圈圈数 锰锌磁性天线棒(兆赫)有效导磁率初级次级 Q值 8x100 MXO-400 《1.5 》14 75 8 》150 10x120 MXO-400 《1.5 》15 65 6 》150 10x140 MXO-400 《1.5 》16 58 5 》150 10x170 MXO-400 《1.5 》17.5 40 4 》180 10x120 MXO-400 《2.5 》12.5 68 7 》180 4x20x60 MXO-400 《1.5 》11 80 8 》180 4x20x60 MXO-400 《1.5 》13 65 6 》200 镍锌磁性天线棒 10x140 10~50 》3 58(6) 6(3) 》200 10x160 10~50 》3 48(5) 4(3) 》200

螺旋天线原理与设计基础知识

一般成品螺旋天线都用导电性能良好的金属线绕成并密封好,其工作原理下: 图1 所示一般天线结构示意图。D是螺旋天线直径,L是螺旋天线长度,ρ是螺距,Ⅰ、Ⅱ是螺旋线上相对应两点。 一般可以认为,电磁波沿金属螺旋线以光速C作匀速运动。 从Ⅰ点到Ⅱ点即进行一个螺旋,所需时间为 t = πD/C 而对螺旋天线而言,其轴向电磁波只运动行进了一个螺距ρ,其轴向等效速率 υ=ρ/t =ρ/C (πD) 这种关系也可用图2形式解释。由图2可知: υ=Csinθ=Cρ/(πD)≤C 由上式可以看出,υ总是小于等于C的。故螺旋天线能使电磁波运动速度减慢,是一个慢波系统,其等效波长λ等效小于工作波长λ。对于螺旋天线而言,应谐振于其1/4等效波长,因而能缩短螺旋天线的几何长度。 对于工作于一定中心频率的通讯机来说,其所需绕的线圈数N可以由下式近似算出:

螺距:υ=L/N 所需金属线长度:ι=NπD 对于一般通讯机可取 L=20~40cm D=10~20mm 下表是对一些常用频率螺旋天线的设计实例,其他频率也可类似设计。 f是工作中心频率; D是螺旋天线直径; L是螺旋天线长度; N是螺旋圈数; ι是所需金属线长度。 以上N、ρ为了实际制作需要均取近似值。 制作时可用直径0.5~1.5mm漆包线或镀银铜线或铝线在直径为D的有机玻璃或其他绝缘材料上绕制,并在棒的两头打上小孔,以利于固定金属线;在棒的底端焊上较粗的金属杆或插头固定在棒上,以利于与机器连接;整个螺旋天线的外面可用橡胶管或其他材料套封,并在顶端盖上橡皮帽或用其他材料密封,这样既美观大方,又防雨防蚀,经久耐用。如果没有上述金属丝,也可采用多股细绝缘导线代替,效果相同,只是绕制时固定较为困难。 以上螺旋天线也可用于各种小型遥控设备及其他类似机器上。 为了比较慢波天线与常规拉杆天线的不同,说明慢波天线尺寸较小的优点,我们可对拉杆天线作一计算。 设定参数如下:

蓝牙天线

蓝牙天线 蓝牙可以是一种低成本、低功率以及短距离无线通讯的技术,可以广泛的应用在任何个人行动通讯设备上。而随着1999年1.0版蓝牙规范的正式制订,一场短距离无线通讯网路的革命似乎已经展开,而由蓝牙概念所发展出来的无线个人局域网络(Personal Area Network, PAN)也正式成立。 到目前为止,由于市面上所推出的蓝牙相关产品尚未完全普及,「蓝牙」这个让人耳熟能详的名词在产品应用上还是给人有「犹抱琵琶半遮面」的感觉。探究其产品尚未全面化推出的原因除了蓝牙规范尚未完全底定外(2.0版正在发展中);另一重要的因素则是整个蓝牙模块的价格仍然居高不下,使得蓝牙产品的售价偏高,以Ericsson所推出的蓝牙耳机为例,其预估的售价便高达200美元左右。于是,降低模块的价格便成了蓝牙芯片提供厂商与外围组件制造厂商致力发展的方向。 「天线」,是在无线通讯系统中用来传送与接收电磁波能量的重要必备组件。由于目前技术尚无法将天线整合至半导体制程的芯片中,故在蓝牙模块里除了核心的系统芯片外,天线是另一具有影响蓝牙模块传输特性的关键性组件。在各种不同的蓝牙应用产品中,所使用的天线设计方法与制作材质也不尽相同。选用适当的天线除了有助于搭配产品的外型以及提升蓝牙模块的传输特性外,还可以更进一步降低整个蓝牙模块的成本。这是提供给蓝牙系统厂商在寻求低价格的系统芯片外,另一个可能降低模块成本的考量方向。在本文中将介绍蓝牙天线的设计考量、相关重要参数、蓝牙天线的种类以及在产品上的应用考量。 重要的天线参数 天线最主要的功能在于转换传播介质中(通常是空气介质)辐射电磁波能量与收发机所送出或收到的能量。在能量转换的过程中,会出现有收发机与天线及天线与传播介质之间的不连续接口。在无线通讯系统中,天线必须依照这两个接口的特性来做适当的设计,以使得收发机、天线以及传播介质之间形成一个连续的能量传输路径,如此便可以顺利的将发射机的能量藉由发射天线辐射到传播介质中,并藉由接收天线将辐射电磁波的能量传送到接收机端。为了能够说明这两个接口的各项特性,图1列出了一些重要的参数,以下就这些参数的定义加以说明: 天线输入阻抗(Input Impedance) 天线的输入阻抗是以收发机与天线间的接口往天线端看入所得到的阻抗值。为了让天线与收发机电路间达到阻抗匹配(Impedance Matching)以降低因不匹配现象所造成的反射损失(Return Loss),故天线的输入阻抗必须与收发机电路的输出阻抗互相匹配,如此一来才不至于使得大部份能量在天线与收发机之间就损耗掉。以一般的天线设计来说,通常输入阻抗是无法做大范围的改变。最普遍的设计方式是将天线的输入阻抗设计在一般电路中所常使用的50奥姆,如此便可以与收发机电路的输出阻抗达到50奥姆匹配。但是在特殊的收发机电路设计中,输出阻抗不一定会是50奥姆,此时便需在收发机电路与天线输入端之间设计一个外加的阻抗匹配网络来将天线的输入阻抗值转换到收发机的输出阻抗值。

