导数概念背景

导数概念背景
导数概念背景

对中学微分学采用哪两个实例?确需认真考虑。应考虑到学生的知识程度、理解能力,我们主张采用牛顿、莱布尼兹创立微积分时分别用过的两个经典实例“瞬时速度”和“切线斜率”。从直观的角度来讲,极限是我们观察运动细节的方式,运用这种方式,可以很自然地描述我们关于运

动的细节的任何概念。关于运动变化发展的一个很基本的观念,就是变化率的观念。应该说这个观念的起

源并不是以极限的观念为前提的,但是要清楚地表述变化率的概念,则非使用极限作为工具不可。在实际问题当中,变化率的概念总是两个变量的比值,甚至一般是两个取确定大小的变量的比值,但

这种作法从严格的意义上讲,是一种近似。

导数的概念可以用几何图形得到非常直观的表达,因为本来微积分的概念就有很强的几何直观性质,

而我们学习微积分,从几何直观的角度来理解与把握抽象概念,则是一个不二法门,希望同学们认真对待。

应用导数概念描述物理量。

导数概念具有很强的实际问题的背景,而我们在实际问题当中总是能够遇到大量的需要应用导数概念

来加以刻划的概念,甚至可以说,导数的概念构成一种思路,当我们在处理真实世界的问题时,常常遵循

这个思路来获得对于实际对象的性质的刻划。

前面我们已经讨论了导数的几何意义,其实完全可以反过来说,正是由于当初在几何学问题中,为了

要描述斜率这个概念,才启发人们建立了抽象的一般的导数的概念。而在其他的领域,这种相互发明的情

况是屡见不鲜的。

比方说在物理学领域,需要大量地应用导数的概念,来刻划属于变化率,增长率,强度,通量,流量

等等一大类的物理量。例如速度,加速度,电流强度,热容,等等。而我们在实际问题当中,更是应该善

于提取复杂现象当中所蕴涵的导数概念。

小结:

瞬时速度是平均速度当?t趋近于0时的极限;切线是割线的极限位置;切线斜率是割线斜率?y

?x 当?t趋近于0时的极限;

这个准确的说是微积分的产生背景,导数其实就是微商,即f'(x)=dy/dx。

从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。

公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时

期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。

到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。

十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。

牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。

牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它

在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为

是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一片说理也颇含糊的文章,却有划时代的意义。他以含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史

上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。

微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。

前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样。

不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。

其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。比较特殊的是牛顿创立微积分要比莱布尼词早10年左右,但是整是公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。他们的研究各有长处,也

都各有短处。那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。

应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。这些基础方面的缺陷,最终导致了第二次数学危机的产生。

直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。

任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、科西……

欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命。微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。

导数的概念及运算

导数的概念及运算 一、选择题 1.设曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,则a=( ) A.0 B.1 C.2 D.3 解析∵y=e ax-ln(x+1),∴y′=a e ax- 1 x+1 ,∴当x=0时,y′=a-1.∵ 曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,∴a-1=2,即a=3.故选D. 答案 D 2.若f(x)=2xf′(1)+x2,则f′(0)等于( ) A.2 B.0 C.-2 D.-4 解析∵f′(x)=2f′(1)+2x,∴令x=1,得f′(1)=-2, ∴f′(0)=2f′(1)=-4. 答案 D 3.(2017·西安质测)曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为( ) A.(1,3) B.(-1,3) C.(1,3)和(-1,3) D.(1,-3) 解析f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y=2x-1上,故选C. 答案 C 4.(2017·石家庄调研)已知曲线y=ln x的切线过原点,则此切线的斜率为( ) A.e B.-e C.1 e D.- 1 e 解析y=ln x的定义域为(0,+∞),且y′=1 x ,设切点为(x0,ln x0),则 y′|x=x 0= 1 x ,切线方程为y-ln x0= 1 x (x-x0),因为切线过点(0,0),所

以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1 e . 答案 C 5.(2016·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则 g ′(3)=( ) A.-1 B.0 C.2 D.4 解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-1 3,∴f ′(3)=- 1 3 ,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×? ???? -13=0. 答案 B 二、填空题 6.(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数, f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________. 解析 f ′(x )=a ? ? ???ln x +x ·1x =a (1+ln x ),由于f ′(1)=a (1+ln 1)=a , 又f ′(1)=3,所以a =3. 答案 3 7.(2016·全国Ⅲ卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________. 解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x , f ′(x )=1 x -3,f ′(1)=-2,切线方程为y =-2x -1. 答案 2x +y +1=0

