专题 《物质的量浓度》相关计算

专题 《物质的量浓度》相关计算
专题 《物质的量浓度》相关计算

《物质的量浓度》专题练习

1.在一定温度下,某饱和氢氧化钠溶液体积为VmL ,溶液密度为b g/cm 3,溶液中含氢氧化钠的质量为m g 。(1)该温度下氢氧化钠的溶解度为 ;氢氧化钠溶液的物质的量浓度为 ;溶质氢氧化钠的质量分数为 。

(2)若取氢氧化钠饱和溶液10

V mL ,其物质的量浓度为 ;所含氢氧化钠的物质的量为 ;若将其加水稀释至VmL 后,溶液的物质的量浓度为 。

2.下列溶液中的c (Cl -)与50mL1mol/L 氯化铝溶液中的c (Cl -)相等的是 ( )

A .150mL1mol/L 氯化钠溶液

B .75mL2mol/L 氯化铵溶液

C .150mL1mol/L 氯化钾溶液

D .75mL1mol/L 氯化铝溶液

3.在标准状况下,1体积水溶解700体积氨气,所得溶液的密度为0.9g/cm 3,则氨水的浓度为( )

A 、18.4mol/L

B 、34.7%

C 、20.4mol/L

D 、31.2%

4.密度为dg/cm 3溶液VmL ,含有相对分子质量为M 的溶质mg ,其物质的量浓度为c mol/L ,质量分数为w %,下列不正确...

的是 ( ) A 、c = VM m 1000 B 、m = 100dVW C 、d = W

CM 10 D 、W % = d CM 1000% 5. 某结晶水合物分子式为R ·n H 2O ,其相对分子质量为M ,25℃时,a g 晶体溶于b g 水中即饱和,形成V ml 密度为ρ g/cm 3的溶液,下列正确的是 ( )

A 、饱和溶液的质量分数为ρ

MV n M a )18(-% B 、25℃,R 的溶解度为an bM n M a 18)18(100+-g

C 、饱和溶液物质的量浓度为MV n M a )18(100-mol/L

D 、饱和溶液物质的量浓度为MV

a 1000mol/L 6. 质量分数为w 的NaOH 溶液,其物质的量浓度为a mol/L ,加热蒸发水分使其质量分数变为2w ,此时溶液中NaOH 的物质的量浓度为

b mol/L ,则a 与b 的关系正确的是 ( )

A. b=2a

B. a=2b

C. b<2a

D. b>2a

7. 已知溶质的质量分数为0.95的酒精溶液的物质的量浓度为16.52mol/L ,试判断溶质的质量分数为0.475的酒精溶液的物质的量浓度为 ( )

A.大于8.26mol/L

B.等于8.26mol/L

C.小于8.26mol/L

D.无法判断

8.某工厂采用硫酸和氢氟酸的溶液作为矿物中稀有元素的萃取液,生产要求该萃取液中硫酸的浓度为3mol/L ,氢氟酸的浓度为8mol/L 。现有一批回收酸液共400L ,经测定其中氢氟酸浓度为12mol/L ,硫酸浓度为1mol/L 。现要用此回收酸液配制上述萃取液,400L 回收酸液经稀释可以得到 L 8mol/L 的氢氟酸,在400L 回收酸液中加入 L 密度为1.84g/cm 3、浓度为98%的浓硫酸,然后 ,即可得到符合要求的萃取液。

9.已知甲、乙溶质的质量分数

与溶液密度的关系如右表所示:

甲物质的1%的溶液与9%的溶液

等体积混合,乙物质的1%的溶 液与9%的溶液等体积混合,下列叙述中,正确的是 ( )

A .混合后,甲、乙溶液中溶质的质量分数均大于5%

B .混合后,甲溶液中溶质的质量分数大于5%,乙溶液中溶质的质量分数小于5%

C .混合后,乙溶液中溶质的质量分数大于5%,甲溶液中溶质的质量分数小于5%

D .混合后,甲、乙溶液中溶质的质量分数均等于5%

一、填空题

1.已知某饱和NaCl 溶液的体积为VmL 。密度为ρg/cm 3,质量分数为w%。物质的量浓度为c mol/L ,溶 液中含NaCl 的质量为 m g 。

⑴用m 、V 表示溶液物质的量浓度 。

⑵用w 、ρ表示溶液物质的量浓度 。

⑶用c 、ρ表示溶液的质量分数 。

⑷用w 表示该温度下NaCl 的溶解度 。

2.有5瓶溶液分别是:①10ml0.60mol/LNaOH 水溶液②20ml0.50mol/LH 2SO 4水溶液③30ml0.4mol/LHCl 水溶液④40ml0.3mol/LCH 3COOH 水溶液⑤50ml0.2mol/L 蔗糖水溶液以上各瓶溶液所含离子、分子总数的 大小顺序为

3. 在一定温度下,氢氧化镁饱和溶液中存在如下关系:c(Mg 2+)·[c(OH -)]2==Ksp,其中Ksp 称为氢 氧化镁的溶度积。试推断氢氧化镁在下列物质中的溶解度由小到大的顺序为 。 ①0.1mol/LMgCl 2溶液 ②0.1mol/LNH 4Cl 溶液

③0.1mol/LKCl 溶液 ④0.1mol/LKOH 溶液

二、选择题

1.标况下,氧气的溶解度为0.049,则相同状况下,100ml 水中可溶解氧气 ( )

A . 0.0049g

B . 0.049g

C . 0.49g

D . 0.007g

2.某温度下,硫酸铜的溶解度为30 g ,向该温度下的饱和硫酸铜溶液中加入m g 无水硫酸铜,搅拌后 静置,析出硫酸铜晶体n g ,则m 与n 的关系是 ( )

A .m=16n/25

B .m=9n/25

C .n=16m/9

D . n=250m/133

3.已知:t ℃时,某物质的不饱和溶液ag 中含溶质mg 。若溶液蒸发bg 水并恢复到t ℃时,析出溶质m 1g ; 若原溶液蒸发cg 水并恢复到t ℃时,则析出溶质m 2g 。若用S 表示该物质在t ℃时的溶解度,下式中正 确的是 ( )

4.用1000g 溶剂中所含溶质的物质的量来表示的溶液浓度叫质量物质的量浓度,其单位是mol/kg 。5mol/kg 的硫酸的密度是1.2894g/cm 3,则其物质的量浓度是 ( )

A.3.56mol/L

B.4.33mol/L

C.5.00mol/L

D.5.23mol/L

5.在一定体积pH =1的HCl 与HNO 3的混合溶液中,逐滴加入c mol ·L -1的AgNO 3溶液,当溶液中的Cl

-恰好完全沉淀时,溶液pH =2。若反应后溶液的体积等于反应前两溶液体积之和,则原溶液中NO 3-

的物质的量浓度(mol ·L -1)是 ( )

A . 0.1c

B . 9c

C . 0.1-9c

D . 0.1-0.9c

6.常温下Ca (OH )2溶于水达饱和时存在如下平衡:Ca (OH )2(s )Ca (OH )2(aq ),

Ca (OH )2 =Ca 2++2OH —。饱和石灰水的密度为d g·cm -3,溶液的pH=12。则该温度下Ca (OH )2的

溶解度为: ( )

A .37.0d 100037-g

B .37.0d 100037.0-g

C .74.0d 100074.0-g

D .4.7d 10004

.7-g

7.将40 ℃的饱和石灰水冷却至10 ℃或加入少量CaO 。但温度仍为40 ℃,这两种情况下都不改变的是 ( )

A .Ca(OH)2的溶解度

B .溶质的质量分数

C .溶液的质量

D .溶液中Ca 2+

的数目

8. 某温度下,碳酸钠饱和溶液的质量分数为a%,向其中加入mmol 五水碳酸钠或nmol 无水碳酸钠,可析出相同质量的十水碳酸钠,下列判断正确的是 ( )

A .a 可能为40,m >n

B .a 可能为30, m <n

C .a 可能为30,m >n

D .a 可能等于40,m=n

9.在100g 浓度为18mol/L 密度为ρg/cm 3的浓H 2SO 4中,滴入一定量的水,稀释成9mol/L 的H 2SO 4溶液,则加入水的体积为 ( )