矿石收音机制作详解

矿石收音机制作详解 无线电通讯发明至今已经有一世纪的历史了,它在人类文明进步中,扮演着相当重要的角色。藉由通讯技术的发达,一切知识的传播不再有障碍,使得科技进步一日千里。在今天,无论是出门人手一支的行动电话或是越来越流行的无线网络及蓝芽接口(Blue Tooth)都是无线通讯的应用范围。其中,最早融入人们生活中的无线电技术,应该就属于收音机广播了。 收音机,这个古早以前被视为"有钱人的象征"的"高科技产品",到现在已经是超级平民化的东西了(甚至有公司行号大量制作印有自己品牌的迷你收音机作为具有广告效果的礼品)。本装机报告所讲解的就是一台最简单的收音机。当然,这个机器并非DZ的套件,其破烂的音质更与Hi-End音响没有任何关联,纯粹是好玩而已,如果您追求的是完美的音响系统,那么不妨可以略过这篇吧。 超级简单的电路架构 小弟我喜欢听收音机广播,晚上睡不着觉,就喜欢拿出放在床边的迷你收音机来听,有时听听警广DJ那流畅到惊人的路况报导,有时候听听中广新闻网午夜的广播剧,或是转到非常具有乡土味的"健康食品介绍节目",听听DJ用非常有趣的台语介绍着产品或是和听众聊天....收音机就这么陪伴着我度过无数个漫长的夜晚。自从开始接触音响DIY以后,任何与音响有关的机器都想要自己动手来装一下,当然,收音机也不例外,于是我跑了几趟图书馆,逛了一些网站,决定来装一台简单的收音机玩玩! 图说:没错,就是这么简单! 您一定开始怀疑了..收音机的电路有这样简单吗? 所以说才是最简单的收音机啊!这机器最特别的一点就是它根本不需要供应电源!看到这个电路,相信或许\勾起一些火腿老前辈们的回忆吧.....。这个电路在20世纪初就被发明,当时人们发现了一些天然矿石具有单向导通的特性,于是就制作为最早的二极管,利用这样的二极管,制成了最早期的收音机,于是就

天线原理与设计习题集

天线原理与设计习题集 第一章 天线的方向图 1.如图1为一元天线,电流矩为Idz ,其矢量磁位表 示为A r j 0r 4Idz ?βπμ?=e z A ,试求解元天线的远区辐射电磁场。 ?θH E ,2.已知球面波函数r e r j /βψ?=,试证其满足波动方程: 022=+?ψβψ 3.如图2所示为两副长度为λ=A 2的对称线天线,其上的电流分别为均匀分布和三角形分布,试采用元天线辐射场的叠加原理,导出两天线的远区辐射场,方向图函数?θH E ,),(?θf 和归一化方向图函数),(?θF ,并分别画出它们在yoz 平面和xoy 平面内的方向图的示意图。 4.有一对称振子长度为,其上电流分布为:A 2|)|(sin )(z I z I m ?=A β试导出: (1) 远区辐射场; ?θH E ,(2) 方向图函数),(?θf ; (3) 半波天线(2/2λ=A )的归一化方向图函数),(?θF ,并分别画出其E 面 和H 面内的方向图示意图。 (4) 若对称振子沿y 轴放置,导出其远区场表达式和E 面、H 面方向图 函数。 H E , 5.有一长度为2/λ=A 的直导线,其上电流分布为,试求该天线的 方向图函数z j e I z I β?=0)(),(?θF ,并画出其极坐标图。 6.利用方向性系数的计算公式: ∫∫ = ππ ? θθ?θπ 20 2 sin ),(4d d F D 计算:(1) 元天线的方向性系数; (2) 归一化方向图函数为 ???≤≤≤≤=其它,0 0,2/,csc ),(0 0??πθθθ?θF 的天线方向性系数。

