第一章 光敏电阻及其特性1

第一章  光敏电阻及其特性1
第一章  光敏电阻及其特性1

第1章 光敏电阻及其特性

1.1 光敏电阻的功能与结构

光敏电阻是根据光电导效应制成的光电探测器件,所谓光电导效应就是光电材料受到光辐射后,材料的电导率发生变化。它可以这样理解:材料的电导率、电阻与该材料内部电子受到的束缚力有关,束缚力越大,电子越难自由运动,电导率越小,电阻越大;当电子吸收外来的一定能量的光子后,根据能量守恒原则,动能增加,材料对电子的束缚力减弱,电导率减小,电阻减小。从而等到结论:光敏电阻的阻值会随着光照强弱的变化而变化。光照强,光敏电阻的阻值就小;光照弱,光敏电阻的阻值就大。暗电阻光敏电阻在不受光时的阻值称为暗电阻,亮电阻光敏电阻在受光照射时的电 阻称为亮电阻。

光敏电阻在应用时,通常采用的电路形式

如图1-1所示。R p 为光敏电阻,R L 为负载电阻, V b 为偏置电压,V L 为光敏电阻两端电压。

光敏电阻在使用时呈现一定的电路特性:光 敏电阻的两极加上一定电压后,当光照射在光电

导体时,由光照产生的光生载流子在外加电场作用下沿一定方向运动,在电路中产生电流。光敏电阻的电路特性(电阻、转换效率等)和光电导体长度有关。通常将光敏电阻的光敏面作成蛇形,电极作成梳状,如图1-2所示;这样既可 保证有较大的受光表面,也可以减小电极之间距离, 从而既可减小极间电子渡越时间,也有利于提高灵 敏度。

1.2 光敏电阻的特性

光敏电阻的材料和结构不同,会使光敏电阻

呈现不同的特性。在不同的应用场合下,就应选用不同特性的光敏电阻。光敏电阻的选择通常应考虑光电材料的光谱特性、光电电路的转换效率和响应时间等因素。

1.2.1 光谱特性

光敏电阻的光电导效应不是在任意的光照下都能呈现,只有光子能量大于材料的间接能隙(原子的能级之差)时,光敏电阻才能呈现光电导效应。

光敏电阻与入射光光谱之间的特

图1-1

光敏电阻基本应用电路

图1-2 光敏电阻的电路符号及蛇形结构

性,称之为光敏电阻的光谱特性。不同光敏材料的光谱特性有很大差异。

光敏电阻按材料分类有两种类型:本征型光敏电阻和掺杂型光敏电阻。由于掺杂材料灵活改变了光敏电阻的光谱特性,目前市场上所采用的基本上是掺杂型光敏电阻。其光谱特性及最佳工作波长范围可分为三类:一类是紫外光 敏感型光敏电阻,如硫化镉和硒化镉等。另一类 是可见光敏感型光敏电阻,如硫化铊等。还有一 类是红外光敏感型光敏电阻,如硫化铅等。常见 的光敏电阻有硫化镉光敏电阻、硫化铅光敏电阻、 锑化铟光敏电阻、碲镉汞系列光敏电阻等。特别 提示的是:硫化镉与人眼的光谱光视效率曲线的 范围和峰值波长(555nm) 非常接近,因此可用于 与人眼有关的仪器,例如照相机、照度计、光度计等。

1.2.2 照度特性

在光敏电阻上加上一定电压时,光敏电阻的光电流或光电阻与入射光照度之间的关系称为光敏电阻的照度特性。CdS 光敏电阻在恒定电压作 用下的光照特性曲线如图1-4所示,当照度很低时, 曲线近似为线性,随着照度的增高,线性关系变坏, 当照度很高时,曲线近似为抛物线形。图中,曲线的 斜率表示的是光敏电阻的转换效率(入射光辐射与光 生电流)。在光电测量场合下,对照度曲线线性度要 求较高;但在光电开关应用中,对线性度要求不高。

1.2.3 响应时间

光敏电阻在光照时,光生载流子的产生或消失都要经过一段时间,这就是光敏电阻的响应时间,它反映了光敏电阻的惰性。光敏电阻的响应时间约为10-2~10-3s ,与其他光电器件相比,其响应时间是最慢的。CdSe 光敏电阻的响应时间约为10ms ,CdS 的响应时间约为100ms 。因此,光敏电阻通常都工作于直流或低频状态下。

1.2.4 温度特性

温度特性温度变化影响光敏电阻的光谱响应,同时,光敏电阻的灵敏度和暗电阻都要改变,尤其是响应于红外区的硫化铅光敏电阻受温度影响更大。图1-5为硫化铅光敏电阻的光

图1-3

光敏电阻的光谱特性曲线

图1-4 硫化镉光敏电阻的光电特性曲线

谱温度特性曲线,它的峰值随着温度上升向波 长短的方向移动。因此,硫化铅光敏电阻要在 低温、恒温的条件下使用。对于可见光的光敏 电阻,其温度影响要小一些。

1.3 光敏电阻的应用

光敏电阻可将光转换为电信号,是一种典型的光电器件,但光敏电阻和其它半导体光电

器件相比有以下特点:(1)光谱响应范围相当宽。根据光电导材料的不同,光谱响应可从紫外光、可见光、近红外扩展到远红外,尤其对红光和红外辐射有较高的响应度。(2)工作电流大,可达数毫安。(3)所测光强范围宽。既可测强光,也可测弱光。(4)灵敏度高。光导电增益大于1。(5)偏置电压低,无极性之分,使用方便。其缺点是在强光照射下光电转换线性较差。光电驰豫过程较长,频率响应很低。

光敏电阻在农业生产和发展生活方面,主要用在自动控制装置和光检测设备中,如生产线上的自动送料、自动门装置、应急自动照明、自动给水与停水装置、生产安全装置、烟雾火灾报警装置等方面,还广泛应用于自动灯塔、劳动保护、照度测量、电子娱乐及家用电器等方面。

第2章 光敏电阻特性参数及其测量

2.1 实验目的

通过光敏电阻特性的参数测量实验,学习光敏电阻的基本工作原理;掌握光敏电阻的光照特性、时间响应特性和伏安特性等基本特性。达到能够选用光敏电阻器件进行光电检测方面课题设计的目的。

2.2 实验仪器

1) GDS-Ⅱ型光电实验平台主机系统; 2) LED 光源及其夹持装置各一个; 3) 光敏电阻探测器及其夹持装置各一个; 4) 磁性表座二只; 5) 连接线20

条;

图1-5 硫化铅光敏电阻的温度特性

6)示波器探头2条;

2.3 实验原理

某些物质吸收了光子的能量后,产生本征吸收或杂质吸收,从而改变了物质电导率的现象称为物质的光电导效应。利用具有光电导效应的材料(如硅、锗等本征半导体与杂质半导体,硫化镉、硒化镉、氧化铅等)可以制成电导(或电阻)随入射光度量变化器件,称为光电导器件或光敏电阻。

当光敏电阻受光照射时,其阻值将发生变化。光照越强,它的电阻值越低。因此,可以通过一定的电路得到输出信号随光的变化而改变的电压或电流信号。测量信号电压或电流很小。当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减少,因此电路中电流迅速增加。便可获得光敏电阻随光或时间变化的特性,即光敏电阻的特性参数。

通过本节实验,要求深入掌握“光电技术”第2章2.2节所讲授的关于光敏电阻光照特性、伏安特性和时间响应特性等内容。

实验中所涉及的变换电路应参考“光电技术”第2章2.2节所讲授的光敏电阻变换电路。

2.4 实验内容

1、光敏电阻暗电阻和亮电阻的测量;

2、光敏电阻光照特性测量;

3、光敏电阻伏安特性测量;

4、光敏电阻时间响应特性测量

2.5 实验步骤

2.5.1 暗电阻的测量

从GDS-Ⅱ型实验平台备件箱中取出光敏电阻实验装置,并将光敏电阻探测器实验装置的引线连接到实验平台上的半导体光电传感器插孔内,并用导线将光敏电阻及测量电表连接成如图2-1所示电路,电路中的电流表用实验平台主机提供的数字微安表,电源也使用由实验平台提供的数字电压表,可调电源应该用平台上提供的12V电源、电位器、电阻与三极管等元器件自行设计装调出可调电压的电源。