A . 大于100ml

B .等于100ml

C . 小于100ml

D .等于100ml/ρ

10.右图是某学校实验室从化学试剂商店买回的硫酸试剂标签上的部分内容。

据此下列说法正确的是( )

A .该硫酸的物质的量浓度为9.2mol/L

B .1molZn 与足量的该硫酸反应产生2g 氢气

C .配制200mL4.6mol/L 的稀硫酸需取该硫酸50 mL

D .该硫酸与等质量的水混合所得溶液的物质的量浓度大于9.2mol/L 11.一定温度下,某饱和碳酸钠溶液中碳酸钠的质量分数为w%,加入ag 无水碳酸钠可析出bg 碳酸钠晶体(Na 2CO 3·10H 2O ),则溶液中溶质质量减少 ( )

A .(b-a )g

B .(b-a )w g

C .(53b-143a )g/143

D .(b-a )w%g

12.将5mol/L 的Mg (NO 3)2溶液a mL 稀释至b mL ,稀释后溶液中NO 3-的物质的量浓度为( )

A .b a 5mol/L

B .b a 10mol/L

C .a b 5mol/L

D .b

a mol/L 13.将153.5g 由氯化钠和氯化镁混合而成的盐溶解于水配成1L 溶液,测得溶液中Cl —的浓度为3mol/L , 则溶液中Na +的物质的量浓度为 ( )

A. 2mol/L

B. 1 mol/L

C. 0.5 mol/L

D. 0.1 mol/L

14.甲、乙、丙三种不同浓度的稀硫酸,分别跟等物质的量的Al 、KHCO 3、K 2CO 3刚好反应完全,所耗去甲、乙、丙三种稀硫酸的体积比为1:2:3,则甲、乙、丙三种酸的物质的量的浓度之比应为( )

A. 1:1:1

B. 3:1:2

C. 6:2:3

D. 18:3:4

高考物质的量浓度题型和解题策略

一、根据气体溶于水求物质的量浓度

解题策略:根据定义c=n/V,代入有关量求解或由选项特点巧解。

注意:①有的气体与水反应,溶质不是原气体了;

②由密度求体积时,一般单位为mL,要除以1000转换为L。

例1、标准状况下,aLHCl溶于1000g水中,得到的盐酸密度为bg/mL,则该盐酸浓度是()

A.a/22.4 mol/L

B.ab/22400 mol/L

C.ab/(22400+36.5) mol/L

D.1000ab/(22400+36.5a) mol/L

解析:法一由定义c= n

V

=1000ab/(22400+36.5a)

法二 a单位L,b单位g/mL,两者单位统一a乘以1000。选D。

二、根据溶解度求物质的量浓度

解题策略:取100g溶剂,则溶质的质量为溶解度,由此求溶质的n和溶液V,由定义求:c=n/V。例2/相对分子质量为M的某物质在室温下的溶解度为Sg,其饱和溶液密度为g/cm3,则物质的量浓度为A.M/10S mol/L B.1000S/M(100+S) mol/L C.10S/M mol/L D.M(100+S)/1000S mol/L

解析:法一 定义法C=(S/M)÷[(100+S)/×10-3]

法二 n=S/M 求V 用100+S 且在分母,由选项知选B.

三、根据溶液的质量分数求物质的量浓度

解题策略:抓住两者的换算公式:c=(1000×ρ×ω)/M

例3、体积为VmL,密度为dg/cm 3的溶液,含有相对分子质量为M 的溶质mg,其浓度为c mol/L,质量分数

为w%,下列表示式中正确的是( ) A.c=(w×100×d)/M B.m=V×d×100w C.w%=(c×M)/(1000×d)% D.c=1000m VM

解析:对A 应为:c=(w%×1000×d)/M=(w ×10×d)/M ;对B 溶质的质量为:m(溶质)=m(溶液)×ρ=(v ×d)×w%;对C 取1L 溶液溶质的质量分数为:w%=[(c ×M)/1000×d]×100%=[(c ×M)/10×d]%;对D :mol/L 。因此答案为B 、D 。

四、由离子浓度求另一离子量浓度

解题策略:由电荷守恒原理求解,注意不是一价离子的,其浓度要乘以其化合价的数值。

例3、若20g 密度为dg/cm 3的硝酸钙溶液里含1gCa 2+,则NO 3- 离子的浓度是

A.d/400mol/L

B.20/dmol/L

C.2.5dmol/L

D.1.25mol/L

解析:由溶液中阴阳离子所带电荷总数相等得:[Ca 2+]×2=[ NO 3-]×1 c=2.5d mol/L 。选C 。

五、求稀释后溶液的物质的量浓度

解题策略:根据稀释前后溶质的质量或物质的量不变求解:m1×ω1=m2×ω2、c1×V1=c2×V2。 例5、某温度下22% NaNO 3溶液150mL ,加100g 水稀释后浓度变为14%,求原溶液的物质的量浓度。 解析:设原溶液的质量为x 根据稀释前后溶液溶质守恒,有: 22%x=14%(x+100g) x=175g

六、求混合溶液中离子的物质的量浓度

解题策略:根据c=n/V ,求出离子的n 和溶液的V 即可。

例6、100mL0.3mol/LNa 2SO 4溶液和50mL0.2mol/LAl 2(SO 4)3溶液混合后,溶液中SO 42-离子的物质的量浓

度为

A.0.20mol/L

B.0.50mol/L

C.0.40mol/L

D.0.25mol/L

解析:[SO42-]=n(SO42-)/V 0.4mol/L 。选C 。

七、求物质参加反应前的物质的量浓度

解题策略:根据化学方程式求出物质的n ,由c=n/V 解题。

例7、在100mL 含等物质的量的HBr 和H 2SO 3的溶液里通入0.01molCl 2,有一半Br -变为Br 2(已知Br 2

能氧化H 2SO 3)。原溶液中HBr 和H 2SO 3的浓度都等于

A.0.0075 mol/L

B.0.008 mol/L

C.0.075 mol/L

D.0.08 mol/L

解析:设HBr 和H2SO3的物质的量为x

由题意H2SO3的还原性强于Br-,因此当Br-被氧化时,H2SO3已全部参加反应了。

H2SO3+Cl2+H2O=2HCl+H2SO4 2HBr+Cl2=Br2+2HCl

x x x/2 x/4

x+x/4 =0.01mol x=0.008mol [HBr]=[H2SO3]=0.008mol/0.1L=0.08mol/L 。答案为D 。

【逆向思维练习】

1.(MCE98)300mL 某浓度的NaOH 溶液中含有60g 溶质。现要配制1mol/LNaOH 溶液,应取原溶液与蒸馏水的体积比约为

A.1:4

B.1:5

C.2:1

D.2:3

2.(MCES98)100g 浓度为18mol/L 密度为ρg/mL 的浓硫酸中加入一定的水稀释成9mol/L 的硫酸,则加入

水的体积为

A.小于100mL

B.等于100mL

C.大于100mL

D.等于100/ρmL

3.(MCE01.17)向100mL0.10mol.L-1的AgNO3溶液中加入100mL溶有2.08gBaCl2的溶液,再加入100mL 溶有0.010molCuSO4.5H2O的溶液,充分反应。下列说法中正确的是

A.最终得到白色沉淀和无色溶液

B.最终得到的白色沉淀是等物质的量的两种化合物的混合物

C.在最终得到的溶液中Cl-的物质的量为0.02mol

D.在最终得到的溶液中Cu2+的物质的量溶液为0.01mol.L-1

4.(MCE01.25)标准状况下,用一定量的水吸收氨气后制得浓度为12.0mol/L,密度为0.915g/cm-3的氨水。试计算1体积水吸收多少体积的氨气可制得上述氨水。

(本题中氨的式量以17.0计,水的密度以1.00 g/cm-3计)

答案:1.A 2.A 3.B 4.1体积水吸收378体积NH3气(标准状况)