(3) 归一化方向图函数为: ?? ?≤≤≤≤=其它,0 20,2/0,cos ),(π ?πθθ?θn F n=1和2时的天线方向性系数。 7.如图3所示为二元半波振子阵,两单元的馈电电流关系为/212j I I e π=,要求导出二元阵的方向图函数),(?θT f ,并画出E 面(yz 平面)和H 面(xy 平面)方向图。 8.有三付对称半波振子平行排列在一直线上,相邻振子 间距为d ,如图4所示。 (1) 若各振子上的电流幅度相等,相位分别为 ββ,0,?时,求xy 面、yz 面和H 面方向图函数。 (2) 若4/λ=d ,各振子电流幅度关系为1:2:1,相位 关系为2/,0,2/ππ?时,试画出三元阵的E 面和H 面方向图。 9. 由四个元天线组成的方阵,其排列如图5所示。每个单元到阵中心的距离为8/3λ,各单元的馈电幅度相等,单元1和2同相,单元3和4同相但与1和2反相。试导出该四元阵的方向图函数及阵因子,并草绘该阵列xoy 平面内的方向图。 10. 设地面为无限大理想导电平面。图6所示为由等幅同相馈电的半波振子组成的水平和垂直二元阵,试求其 E 面方向图函数,要求: (1) 对图(a)求出xz 面和yz 面方向图函数,并画出xz 面的方向图; (2) 对图(b) 求出xz 面、yz 面 和xy 面方向图函数,并画出这三个面内的方向图;。 11.一半波对称振子水平架设在理想导电平面上,架设高度为。试分别画出h 0.25,0.5h λλ=两种情况下的E 面和H 面方向图,并比较所得结果。 12.由长为4/λ=A 的单极天线组成的八元天线阵如图7所示,各单元垂直于地

(整理)收音机磁性天线的使用和绕制方法

收音机磁性天线的使用和绕制方法 磁性天线是用来接收电磁波的。它是由一个铁氧体磁棒和线围绕组组成,对电磁波的吸收能力很强。磁力线通过它就好象很多棉纱线被一个铁箍束得很紧一样。因此,在线圈绕组内能够感应出比较高的高频电压,所以磁性天线兼有放大高频传号的作用。此外,磁性天线还有较强的方向性,能够提高收音机的抗干扰能力。 从磁棒所用的材料来看,目前常用的有两种:一种是初导磁率为400的Mn型锰锌铁氧体,呈黑色,工作频率较低而导磁率较高,适用于中波;另一种初导磁率为60的Ni型镍锌铁氧体,呈棕色,能工作于较高频率而导磁率较低,适用于短波。如果将Ni型用在中波,则接收效率比Mn型低;而Mn型用在短波、则因磁棒对高频的损耗很大,接收效率也很低。 磁棒的尺寸有很多种,主要是为了适应各种机壳的大小而设计的。普通有圆形和扁形两类。圆形磁棒的直径一般是10毫米、长度有100、140、170毫米等数种。扁形的有4x20x60、4x20xl 00、4x20x120毫米等。 磁性天线接收信号的能力与磁棒的长度L及截面积的大小有关。磁棒越长,截面积越大,其接收能力越强,收音机的灵敏度也越高。这是因为:由电台发射的电磁波的磁力线在天空中的分布是很密集的,磁棒的截面越大,它所容纳的数目就越多,线圈上感应的电压就越大,灵敏度就高。另一方面,磁棒越长,它所吸收的磁力线的强度就越大,在线圈上感应出的电压也就越高,所以收音机的灵敏度也就越高。扁形磁棒的作用与同等截面积的圆形棒相同,输出信号功率是一样的。 但仅依靠加粗加长磁棒来提高收音机的灵敏度是要受到限制的。首先,因为磁棒越粗越长,其铁氧体内部损耗就越大,质量因数Q就越低,从而使收音机的灵敏度和选择性变坏。其次,磁棒越粗越长,就要求收音机体积增大,这是不合适的。 线圈绕组是绕在一个纸管上,套在磁棒上的。接收中波段广播的线圈若是采用直径0.1~0.35毫米单股纱包漆包线并排密绕,所绕圈数视磁棒尺寸不同而有所不同(见表)。 规格尺寸材料使用频率线圈圈数 锰锌磁性天线棒(兆赫)有效导磁率初级次级Q值 8x100 MXO-400 《1.5 》14 75 8 》150 10x120 MXO-400 《1.5 》15 65 6 》150 10x140 MXO-400 《1.5 》16 58 5 》150 10x170 MXO-400 《1.5 》17.5 40 4 》180 10x120 MXO-400 《2.5 》12.5 68 7 》180 4x20x60 MXO-400 《1.5 》11 80 8 》180 4x20x60 MXO-400 《1.5 》13 65 6 》200 镍锌磁性天线棒 10x140 10~50 》3 58(6) 6(3) 》200 10x160 10~50 》3 48(5) 4(3) 》200 4x20x120 10~50 》3 65(5) 6(3) 》200