(完整word版)导数的概念、导数公式与应用

导数的概念及运算 知识点一:函数的平均变化率 (1)概念: 函数中,如果自变量在处有增量,那么函数值y也相应的有增量△ y=f(x 0+△x)-f(x ),其比值叫做函数从到+△x的平均变化率,即。 若,,则平均变化率可表示为,称为函数从 到的平均变化率。 注意: ①事物的变化率是相关的两个量的“增量的比值”。如气球的平均膨胀率是半径的增量与体积增量的比值; ②函数的平均变化率表现函数的变化趋势,当取值越小,越能准确体现函数的变化情况。 ③是自变量在处的改变量,;而是函数值的改变量,可以是0。函数的平均变化率是0,并不一定说明函数没有变化,应取更小考虑。 (2)平均变化率的几何意义 函数的平均变化率的几何意义是表示连接函数图像上两点割线的斜率。 如图所示,函数的平均变化率的几何意义是:直线AB的斜率。 事实上,。 作用:根据平均变化率的几何意义,可求解有关曲线割线的斜率。

知识点二:导数的概念: 1.导数的定义: 对函数,在点处给自变量x以增量,函数y相应有增量。若极限存在,则此极限称为在点处的导数,记作或,此时也称在点处可导。 即:(或) 注意: ①增量可以是正数,也可以是负数; ②导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率。 2.导函数: 如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数。 注意:函数的导数与在点处的导数不是同一概念,是常数,是函数在 处的函数值,反映函数在附近的变化情况。 3.导数几何意义: (1)曲线的切线 曲线上一点P(x 0,y )及其附近一点Q(x +△x,y +△y),经过点P、Q作曲线的割线PQ, 其倾斜角为当点Q(x 0+△x,y +△y)沿曲线无限接近于点P(x ,y ), 即△x→0时,割线PQ的极限位置直线PT叫做曲线在点P处的切线。 若切线的倾斜角为,则当△x→0时,割线PQ斜率的极限,就是切线的斜率。 即:。

北师大文科数学高考总复习练习:导数的概念及运算 含答案

第三章导数及其应用 第1讲导数的概念及运算 基础巩固题组 (建议用时:40分钟) 一、选择题 1.设y=x2e x,则y′= () A.x2e x+2x B.2x e x C.(2x+x2)e x D.(x+x2)e x 解析y′=2x e x+x2e x=(2x+x2)e x. 答案 C 2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)等于 () A.-e B.-1 C.1 D.e 解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x , ∴f′(1)=2f′(1)+1,则f′(1)=-1. 答案 B 3.曲线y=sin x+e x在点(0,1)处的切线方程是 () A.x-3y+3=0 B.x-2y+2=0 C.2x-y+1=0 D.3x-y+1=0 解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x-y +1=0. 答案 C 4.(2017·成都诊断)已知曲线y=ln x的切线过原点,则此切线的斜率为

() A.e B.-e C.1 e D.- 1 e 解析y=ln x的定义域为(0,+∞),且y′=1 x ,设切点为(x0,ln x0),则y′|x =x0=1 x0 ,切线方程为y-ln x0=1 x0(x-x0),因为切线过点(0,0),所以-ln x0 =-1,解得x0=e,故此切线的斜率为1 e. 答案 C 5.(2017·昆明诊断)设曲线y=1+cos x sin x在点? ? ? ? ? π 2,1处的切线与直线x-ay+1=0 平行,则实数a等于 () A.-1 B.1 2 C.-2 D.2 解析∵y′=-1-cos x sin2x ,∴=-1. 由条件知1 a =-1,∴a=-1. 答案 A 二、填空题 6.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________. 解析因为y′=2ax-1 x ,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线 平行于x轴,故其斜率为0,故2a-1=0,解得a=1 2. 答案1 2 7.(2017·长沙一中月考)如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x) 在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=________.