高中化学物质的量浓度及有关计算

物质的量浓度及有关计算 教学目标 知识技能:理解有关物质的量浓度的涵义,掌握有关计算的基本题型。 能力培养:有关物质的量浓度的计算思维能力。 科学思想:在溶液计算中,贯彻守恒的思想。 科学方法:演绎推理法,比较分析法。 重点、难点有关物质的量浓度计算的6种基本类型是重点;电荷守恒、建立参比的基本解题方法是难点。 教学过程设计 教师活动 【引入】今天我们复习物质的量浓度。 【提问】物质的量浓度的定义是什么?请写出它的计算公式。 学生活动 回答:1L溶液中含有溶质的物质的量。 板书:c=n(mol)/V(L) 【再问】溶液的组成还常用什么来表示? 回答:也常用溶质的质量分数来表示。 溶质的质量分数表示单位质量溶液中所含溶质的质量。 板书:a%=m(溶质)/m(溶液)×100%

【提问】根据物质的量浓度的计算公式c=n/V,我们能够联想起哪些有关的计算思想?请同学们讨论后回答。 思考,讨论,回答: (1)在公式计算中,已知任何两个量,可以求得第三个量。 (2)还可以根据物质的量联系溶质的质量、气体溶质在标准状况下的体积及微粒数目等。 (3)当溶质的量一定时,浓度和体积成反比;当体积一定时,浓度和溶质的物质的量成正比。 (4)根据n=cV,当取出一定浓度的溶液时,溶液的浓度不变,但溶质的物质的量和所取溶液的体积成正比。 【评价】同学们说的都很正确,不过,有一个问题,为什么当取出一定浓度的溶液时,溶液的浓度不变? 回答:溶液是均匀稳定的体系。 【板书】类型1 代入公式的计算 【投影】填空: 思考,完成练习。

【强调】体积必须以升(L)为单位进行计算。如果题目给的体积为mL,则必须进行换算。 【提问】为什么醋酸的[H+]小于其酸的浓度? 回答:醋酸为弱酸,[H+]=ca, 因此,[H+]小于酸的浓度。 【板书】类型2 溶液物质的量浓度和溶质质量分数的换算 【提问】在进行换算时,根据那个不变的量来推导计算公式?请写出计算公式? 回答:溶液中溶质的量是不变的,分别用物质的量浓度和溶质的质量分数计算,于是得到如下方程: m=cVM=1000Vρa % 【强调】在此公式中,物质的量浓度(c)、溶质的质量分数(a%)、溶质的摩尔质量(M)和溶液密度(ρ),已知任何三个量,可计算第四个量。 【投影】练习:63%硝酸溶液的物质的量浓度为14 mol· L-1,溶液的密度为______。 思考,完成练习。 答案:1.4 g·mL-1 【板书】类型3 稀释问题 【提问】溶液在加水稀释过程中,不变的量和变化的量是什么?计算的依据是什么?

蛋白质相关计算专题

“蛋白质相关计算”专题 二、求氨基酸的分子式 此类题型的关键就是按照氨基酸分子通式和所给 R 基写出氨基酸的分子式,涉及到多肽时则根据脱水缩合原理 反向推断。 例题2.谷胱甘肽(C 10H 17O 6N 3S )是存在于动植物和微生物细胞中的一种重要三肽, 它是由谷氨酸(C 5H 9O 4N )、甘氨酸 (C 2H 5O 2N ) 和半胱氨酸缩合而成的,则半胱氨酸可能的分子式为 ( ) A . GHNS B. GH 5NS C . C 3H 7QNS D. C 3H 3C 2NS 三、有关蛋白质中氨基酸数、肽链数、肽键数、脱水数的计算 1 .n 个氨基酸脱水缩合形成一条多肽链,则肽键数=脱水数=氨基酸数— 1 = ( n -1)个; 2.n 个氨基酸脱水缩合形成一个由m 条多肽链组成的蛋白质时,则脱去的水分子数和形成的肽键数为 (n-m )个; 3?无论蛋白质中有多少条肽链,始终有:脱水数=肽键数=氨基酸数-肽链数; 4?注:环状肽特点是肽键数与氨基酸数相同。即肽键的数目 =脱去的水分子的数目=氨基酸的数目。 例题3.某蛋白质分子共有四条肽链,300个肽键,则形成这个蛋白质分子所需氨基酸分子数以及它们在脱水缩合过程中生成 的水分子数分别是( ) A . 296 和 296 B . 304 和 304 C . 304 和 300 D . 300 和 300 例题4.某三十九肽中共有丙氨酸 4个,现去掉其中的丙氨酸得到 4条长短不等的多肽(如图),这些多肽中肽键总数为 () A . 31 B . 32 C . 34 D . 35 四、有关蛋白质中游离的氨基或羧基数目的计算 氨基酸间脱水缩合时,原来的氨基和羧基已不存在,形成的多肽的一端是 -NH 2,另一端是一COOH 所以对 于n 条肽链的多肽,每1条肽链至少应有1个-NH 2, 1个一COOH 若还有--NH 2或一COOH 则存在于R 基中。 1. 蛋白质中氨基数=肽链条数+R 基上的氨基数=各氨基酸中氨基的总数-肽键数; 2. 蛋白质中羧基数=肽链条数+R 基上的羧基数=各氨基酸中羧基的总数-肽键数; 3. 在不考虑R 基上的氨基数时,氨基酸脱水缩合形成的一条多肽链中, 至少含有的氨基数为1,蛋白质分 子由多条肽链构成,则至少含有的氨基数等于肽链数; 4. 在不考虑R 基上的羧基数时,氨基酸脱水缩合形成的一条多肽链中, 至少含有的羧基数为1,蛋白质分 子由多条肽链构成,则至少含有的羧基数等于肽链数。 例题5.氨基酸分子脱水缩合形成含 氨基酸数和肽键数分别是( 2条肽链的蛋白质分子时,相对分子量减少了 ) 900,由此可知, 此蛋白质分子中含有的 A . 52、52 B . 50、50 C . 52、50 D . 50、 49 、氨基酸、多肽、肽键、肽链和蛋白质的关系可归纳成下图: :T4 1.1 例题1.能正确表示蛋白质分子由简到繁的结构层次的一组是: ) 多肽 ⑤肽链 ⑥形成具有一定空间结构的蛋白质分子( A.①②③④⑤⑥ B .②①④③⑤⑥ C .②①④③⑥⑤ D .②①③④⑤⑥ ①氨基酸 ②CHON 等化学元素 ③氨基酸分子互相结合 ④

蛋白质合成过程的中的相关计算

蛋白质合成过程的中的相关计算 一.蛋白质中肽键个数或形成蛋白质时失去的水分子数 1.肽键数=失去的水分子数=蛋白质中氨基酸总数—肽链的条数 2.若为环状蛋白,则为:肽键数=失去的水分子数=蛋白质中氨基酸个数 注:若题中没有表明,则按非环状蛋白处理。 例1:结晶牛胰岛素由α、β两条多肽链构成,α链含21个氨基酸、β链含30个氨基酸,其失去的水分子数及形成的肽键数目分别是 ( ) A.51和5l B. 50和50 C.50和49 D.49和49 变式1:人体血红蛋白分子中的一条多肽链有145个肽键,则形成这条多肽链的氨基酸分子数和它们在缩合过程中生成的水分子数分别是 ( ) A.145和145 B.145和144 C.145和146 D.146和145 二.蛋白质的平均分子量的计算 蛋白质的相对分子量=蛋白质中氨基酸总数×氨基酸的平均相对分子量-失去的水分子数×18(若有二硫键,则应再减去二硫键的个数×2) 补充:二硫键的形成。-SH +HS-=-S-S-+2H 例2.一种蛋白质是由两条肽链构成的,共含有100个氨基酸,若每个氨基酸的相对分子质最平均是120,则该蛋白质的相对分子质量约是 ( ) A.12000 B.10236 C.10218 D. 13764 变式2:某蛋白质分子的相对分子质量为10 412,20种氨基酸的平均相对分子质量为128,在形成该蛋白质分子时脱去的水分子总质量为1620,则该蛋白质分子的肽链数为( ) A.一条B.两条C.三条D.四条 三.蛋白质中氨基数或羧基数 (1) 蛋白质中氨基数或羧基数(共)有多少个 ①游离的氨基数=肽链数十R基上的氨基数=各氨基酸中氨基总数一肽键数 ②游离的羧基数=肽链数十R基上的羧基数=各氨基酸中羧基总数一肽键数 例3:现有氨基酸800个,其中氨基总数为810个,羧基总数为808个,则由这些氨基酸合成的含有2条肽链的蛋白质共有肽键、氨基和羧基的数目依次分别为( ) A.798、2和2 B.798、12和10 C.799、1和I D.799、11和9 (2) 蛋白质中氨基数或至少 ..有多少个 至少 ..有羧基(数)=肽链数 ..有氨基(数)=至少 例4.人体免疫球蛋中,IgG由4条肽链构成,共有764个氨基酸,则该蛋白质分子中至少含有游离的氨基和羧基数分别是 ( ) A.746和764 B.760和760 C.762和762 D.4和4 变式3.某蛋白质由4条肽链组成,共含有109个肽键,则此蛋白质分子,至少含有一NH2和一COOH个数及氨基酸数分别为多少个 ( ) A.105,105,105 B.110,110,110 C.4,4,113 D. 1,1,113