实验时,应该首先测量光敏电阻的暗电阻。测量时千万不要打开光敏电阻实验装置的保

护窗盖,必须使它始终处于暗室状态才能测出它的真实暗电阻,否则由于光敏电阻的惯性与

前历效应使你在实验阶段无法测出准确的暗电阻。

按着如图2-1所示的测量电路测出它的暗电流I d ,它与电源电压U bb 之比的倒数即为光敏电阻的暗电阻R d 。将所测得的电源电压U bb 值与电流I d 值分别填入表2-1,得到光敏电阻暗电阻的阻值。

表2-1光敏电阻暗电阻的测量

测量次数

电源电压U bb (V)

电流I P (mA) 暗电阻R d (Ω) 测量公式

1 5 0.01 0.5M P bb d I U R =

2 10 0.01 1.0M

3 12 0.01 1.2M 4

15

0.01

1.5M

2.5.2 亮电阻的测量

光敏电阻的亮电阻测量装置如图2-2所示,测量电路依然如图2-1所示。当光敏电阻在一定的光照下(可以用数字照度计事先测出LED 光 源在不同电流下的照度值确定),测得的电流I P 与电源电压U bb (测量亮电阻时为确定值如12V ) 之比的倒数为光敏电阻的亮电阻阻值R L 。将所测 得的电源电压U bb 值与电流I P 填入表2-2,利用测 量数据计算光敏电阻的亮电阻值。

表2-2光敏电阻亮电阻的测量

测量次数

电源电压U b (V) 入射光照

E v(lx)

电流I P (mA) 亮电阻R L (Ω) 测量公式

1 1

2 100 0.58 20.69K P bb L I U R =

2 12 120 0.58 20.69K

3 12 140 0.60 20.00K

4 12 160 0.62 19.35K

5 12 180 0.62 19.35K

6 12

200

0.65

18.46K

2.5.3 光敏电阻光照特性的测量

利用GDS-Ⅱ型光电综合实验平台,按图2-1所示的测量电路连接便可以进行光敏电阻光照特性的测量实验。实验前,先将发光二极管用数字照度计进行标定,得到发光管电流I f 与受光面照度E v 间的对应关系。然后,将光敏电阻的光敏面置于照度计标定过的受光面上。通过改变发光管电流I f 获得不同光照度E v 所对应的阻值R p 。将I f 与阻值R p 或(照度E v 与阻值R p )分别用直角坐标系及以10为底的对数坐标系画出,该曲线即为光敏电阻的光照特性曲线。比

较二种坐标系下的曲线,分析它们的特点。坐标图见后。

表2-3光敏电阻光照特性的测量

测量次数电源电压U b

(V)受光面照度

E v(lx)

发光管电流

I f(mA)

光敏电阻电

流I p(mA)

阻值R p

1 5 100 0.6

2 0.28 17.86k

2 5 120 0.7

3 0.31 16.13k

3 5 140 0.83 0.35 14.29k

4 5 160 0.90 0.37 13.51k

5 5 180 1.07 0.40 12.50k

6 5 200 1.12 0.43 11.63k

7 5 300 1.86 0.63 7.94k

2.5.4 光敏电阻的伏安特性及其测量

利用GDS-Ⅱ型光电综合实验平台提供的硬件资源与示波输入端口很容易构成光敏电阻伏安特性的测量系统。光敏电阻的伏安特性是光敏电阻在一定光照下加在光敏电阻两端的电压U与流过的电流I p间的关系曲线。由于光敏电阻的本质是电阻,因此,伏安特性曲线应为直线。

先将发光二极管光源与GDS-Ⅱ型光电实验平台的电源连接起来,并用照度计测出光敏面的照度,并作记录;再将光敏电阻探头的光敏面安装到受照面上,用连接线将光敏电阻和电源、测量仪表连接成如图2-1所示的测量电路。改变电源电压,得到一族U与I p间的关系值,在如图2-3所示直角坐标系下画出U—I p特性曲线,即为光敏电阻的伏安特性曲线。

当然,利用光电实验平台提供的如图2-4所示的锯齿波扫描电压与同步阶梯波可以很方

图2-4 锯齿波与阶梯波扫描波形图

便地测出光敏电阻的伏安特性曲线。测量方式为在如图2-1 所示的电路中用锯齿波扫描电压

代替电源,用阶梯波给LED 光源提供阶梯光照到光敏电阻上,用锯齿波做X 轴扫描,用流过光敏电阻的电流在外接固定电阻上产生的电压为Y 轴就可以测出它的伏安特性曲线,如图2-5 所示。

图2-5 光敏电阻的伏安特性

实验时,应该先用平台提供的LED 光源与被测光敏电阻实验装置与连接导线和元器件

构成测量电路。

2.5.5 时间响应特性及其测量

光敏电阻是半导体光电器件中时间响应特性最强(或惯性最大)的器件,掌握它的测量方法有利于正确应用这类器件,同时也为测量其他光电器件的时间响应奠定基础。

1.时间响应特性

参考“光电技术”第2 章2.2 节中光敏电阻时间响应特性的内容,掌握光敏电阻在弱辐射与强辐射条件下光敏电阻时间响应的不同。

(1) 弱辐射条件下的时间响应

设入射辐射如图2-6 上方的方波所示光脉冲,其辐 射通量Φ e 表示为

()0

t 0t 0

,>=??

?Φ=Φ当当e e t (2-1)

光敏电阻的光电导率Δ σ 和光电流I e 随时间变 化的规律为如图2-6 下方所示的输出波形,其变化规律 为:

(

σσt

e

--?=?10(2-2) ()τ

t

e I I e --=10

(2-3)

式中Δ σ0 与I e0 分别为弱辐射作用下的光电导率和光电流的稳态值。

显然,当t >>τ r 时,Δ σ =Δ σ0,I e =I e0;当t =τ r 时,Δ σ =0.63Δ σ0,I =0.63I e0;τ r 定

义为光敏电阻的上升时间常数,即光敏电阻的光电流上升到稳态值I Φ e0 的63%所需要的时间。

停止辐射时,入射辐射通量Φ e 与时间的关系为

()0t 0

t 00,>=??

?Φ=Φ当当e e t (2-4) 同样,可以推导出停止辐射情况下的光电导率和光电流随时间的变化规律 τ

σσt

e -?=?0 (2-5)

τ

t

e

I I e -=0 (2-6)

当t =τ f 时,Δ σ0 下降到Δ σ =0.37Δ σ0,I e0 下降到I =0.37I e0;当t >>τ f 时,Δ σ0 与I e0 均下降到0;可见,在辐射停止后,光敏电阻的光电流下降到稳态值的37%所需要的时间称为光敏电阻的下降时间常数,记为τ f 。

显然,光敏电阻在弱辐射作用下的上升时间常数τ r 与下降时间常数τ f 近似相等。 (2)强辐射条件下的时间响应

如图2-7 所示为较强的辐射通量Φ e (图的上方)脉冲作用于光敏电阻上时的输出波形(图的下方波形),无论对本征型还是杂质型的光敏电阻,光激发载流子的变化规律由式(2-6) 表示。设入射辐射为方波脉冲

()0

t 0

t 00≥=??

?Φ=Φ当当t e (2-7)

光敏电阻电导率的变化规律为

τσσt

tanh

?=? (2-8)

其光电流的变化规律为

τt

tanh

0ΦΦ?=?I I (2-9)

显然,当t >>τ 时,Δ σ =Δ σ0,I e =I e0;当t=τ 时, Δ σ =0.76Δ σ0,I e =0. 76 I e 0。在强辐射入射时,光敏电阻的光电流上升到稳态值的67%所需要的时间τ r 定义为强辐射作用下的上升时间常数。

当停止辐射时,由于光敏电阻体内的光生电子和光生电荷需要通过复合才能恢复到辐射作用前的稳定状态,而且随着复合的进行,光生载流子数密度在减小,复合几率在下降,所以,停止辐射的过渡过程要远远大于入射辐射的过程。停止辐射时光电导率和光电流的变化规律可表示为

τσσt 11

+?=? (2-10)

2. 时间响应的测量

① 常规测量方式

常规测量光敏电阻时间响应特性的方法是用示波器同步测量脉冲光源的发光脉冲与光敏电阻电路输出信号脉冲间的时间延迟。

常规测量方法的测量电路如图2-8 所示。由发光二极管(LED )及其驱动电路提供快速开关的辐射光源,它将产生脉冲辐射(方波辐射)。在方波辐射的作用下,光敏电阻的阻值 将发生变化,由偏置电阻R b 构成的变换电路将光敏电阻的阻值变化变成输出电压U o 的变化。观测光敏电阻变换电路输出信号脉冲随入射辐射的时间变化规律,便可以测量出它的时间响应特性。