一种低剖面平面螺旋天线的设计

一种低剖面平面螺旋天线的设计 [ 录入者:天线微波 | 时间:2008-12-19 12:31:09 | 作者:景小东张福顺 | 来源:Error! Hyperlink reference not valid. | 浏览:498次 ] 摘要文章提出了一种低剖面平面螺旋天线的设计方法,用金属反射板代替传统的A /4反射腔来实现螺旋天线的单向辐射,并在螺旋末端接以阻性负载,以改善天线的电性能。实验结果表明,对于工作频带为1.3GHz~2.1GHz的四臂平面阿基米德螺旋天线,在保证天线特性的前提下,整个天馈结构的厚度减小至17ram。 0 引言 平面螺旋天线由于其结构的自相似性,能在很宽的频带内辐射圆极化波,因而获得了广泛的应用¨J。平面螺旋天线的辐射是双向的,但在实际应用中,往往要求天线具有单向辐射特性。通常的做法是,在螺旋天线的一侧加装反射腔,并根据实际情况在腔内填充微波吸收材料。这种做法能使天线达到相当宽的频带(2GHz~18GHz) 』,但其最大的缺点是,由于微波吸收材料的存在,近一半的辐射能量将被吸收掉 J,这使得天线的效率大大降低;即使不填充吸收材料,反射腔A/4的高度又使得天线的厚度过大,这在某些应用中又令人难以接受。 文章根据四臂平面螺旋天线的原理,设计了相应的馈电网络,将其地板作为天线的平面反射器,代替A/4反射腔,并在螺旋终端接阻性负载,以减小由镜像电流引起的互耦对天线电性能的影响。 通过调整天线辐射器与馈电电路板的间距,在保证天线电性能的前提下,使天线厚度减薄至17ram,满足低剖面要求。 1 天线设计 1.1 平面阿基米德螺旋天线 平面螺旋天线的基本形式为等角螺旋天线和阿基米德螺旋天线,在结构上又有单臂、双臂、四臂之分。文章采用四臂平面阿基米德螺旋天线,其结构如图1所示。其中螺旋臂1的两条边缘线满足的曲线方程分别为:

(整理)天线原理与设计习题集解答_第8_11章.

第八章 口径天线的理论基础(8-1) 简述分析口径天线辐射场的基本方 法。 答:把求解口径天线在远区的电场问题分为两部分: ①. 天线的内部问题; ②. 天线的外部问题; 通过界面上的边界条件相互联系。 近似求解内部问题时,通常把条件理想化,然后把理想条件下得到的解直接地或加以修正后作为实际情况下的近似解。这样它就变成了一个与外部问题无关的独立的问题了。 外部问题的求解主要有: 辅助源法、矢量法,这两种是严格的求解方法; 等效法、惠更斯原理法、几何光学法、几何绕射法,这些都是近似方法。 (8-2) 试述几何光学的基本内容及其在口径天线设计中的应用。 答:在均匀的媒质中,几何光学假设能量沿着射线传播,而且传播的波前(等相位面)处处垂直于射线,同时假设没有射线的区域就没有能量。 在均匀媒质中,射线为直线,当在两种媒质的分界面上或不均匀媒质传播时,便发生反射和折射,而且完全服从光的反射、折射定律。 B A l nds =? 光程长度: 在任何两个给定的波前之间,沿所有射线路径的光程长度必须相等,这就是光程定律。''PdA P dA = 应用: ①. 可对一个完全聚焦的点源馈电的天线系统,求出它在给定馈源功率方向图 为P(φ,ξ)时,天线口径面上的相对功率分布。 ②. 对于完全聚焦的线源馈电抛物柱面天线系统,口径上的相对功率分布也可 用同样类似的方法求解。 (8-3) 试利用惠更斯原理推证口径天线的远区场表达式。 解:惠更斯元产生的场: (1cos )2SP j r S SP jE dE e r βθλ-?= ?+?? 222)()(z y y x x r S S SP +-+-= r , r sp >>D (最大的一边)