苏教版 导数的概念及运算

导数的概念及运算 一、填空题 1.设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为________. 解析 由f (x )=x ln x ,得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e. 答案 e 2.设y =x 2e x ,则y ′=________. 解析 y ′=2x e x +x 2e x =()2x +x 2 e x . 答案 (2x +x 2)e x 3.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于________. 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1. 答案 -1 4.(2015·苏北四市模拟)设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =________. 解析 由y ′=2ax ,又点(1,a )在曲线y =ax 2上,依题意得k =y ′|x =1=2a =2,解得a =1. 答案 1 5.(2015·湛江调研)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为________. 解析 y ′|x =0=(-2e -2x )|x =0=-2,故曲线y =e -2x +1在点(0,2)处的切线方程为y =-2x +2,易得切线与直线y =0和y =x 的交点分别为(1,0),? ?? ?? 23,23,故围 成的三角形的面积为12×1×23=1 3. 答案 13 6.(2015·长春质量检测)若函数f (x )=ln x x ,则f ′(2)=________. 解析 ∵f ′(x )=1-ln x x 2,∴f ′(2)=1-ln 2 4.

高中数学导数概念的引入

一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是 000 ()() lim x f x x f x x ?→+?-?, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即 0()f x '=000 ()() lim x f x x f x x ?→+?-? 2. 导数的几何意义: 当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的 斜率k ,即 000 ()() lim ()n x n f x f x k f x x x ?→-'==- 3. 导函数 二.导数的计算 1. 基本初等函数的导数公式 2. 导数的运算法则 3. 复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=? 三.导数在研究函数中的应用 1.函数的单调性与导数: 2.函数的极值与导数 极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数 函数极大值与最大值之间的关系. 求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值; (2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值. 四.生活中的优化问题

导数的概念及运算专题训练

导数的概念及运算专题训练 基础巩固组 1.已知函数f(x)=+1,则--的值为() A.- B. C. D.0 2.若f(x)=2xf'(1)+x2,则f'(0)等于() A.2 B.0 C.-2 D.-4 3.已知奇函数y=f(x)在区间(-∞,0]上的解析式为f(x)=x2+x,则曲线y=f(x)在横坐标为1的点处的切线方程是() A.x+y+1=0 B.x+y-1=0 C.3x-y-1=0 D.3x-y+1=0 4.若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的距离的最小值为() A.1 B. C. D. 5.已知a为实数,函数f(x)=x3+ax2+(a-3)x的导函数为f'(x),且f'(x)是偶函数,则曲线y=f(x)在原点处的切线方程为() A.y=3x+1 B.y=-3x C.y=-3x+1 D.y=3x-3 6.设曲线y=sin x上任一点(x,y)处切线的斜率为g(x),则函数y=x2g(x)的部分图象可以为() 7.一质点做直线运动,由始点经过t s后的距离为s=t3-6t2+32t,则速度为0的时刻是() A.4 s末 B.8 s末 C.0 s末与8 s末 D.4 s末与8 s末 8.函数y=f(x)的图象在点M(2,f(2))处的切线方程是y=2x-8,则=. 9.(2018天津,文10)已知函数f(x)=e x ln x,f'(x)为f(x)的导函数,则f'(1)的值为. 10.已知函数f(x)=x++b(x≠0)在点(1,f(1))处的切线方程为y=2x+5,则a-b=. 11.函数f(x)=x e x的图象在点(1,f(1))处的切线方程是. 12.若函数f(x)=x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是. 综合提升组 13.已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为() A.x+y-1=0 B.x-y-1=0 C.x+y+1=0 D.x-y+1=0 14.下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R)的导函数y=f'(x)的图象,则f(- 1)=() A. B.- C. D.-或 15.直线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=.

导数的概念与计算练习题带答案

导数的概念与计算练习 题带答案 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

导数概念与计算 1.若函数42()f x ax bx c =++,满足'(1)2f =,则'(1)f -=( ) A .1- B .2- C .2 D .0 2.已知点P 在曲线4()f x x x =-上,曲线在点P 处的切线平行于直线30x y -=,则点 P 的坐标为( ) A .(0,0) B .(1,1) C .(0,1) D .(1,0) 3.已知()ln f x x x =,若0'()2f x =,则0x =( ) A .2e B .e C .ln 22 D .ln 2 4.曲线x y e =在点(0,1)A 处的切线斜率为( ) A .1 B .2 C .e D .1e 5.设0()sin f x x =,10()'()f x f x =,21()'()f x f x =,…,1()'()n n f x f x +=,n N ∈,则2013()f x =等 于( ) A .sin x B .sin x - C .cos x D .cos x - 6.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)f =( ) A .e - B .1- C .1 D .e 7.曲线ln y x =在与x 轴交点的切线方程为________________. 8.过原点作曲线x y e =的切线,则切点的坐标为________,切线的斜率为____________. 9.求下列函数的导数,并尽量把导数变形为因式的积或商的形式: (1) 1 ()2ln f x ax x x =-- (2) 2 ()1x e f x ax = + (3)21()ln(1)2 f x x ax x =--+ (4)cos sin y x x x =- (5)1cos x y xe -= (6)1 1 x x e y e +=-