高中生物蛋白质相关计算专题

“蛋白质计算”专题讲练 在高中生物学中,涉及蛋白质各种因素之间的数量关系比较复杂,是学生学习中的重点和难点,也是高考的考点与热点。因此,在复习时牢牢掌握氨基酸分子的结构通式以及脱水缩合反应的过程,恰当的运用相关公式是解决问题的关键。现将与蛋白质相关的计算公式及典型例题归析如下,以便复习参考。 一、有关蛋白质计算的公式汇总 ★★规律1:有关氨基数和羧基数的计算 ⑴蛋白质中氨基数=肽链数+R基上的氨基数=各氨基酸中氨基的总数-肽键数; ⑵蛋白质中羧基数=肽链数+R基上的羧基数=各氨基酸中羧基的总数-肽键数; ⑶在不考虑R基上的氨基数时,氨基酸脱水缩合形成的一条多肽链中,至少含有的氨基数为1,蛋白质分子由多条肽链构成,则至少含有的氨基数等于肽链数; ⑷在不考虑R基上的羧基数时,氨基酸脱水缩合形成的一条多肽链中,至少含有的羧基数为1,蛋白质分子由多条肽链构成,则至少含有的羧基数等于肽链数。 ★★规律2:蛋白质中肽键数及相对分子质量的计算 ⑴蛋白质中的肽键数=脱去的水分子数=水解消耗水分子数=氨基酸分子个数-肽链数; ⑵蛋白质的相对分子质量=氨基酸总质量(氨基酸分子个数×氨基酸平均相对分子质量)-失水量(18×脱去的水分子数)。 注意:有时还要考虑其他化学变化过程,如:二硫键(—S—S—)的形成等,在肽链上出现二硫键时,与二硫键结合的部位要脱去两个H,谨防疏漏。 ★★规律3:有关蛋白质中各原子数的计算 ⑴C原子数=(肽链数+肽键数)×2+R基上的C原子数; ⑵H原子数=(氨基酸分子个数+肽链数)×2+R基上的H原子数=各氨基酸中H原子的总数-脱去的水分子数×2; ⑶O原子数=肽链数×2+肽键数+R基上的O原子数=各氨基酸中O原子的总数-脱去的水分子数; ⑷N原子数=肽链数+肽键数+R基上的N原子数=各氨基酸中N原子的总数。

高中化学复习压轴题热点练习:晶胞的有关计算

热点6 晶胞的有关计算 1.某晶体的晶胞结构如图所示。X (?)位于立方体顶点,Y()位于立方体中心。试分析: (1)晶体中每一个Y 同时吸引着________个X,每个X 同时吸引着________个Y,该晶体的化学式是____________。 (2)晶体中在每个X 周围与它最近且距离相等的X 共有________个。 (3)晶体中距离最近的2个X 分别与1个Y 形成的两条线的夹角为_______。 答案 (1)4 8 XY 2(或Y 2X) (2)12 (3)109°28′ 解析 (1)同时吸引的微粒个数即指在某微粒周围距离最近的其他种类的微粒个数,观察图可知,Y 位于立方体的体心,X 位于立方体的顶点,每个Y 同时吸引着4个X,而每个X 同时被8个立方体共用,每个立方体的体心都有1个Y,所以每个X 同时吸引着8个Y,X 、Y 的个数比为1∶2,所以化学式为XY 2或Y 2X 。 (2)晶体中每个X 周围与它最接近的X 之间的距离应为如图所示立方体的面对角线。位置关系分别在此X 的上层、下层和同一层,每层均有4个,共有12个。 (3)若将4个X 连接,构成1个正四面体,Y 位于正四面体的中心,可联系CH 4的键角,知该夹角为109°28′。 2.(1)单质O 有两种同素异形体,其中沸点高的是________(填分子式),原因是________________________;O 和Na 的氢化物所属的晶体类型分别为________和________。 (2)Al 单质为面心立方晶体,其晶胞参数a =0.405 nm,晶胞中铝原子的配位数为________。列式表示Al 单质的密度____________g·cm -3 (不必计算出结果)。 答案 (1)O 3 O 3相对分子质量较大,范德华力大 分子晶体 离子晶体 (2)12 4×27 6.02×1023 ×(0.405×10-7) 3 解析 (1)O 元素形成O 2和O 3两种同素异形体,固态时均形成分子晶体,而分子晶体中,相对分子质量越大,分子间作用力越大,物质的沸点越高,故O 3的沸点高于O 2。O 元素形成的氢化物有H 2O 和H 2O 2,二者均能形成分子晶体。Na 元素形成的氢化物为NaH,属于离子晶体。 (2)面心立方晶胞中粒子的配位数是12。一个铝晶胞中含有的铝原子数为8×18+6×1 2=4(个),一个晶 胞的质量为 4 6.02×10 23×27 g,再利用密度与质量、晶胞参数a 的关系即可求出密度,计算中要注意1 nm =10-7 cm 。 3.氧化锌(ZnO)、氮化镓(GaN)及新型多相催化剂组成的纳米材料能利用可见光分解水,生成氢气和氧 气。 (1)ZnO 是两性氧化物,能跟强碱溶液反应生成 [Zn(OH)4]2- 。不考虑空间构型,[Zn(OH)4]2- 的结构可用示意图表示为____________,某种ZnO 晶体的晶

蛋白质相关计算试题带解析完整版

蛋白质相关计算试题带 解析 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

蛋白质相关计算试题(带答案解析)1.如图是某蛋白质分子的结构示意图,图中“▲—★—■—●”表示不同种类的氨基酸,图中A链由21个氨基酸组成,B链由19个氨基酸组成,图中“—S—S—”是在蛋白质加工过程中由两个“—SH”脱下2个H形成的。下列有关叙述中,错误的是()A.该蛋白质多样性的主要原因是氨基酸的排列顺序 B.该蛋白质分子中至少含有两个羧基 C.图中“—”代表的化学键是在高尔基体中形成的 D.形成该蛋白质分子时相对分子质量减少了686 2.一切生命活动都离不开蛋白质。下列有关蛋白质的结构和功能的叙述中,不正确的是() A.玉米的蛋白质中缺少赖氨酸 B.盐析作用不会改变蛋白质的结构 C.由574个氨基酸所组成的蛋白质在形成过程中脱去了573个水分子 和一个—COOH D.每种氨基酸分子至少都含有一个—NH 2

3. 某环状多肽由39个氨基酸形成,其中含有4个谷氨酸(R 基为一CH 2一CH 2一 COOH ),则该多肽() A .有38个肽键 B .可能没有游离氨基 C .至少有5个游离羧基 D .最多有36种氨基酸 4. 亮氨酸的R 基为-C 4H 9,缬氨酸的R 基为-C 3H 7,它们缩合形成的二肽分子中,C 、H 的原子比例为() A .11:24 B .9:18 C .11:22 D .10:22 5. 已知苯丙氨酸的分子式是C 9H 11NO 2,那么该氨基酸的R 基是() A .—C 7H 7O B .— C 7H 7C .—C 7H 7N D .—C 7H 5NO 6. 某蛋白质由3条多肽链、N 个氨基酸组成,下列关于该蛋白质说法正确的是() A.形成该蛋白质时产生了N 个水分子 B.该蛋白质中至少含有N 个肽键 C.该蛋白质中至少含有3个游离的羧基 D.合成该蛋白质至少需要20种氨基酸 7. 下列有关生物学的计算,不正确的是( 8. ) 9. A .由100个氨基酸合成二条肽链,脱去98个水分子