CSR 2.4GHz 天线设计参考指南

2.4GHz Inverted-F and Meander Line Antennas Application Note
May 2007
CSR Cambridge Science Park Milton Road Cambridge CB4 0WH United Kingdom Registered in England 4187346 Tel: +44 (0)1223 692000 Fax: +44 (0)1223 692001 https://www.360docs.net/doc/5110695577.html,
? CSR plc 2003-2007 This material is subject to CSR’s non-disclosure agreement.
CS-101512-ANP2

Contents
Contents
1 2 3 4 5 6 7 8 9 Introduction .................................................................................................................................................... 3 Inverted-F Antenna ........................................................................................................................................ 4 Meander Line Antenna................................................................................................................................... 5 Real Designs .................................................................................................................................................. 6 Proximity to Metal Objects ............................................................................................................................ 7 Proximity to Dielectric Materials................................................................................................................... 8
2.4GHz Inverted-F and Meander Line Antennas
Network Analyser........................................................................................................................................... 9 Final Tuning.................................................................................................................................................. 10 Conclusion ................................................................................................................................................... 12
Terms and Definitions ........................................................................................................................................ 13 Document History ............................................................................................................................................... 14
List of Figures Figure 2.1: Inverted-F Antenna ............................................................................................................................... 4 Figure 3.1: Meander Line Antenna.......................................................................................................................... 5 Figure 3.2: Input Impedance of Two Meander Line Antennas................................................................................. 5 Figure 4.1: Approximate Dimensions of Inverted-F Antenna................................................................................... 6 Figure 4.2: Approximate Dimensions of Meander Line Antenna ............................................................................. 6 Figure 7.1: Preparation Before Measurement ......................................................................................................... 9 Figure 7.2: Assembled System Ready to Measure ................................................................................................. 9 Figure 8.1: Locating Product in Far Field of Antenna ............................................................................................ 10 Figure 8.2: Final Tuning Procedure....................................................................................................................... 11
CS-101512-ANP2
? CSR plc 2003-2007 This material is subject to CSR’s non-disclosure agreement.
Page 2 of 14

简单的定向FM天线制作方法

简单的定向FM天线制作方法 制作方法: 收音机以R9700为例!机上的拉杆天线全部缩回!用一只比较细而长的园珠笔杆,直径只 略为比天线拉杆粗一点点,取1/4 A4的打印纸(不要用复印纸,太薄,挺性差),用细笔杆将纸卷成纸筒管,长15cm,用双面 不干胶粘带封口固定。然后准备一根比较细的220伏电源线,取单股,除去外套层(塑料皮 或布套),保留与金属铜丝芯包覆接触的绝缘层,长度大约1.5m。将这根电线从纸筒管的 一端起进行缠绕,纸管端头预贴双面粘胶带以帮助固定电线头,缠绕过程中线与线之间紧 靠,1.5m的线全部缠完并留出一个接线头。缠完后再在纸线筒上均匀包缠一层透明不干胶 带,留出的接线头与室外软天线接好并固定好,最后抽出纸线筒内的笔杆,至此天线就算做好了! 使用时将纸线筒管套入完全缩回的天线拉杆上,非常方便! 德生公司为其收音机配置的软天线又细又短,主要是防止信号过载,因为是采用直接夹接 机上拉杆天线。这样的话一方面室外天线感应的广播信号非常有限,另一方面—些污染的 电磁波也容易通过直接连接的接头方式而进入收音机。 本文采用的接合方式实际上是一个“电感电容”,这样外接天线部份可以选择较粗较长的 电源线,5—10m是没问题的,可以感应更遥远或更强的信号也不会过载,一般

广播信号都 是较高的频率,非常容易通过这个“电感电容”。而许多污染性的电磁波频率都比较低, 反而不容易通过这个“电感电容”,起到了很好的阻隔作用。同时由于是做成了螺旋环管 状,又起到了对室内电磁污染的屏蔽作用! 一种简易、方便的收音机天线制作方法,效果很好,现贴出来与大家共享。 条件:如果你家有铝合金的窗户,阳台窗或着金属的防盗窗,就可以开始准备了。 准备:手钻或电钻、钻头(Φ3mm)、起子、圆头自攻螺丝(做铝合金的店子里都有) ,垫片,几根长的单股电线(将双股花线撤散)。万能胶、透明胶。A4复印纸一张。 方法: 1、在铝合金窗、阳台窗或金属防盗窗不显眼的角落,用钻头钻一个眼,将电线一头剥 出4-5CM长的铜丝,缠在圆头自攻螺丝上,固定在钻好的眼上,上垫片可以保证压接的更 牢固。 2、然后将电线拉到你经常听收音机的位置(床头、书桌或其它地方),长度尽量多留 一点。使用时,将电线头在收音机拉杆天线上缠几圈就可以了(注意:这一头的电线不要 剥皮,不要露出铜丝,保证绝缘护套的完好),如果想更精致一点,可以接着按下述方法 做。