测量时,取U bb =12V 。用示波器测量输出信号U o 与 入射辐射源波形的时间变化波形,从而测得光敏电阻随入 射辐射的变化规律(即时间响应)。

显然,图2-8中的电阻R e 值的大小控制着LED 发出光 的强弱,改变R e 值,可获得不同的辐射通量Φe 作用下光 敏电阻表现出的时间响应特性。因此,通过手动开关与 R e 阻值的改变,便可以观测到如图2-6所示的光敏电阻 在弱辐射与强辐射情况下的时间响应特性。

实验中,要注意电阻R e 值的选择,电阻R e 值较大时,电流I e 较小,LED 发出的光很弱,光敏电阻处于微弱辐射作用的情况,而R e 值较小,I e 较大,入射到光敏电阻上的照度将使光敏电阻处于强辐射状态。

采用手动控制光源的开关,或将脉冲加到光源的信号控制端都能够得到开关方式快速变化的强、弱两种脉冲辐射,用示波器或其他测量手段都可以方便地观测到光敏电阻在弱、强两种辐射情况下的时间响应特性。

手动测量法应将实验所得数据画出响应曲线,如果画在直角坐标架(如图2-9

所示)上,

其横轴应为时间坐标轴,从输入输出波形曲线可以清楚地看出响应特性,它们的两个极限情况就是微弱辐射作用与强辐射作用下的两种时间响应特性曲线。

图2-9 光敏电阻的时间响应特性测量曲线

②仪器自动测量的方式

采用GDS-Ⅱ型光电综合实验平台很容易测量光敏电阻的时间响应特性。实验时,首先要学习光电综合实验平台有关的操作规程、相应的软件操作规程与应用注意事项。再打开计算机电源,进入光敏电阻时间响应测量程序,调出如图2-10所示的“时间相应测量的软件界面”提示的相关内容(如强、弱辐射等),用实验平台上的“示波输入端口CH1测量如图2-8 所示光源的发光脉冲U i,用示波输入端口CH2测量图2-8所示光敏电阻输出信号U o。然后,按界面提示的步骤进行实验,得到如图2-10所示的输出波形图,从两个波形可以测量出它们之间的时间延迟。

同样,通过调整电阻R e的阻值增大或降低流过发光管LED的电流使加到光敏电阻光敏面上的照度强与弱完成对光敏电阻在强、弱两种辐射作用下的时间响应特性测量实验,将如图2-10所示波形与图2-6及2-7所示的时间响应波形相比较,显然它具有强辐射的特征,输出信号的上升时间很短而下降时间拖得很长。

改变R e的阻值,使提供给LED的电流降低而发出很微弱的光脉冲,在微弱光脉冲的作用下光敏电阻表现出如图2-11所示的弱辐射作用下的时间相应特性。

图2-10 时间相应测量软件界面

图2-11 弱辐射作用下光敏电阻的时间相应

点击鼠标右键,界面上会弹出测量坐标线,用其可以观测或测量出光敏电阻的上升时间常数τr与下降时间常数τf。

2.5.6 关机与结束

1、将所测的数据及实验结果(包括实验曲线)保存好,分析实验结果的合理性,如不合理,则要重新补作上述实验;若合理,可以进行关机;

2、将实验平台的电源关掉,再将所用的配件放回配件箱;

3、将实验所用仪器收拾好后,请指导教师检查,批准后离开实验室。

2.6心得体会

通过本次光电设计,使我对光电知识的实际应用有了更深刻的理解和体会,这次课程设计,不仅提高了我的动手能力,使我对设计的整个流程有了一定的了解,更使我了解光电知识应用的广泛性和前景。设计的成功,极大的提高了的我的自信心,促进了我对光电的学习兴趣,使我明白了理论联系实际的重要性。

此次设计使得我清楚了一项设计的整体流程:明确设计要求,功能及功能模块的设计,查阅相关资料和确定元器件,电路连接、调试、调整改进与检查,电路成型,总结;设计电路时,我上网查阅了很多资料和论文,这也培养了我搜索知识的能力,开拓了我的视野。电路的设计,还巩固了我模电的知识。电路的连接和调试极大的提高了我的动手实践能力,这也是目前我最缺乏的。调试过程中,使我明白动手的重要性,实践出真知。理工科的学生,就应该具备这样的动手能力。最后,设计报告的制作,又使我熟练掌握了原理图的绘制,Word

软件的多功能操作。还培养了我整理知识的能力,使我熟悉了报告制作的基本要求。

总之,这次设计,使我认识到了自己知识的局限性,培养了我的动手能力,并使我体会到了成功的感觉,对我今后的学习起到了极大的促进作用。

光敏电阻基本特性测量

光敏电阻基本特性测量 教学目的: 光传感器是测量端与信息处理系统的中间环节,可以理解为把光信息变换为电信息的一个元件, 光敏电阻 就是基于内光电效应的一种光传感器,光敏电阻具有灵敏度高,光谱特性好,使用寿命长,稳定性高,体积小以及制造工艺简单等特点,因此作为开关式光电信号传感器广泛应用在自动化技术中。自然界中有很多信息是通过光辐射形式传播的,用常规的仪器无法检测,而通过光电器件则可获得这些信息;光敏电阻体型小,灵敏度高,价格便宜,灵敏度峰值Gds(520mm),根据其特性可实际用于摄像机的露点计﹑光控制器﹑光联结器﹑光电继电器等方面。 制造光敏电阻的材料主要有金属的硫化物,硒化物和锑化物等半导体材料,在可见光范围内,常用的光敏电阻是硫化镉(CdS)本实验即采用该种光敏电阻,光敏电阻的主要参量有暗电阻,亮电阻,光谱范围,峰值波长和时间常量等,基本特性有伏安特性,光谱特性,光照特性等 通过本次实验,学生不仅能对光敏电阻的特性有一定的了解,还可以学习到光路的调整方法,有助于学生动手能力的培养. 教学安排: 本实验学时数为4学时。 原理综述: 光照下物体电导率改变的现象称为内光电效应(光导效应)光敏电阻是基于内光电效应的光电元件,当内光电效应发生时,固体材料吸收的能量使部分价带电子迁移到导带,同时在价带留下空穴,由于材料中载流子数目增加,材料的电导率增加,电导率的改变量为 p n pe ne σμμ?=?+? (1) 式中e 为电荷电量, △P 为空穴浓度的改变量, △n 为电子浓度的改变量, μΡ为空穴的转移率, μn 为电子的迁移率. 当光敏电阻两端加上电压U 之后,光电流为 ph A I U d σ=? (2) 其中A 为与电流垂直的截面积,d 为电极间的距离,由(1)和(2)可知,光照一定时,光敏电阻两端电压与光电流为线性关系,呈电阻特性,该直线经过零点,其斜率反映在该光照下的阻值状态. 光照特性是指在一定的外加电压下,光敏电阻的光电流与光通量之间的关系.。光电流随着照度的变化而改变的规律称为光照特性。不同类型的光敏电阻的光照特性不同,当入射光很强或很弱时,光敏电阻的光电流与光照之间会呈现非线性关系。其他照度区域近似呈线性关系"不同类型的光敏电阻的光照特性不同,但大多数光敏电阻的光照特性是非线性的。 仪器平台: 本仪器是一种测量光敏电阻基本特性的实验装置,包括伏-安特性和光照特性。结构如图(一)所 示,在导轨上安置五个磁力滑座,分别将光源、两个聚光镜、偏振器、接收器插入滑座內。打开光源,调整聚光镜,使平行光均匀入射到偏振片上,调整聚光镜及接收器使它们处于同一光轴。旋转偏振器的手轮刻度为零时通过的光能最强、刻度为90°时通过的光能最弱。通过旋转手轮改变入射到接收器的光强。根据光敏电阻特性:在一定照度下测

实验报告-光敏电阻基本特性的测量

实验报告 姓名:班级:学号:实验成绩: 同组姓名:实验日期:08/4/14 指导老师:助教15 批阅日期: 光敏电阻基本特性的测量 【实验目的】 1.了解光敏电阻的工作原理及相关的特性。 2.了解非电量转化为电量进行动态测量的方法。 3.了解简单光路的调整原则和方法. 4.在一定照度下,测量光敏电阻的电压与光电流的关系。 5.在一定电压下,测量光敏电阻的照度与光电流的关系。 【实验原理】 1 光敏电阻的工作原理 在光照作用下能使物体的电导率改变的现象称为内光电效应。本实验所用的光敏电阻就是基于内光电效的光电元件。当内光电效应发生时,固体材料吸收的能量使部分价带电子迁移到导带,同时在价带中留下空穴。这样由于材料中载流子个数增加,使材料的电导率增加。电导率的改变量为: (1) 式中e为电荷电量;为空穴浓度的改变量;为电子浓度的改变量;为空穴的迁移率;为电子的迁移率。当光敏电阻两端加上电压U后,光电流为 (2) 式中A为与电流垂直的截面积,d为电极间的距离。 用于制造光敏电阻的材料主要有金属的硫化物、硒化物和锑化物等半导体材料.目前生产的光敏电阻主要是硫化镉.光敏电阻具有灵敏度高、光谱特性好、使用寿命长、稳定性能高、体积小以及制造工艺简单等特点,被广泛地用于自动化技术中.