导数的概念及导数的几何意义

§57 导数的概念及导数的几何意义⑴ 【考点及要求】了解导数的概念,理解导数的几何意义,通过函数图象能直观地理解导数的几何意义。 【基础知识】 1.一般地,函数)(x f 在区间],[21x x 上的平均变化率为,平均变化率反映了函数在某个区间上平均变化的趋势(变化快慢),或说在某个区间上曲线陡峭的程度; 2.不妨设))(,()),(,(0011x f x Q x f x P ,则割线PQ 的斜率为, 设x 1-x 0=△x ,则x 1 =△x +x 0,∴=PQ k ,当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+=) ()(00无 限趋近点Q 处切线。 3.曲线上任一点(x 0,f(x 0))切线斜率的求法:x x f x x f k ?-?+= ) ()(00,当 △x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的,记为. 4.瞬时速度与瞬时加速度:位移的平均变化率: t t s t t s ?-?+) ()(00,称为;当无限趋近于0 时, t t s t t s ?-?+) ()(00无限趋近于一个常数,这个常数称为t=t 0时的;速度的平均变化率: t t v t t v ?-?+)()(00,当无限趋近于0 时,t t v t t v ?-?+) ()(00无限趋近于一个常数,这个常数 称为t=t 0时的. 【基础练习】 1.已知函数2()f x ax =在区间[1,2]上的平均变化率为,则()f x 在区间[-2,-1]上的平均变化率为 . 2.A 、B 两船从同一码头同时出发,A 船向北,B 船向东,若A 船的速度为30km/h,B 船的速度为40km/h,设时间为t,则在区间[t 1,t 2]上,A,B 两船间距离变化的平均速度为____ __ _ 【典型例题讲练】 例1.已知函数f(x)=2x+1, ⑴分别计算在区间[-3,-1],[0,5]上函数f(x)的平均变化率; ⑵.探求一次函数y=kx+b 在区间[m ,n]上的平均变化率的特点; 练习:已知函数f(x)=x 2+2x ,分别计算f(x)在下列区间上的平均变化率; ⑴[1,2]; ⑵[3,4]; ⑶[-1,1]; ⑷[2,3] 【课堂检测】 1.求函数()y f x == 在区间[1,1+△x]内的平均变化率

高三数学一轮复习——导数的概念及运算

高三数学一轮复习——导数的概念及运算 考试要求 1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达,体会导数的内涵与思想;2.体会极限思想;3.通过函数图象直观理解导数的几何意义;4.能根据导数定义求函数y =c ,y =x ,y =x 2,y =x 3,y =1 x ,y =x 的导数;5.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(限于形如f (ax +b ))的导数;6.会使用导数公式表. 知 识 梳 理 1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ?→ f (x 0+Δx )-f (x 0)Δx =0lim x ?→ Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0lim x ?→Δy Δx = lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). 2.函数y =f (x )的导函数 如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 称为函数y =f (x )在开区间内的导 函数. 3.导数公式表 基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0

导数的概念

第二章导数与微分 本章教学目标与要求 理解导数的概念,会利用导数定义求导数。了解导数的物理意义(速度),几何意义(切线的斜率)和经济意义(边际),掌握基本初等函数的导数公式,导数的四则运算法则,复合函数求导法则。掌握反函数和隐函数求导法,对数求导法。理解可导性与连续性的关系。了解高阶导数的概念,会求简单函数的高阶导数。理解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性,会求函数的微分。 本章教学重点与难点 1.导数概念及其求导法则; 2.隐函数的导数; 3.复合函数求导; 4.微分的概念,可微和可导的关系,微分的计算 §2.1 导数的概念 教学目的与要求 1.理解函数导数的概念及其几何意义. 2.掌握基本初等函数的导数,会求平面曲线的切线和法线. 3.了解导数与导函数的区别和联系. 4.理解左右导数的概念、可导与连续的关系. 教学重点与难点 1.函数导数的概念、基本初等函数的导数 2.函数导数的概念、利用定义求函数在某一点的导数 一、引例 导数的思想最初是由法国数学家费马(Fermat)为研究极值问题而引入的,但与导数概念直接相联系的是以下两个问题:已知运动规律求速度和已知曲线求它的切线.这是由英国数学家牛顿(Newton)和德国数学家莱布尼茨(Leibniz)分别在研究力学和几何学过程中建立起来的. 下面我们以这两个问题为背景引入导数的概念.