晶胞计算习题答案

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 1、【答案】(1)mol-1(2)①8 4 ②48③ 【解析】(1)铜晶胞为面心立方最密堆积,1个晶胞能分摊到4个Cu原子;1个晶胞的体积为a3cm3;一个晶胞的质量为a3ρ g;由=a3ρ g,得N A=mol -1。 (2) ①每个Ca2+周围吸引8个F-,每个F-周围吸收4个Ca2+,所以Ca2+的配位数为8,F-的配位数为4。②F-位于晶胞内部,所以每个晶胞中含有F-8个。含有Ca2+为×8+×6=4个。 ③ρ===a g·cm-3, V=。 2、【解析】 试题分析:本考查学生对知识综合利用能力,要求对晶胞知识能够融会贯通。依题意画出侧面图,设正立方体边长为a,则体积为a3。,AC=4r, 故原子半径,根据均摊法得,每个正立方体包括金属原子 8×1/8+6×1/2=4(个),球体体积共

4×空间利用率为:. 考点:均摊法计算 点评:本题考查相对综合,是学生能力提升的较好选择。 3、(1)34.0% (2)2.36 g/cm3 【解析】(1)该晶胞中Si原子个数=4+8×1/8+6×1/2=8,设Si原子半径为xcm,该晶胞中硅原子总体积=,根据硬球接触模型可知,体对角线四分之一处的原子与顶点上的原子紧贴,设晶胞边长为a,所以,解得a=,晶胞体积=()3,因此空间利用率=×100%=34.0%。(2)根据以上分析可知边长=,所以密度==2.36g/cm3。 4、【答案】(1)4(2)金属原子间相接触,即相切 (3)2d3(4) 【解析】利用均摊法解题,8个顶点上每个金原子有属于该晶胞,6个面上每个金原子有属于该晶胞,故每个晶胞中金原子个数=8×+6×=4。假设金原子间相接 触,则有正方形的对角线为2d。正方形边长为d。所以V晶= (d)3=2d3,V m=N A=d3N A,所以ρ==。 5、【答案】(1)YBa2Cu3O7(2)价n(Cu2+)∶n(Cu3+)=2∶1 【解析】(1)由题图所示晶胞可知:一个晶胞中有1个Y3+,2个Ba2+。晶胞最上方、最下方分别有4个Cu x+,它们分别被8个晶胞所共用;晶胞中间立方体的8个顶点各有一个Cu x+,它们分别被4个晶胞共用,因此该晶胞中的Cu x+为n(Cu x+)=(个)。晶胞最上方、最下方平面的棱边上共有4个氧离子,分别被4个晶胞共用;又在晶胞上的立方体的竖直棱边上和晶胞下方的立方体的竖直棱

物质的量浓度的有关计算习题与答案详解

物质的量浓度的有关计算 1.0.3 mol NaCl 固体溶于水配成200 mL 溶液,溶液浓度为 ( ) A .0.3 mol·L -1 B .0.15 mol·L -1 C .1.5 mol·L -1 D .0.015 mol·L -1 答案 C 解析 c (NaCl)=0.3 mol 0.2 L =1.5 mol·L -1。 2.50 mL 0.6 mol·L -1 NaOH 溶液,含NaOH 的物质的量为 ( ) A .0.03 mol B .0.04 mol C .0.05 mol D .0.06 mol 答案 A 解析 n (NaOH)=0.05 L ×0.6 mol·L -1=0.03 mol 。 3.下列溶液中Cl -的物质的量浓度与100 mL 1 mol·L -1 MgCl 2溶液中Cl -的物质的量浓度相同的是( ) A .50 mL 2 mol·L -1 CaCl 2溶液 B .100 mL 2 mol·L -1 NaCl 溶液 C .50 mL 4 mol·L -1 CaCl 2溶液 D .100 mL 4 mol·L -1 NaCl 溶液 答案 B 解析 题干中溶液中Cl -的物质的量浓度为2 mol·L -1。各选项中Cl -的物质的量浓度分别为A 中4 mol·L -1;B 中2 mol·L -1;C 中8 mol·L -1;D 中4 mol·L -1,故选B 。 4.在0.5 L 某浓度的NaCl 溶液中含有0.5 mol Na +,下列对该溶液的说法中不正确的是( ) A .该溶液的物质的量浓度为1 mol·L -1 B .该溶液中含有58.5 g NaCl

有关蛋白质计算的公式汇总

有关蛋白质计算的公式汇总 ★★规律1:有关氨基数和羧基数的计算 ⑴蛋白质中氨基数=肽链数+R基上的氨基数=各氨基酸中氨基的总数-肽键数; ⑵蛋白质中羧基数=肽链数+R基上的羧基数=各氨基酸中羧基的总数-肽键数; ⑶在不考虑R基上的氨基数时,氨基酸脱水缩合形成的一条多肽链中,至少含有的氨 基数为1,蛋白质分子由多条肽链构成,则至少含有的氨基数等于肽链数; ⑷在不考虑R基上的羧基数时,氨基酸脱水缩合形成的一条多肽链中,至少含有的羧基 数为1,蛋白质分子由多条肽链构成,则至少含有的羧基数等于肽链数。 ★★规律2:蛋白质中肽键数及相对分子质量的计算 ⑴蛋白质中的肽键数=脱去的水分子数=水解消耗水分子数=氨基酸分子个数-肽链数; ⑵蛋白质的相对分子质量=氨基酸总质量(氨基酸分子个数×氨基酸平均相对分子质量) -失水量(18×脱去的水分子数)。 注意:有时还要考虑其他化学变化过程,如:二硫键(—S—S—)的形成等,在肽链上出现二硫键时,与二硫键结合的部位要脱去两个H,谨防疏漏。 ★★规律3:有关蛋白质中各原子数的计算 ⑴C原子数=(肽链数+肽键数)×2+R基上的C原子数; ⑵H原子数=(氨基酸分子个数+肽链数)×2+R基上的H原子数=各氨基酸中H原子的 总数-脱去的水分子数×2; ⑶O原子数=肽链数×2+肽键数+R基上的O原子数=各氨基酸中O原子的总数-脱去的水 分子数; ⑷N原子数=肽链数+肽键数+R基上的N原子数=各氨基酸中N原子的总数。

注意:一个氨基酸中的各原子的数目计算:① C原子数=R基团中的C原子数+2;②H 原子数=R基团中的H原子数+4;③ O原子数=R基团中的O原子数+2;④N原子数=R基团中的N原子数+1。 ★★规律4:有关多肽种类的计算: 假设有n(0<n≤20)种、m个氨基酸,任意排列构成多肽(这里m≤n): ⑴若每种氨基酸数目无限(允许重复)的情况下,可形成肽类化合物的种类:有n m种; ⑵若每种氨基酸只有一个(不允许重复)的情况下,可形成肽类化合物的种类:有n ×(n-1)×(n-2)…×(n-m+2)×(n-m+1)= 种。 ★★规律5:蛋白质中氨基酸数目与核酸中碱基数的计算: ⑴DNA基因的碱基数(至少):mRNA的碱基数(至少):氨基酸的数目=6:3:1; ⑵肽键数(得失水数)+肽链数=氨基酸数=(DNA)基因碱基数/6= mRNA碱基数/3。 注意:解题时看清是“碱基数”还是“碱基对数”,二者关系为:碱基数=2×碱基对数;对于真核生物而言,上式中的DNA片段相当于基因编码区中的外显子;关于终止密码子所占的数量,若题目中没有明确要求则不做计算。 特别提示:以上规律既适用于“链状肽”的相关计算,也适用于“环状肽”的相关计算,不过,若为环状肽,则可视为公式中的肽链数等于零,再进行相关计算。