本实验光敏电阻得到的光照由一对偏振片来控制。当两偏振片之间的夹角为时,光照为,其中:为不加偏振片时的光照,D为当量偏振片平行时的透明度。 2 光敏电阻的基本特性 光敏电阻的基本特性包括伏-安特性、光照特性、光电灵敏度、光谱特性、频率特性和温度特性等。本实验主要研究光敏电阻的伏-安特性和光照特性。3.附上实验中的光路图: 【实验数据记录、实验结果计算】 1测量光敏电阻的电压与光电流的关系 在调整好光路后,就可以做这一个内容的实验了。下面附上这个实验内容的电路图:

光敏电阻的物理特性

Ⅰ.光敏电阻的物理特性 光敏电阻:常用的制作材料为硫化镉,另外还有硒、硫化铝、硫化铅和硫化铋等材料。这些制作材料具有在特定波长的光照射下,其阻值迅速减小的特性。这是由于光照产生的载流子都参与导电,在外加电场的作用下作漂移运动,电子奔向电源的正极,空穴奔向电源的负极,从而使光敏电阻器的阻值迅速下降。Ⅱ.组成特性 光敏电阻器是利用半导体的光电导效应制成的一种电阻值随入射光的强弱而改变的电阻器,又称为光电导探测器;入射光强,电阻减小,入射光弱,电阻增大。还有另一种入射光弱,电阻减小,入射光强,电阻增大。 Ⅲ.作用 光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)。常用的光敏电阻器硫化镉光敏电阻器,它是由半导体材料制成的。光敏电阻器对光的敏感性(即光谱特性)与人眼对可见光(0.4~0.76)μm的响应很接近,只要人眼可感受的光,都会引起它的阻值变化。设计光控电路时,都用白炽灯泡(小电珠)光线或自然光线作控制光源,使设计大为简化。 根据光敏电阻的光谱特性,可分为三种光敏电阻器:紫外光敏电阻器、红外光敏电阻器、可见光光敏电阻器。 Ⅳ.参数特性 (1)光电流、亮电阻。光敏电阻器在一定的外加电压下,当有光照射时,流过的电流称为光电流,外加电压与光电流之比称为亮电阻,常用“100LX”表示。(2)暗电流、暗电阻。光敏电阻在一定的外加电压下,当没有光照射的时候,流过的电流称为暗电流。外加电压与暗电流之比称为暗电阻,常用“0LX”表示。(3)灵敏度。灵敏度是指光敏电阻不受光照射时的电阻值(暗电阻)与受光照射时的电阻值(亮电阻)的相对变化值。 (4)光谱响应。光谱响应又称光谱灵敏度,是指光敏电阻在不同波长的单色光照射下的灵敏度。若将不同波长下的灵敏度画成曲线,就可以得到光谱响应的曲线。 (5)光照特性。光照特性指光敏电阻输出的电信号随光照度而变化的特性。从光敏电阻的光照特性曲线可以看出,随着的光照强度的增加,光敏电阻的阻值

光敏电阻伏安特性、光敏二极管光照特性

光敏传感器的光电特性研究 (FB815型光敏传感器光电特性实验仪) 凡是将光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强、光照度等;也可间接用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。 光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。基于这种效应的光电器件有光电管、光电倍增管等。另一种现象是电子并不逸出材料表面的,则称为是内光电效应。光电导效应、光生伏特效应都是属于内光电效应。好多半导体材料的很多电学特性都因受到光的照射而发生变化。因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。 通过本设计性实验可以帮助学生了解光敏电阻、光敏二极管的光电传感特性及在某些领域中的应用。 【实验原理】 1.光电效应: (1)光电导效应: 当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。它是一种内光电效应。 光电导效应可分为本征型和杂质型两类。前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。杂质型光电导的长波限比本征型光电导的要长的多。 (2)光生伏特效应: 在无光照时,半导体PN结内部有自建电场。当光照射在PN结及其附近时,在能量足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。载流子在结区外时,靠扩散进入结区;在结区中时,则因电场E的作用,电子漂移到N区,空穴漂移到P 区。结果使N区带负电荷,P区带正电荷,产生附加电动势,此电动势称为光生电动势,此现象称为光生伏特效应。 2.光敏传感器的基本特性: 光敏传感器的基本特性则包括:伏安特性、光照特性等。

实验10(光敏电阻)实验报告

实验十-光敏电阻及光敏二极管的特性实验 实验1:光敏电阻的特性实验 一、实验目的 了解光敏电阻的光照特性和伏安特性。 二、实验原理 在光线的作用下,电子吸收光子的能量从键合状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照愈强,器件自身的电阻愈小。基于这种效应的光电器件称光敏电阻。光敏电阻无极性,其工作特性与入射光光强、波长和外加电压有关。实验原理图如图10-1。 三、实验器械 主机箱中的转速调节0~24V 电源、±2V~±10V 步进可调直流稳压电源、电流 表、电压表;光电器件实验(一)模板、光敏电阻、发光二极管、庶光筒。 四、实验接线图 五、实验数据记录和数据处理 1:亮电阻和暗电阻测量

实验数据如下: 2:光照特性测量 实验数据如下: 实验数据拟合图像如下: 3:伏安特性测量 实验数据如下: 实验数据拟合图像如下: 六、实验思考题

1:为什么测光敏电阻亮阻和暗阻要经过10 秒钟后读数,这是光敏电阻的缺点,只能应用于什么状态? 答:稳定态 实验2:光敏二极管的特性实验 一、实验目的 了解光敏二极管工作原理及特性。 二、实验原理 当入射光子在本征半导体的p-n 结及其附近产生电子—空穴对时,光生载流子受势垒区电场作用,电子漂移到n 区,空穴漂移到p 区。电子和空穴分别在n 区和p 区积累,两端便产生电动势,这称为光生伏特效应,简称光伏效应。光敏二极管基于这一原理。如果在外电路中把p-n 短接,就产生反向的短路电流,光照时反向电流会增加,并且光电流和照度基本成线性关系。 三、实验器械 主机箱中的转速调节0~24V 电源、±2V~±10V 步进可调直流稳压电源、电流表、电压表;光电器件实验(一)模板、光敏二极管、发光二极管、庶光筒 四、实验接线图 将上图中的光敏电阻更换成光敏二极管(注意接线孔的颜色相对应即+、-极性),按上图安装接线,测量光敏二极管的暗电流和亮电流。 五、实验数据记录和数据处理 1:光照特性 亮电流测试实验数据如下: 实验数据拟合图像如下:

光敏电阻的应用

1. 举例说明光敏电阻的应用(画出原理图及工作过程) 路灯自动点熄控制 由两部分组成:电阻R 、电容C 和二极管D 组成半波整流滤波电路;RCds 光敏电阻和继电器组成光控继电器。路灯接在继电器常闭触点上,由光控继电器来控制路灯的点燃和熄灭.光暗时,光敏电阻的阻值很高,继电器关,灯亮;光亮时,光敏电阻的阻值降低,继电器开,灯灭。 2. 硅光电池的工作原理和等效电路为下图: (a )光电池工作原理图 (b )光电池等效电路图 (c )进一步简化 从图(b )中可以得到流过负载R L 的电流方程为: )1()1(/0/0--=--==KT qV s E KT qV s p D p e I E S e I I I I I - 其中,S E 为光电池的光电灵敏度,E 为入射光照度,I s0是反向饱和电流,是光电池加反向偏压后出现的暗电流。 当I L =0时,R L =∞(开路),此时曲线与电压轴交点的电压通常称为光电池开路时两端的开路电压,以V OC 表示,由式(1)解得:

??? ? ??+=1ln 0 I I q kT U p OC 当Ip 》Io 时,)/ln()/(0I I q kT U p OC ≈ 当R L =0(即特性曲线与电流轴的交点)时所得的电流称为光电流短路电流, 以Isc 表示,所以 Isc =I p =Se ·E 从上两式可知,光电池的短路光电流Isc 与入射光照度成正比,而开路电压Uoc 与光照度的对数成正比。 3. 光外差检测只有在下列条件下才可能得到满足: ①信号光波和本征光波必须具有相同的模式结构,这意味着所用激光器应该单频基模运转。 ②信号光和本振光束在光混频面上必须相互重合,为了提供最大信噪比,它们的光斑直径最好相等,因为不重合的部分对中频信号无贡献,只贡献噪声。 ③信号光波和本振光波的能流矢量必须尽可能保持同一方向,这意味着两束光必须保持空间上的角准直。 ④在角准直,即传播方向一致的情况下,两束光的波前面还必须曲率匹配,即或者是平面,或者有相同曲率的曲面。 ⑤在上述条件都得到满足时,有效的光混频还要求两光波必须同偏振,因为在光混频面上它们是矢量相加。 4.光电检测系统的定义:是指对待测光学量或由非光学待测物理量转换成的光学量,通过光电变换和电路处理的方法进行检测的系统。 光电检测系统的构成:光源,照明光学系统,,被测对象,光学变换,光信号匹配处理,光电转换,电信号的放大与处理,计算机,控制,存储和显示等部分。 5.在微弱辐射作用下,光电导材料的光电灵敏度有什么特点?为什么把光敏电阻

光敏电阻基本特性及主要参数的测试

光敏电阻特性测试及分析

理工大学紫金学院光电综合实验室 光敏电阻主要参数及基本特性的测试 一、工作原理 光敏电阻器是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器;半导体的导电能力取决于半导体导带载流子数目的多少。当光敏电阻受到光照时,价带中的电子吸收光子能量后跃迁到导带,成为自由电子,同时产生空穴,电子—空穴对的出现使电阻率变小。光照愈强,光生电子—空穴对就越多,阻值就愈低。当光敏电阻两端加上电压后,流过光敏电阻的电流随光照增大而增大。入射光消失,电子-空穴对逐渐复合,电阻也逐渐恢复原值,电流也逐渐减小。光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化) 光敏电阻的主要参量有暗电阻,亮电阻、光谱围、峰值波长和时间常量等。基本特性有伏安特性、光照特性、光谱特性等。伏安特性是指在一定照度下,加在光敏电阻两端的电压和光电流之间的关系。光照特性是指在一定外加电压下,光敏电阻的光电流与光通亮的关系。 根据光敏电阻的光谱特性,可分为三种光敏电阻器: 1.紫外光敏电阻器:对紫外线较灵敏,包括硫化镉、硒化镉光敏电阻器等,用于探测紫外线。 2.红外光敏电阻器:主要有硫化铅、碲化铅、硒化铅。锑化铟等光敏电阻器,广泛用于导弹制导、天文探测、非接触测量、人体病变探测、红外光谱,红

外通信等国防、科学研究和工农业生产中。 3.可见光光敏电阻器:包括硒、硫化镉、硒化镉、碲化镉、砷化镓、硅、锗、硫化锌光敏电阻器等。主要用于各种光电控制系统,如光电自动开关门户,航标灯、路灯和其他照明系统的自动亮灭,自动给水和自动停水装置,机械上的自动保护装置和“位置检测器”,极薄零件的厚度检测器,照相机自动曝光装置,光电计数器,烟雾报警器,光电跟踪系统等方面。 二、实验目的 1、学习掌握光敏电阻工作原理 2、学习掌握光敏电阻的基本特性 3、掌握光敏电阻特性测试的方法 4、了解光敏电阻的基本应用 三、实验容 1、光敏电阻的暗电阻、亮电阻、光电阻测试实验(基本参数测试) 2、光敏电阻的暗电流、亮电流、光电流测试实验(基本参数测试) 3、光敏电阻的光谱特性测试实验(特性测试) 4、光敏电阻的伏安特性测试实验(特性测试) 四、测试仪器的技术参数及结构原理 1、仪器的测量精度: 电压:0.01V 电流:0.01mA 2、光学参数 偏振片口径:35mm

光电实验报告.

长春理工大学 光电信息综合实验—实验总结 姓名:赵儒桐 学号:S1******* 指导教师:王彩霞 专业:信息与通信工程 学院:电子信息工程 2016年5月20号

实验一:光电基础知识实验 1、实验目的 通过实验使学生对光源,光源分光原理,光的不同波长等基本概念有具体认识。 2、实验原理 本实验我们分别用了普通光源和激光光源两种。普通光源光谱为连续光谱,激光光源是半导体激光器。在实验中我们利用分光三棱镜可以得到红橙黄绿青蓝紫等多种波长的光辐射。激光光源发射出来的是波长为630纳米的红色光。 3、实验分析 为了找到光谱需要调节棱镜,不同的面对准光源找出光谱,棱镜的不同面对准光源产生的光谱清晰度不同,想要清晰的光谱就需要通过调节棱镜获得。 实验二:光敏电阻实验 1、实验目的 了解光敏电阻的光照特性,光谱特性和伏安特性等基本特性。2、实验原理 在光线的作用下,电子吸收光子的能量从键和状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照越强,器件自身的电阻越小。光敏电阻无极性,其工作特性与入射光光强,波长和外加电压有关。 3、实验结果

当光敏电阻的工作电压(Vcc )为+5V 时,通过实验我们看出来改变光照度的值,光源的电流值是发生变化的。光照度增加电流值也是增加的。测得实验数据如表2-1: 表2-1 光敏电阻光照特性实验数据 得到的光敏电阻光照特性实验曲线: 图2.1 光敏电阻光照特性实验曲线 表2-2 光敏电阻伏安特性实验数据

通过实验我们看出光敏电阻的光电流值随外加电压的增大而增大,在光照强度增大的情况下流过光敏电阻的电流值也是增大的,得到数据如表2-2。 得到的伏安特性如下: 图2.2 光敏电阻伏安特性曲线 由光敏电阻的光谱特性可知光敏电阻对不同波长的光,接收的光灵敏度是不一样的,测量对应各种颜色的光透过狭缝时的电流值,得到数据如下表: 得到的光谱特性曲线如图:

光敏电阻的特性与应用

光敏电阻器的特性和应用 在光敏电阻两端的金属电极之间加上电压,其中便有电流通过,受到适当波长的光线照射时,电流就会随光强的增加而变大,从而实现光电转换。光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。 光敏电阻是采用半导体材料制作,利用内光电效应工作的光电元件。它在光线的作用下其阻值往往变小,这种现象称为光导效应,因此,光敏电阻又称光导管。 用于制造光敏电阻的材料主要是金属的硫化物、硒化物和碲化物等半导体。通常采用涂敷、喷涂、烧结等方法在绝缘衬底上制作很薄的光敏电阻体及梳状欧姆电极,然后接出引线,封装在具有透光镜的密封壳体内,以免受潮影响其灵敏度。光敏电阻的原理结构如图所示。在黑暗环境里,它的电阻值很高,当受到光照时,只要光子能量大于半导体材料的禁带宽度,则价带中的电子吸收一个光子的能量后可跃迁到导带,并在价带中产生一个带正电荷的空穴,这种由光照产生的电子—空穴对增加了半导体材料中载流子的数目,使其电阻率变小,从而造成光敏电阻阻值下降。光照愈强,阻值愈低。入射光消失后,由光子激发产生的电子—空穴对将逐渐复合,光敏电阻的阻值也就逐渐恢复原值。 在光敏电阻两端的金属电极之间加上电压,其中便有电流通过,受到适当波长的光线照射时,电流就会随光强的增加而变大,从而实现光