1.瞬时速度 思考:已知一质点的运动规律为)(t s s =,0t 为某一确定时刻,求质点在0t 时刻的速度。 在中学里我们学过平均速度 t s ??,平均速度只能使我们对物体在一段时间内的运动大致情况有个了解, 这不但对于火箭发射控制不够,就是对于比火箭速度慢的多的火车、汽车运行情况也是不够的,火车上坡、下坡、转弯、穿隧道时速度都有一定的要求, 至于火箭升空那就不仅要掌握火箭的速度,而且要掌握火箭飞行速度的变化规律. 不过瞬时速度的概念并不神秘,它可以通过平均速度的概念来把握.根据牛顿第一运动定理,物体运动具有惯性,不管它的速度变化多么快,在一段充分短的时间内,它的速度变化总是不大的,可以近似看成匀速运动.通常把这种近似代替称为“以匀代不匀”. 设质点运 动的路程是时间的函数 )(t s ,则质点在 0t 到 t t ?+0 这段时间内的平均速度为 t t s t t s v ?-?+= ) ()(00 可以看出它是质点在时刻0t 速度的一个近似值,t ?越小,平均速度 v 与 0t 时刻的瞬时速度越接近.故当0→?t 时,平均速度v 就发生了一个质的飞跃,平均速度转化为物体在0t 时刻的瞬时速度,即物体在 0t 时刻的瞬时速度为 t t s t t s v v t t ?-?+==→?→?) ()(lim lim 000_ (1) 思考:按照这种思想和方法如何计算自由落体的瞬时速度? 因为自由落体运动的运动方程为: 2 2 1gt s = , 按照上面的公式,可知自由落体运动在0t 时刻的瞬时速度为 00020 2000000)2 1(lim 21)(21lim )()(lim )(0gt t g gt t gt t t g t t s t t s t v t t t =?+=?-?+=?-?+=→?→?→?。 这正是我们高中物理上自由落体运动的速度公式. 2.切线的斜率 思考:圆的的切线的定义是什么?这个定义适用于一般的切线吗? 引导学生得出答案:与圆只有一个交点的直线叫做圆的切线,但这个定义只适用于圆周曲线,并不适用于一般的曲线.因此,曲线的某一点的切线应重新定义. (1)切线的概念

导数的概念、几何意义及其运算

导数的概念、几何意义及其运算 常见基本初等函数的导数公式和常用导数运算公式 : +-∈==N n nx x C C n n ,)(;)(01''为常数; ;sin )(cos ;cos )(sin ''x x x x -== a a a e e x x x x ln )(;)(''==; e x x x x a a log 1 )(log ;1)(ln ''== 法则1: )()()]()([' ''x v x u x v x u ±=± 法则2: )()()()()]()(['''x v x u x v x u x v x u += 法则3: )0)(() ()()()()(])()([2' ''≠-=x v x v x v x u x v x u x v x u (一)基础知识回顾: 1.导数的定义:函数)(x f y =在0x 处的瞬时变化率 x x f x x f x y o x x ?-?+=??→?→?)()(lim lim 000称为函数)(x f y =在0x x =处的导数,记作)(0/ x f 或0/x x y =,即x x f x x f x f x ?-?+=→?) ()(lim )(0000/ 如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈, 都对应着一个确定的导数)(/ x f ,从而构成了一个新的函数)(/ x f 。称这个函数)(/ x f 为函数)(x f y =在开区间内的导函数,简称导数,也可记作/ y ,即)(/ x f =/ y = x x f x x f x ?-?+→?) ()(lim 0 导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数 )(x f y =在0x 处的导数0 /x x y =,就是导函数)(/ x f 在0x 处的函数值,即0 / x x y == )(0/x f 。 2. 由导数的定义求函数)(x f y =的导数的一般方法是: (1).求函数的改变量 )()(f x f x x f -?+=?; (2).求平均变化率 x x f x x f x ?-?+= ??)()(f ; (3).取极限,得导数/ y =x x ??→?f lim 0。 3.导数的几何意义:函数)(x f y =在0x 处的导数是曲线)(x f y =上点()(,00x f x )处的切线的斜率。 基础练习: 1.曲线324y x x =-+在点(13), 处的切线的倾斜角为( ) A .30° B .45° C .60° D .120° 2.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( ) A .1 B . 1 2 C .1 2 - D .1 -