(完整版)物质的量浓度的知识点

物质的量浓度 一、溶解度、溶质的质量分数和物质的量浓度的比较 1. 溶质的质量分数与物质的量浓度之间的计算公式 2.溶解度与饱和溶液中溶质的质量分数、物质的量浓度之间的计算公式 w= 二、气体溶于水所得溶液的浓度计算 在标准状况下,VL气体(摩尔质量为M g/mol)完全溶于1L水中,所得溶液的密度为中溶解某气体VL,所得溶液的密度为ρ g/cm3 三、溶液稀释或混合时物质的量浓度的计算 1.相同溶质的溶液混合后溶液浓度的计算 (1)等质量混合:混合后溶液中溶质的质量分数为原溶液中溶质的质量分数和的一半,与溶液密度无关。 ω混= 22 1ω ω+ (2).等体积混合:因溶液的密度不同,溶质的质量分数可能大于或小于平均值。 I. 密度比水大的两种溶液等体积混合:ω混> 22 1ωω+ II. 密度比水大的两种溶液等体积混合:ω混< 22 1ωω+

2、溶液稀释定律 ⑴溶质的质量稀释前后不变。即:m(浓)·w(浓)=m(稀)·w(稀) ⑵溶质的物质的量稀释前后不变。即:c(浓)·V(浓)=c(稀)·V(稀) 四.溶液中离子浓度之间的关系及电荷守恒原理 电荷守恒规律:溶液中阳离子所带的正电荷总数等于阴离子所带的负电荷总数 对于含有A a+、B b-、M m+、N n-等离子的溶液,电荷守恒的通式可以表示为:a·C(A a+)+m·C(M m+)=b·C(B b-)+n·C(N n-) 五、配制一定物质的量浓度的溶液的实验原理和步骤 1.实验仪器:天平、钥匙(固体使用)量筒(用浓溶液配制稀溶液、量筒精确度为0.1mL)、烧杯、、玻璃棒、容量瓶、胶头滴管 2.配制步骤-以配制100mL 1.0mol/LNaCl溶液为例。 步骤:(1)计算:计算所需NaCl固体的质量5.9g(托盘天平精确到为0.1g)。 (2)称量:用天平称量NaCl固体。 (3)溶解:将称好的NaCl固体放入烧杯中,加适量蒸馏水溶解,用玻璃棒搅拌。 (4)冷却:将烧杯中的溶液冷却至室温。 (5)转移:将烧杯中的溶液用玻璃棒小心地引流到100mL的容量瓶中。 (6)洗涤:用少量蒸馏水洗涤烧杯内壁2-3次,并将每次洗涤的溶液都注入容量瓶中。轻轻摇动容量瓶,使溶液混合均匀。 (7)定容:将蒸馏水注入容量瓶,液面离容量瓶颈刻度线下1-2cm时,该用胶头滴管滴加蒸馏水至液面与刻度线。 (8)摇匀:盖好瓶塞,反复上下颠倒,摇匀。 3.容量瓶的使用方法 (1)在使用容量瓶前要检查它是否漏水。方法:往瓶内加一定量的水,塞好瓶塞,将瓶塞倒立过来,观察瓶塞周围是否有水漏出。如不漏水,将瓶塞旋转180度后塞紧,将容量瓶倒立过来,检查是否漏水。 (2)转移溶液时,玻璃棒必须靠在容量瓶刻度线下。 (3)如配制480mL、950mL溶液,应分别选择500mL、1000mL的容量瓶。 六.配制一定物质的量浓度的溶液的实验误差分析 见附页

“蛋白质相关计算”专题

“蛋白质相关计算”专题 一、氨基酸、多肽、肽键、肽链和蛋白质的关系可归纳成下图: 例题1.能正确表示蛋白质分子由简到繁的结构层次的一组是:①氨基酸②C、H、O、N 等化学元素③氨基酸分子互相结合④多肽⑤肽链⑥形成具有一定空间结构的蛋白质分子 () A.①②③④⑤⑥ B.②①④③⑤⑥ C.②①④③⑥⑤ D.②①③④⑤⑥ 二、求氨基酸的分子式 此类题型的关键就是按照氨基酸分子通式和所给R基写出氨基酸的分子式,涉及到多肽时则根据脱水缩合原理反向推断。 例题2.谷胱甘肽(C10H17O6N3S)是存在于动植物和微生物细胞中的一种重要三肽,它是由谷氨酸(C5H9O4N)、甘氨酸(C2H5O2N)和半胱氨酸缩合而成的,则半胱氨酸可能的分子式为() A.C3H3NS B.C3H5NS C.C3H7O2NS D.C3H3O2NS 三、有关蛋白质中氨基酸数、肽链数、肽键数、脱水数的计算 1.n个氨基酸脱水缩合形成一条多肽链,则肽键数=脱水数=氨基酸数-1=(n?1)个; 2.n个氨基酸脱水缩合形成一个由m条多肽链组成的蛋白质时,则脱去的水分子数和形成的肽键数为(n-m)个; 3.无论蛋白质中有多少条肽链,始终有:脱水数=肽键数=氨基酸数-肽链数; 4.注:环状肽特点是肽键数与氨基酸数相同。即肽键的数目=脱去的水分子的数目=氨基酸的数目。 例题3.某蛋白质分子共有四条肽链,300个肽键,则形成这个蛋白质分子所需氨基酸分子数以及它们在脱水缩合过程中生成的水分子数分别是() A.296和296 B.304和304 C.304和300 D.300和300 例题4.某三十九肽中共有丙氨酸4个,现去掉其中的丙氨酸得到4条长短不等的多肽(如图),这些多肽中肽键总数为() A.31 B.32 C.34 D.35 例题5.氨基酸分子脱水缩合形成含2条肽链的蛋白质分子时,相对分子量减少了900,由此可知,此蛋白质分子中含有的氨基酸数和肽键数分别是()

高三化学一轮复习——有关物质的量浓度的综合计算

高三化学一轮复习——有关物质的量浓度的综合计算 1.物质的量浓度、质量分数、溶解度间的换算 由定义出发,运用公式:c =n V 、质量分数=溶质的质量溶液的质量 ×100%进行推理,注意密度的桥梁作用,不要死记公式。 (1)物质的量浓度(c )与溶质质量分数(w )的换算 体积为V mL ,密度为ρ g·cm -3的溶液,含有摩尔质量为M g·mol -1的溶质m g ,溶质的质量 分数为w ,则溶质的物质的量浓度c 与溶质的质量分数w 的关系是:c =n V =m M V =m MV =1 000ρw V MV =1 000ρw M ,反之,w =cM 1 000ρ 。 (2)物质的量浓度(c )与溶解度(S )的换算 若某饱和溶液的密度为ρ g·cm -3,溶质的摩尔质量为M g·mol -1,溶解度为S g ,则溶解度与 物质的量浓度的表达式分别为:S =100cM 1 000ρ-cM ,c =n V =S /M 100+S 1 000ρ = 1 000ρS M (100+S )。 2.溶液稀释和混合的计算 (1)溶液稀释定律(守恒观点) ①溶质的质量在稀释前后保持不变,即m 1w 1=m 2w 2。 ②溶质的物质的量在稀释前后保持不变,即c 1V 1=c 2V 2。 ③溶液质量守恒,m (稀)=m (浓)+m (水)(体积一般不守恒)。 (2)同溶质不同物质的量浓度的溶液的混合计算 ①混合后溶液体积保持不变时,c 1V 1+c 2V 2=c 混×(V 1+V 2)。 ②混合后溶液体积发生改变时,c 1V 2+c 2V 2=c 混V 混,其中V 混=m 混ρ混 。 (3)溶质相同、质量分数不同的两溶液混合定律 ①等质量混合 两溶液等质量混合时(无论ρ>1 g·cm -3还是ρ<1 g·cm -3),混合后溶液中溶质的质量分数w =12 (a %+b %)。 ②等体积混合 a .当溶液密度大于1 g·cm -3时,必然是溶液浓度越大,密度越大,如H 2SO 4、HNO 3、HCl 、 NaOH 等多数溶液等体积混合后,质量分数w >12 (a %+b %)。