电转换。光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直 流电压,也可以加交流电 压。 基本特性及其主要参数 1、暗电阻、亮电阻 光敏电阻在室温和全暗条件下测得的稳定电阻值称为暗电阻,或暗阻。此时流过的电流称为暗电流。例如MG41-21型光敏电阻暗阻大于等于0.1M。 光敏电阻在室温和一定光照条件下测得的稳定电阻值称为亮电阻或 亮阻。此时流过的电流称为亮电流。MG41-21型光敏电阻亮阻小于等于1k。 亮电流与暗电流之差称为光电流。 显然,光敏电阻的暗阻越大越好,而亮阻越小越好,也就是说暗电流要小,亮电流要大,这样光敏电阻的灵敏度就高。 2、伏安特性 在一定照度下,光敏电阻两端所加的电压与流过光敏电阻的电流之间的关系,称为伏安特性。 由图2.6.2可知,光敏电阻伏安特性近似直线,而且没有饱和现象。受耗散功率的限制,在使用时,光敏电阻两端的电压不能超过最高工作电压,图中虚线为允许功耗曲线,由此可确定光敏电阻正常工作电压。

实验一光敏电阻特性测量实验

光电子技术基础实验报告 实验题目光敏电阻特性测量实验日期2020.09.04 姓名组别04 班级18B 学号 【实验目的】 1、了解光敏电阻的工作原理和使用方法; 2、掌握光强与光敏电阻电流值关系测试方法; 3、掌握光敏电阻的光电特性及其测试方法; 4、掌握光敏电阻的伏安特性及其测试方法; 5、掌握光敏电阻的光谱响应特性及其测试方法; 6、掌握光敏电阻的时间响应特性及其测试方法。 【实验器材】 光电技术创新综合实验平台一台 特性测试实验模块一块 光源特性测试模块一块 连接导线若干 【实验原理】 光敏电阻在黑暗的室温条件下,由于热激发产生的载流子使它具有一定的电导,该电导称为暗电导,其倒数为暗电阻,一般的暗电导值都很小(或暗电阻阻值都很大)。当有光照射在光敏电阻上时,电导将变大,这时的电导称为光电导。电导随光照量变化越大的光敏电阻,其灵敏度就越高,这个特性就称为光敏电阻的光电特性,也可定义为光电流与照度的关系。 光敏电阻在弱辐射和强辐射作用下表现出不同的光电特性(线性和非线性),实际上,它的光电特性可用在“恒定电压”下流过光敏电阻的电流IP ,与作用到光敏电阻上的光照度 E 的关系曲线来描述,不同材料的光照特性是不同的,绝大多数光敏电阻光照特性是非线性的。光敏电阻的本质是电阻,因此它具有与普通电阻相似的伏安特性。在一定的光照下,加到光敏电阻两端的电压与流过光敏电阻的亮电流之间的关系称为光敏电阻的伏安特性。 光敏电阻的符号和连接

【实验注意事项】 1、打开电源之前,将“电源调节”处旋钮逆时针调至底端; 2、实验操作中不要带电插拔导线,应该在熟悉原理后,按照电路图连接,检查无误后,方可打开电源进行实验; 3、若照度计、电流表或电压表显示为“1_”时说明超出量程,选择合适的量程再测量; 4、严禁将任何电源对地短路。 5、仪器通电测试前,一定要找老师检查后方可通电测试。 【主要实验步骤】 基础实验: 组装好光源、遮光筒和光探结构件,如下图所示: 1、打开台体电源,调节照度计“调零”旋钮,至照度计显示为“000.0”为止。 2、特性测试模块的 0-12V(J5)和 GND 连接到台体的 0-30V 可调电源的 Vout+和 Vout- 上。 3、J5连接电流表+极,电流表-极连接光敏电阻套筒黄色插孔,光敏电阻套筒蓝色插孔连接J6,电压表+极连接光敏电阻套筒黄色插孔,电压表-极连接光敏电阻套筒蓝色插孔。光敏电阻红黑插座与照度计红黑插座相连。(RP1的值可根据器件特性自行选取) 4、将光源特性测试模块+5V,-5V和GND连接到台体的+5V,-5V和GND1上,航空插座FLED-IN与全彩灯光源套筒相连接。打开光源特性测试模块电源开关K101,将S601,S602, S603开关向下拨(OFF档),使光照强度为0,即照度计显示为0。 5、将S601,S602,S603开关向上拨(ON档),将可调电源电压调为5V,光源颜色选为白光,按“照度加”或“照度减”,测量照度为100Lx、150Lx、200Lx、250Lx、300Lx、350Lx、400Lx、450Lx、500Lx、550Lx、600Lx电压表对应的电压值U,电流表对应的电流值I,光敏电阻值 RL=U/I。且将实验数据记录于表1-1中: 6、改变电源供电偏压,分别记录电压为 7V 和 9V 时,不同光照度下对应的电流值,并分别记录于表 1-2 及表 1-3 中: 7、保持照度为 100Lx 不变,调节电源供电偏压,使供电偏压为 1V、2V、3V、4V、5V、 6V、7V、8V、9V、10V,分别记录对应的电流值,并记录表 1-4 中: 8、按“照度加”,调节使光照为 200Lx、400Lx,记录同一光照不同电压下对应的电流值,并分别记录表 1-5 至表 1-9 中: 9、使可调电源偏压调为 5V 分别测量不同颜色光在 200 Lx 光照强度下,光敏电阻的电流值,将各个光源 200 lx 照度下光敏电阻的电流值记录在表 1-10 中: 10、将S601,S602,S603开关向下拨(OFF档),将可调电源电压调为5V。将光源特性测试模块的J701与光源特性测试模块的J601,J602,J603插座相连接。观察光源特性测试模块的J701点波形和特性测试模块J6点波形,分析光敏电阻的时间响应特性。 11、将“电源调节”旋钮逆时针旋至不可调位置,关闭实验台电源。

光敏电阻特性测试实验(精)

光敏电阻特性测试实验 一、实验目的 1、学习掌握光敏电阻工作原理 2、学习掌握光敏电阻的基本特性 3、掌握光敏电阻特性测试的方法 4、了解光敏电阻的基本应用 三、实验内容 1、光敏电阻的暗电阻、暗电流测试实验 2、光敏电阻的亮电阻、亮电流测试实验 3、光敏电阻光电流测试实验; 4、光敏电阻的伏安特性测试实验 5、光敏电阻的光电特性测试实验 6、光敏电阻的光谱特性测试实验 7、光敏电阻的时间响应特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1套 3、光敏电阻及封装组件 1套 4、光照度计 1台 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1. 光敏电阻的结构与工作原理 光敏电阻又称光导管,它几乎都是用半导体材料制成的光电器件。光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。无光照时,光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减小,电路中电流迅速增大。一般希望暗电阻越大越好,亮电阻越小越好,此时光敏电阻的灵敏度高。实际光敏电阻的暗电阻值一般在兆欧量级,亮电阻值在几千欧以下。 光敏电阻的结构很简单,图1-1(a)为金属封装的硫化镉光敏电阻的结构图。在玻璃底板上均匀地涂上一层薄薄的半导体物质,称为光导层。半导体的两端装有金属电极,金属电极与引出线端相连接,光敏电阻就通过引出线端接入电路。为了防止周围介质的影响,在半导体光敏层上覆盖了一层漆膜,漆膜的成分应使它在光敏层最敏感的波长范围内透射率最

光电探测实验报告

光电探测技术 实验报告 班级:10050341 学号:05 姓名:解娴

实验一光敏电阻特性实验 一、实验目的 1.了解一些常见的光敏电阻的器件的类型; 2.了解光敏电阻的基本特性; 3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。 二、实验原理 伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。 光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。各种光敏电阻的非线性程度都是各不相同的。 大多数场合证明,各种光敏电阻均存在着分析关系。这一关系为 式中,K为比例系数;是永远小于1的分数。 光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。 这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。 光照的非线性特性并不是一切光敏半导体都必有的。目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。

三、实验步骤 1、光敏电阻的暗电流、亮电流、光电流 按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 2、伏安特性 光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。按照图1接线,分别测得偏压为2V、4V、6V、8V、10V时的光电流,并尝试高照度光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果 填入表格并做出V/I曲线。 图1光敏电阻的测量电路 偏压2V4V6V8V10V12V 光电阻I 四、实验数据 实验数据记录如下: 光电流: E/V246810 U/V0.090.210.320.430.56 I/uA1427.54255.270.5 暗电流:0.5uA 实验数据处理:

光敏电阻原理及应用大全

光敏电阻的应用 光敏电阻可广泛应用于各种光控电路,如对灯光的控制、调节等场合,也可用于光控开关,下面给出几个典型应用电路。 1、光敏电阻调光电路 图1是一种典型的光控调光电路,其工作原理是:当周围光线变弱时引起光敏电阻R G的阻值增加,使加 在电容C上的分压上升,进而使可控硅的导通角增大,达到增大照明灯两端电压的目的。反之,若周围的光线变亮,则R G的阻值下降,导致可控硅的导通角变小,照明灯两端电压也同时下降,使灯光变暗,从而实现对灯光照度的控制。 图1光控调光电路 注意:上述电路中整流桥给岀的是必须是直流脉动电压,不能将其用电容滤波变成平滑直流电压,否则 电路将无法正常工作。原因在于直流脉动电压既能给可控硅提供过零关断的基本条件,又可使电容C的充 电在每个半周从零开始,准确完成对可控硅的同步移相触发。 2、光敏电阻式光控开关 以光敏电阻为核心元件的带继电器控制输岀的光控开关电路有许多形式,如自锁亮激发、暗激发及精密亮激发、暗激发等等,下面给岀几种典型电路。 图2是一种简单的暗激发继电器开关电路。其工作原理是:当照度下降到设置值时由于光敏电阻阻值上 升激发VT i导通,VT2的激励电流使继电器工作,常开触点闭合,常闭触点断开,实现对外电路的控制 图2简单的暗激发光控开关 图3是一种精密的暗激发时滞继电器开关电路。其工作原理是:当照度下降到设置值时由于光敏电阻阻值上升使运放IC的反相端电位升高,其输出激发VT导通,VT的激励电流使继电器工作,常开触点闭合, 常闭触点断开,实现对外电路的控制。

光敏电阻原理及应用简介 1、 光敏电阻器是利用 半导体 的光电效应 制成的一种电阻值随入射光的强弱而改 变的电阻器; 入射光强,电阻减小,入射光弱,电阻增大 。 2、 结构。光敏电阻器都制成薄片结构,以便吸收更 多的光能。当它受到光的照射时,半导体片(光 敏层)内就激发 出电子 一空穴对,参与导电,使 电路中电流增强。为了获得高的灵敏度,光敏电 阻的电极常采 用梳状图案, 它是在一定的掩膜下 向光电导薄膜上蒸镀金或铟等金属形成的。 一般 光敏电阻器结构如右图所示。光敏电阻器通常由光敏层、玻璃基片(或树脂防 潮膜)和电极等组成。光敏电阻器在电路中用字母 “R 或“RL ” “RG 表示。 3、 主要参数与特性 。 (1) 光电流、亮电阻。光敏电阻器在一定的外加电压下,当有光照射时, 流过的电流称为光电流,外加电压与光电流之比称为亮电阻,常用 “ 100LX'表 示。 (2) 暗电流、暗电阻。光敏电阻在一定的外加电压下,当没有光照射的时 候,流过的电流称为暗电流。外加电压与暗电流之比称为暗电阻,常用 “ OLX ” 表示。 (3) 灵敏度。灵敏度是指光敏电阻不受光照射时的电阻值(暗电阻)与受 光照射时的电阻值(亮 电阻)的相对变化值。 (4) 光谱响应。光谱响应又称光谱灵敏度,是指光敏电阻在不同波长的单 色光照射下的灵敏 度。若将不同波长下的灵敏度画成曲线,就可以得到光谱响 应的曲线。 (5 )光照特性。光照特性指光敏电阻输出的电信号随光照度而变化的特性。 从光敏电阻的光照 特性曲线可以看出,随着的光照强度的增加,光敏电阻的阻 值开始迅速下降。若进一步增大光照强 度,则电阻值变化减小,然后逐渐趋向 平缓。在大多数情况下,该特性为非线性。 (6) 伏安特性曲线。伏安特性曲线用来描述光敏电阻的外加电压与光电流 的关系,对于光敏器 件来说,其光电流随外加电压的增大而增大。 (7) 温度系数。光敏电阻的光电效应受温度影响较大,部分光敏电阻在低图3精密的暗激发光控开关 附巧届尢植电阻的炸比茂

光电实验报告.

长春理工大学 光电信息综合实验一实验总结 名:赵儒桐 学号:S1******* 专业:信息与通信工程学院:电子信息工程2016年5月20号

实验一:光电基础知识实验 1、实验目的 通过实验使学生对光源,光源分光原理,光的不同波长等基本概 念有具体认识。 2、实验原理 本实验我们分别用了普通光源和激光光源两种。普通光源光谱 为连续光谱,激光光源是半导体激光器。在实验中我们利用分光三棱镜可以得到红橙黄绿青蓝紫等多种波长的光辐射。激光光源发射出来的是波长为630 纳米的红色光。 3、实验分析 为了找到光谱需要调节棱镜,不同的面对准光源找出光谱,棱镜的不同面对准光源产生的光谱清晰度不同,想要清晰的光谱就需要通过调节棱镜获得。 实验二:光敏电阻实验 1、实验目的 了解光敏电阻的光照特性,光谱特性和伏安特性等基本特性。 2、实验原理 在光线的作用下,电子吸收光子的能量从键和状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照越强,器件自身的电阻越小。光敏电阻无极性,其工作特性与入射光光强,波长和外加电压有关。 3、实验结果

当 光敏电阻的工作电压(Vcc )为+5V 时,通过实验我们看出来 改变光照度的值,光源的电流值是发生变化的。光照度增加电流值也 是增加的。测得实验数据如表2-1 : 光敏电阻光照特性实验数据 光照度 (Lx ) 20 40 60 80 100 120 140 160 180 电流mA 0.37 0.52 0.68 0.78 0.88 1.00 1.07 1.18 1.24 表2-1光敏电阻光照特性实验数据 得到的光敏电阻光照特性实验曲线: 光敏电阻伏安特性实验数据 型号:G5528 电压 (U ) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 照度 (Lx ) 50 电流 (mA 0 0.05 0 .11 0. 17 0.2 4 0.29 0.35 0 1.42 0. 48 0.5 4 0.6 100 电流 (mA 0 0.09 0 .19 0. 28 0.3 3 0.48 0.58 0 .67 0. 77 0.8 7 0.95 150 电流 (mA 0.12 0 .24 0. 37 0.4 9 0.62 0.74 0.87 0. 98 1.1 2 1.19 通过实验我们看出光敏电阻的光电流值随外加电压的增大而增 大,在光照强度增大的情况下流过光敏电阻的电流值也是增大的, 得 到 数据如表2-2。 光敏电阻光照特性实验曲线 图2.1

光敏电阻特性研究

光敏电阻特性研究 【实验目的】 1.了解和掌握光敏电阻的特性 2.掌握产生和检验偏振光的原理和方法。  3.进一步学习和掌握调节复杂光路的方法; 【实验仪器与装置】 1000)、光敏电阻、导轨、检偏器、凸透镜(mm f60 =)、光源(光通量lx 磁性滑块、稳压电源、万用电表、导线等  【实验原理】 一、光电效应与光电器件 1.1 光电效应 光电效应可以分为以下三种类型:  (1)外光电效应 在光的作用下,物体内的电子逸出物体表面,向外发射的现象叫外光电效应。 只有当光子能量大于逸出功时,即时,才有电子发射出来,即有光 电效应,当光子的能量等于逸出功时,即时,逸出的电子初速度为0, 此时光子的频率为该物质产生外光电效应的最低频率,称为红限频率。 利用外光电效应制成的光电器件有真空光电管、充气光电管和光电倍增管。 (2)光电导效应 在光的作用下,电子吸收光子能量从键合状态过渡到自由状态,引起物体电 阻率的变化,这种现象称为光电导效应。由于这里没有电子自物体向外发射,仅 改变物体内部的电阻或电导,有时也称为内光电效应。与外光电效应一样,要产 生光电导效应,也要受到红限频率限制。 利用光电导效应可制成半导体光敏电阻。 (3)光生伏特效应 在光的作用下,能够使物体内部产生一定方向的电动势的现象叫光生伏特效 应。利用光生伏特效应制成的光电器件有光敏二极管、光敏三极管和光电池等。 各种光电器件都有下述特性:

(1)光电流 光敏元件的两端加一定偏置电压后,在某种光源的特定照度下产生或增加的电流称为光电流。 (2)暗电流 光敏元件在无光照时,两端加电压后产生的电流称为暗电流。 (3)光照特性 当光敏元件加一定电压时,光电流I与光敏元件上光照度E之间的关系,称为光照特性。一般可表示为。 (4)光谱特性 当光敏元件加一定电压时,如果照射在光敏元件上的是一单色光,当入射光功率不变时,光电流随入射光波长变化而变化的关系,称为光谱特性。 光谱特性对选择光电器件和光源有重要意义,当光电器件的光谱特性与光源的光谱分布协调一致时,光电传感器的性能较好,效率也高。在检测中,应选择最大灵敏度在需要测量的光谱范围内的光敏元件,才有可能获得最高灵敏度。 (5)伏安特性 在一定照度下,光电流I与光敏元件两端的电压U的关系称为伏 安特性。 (6)频率特性 在相同的电压和相同幅值的光强度下,当入射光以不同的正弦交变频率调制时,光敏元件输出的光电流I和灵敏度S随调制频率f变化的关系:、称为频率特性。 (7)温度特性 环境温度变化后,光敏元件的光学性质也将随之改变,这种现象称为温度特性。 二、光敏电阻 ①光敏电阻工作原理和结构 光敏电阻是利用光电导效应制成的。制造光敏电阻的材料一般由金属的硫化物、硒化物、碲化物组成。由于光电导效应只限于光照的表面薄层,因此光电导体一般都做成薄层。为了获得高的灵敏度,光敏电阻的电极常采用梳状图案,如图一所示。它是在一定的掩膜下向光电导薄膜上蒸镀金或铟等金属形成的。 为了避免外来干扰,光敏电阻外壳的入射孔上盖有一种能透过所要求光谱范围的透明保护窗(如玻璃)。为了避免光敏电阻的灵敏度受潮湿等因素的影响,将电导体严密封装在金属壳中。如图二所示。

简介光敏电阻的特性

简介光敏电阻的特性 光敏电阻是采用半导体材料制作,利用内光电效应工作的光电元件。它在光线的作用下其阻值往往变小,这种现象称为光导效应,因此,光敏电阻又称光导管。 用于制造光敏电阻的材料主要是金属的硫化物、硒化物和碲化物等半导体。通常采用涂敷、喷涂、烧结等方法在绝缘衬底上制作很薄的光敏电阻体及梳状欧姆电极,然后接出引线,封装在具有透光镜的密封壳体内,以免受潮影响其灵敏度。光敏电阻的原理结构如图所示。在黑暗环境里,它的电阻值很高,当受到光照时,只要光子能量大于半导体材料的禁带宽度,则价带中的电子吸收一个光子的能量后可跃迁到导带,并在价带中产生一个带正电荷的空穴,这种由光照产生的电子—空穴对增加了半导体材料中载流子的数目,使其电阻率变小,从而造成光敏电阻阻值下降。光照愈强,阻值愈低。入射光消失后,由光子激发产生的电子—空穴对将逐渐复合,光敏电阻的阻值也就逐渐恢复原值。 在光敏电阻两端的金属电极之间加上电压,其中便有电流通过,受到适当波长的光线照射时,电流就会随光强的增加而变大,从而实现光电转换。光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。 基本特性及其主要参数

1、暗电阻、亮电阻 光敏电阻在室温和全暗条件下测得的稳定电阻值称为暗电阻,或暗阻。此时流过的电流称为暗电流。例如MG41-21型光敏电阻暗阻大于等于0.1M。 光敏电阻在室温和一定光照条件下测得的稳定电阻值称为亮电阻或亮阻。此时流过的电流称为亮电流。MG41-21型光敏电阻亮阻小于等于1k。 亮电流与暗电流之差称为光电流。 显然,光敏电阻的暗阻越大越好,而亮阻越小越好,也就是说暗电流要小,亮电流要大,这样光敏电阻的灵敏度就高。 2、伏安特性 在一定照度下,光敏电阻两端所加的电压与流过光敏电阻的电流之间的关系,称为伏安特性。 由图2.6.2可知,光敏电阻伏安特性近似直线,而且没有饱和现象。受耗散功率的限制,在使用时,光敏电阻两端的电压不能超过最高工作电压,图中虚线为允许功耗曲线,由此可确定光敏电阻正常工作电压。

光敏电阻实验

中国石油大学 智能仪器 实验报告 成 绩: 班级: 姓名: 同组者: 教师: 光敏电阻实验 【实验目的】 1、 了解光敏电阻的工作原理; 2、 掌握光敏电阻的光电特性,光谱响应特性,频率特性等基本特性; 3、 理解光敏电阻的一般应用。 【实验原理】 光敏电阻是利用半导体光电导效应制成的一种特殊电阻,对光线十分敏感,它的电阻值能随着外界光照强弱(明暗)变化而变化.它在无光照射时,呈高阻状态;当有光照射时,其电阻值迅速减小.光敏电阻通常由光敏层、玻璃基片(或树脂防潮膜)和电极等组成的,如图1所示。可见光波段和大气透过的几个窗口都有适用的光敏电阻,利用光敏电阻制成的光控开关在我们日常生活中随处可见,广泛应用于各种自动控制电路(如自动照明灯控制电路、自动报警电路等)、 家用电器(如电视机中的亮度自动调节,照相机的自动曝光 图1 光敏电阻结构图 控制等)及各种测量仪器中。 在光照作用下能使物体的电导率改变的现象称为内光电效应.本实验所用的光敏电阻就是基于内光电效应的光电元件.当内光电效应发生时,固体材料吸收的能量使部分价带电子迁移到导带,同时在价带中留下空穴。这样由于材料中载流子个数增加,使材料的电导率增加,电导率的改变量为 p n p e n e σμμ?=???+??? (1) 在(1)式中,e 为电荷电量,p ?为空穴浓度的改变量,n ?为电子浓度的改变量,μ表示迁移率。 当两端加上电压U 后,光电流为: ph A I U d σ= ??? (2) 式中A 为与电流垂直的表面,d 为电极间的间距。在一定的光照度下,σ?为恒定的值,因而光电流和电压成线性关系。 光敏电阻的伏安特性如图2所示,不同的光照度可以得到不同的伏安特性,表明电阻值随光照

光敏电阻的主要参数与特性(精)

光敏电阻的主要参数与特性 1.光敏电阻的主要参数 (1)暗电阻 ◆光敏电阻在不受光时的阻值称为暗电阻,此时流过的电流称为暗电流。 (2)亮电阻 ◆光敏电阻在受光照射时的电阻称为亮电阻,此时流过的电流称为亮电流。(3)光电流 ◆亮电流与暗电流之差称为光电流。 2.光敏电阻的基本特性 (1)伏安特性 ◆在一定照度下,流过光敏电阻的电流与光敏电阻两端的电压的关系称为光敏电阻的伏安特性。 硫化镉光敏电阻的伏安特性 (2)光谱特性 ◆光敏电阻的相对光敏灵敏度与入射波长的关系称为光谱特性,亦称为光谱响应。 下图为几种不同材料光敏电阻的光谱特性。对应于不同波长,光敏电阻的灵敏度是不同的。 光敏电阻的光谱特性 (3)光照特性 ◆光敏电阻的光照特性是光敏电阻的光电流与光强之间的关系,如图8-10所示。 ◆由于光敏电阻的光照特性呈非线性,因此不宜作为测量元件,一般在自动控制系统中常用作开关式光电信号传感元件。

光敏电阻的光照特性 (4)温度特性 ◆光敏电阻受温度的影响较大。当温度升高时,它的暗电阻和灵敏度都下降。 ◆温度变化影响光敏电阻的光谱响应,尤其是响应于红外区的硫化铅光敏电阻受温度影响更大。下图为硫化铅光敏电阻的光谱温度特性曲线。 硫化铅光敏电阻的光谱温度特性曲线 (5)光敏电阻的响应时间和频率特性 ◆实验证明,光电流的变化对于光的变化,在时间上有一个滞后,通常用时间常数t来描述,这叫做光电导的弛豫现象。所谓时间常数即为光敏电阻自停止光照起到电流下降到原来的63%所需的时间,因此,t越小,响应越迅速,但大多数光敏电阻的时间常数都较大,这是它的缺点之一。下图所示为硫化镉和硫化铅的光敏电阻的频率特性。 光敏电阻的频率特性

相关文档
最新文档