螺旋天线的仿真设计

一、设计题目:螺旋天线的仿真设计 二、设计目的: (1)熟悉Ansoft HFSS软件的使用。 (2)学会螺旋天线的仿真设计方法。 (3)完成螺旋天线的仿真设计,并查看S参数以及场分布。 三、设计要求: 螺旋天线是一种常用的典型的圆极化天线,本设计就是基于螺旋天线的基础理论及熟练掌握HFSS10软件的基础上的,设计一个右手圆极化螺旋天线,要求工作频率为4G,分析其远区场辐射特性以及S曲线。 螺旋天线通常用同轴线馈电,天线的一端与同轴线的内导体相连,另一端则处于自由状态。 螺旋天线示意图如图1所示: 图1、螺旋天线

四、设计参数: 中心频率f=4GHz λ=75mm 螺旋导体的半径d=0.15λ=11.25mm 螺旋线导线半径a=0.5mm 螺距s-0.2λ=15mm 圈数N=7 轴向长度l=Ns 五、设计步骤 在HFSS建立的模型中,关键是画出螺旋线模型。画螺旋线,现说明螺旋线模型的创建。 求解类型设置与上两个设计一样,材料为copper,模型单位为mm,螺旋线的创建如下。 点击Draw>Circle,输入圆的中心坐标。X:11.25 Y:0 Z:0 ,按回车键结束。输入圆的半径dX:0.5 dY:0 dZ:0 按回车键结束输入。在特性窗口中将Axis改为Y。点击确认。选中该circle。点击Draw>Helix,输入X:0 Y:0 Z:-7.5,按回车键结束输入,输入dX:0 dY:0 dZ;100 按回车键,在弹出的窗口中,Turn Directions:Right Hand Pitch:15(mm) Tuns:7 Radius change per Turn:0点击OK。在特性窗口中选择Attribute标签,将名字改为Helix。建立螺旋天线与同轴线相连的连接杆ring。 点击Draw>Cylider,创建圆柱模型。输入坐标为X:11.25 Y:0

蓝牙天线设计

引言 蓝牙是一种支持设备短距离通信(一般是1Om之内)的无线电技术,能在设备之间进行无线信息交换,其工作频段是2.4~2.483 GHz的全球通信自由频段,目前已广泛应用在移动通信设备中。天线是蓝牙无线系统中用来传送与接收电磁波能量的重要必备组件。由于目前技术尚无法将天线整合至半导体芯片中,故在蓝牙模块里除了核心的系统芯片外,天线是另一个影响蓝牙模块传输特性的关键性组件。本文给出了一款倒F型天线的设计,该天线尺寸小,设计简约,制造成本低,工作效率高,适用于蓝牙系统应用。 1 天线设计 倒F型天线是上世纪末发展起来的一种天线,具有结构简单、重量轻、可共形、制造成本低、辐射效率高、容易实现多频段工作等独特优点,因此,近几年来,倒F型天线得到了广泛的应用研究和发展。 倒F天线是在倒L天线abc的垂直元末端加上一个倒L结构edb构成。它使用附加的edb结构来调整天线和馈电同轴线的匹配。该天线具有低轮廓结构,辐射场具有水平和垂直两种极化,另外由于结构紧凑而且具有等方向辐射特性,同时其良好的接地设计可以有效提高天线的工作效率。图1所示是典型的倒F型天线结构图,该天线可以看作是e端短路,a端开路的谐振器,所以,a端电压最大,电流为零,e端电压为零,电流最大。由于倒F天线的结构中包含了接地的金属面,可以降低对射频模块中接地金属面的敏感度,因此非常适合用于片上系统。另外,由于倒F天线只需利用金属导体配合适当的馈线来调整天线短路端到接地面的位置,因而制作成本较低,可以直接与PCB电路板焊接在一起。图2所示为倒F型天线在电路板上的布置图。 倒F型天线在电路板上的布置图 2 测量基本原理 图3所示是一个网络分析仪的原理框图。在对倒F天线进行测量时,先由仪器发出扫频信号,并将该信号通过输出口送到被测设备,当信号通