物质的量浓度计算及溶液配制

课时作业(二) 物质的量浓度计算及溶液配制 1.(2019山东泰安期中)室温时,甲、乙两同学在实验室配制氯化钠溶液。甲同学配制5%的NaCl 溶液100 g ,乙同学配制0.5 mol·L -1的NaCl 溶液100 mL(20 ℃时,氯化钠在水中的溶解度为36 g/100 g 水)。下列说法正确的是( ) A .两同学所需溶质的质量相同 B .两同学所需实验仪器种类相同 C .两同学所配溶液均为不饱和溶液 D .两同学所配溶液的质量相同 答案:C 解析:甲同学所配溶液中溶质的质量为100 g ×5%=5 g ,乙同学所配溶液中溶质的质量为0.5 mol·L -1×0.1 L ×58.5 g·mol -1=2.925 g ,A 项错误;乙同学配制溶液过程中需要用到容量瓶,而甲同学不需要,B 项错误;由A 项中的计算结果及题目所给氯化钠溶液的溶解度可知,两同学配制的溶液均为不饱和溶液,C 项正确;100 mL 氯化钠溶液的质量大于100 g ,D 项错误。 2.(2019陕西西安一中二模)把200 mL NH 4HCO 3和Na 2CO 3的混合溶液分成两等份,取一份加入含a mol NaOH 的溶液,恰好反应完全;取另一份加入含b mol HCl 的盐酸,也恰好反应完全。该混合溶液中c (Na +)为 ( ) A .(10b -5a )mol·L -1 B .(2b -a )mol·L -1 C.? ????b 10-a 20mol·L -1 D .? ?? ??5b -5a 2mol·L -1 答案:A 解析:200 mL 的混合溶液分成两等份,每份溶液的体积为100 mL ,其中一份溶液中的NH 4HCO 3和a mol NaOH 恰好完全反应,则溶液中NH 4HCO 3的物质的量为0.5a mol ,取另一份溶液加入含b mol HCl 的盐酸,也恰好反应完全,其中NH 4HCO 3反应掉的HCl 的物质的量为0.5a mol ,则由Na 2CO 3反应掉 的HCl 的物质的量为(b -0.5a )mol ,可得Na 2CO 3的物质的量为12×(b -0.5a )mol ,

晶胞计算习题

1回答下列问题 (1) 金属铜晶胞为面心立方最密堆积,边长为a cm。又知铜的密度为p g ? crh,阿伏加德罗 常数为________ 。 (2)下图是CaF2晶体的晶胞示意图,回答下列问题: ,③CaF?晶体的密度为a g ? cm T3,则晶胞的体积是 2、某些金属晶体(Cu、Ag、Au)的原子按面心立方的形式紧密堆积,即在晶体结构中可以划 出一块正立方体的结构单元,金属原子处于正立方体的八个顶点和六个侧面上, Si 3、单晶硅的晶体结构与金刚石一种晶体结构相似,都属立方晶系晶胞,如图: (1)将键联的原子看成是紧靠着的球体,试计算晶体硅的空间利用率(计算结果保留三位 有效数字,下同)。(2)已知Si—Si键的键长为234 pm,试计算单晶硅的密度是多少g/cm 3。 4、金晶体的最小重复单元(也称晶胞)是面心立方体,如图所示,即在立方体的8个顶点各有一个金原子,各个面的中心有一个金原子,每个金原子被相邻的晶胞所共有。金原子的直径为d,用N A表示阿伏加德罗常数,M表示金的摩尔质量。请回答下列问题: (1) 金属晶体每个晶胞中含有_________ 个金原子。 (2) 欲计算一个晶胞的体积,除假定金原子是刚性小球外,还应假定— ①CsT的配位数是,F —的配位数是。②该晶胞中含有的Ca2+数目是_______ , F (只要求列出算式)。金属晶体中原子的空间利用率。(3) 试计算这类 (2)

(3) 一个晶胞的体积是____________ 。(4)金晶体的密度是 _____________ 5、1986年,在瑞士苏黎世工作的两位科学家发现一种性能良好的金属氧化物超导体,使超导工作取得突破性进展,为此两位科学家获得了1987年的诺贝尔物理学奖,实验测定表明, 其晶胞结构如图所示。 (1)根据所示晶胞结构,推算晶体中Y、Cu、Ba和0的原子个数比,确定其化学式。 (2)根据(1)所推出的化合物的组成,计算其中Cu原子的平均化合价(该化合物中各元 素的化合价为[、二二、一.1和」)。试计算化合物中两种价态的Cu原子个数比。 6、(1)NiO (氧化镍)晶体的结构与NaCI相同,Ni2+与最邻近02-的核间距离为二x 108cm, 计算NiO晶体的密度(已知NiO的摩尔质量为74.7 g ? m)。 (2)天然的和绝大部分人工制备的晶体都存在各种缺陷,例如在某种NiO晶体中就存在如下 图所示的缺陷:一个Ni2+空缺,另有两个Ni2+被两个Ni3+所取代。结果晶体仍呈电中性,但 化合物中Ni和O的比值却发生了变化。某氧化镍样品组成为Ni0.97O,试计算该晶体中Ni3+ 与Ni2+的离子数之比。 7、下图是金属钨晶体中的一个晶胞的结构示意图,它是一种体心立方结构。实验测得金属 钨的密度为19.30 g ? cm 3,钨的相对原子质量是183.9。假设金属钨原子为等径刚性球, 试完成下列问题:

物质的量浓度计算公式

物质的量浓度计算公式 1.溶质的物质的量=溶质的物质的量浓度x溶液的体积n=c·v 2.物质的量=微粒数/阿伏伽德罗常数(n=N/Na) 3.物质的量=物质的质量/物质的摩尔质量(n=m/M) 4.物质的量=气体的体积/气体的摩尔体积(n=V/Vm) 5.c=1000ρ(密度) w% / M 注:n(mol):物质的量;V(L):物质的体积;M(g/mol):摩尔质量;w%:溶液中溶质的质量分数 密度单位:g/cm^3 6.c(浓溶液)·V(浓溶液)=c(稀溶液)·V(稀溶液) 用浓溶液配制稀溶液时使用 在稀释溶液时,溶液的体积发生了变化,但溶液中溶质的物质的量不变,即在溶液稀释前后,溶液的物质的量相等。 7.c混·V混=c1·V1+c2·V2+……+cn·Vn(有多少种溶液混合n就为几) 8.同温同压时 V1/V2=N1/N2=N1/N2 正比 同温同体积 P1/P2=N1/N2=n1/n2 正比 同压同物质的量 V1/V2=T1/T2 正比 同温同物质的量 V1/V2=P2/P1 反比 同体积同物质的量 P1/P2=T1/T2 正比 同温同压同体积 m1/m2=Mr1/Mr2=M1/M2 正比 同温同压同质量 V1/V2=p1/p2=M2/M1 反比 同温同体积同质量 p1/p2=Mr1/Mr2=M2/M1 反比 同温同压密度1/密度2=Mr1/Mr2=M1/M2 正比 9.n、V、Vm、N、NA、m、M、c的关系 n=m/M=N/NA=V/Vm=cV PS:V----体积 p------压强 T-----温度 n ------物质的量 N ----分子数 Mr----相对分子质量 M------摩尔质量 m-----质量 c------物质的量浓度 9.关于物质的量浓度与质量分数的转化(推导和演化) C=ρ·ω·1000/M

蛋白质计算题汇总

蛋白质类计算题的归类解析 一、有关蛋白质中氨基酸分子式的计算 例1.谷胱甘肽(分子式C10H17O6N3S)是存在于动植物和微生物细胞中的一种重要的三肽,它是由谷氨酸(C5H9NO4)、甘氨酸(C2H5O2)和半胱氨酸缩合而成,则半胱氨酸可能的分子式为( ) A.C3H3NS B. C3H5NS C. C3H7O2NS D. C3H3O2NS 【解析】谷胱甘肽是由3个氨基酸通过脱去2分子水缩合而成的三肽。因此,这3个氨基酸分子式之和应等于谷胱甘肽分子式再加上2个水分子,即C10H17O6N3S+2H2O=C10H21O8N3S 。故C10H21O8N3S - C5H9NO4 -C2H5NO2 =C3H7O2NS(半胱氨酸)。 参考答案:C 点拨:掌握氨基酸分子的结构通式以及脱水缩合反应的过程是解决此类计算题的关键。 二、有关蛋白质中肽键数及脱下水分子数的计算 例2. 人体内的抗体IgG是一种重要的免疫球蛋白,由4条肽链构成,共有m个氨基酸,则该蛋白质分子有肽键数( ) A.m 个 B. (m+1)个 C.(m-2)个 D.(m-4)个 参考答案:D 点拨:m个氨基酸分子脱水缩合成n条多肽链时,要脱下(m-n)个水分子,同时形成(m-n)个肽键,可用公式表示为:脱下的水分子数=肽键数目=氨基酸数-肽链数. 三、有关蛋白质中游离的氨基或羧基数目的计算 1.至少含有的游离氨基或羧基数目 例3.人体内的抗体IgG是一种重要的免疫球蛋白,由4条肽链构成,共有764个氨基酸,则该蛋白质分子中至少含有游离的氨基和羧基的个数分别是() A. 764、764 B. 760 、760 C. 762、762 D. 4 、4 【解析】由氨基酸的通式可知每个氨基酸至少含有一个氨基和一个羧基(R基上也可能含有氨基和羧基)。氨基酸脱水缩合形成多肽时,参与形成肽键的氨基和羧基不再称为游离的氨基和羧基,故任一多肽链至少含有1个游离的氨基和1个游离的羧基且分别位于首尾两端。该蛋白质由4条肽链组成,应至少含有4个游离的氨基和4个游离的羧基。 参考答案:D 点拨:审题时要注意对题干中关键词(如“至少”和“游离”)的理解。 2. 含有的游离氨基或羧基数目 例4. 现有1000个氨基酸,其中氨基有1020个,羧基有1050个,则由此合成的4条肽链中游离的氨基、羧基的数目分别是( ) A. 1010、1046 B.4 、4 C.24 、54 D.1024 、1054 【解析】每条肽链中至少含有1个氨基或羧基,面1000个氨基酸中含有氨基1020个、羧基1050个,说明多出来的20个氨基和50个羧基存在于R基中,故由此合成的4条肽链中游离的氨基、羧基的数目分别是20+4=24,50+4=54. 参考答案:C 点拨:蛋白质中含有的游离氨基或羧基数目=肽链条数+R基中含有的氨基或羧基数. 四、有关蛋白质中氨基酸数目的计算 1.氨基酸总数的计算

蛋白质的相关计算

四、基因型频率、基因频率的计算 【理论阐释】 1.含义:计算群体中某基因型或基因出现的概率。 2.常见类型 Ⅰ.基因频率的计算 (1)常染色体上基因频率的计算 ①已知个体数,在随机交配下求概率 ②已知基因型频率,在随机交配(或自交)下求概率 (2)性染色体上基因频率的计算 Ⅱ.基因型频率的计算 (1)常染色体上基因型频率的计算 (2)性染色体上基因型频率的计算 某基因型频率﹦纯合子基因型比率+1/2杂合子基因型比 率 则 AA基因型频率﹦q2 Aa基因型频率﹦2qp aa基因型频率﹦p2 1)常染色体上基因频率的计算 【例1】(2009·上海高考)某小岛上原有果蝇20000只,其中基因型VV、Vv、vv的果蝇分别占15%、55%和30%。若此时从岛外入侵了2000只基因型为VV的果蝇,且所有果蝇均随机交配,则F1中V的基因频率约是 A.43% B.48% C. 52% D.57% 方法一:定义公式法 群体总数:20000+2000﹦22000(只) VV总数﹦20000×15%+2000﹦5000(只) Vv总数﹦20000×55%﹦11000(只) vv总数﹦20000×30%﹦6000(只) 新群体中

又因随机交配的群体中亲、子代基因频率不变,所以,F1中V的基因频率约是48%。 例2】已知某生物种群中,AA个体占30%,Aa个体占50%,aa为20%,在自交情况下,后代中A基因占有的百分比为__________。 解析:解答此题可用方法一,即基因型频率法 A基因频率=纯合子基因型比率+1/2杂合子基因型比率=30%+1/2×50%=55% 答案:55% 2)性染色体上基因频率的计算 【例3】某100人的人群中,正常女性为30人,女色盲携带者15人,女色盲5人,男正常40人,男色盲10人,问人群中色盲基因出现的频率是多少? 例5】若在果蝇种群中,XB的基因频率为80%,Xb的基因频率为20%,雌雄果蝇数相等,理论上,XbXb、XbY的基因型频率依次为 A. 1% 2% B. 8% 8% C. 2% 10% D.2% 8% 【解析】选C 。 方法二:基因频率法 Xb基因频率﹦p﹦20% 则在群体(雌雄果蝇相等)中有: XbXb基因型频率﹦p2/2﹦20%×20%/2﹦2% XbY基因型频率﹦p/2﹦20%/2﹦10% 分别计算出遗传病单独出现的概率→按要求将概率组合→结论 蛋白质的相关计算 在氨基酸形成蛋白质过程中存在着氨基酸数、肽键数、脱去水分子数、肽链条数等的数量对应关系;在DNA控制合成蛋白质的过程中存在着DNA的碱基、RNA 的碱基及氨基酸数目之间的数量对应关系。这些数量关系的计算历年来都是高考的重点;如果掌握不牢固也是很多学生的失分点。下面我们就从这两个方面进行重点突破讲解。 一、氨基酸、肽键、肽链、水分子、蛋白质相对 分子量的相关计算 .知识背景 氨基酸是组成蛋白质的基本单位。由两个氨基酸分子缩合形成的化合物叫做二肽。其中,连接两个氨基酸分子的化学键(-NH-CO-)叫做肽键。由多个不同种类的氨基酸分子缩合而成的化合物叫做多肽;多肽通常呈链状结构,叫做肽链。肽链进一步加工,则形成蛋白质。 氨基酸、多肽、肽键、肽链和蛋白质的关系可归纳成下图: .

物质的量浓度及其溶液的配制

第6讲物质的量浓度及其溶液的配制 学习目标: 1、理解溶液、溶解度、物质的量浓度的概念 2、了解配制一定物质的量浓度溶液的方法及会进行误差分析 3、能进行物质的量浓度的相关计算 【思维导图】 溶解度质量分数物质的量浓度 c B=n B V基本概念原理 (c、w)计算配制仪器: (c、Vg) 步骤: 溶液稀释与混合误差分析: 活动一:关于物质的量浓度的溶液 1.N A代表阿伏加德罗常数。判断下列各项是否正确。 (1)1 mol·L-1 NaCl溶液含有N A个Na+() (2)将0.1 mol氯化铁溶于1 L水中,所得溶液含有0.1N A个Fe3+() (3)1 L 2 mol·L-1的MgCl2溶液中含Mg2+数为2N A () (4)1 mol 硫酸钾中阴离子所带电荷数为N A () (5)1 L 0.1 mol·L-1 Na2SO4溶液中有0.1N A个Na+() (6)常温下,1 L 0.1 mol·L-1的NH4NO3溶液中氮原子数为0.2N A () 2、某温度下,向100 g澄清的饱和石灰水中加入5.6 g生石灰,充分反应后恢复到原来的温度。下列叙述正确的是 ( ) A.沉淀物的质量为5.6 g B.沉淀物的质量为7.4 g C.饱和石灰水的质量大于98.2 g D.饱和石灰水的质量小于98.2 g 活动二:关于物质的量浓度的计算 1.将10.6 g Na2CO3溶于水配成1 L溶液该溶液中Na2CO3的物质的量浓度为__________,溶液中Na+的物质的量浓度为__________。 2、在一定温度下,某饱和氢氧化钠溶液体积为V mL,溶液密度为d g·cm-3,质量分数为w, 物质的量浓度为c mol·L-1,溶液中含氢氧化钠的质量为m g。 (1)用w来表示该温度下氢氧化钠的溶解度(S)为_______________________________。 (2)用m、V表示溶液中溶质的物质的量浓度(c)为______________________________。 (3)用w、d表示溶液中溶质的物质的量浓度(c)为______________________________。 (4)用c、d表示溶液中溶质的质量分数为____________________________________。 3、在标准状况下,将V L A气体(摩尔质量为M g·mol-1)溶于0.1 L水中,所得溶液的密度 为ρ g·cm-3,则此溶液的物质的量浓度(mol·L-1)为()

相关文档
最新文档