螺旋天线的制作参数

螺旋天线的制作参数 2009-08-01 20:01 我在论坛上混了一段时间了,到目前仍然没有作为,惭愧呀,由于兴趣所在,我找了天线原理书籍,其中介绍的螺旋天线有明确的参数和方法,这里我就把书中的内容简单转述一下吧。(高手就绕过吧) 首先了解一些基础部分: 1、我们的WLAN所使用的2.4GHz电磁波是行波,即电磁波的电场和磁场两者都与电波的传播方向相垂直。 2、我们的天线主要是利用电磁波中的电场分量来负载信息的 正题:螺旋天线的制作参数 我们制作螺旋天线是将铜丝绕着圆管一圈圈斜向上绕,角度绕过360度时算作是一圈,绕这一圈所使用的一匝铜线长度记为L,把上下相邻两圈的间距记作S,铜线形成的螺圈的实际半径记为R(就是PVC管的半径+铜线的横切面半径),用这个半径R算出来的圆周长记为O.(有些符合不知如何输入,我只好用文字,锻炼大家的理解和想象能力了) L: 螺线旋转一圈的长度,; S:上下相邻两个螺圈的距离 R: 螺圈的半径(PVC管的半径+铜线的横切面半径) O:螺圈的周长(用R算出来的那个), 对于波长和L长度的关系:(下面指的是比值) L/波长<0.5 ------------------------L小于0.5个波长,天线将工作于法向辐射模式 L/波长=(0.8到1.3)-----------------L居于0.8个波长到1.3个波长之间,轴向辐射模式(我们需要的) L/波长>1.3 -----------------------L大于1.3个波长,圆锥辐射模式 我们要的是轴向辐射模式 L对应的是工作波长,对于行波L可以取值范围是0.8~1.3个波长,我们最好就直接用一个波长,即12.6CM 算了 L 、S、O 三者的关系:L的平方=S的平方+O的平方 L>S ; L>O S和O关系不定 我们确定好L 长度之后,S 和O 是可以方便自定义的,这样我们可以去方便利用用不同口径的PVC管了 理论是这样说的,我还没有亲自去试验呢... 完整结构形象概样:1铜线绕在圆管上作为天线部分,圈数多点好; 2 反射金属板(约一个波长直径的圆,形状其实无关,主要看面积) 3 这两者不相接,相互距离尽量小些即可 接线方式: 将馈线接在铜线的一段,屏蔽层接反射板 补充说明: 1铜线绕多少圈及相应效果本书没有数据可查,我想至少要10多圈吧,可能是越多越好吧 2通过L 、S、O 三者的关系,我们可以利用上多种口径的PVC管,而不用拘泥了老外给出的数据了。这里L=12.6cm是固定的啦它就是2.45Ghz电波的波长,O约等于PVC管的周长(不是直径D呀,注意了,O=3.14*D),具体来说就是只要水管的直径D小4.01cm的原则上都是可以利用的。 3由于我没有条件去实践,所以不知到效果会是怎样,据某网页的计算软件来看,15圈左右就有25dB的增益,具体的我也不知道,还有赖于各位做一回排头兵,试一试并发布一下效果图,共同提高大家的水平! 具体操作: 制作并不复杂,其实L 、S 、O 三者构成的是直角三角形,如下图,大家只要事先将实际尺寸的图线画在一张纸上面,然后贴在PVC管上面绕线的具体位置就一目了然了。看下图就会明白的了,很简单的! 将图纸贴在PVC管上之后沿着对角线(L)绕铜丝就行了,不是很方便吗... 绕线位置图.jpg (31.97 KB)

无线电(高频)天线制作

常用的短波天线----天线爱好者(吕远庆)常用的短波天线主要分为3类,第一类是垂直天线(GP),第二类是偶级天线(DP),第三类为八木天线(YAGI)。除此之外,还有框型、钻石型、碟型等等,这里我们主要讨论前三类天线,其中重点探讨偶级天线及其变形。从使用来看,GP天线主要用于近距离—中距离通讯,尤其是近距离通讯依靠地波传送,效果非常好。而DP天线的近距离通讯效果惨不忍睹。由于高度的限制,普通爱好者不可能架设很高的天线,一般来说5-10米高度的GP 天线适合自己架设。但是对于短波波长来说,这样的高度是远远不够的,例如180米波,即使1/2波长也有90米高,对于普通爱好者来说这是根本不可能实现的。因此5-10米高的短波天线如果希望用于短波全段就必须加感,这样发射的效率就很低了。
通常GP天线用于21-29M频段较为普遍,再低的频段就不再使用GP天线了。此外,GP天线的防雷也比较难做,总不可能在天线旁边树一根比天线还高的铁管做避雷针吧? 这是一支典型的DP天线的结构,其中红色部分为绝缘子,和两端的牵引绳隔开。主振子长度为1/2波长*0.95缩短率。为何要采用1/2波长呢?这是因为1/2波长中心抽头后两端各为1/4波长,这样天线的阻抗为50欧姆,才能够和发射机相匹配。DP天线主要采用天波通讯,远距离通讯的效果非常好,且架设简单,不需要竖起很高的天线,制作成本低廉,因此为大多数无线电爱好者所采用。DP天线有许多变形,下面我向大家一一做个介绍。 倒“V”天线,这是DP天线的一种变形方式,这样做的一则可以节省天线的占地面积,另一方面,可以改善原先DP天线的近距离地波通讯效果。但这样做之后,天线具有了方向性,参见图中的最大辐射方向。 由于短波发射机可以工作在0-30M的各个波段,因此单一长度的天线就不能满足我们

螺旋天线设计

天线 ――螺旋天线物理尺寸对天线效率的影响 一、天线概览 绝大多数天线具有可逆性:即天线用作接收天线时的特性与其处于发射状态时的特性时相同的。 辐射方向图:表示给定距离下天线的辐射随角度的变化,辐射的强弱由离天线给定距离r处的功率密度S来评价。接收模式下,天线对于某方向来波的响应正比于辐射方向图上该方向的值。 方向系数:表示最大辐射强度于全空间均匀辐射时的平均辐射强度之比。 极化:描述了天线辐射时电场矢量的特征,瞬时电场矢量随时间的轨迹图决定波动的极化特性。 天线的输入阻抗:是天线终端电压与电流之比,通常的目的是使天线的输入阻抗与传输线的特征阻抗相匹配。 §天线分类 依据频率特性的不同,可以把天线分成四种基本类型。 ◎电小天线:天线的尺寸比一个波长l小很多。特征:很弱的方向性,低输入电阻,高输入电抗,低辐射效率。适合于VHF或更低的波段。如短振子,小环。 ◎谐振天线:在谐振频率点或某个窄频带内工作令人满意。特征:低或中等增益,实输入阻抗,带宽狭窄。主要用于HF到低于1GHz的频段。如半波振子,微带贴片,八木天线。 ◎宽带天线:在一个很宽的频率范围内,方向图、增益和阻抗几乎是常数,并且能够用有效辐射区的概念表述其特征,该区域在天线上的位置随频率的变化而变化。特征:低到中等增益,增益恒定,实输入阻抗,工作频带宽。主要用于VHF直至数个GHz的频段。如螺线天线,对数周期天线。 ◎口径天线:由一个供电磁波通过的开放的物理口径。特征:高增益,增益随频率增大,带宽中等。用于UHF和更高的频段。如喇叭天线,反射面天线。 §天线的电气特性 (1)方向特性――方向图(BW0.5,FSLL)、方向系数D、增益G。 (2)阻抗特性――输入阻抗Zin、效率 2 640 r h R l 骣 ÷ ? ?÷ ?÷ ?桫 A h,(辐射阻抗Z S) (3)带宽特性――带宽、上限频率f1,下限频率f2。(4)极化特性――极化、极化隔离度。

天线原理与设计期中考试资料

西南交通大学2012-2013 学年第( 2 )学期期 中考试试卷 课程代码 3143373 课程名称 天线原理与设计 考试时间 90分钟 阅卷教师签字: 一. 判断题:(20分)(正确标√,错误标?,每题2分) 1. 元天线的方向性系数为1.5。(√) 2. 元天线的远区辐射场是平面波。(?) 3. 在功率方向图中,功率为主瓣最大值一半对应两点所张的 夹角就是主瓣宽度。(√ ) 4. 侧射式天线阵须满足各单元馈电幅度和相位均相等。(√ ) 5. 坡印亭矢量法可以求出天线的辐射阻抗。(? ) 6. 对称振子的平均特性阻抗愈小,其频率特性就愈好。(√ ) 7. 对称振子的谐振长度总是略大于0.25和0.5。(? ) 8. 右旋圆极化天线可以接收左旋圆极化天线发射的信号。 (? ) 9. 要使接收天线接收到的功率达到最大,需满足阻抗匹配和 班 级 学 号 姓 名 密封装订线 密封装订线 密封装订线

极化匹配。(√ ) 10.笼形天线设计增加了阻抗频带宽度。(√ ) 二. 填空题:(30分,每空2分) 1.在场强方向图中,主瓣宽度是指场强大小下降到最大值的( 0.707 )倍处对应的两点之间的夹角。 2. 在功率方向图中,主瓣宽度是指功率大小下降到最大值的( 0.5 )倍处对应的两点之间的夹角。 3. 在分贝方向图中,主瓣宽度是指场强的分贝值下降到(-3 )dB 处对应的两点之间的夹角。 4.当2/(1.44)l λ≤时,对称阵子的最大辐射方向在0 90m θ=。 5.当2/ 1.44l λ≤时,对称阵子的最大辐射方向在 (90)m θ=。 6.半波天线的归一化方向图()cos cos 2( )sin F πθθθ ?? ???=, 方向性系数(1.64)D =,输入阻抗(73.142.5)Z j =+Ω。 7.间距为 d 的二元等幅同相(1,0)m α==阵因子 ()cos ,(2cos )a d f πθ θ?λ =。 8.间距为d 的二元等幅反相(1,)m απ==阵因子 ()cos ,(2sin )a d f πθ θ?λ =。 9. 间距为d 的均匀直线式N 元天线阵的阵因子

相关文档
最新文档