导数的概念(教案)

课 题 导数的概念 课 型 新授 时 间 09/ 9 / 课程标准 1、理解导数的概念、掌握简单函数导数符号表示和求解方法; 理解导数的几何意义;理解导函数的概念和意义; 2、先理解概念背景,培养解决问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程,培养转化问题的能力 3、让学生感受事物之间的联系,体会数学的美。 教学重点 1、导数的求解方法和过程; 2、导数符号的灵活运用 一、自主学习 1、求函数2)(x x f =在点(2,4)处的切线斜率。 2、直线运动的汽车速度V 与时间t 的关系是12 -=t V ,求o t t =时的瞬时速度。 3.上述两个函数)(x f 和)(t V 中,当x ?(t ?)无限趋近于0时,t V ??(x V ??)都无限趋近于一个常数。 归纳:一般的,定义在区间(a ,b )上的函数)(x f ,)(b a x o ,∈,当x ?无限趋近于0时,x x f x x f x y o o ?-?+=??)()(无限趋近于一个固定的常数A ,则称)(x f 在o x x =处可导,并称A 为)(x f 在o x x =处的导数,记作)('o x f 或o x x x f =|)(' 上述两个问题中:(1)4)2('=f ,(2)o o t t V 2)('= 我们上述过程可以看出)(x f 在0x x =处的导数就是)(x f 在0x x =处的切线斜率。(即导数的几何意义) 4.自学检测: (1)见课本(文P66,理P14)练习 第1题: ; ;(说明什么? ) 第2题:(1) ;(2) ;(3) 。 (2)见课本(文P67,理P16)习题 第2题:=)5(f ;=)5(' f ; 第4题:斜率为 ;切线方程为 。 二次备课:

专题1.导数的概念及其运算

导数的概念及其运算 考纲导视 (一)考纲要求: 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义,求函数y =c ,y =x ,y =x 2,y =x 1的导数. 4.能利用给出的8个基本初等函数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数[仅限于形如f (ax +b )的复合函数]的导数. (二)考纲研读: 1.函数y =f (x )在点x 0处的导数记为f ′(x 0),它表示y =f (x )在点P (x 0,y 0)处切线的斜率,即k = f ′(x 0).导数源于物理,位移、速度的导数都有明显的物理意义. 2.对于多项式函数的导数,可先利用导数的运算法则将其转化成若干个与8个基本初等函数有关的和差积商形式,再进行求导. 基础过关 (一)要点梳理: 1.函数y =f (x )从x 1到x 2的平均变化率: 函数y =f (x )从x 1到x 2的平均变化率为fx 2-fx 1x 2-x 1 ,若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平均变化率可表示为Δy Δx . 2.函数y =f (x )在x =x 0处的导数: (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0 fx 0+Δx -fx 0Δx =lim Δx →0 Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0),即f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 fx 0+Δx -fx 0Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). (3)物理意义:在物理学中,如果物体运动的规律是 s =s (t ),那么该物体在时刻 t 0 的瞬时速度 v =s ′(t 0);如果物体运动的速度随时间变化的规律是 v =v (t ),则该物体在时刻 t 0 的瞬时加速度为 a =v ′(t 0)。 3.函数f (x )的导函数:称函数f ′(x )=lim Δx →0 fx +Δx -fx Δx 为f (x )的导函数,导函数有时也记作y ′. (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)????fx gx ′=f xgx -fxg x g 2x (g (x )≠0).

导数的概念与运算知识点及题型归纳总结

导数的概念与运算知识点及题型归纳总结 知识点精讲 一、基本概念 1、导数的概念 设函数()x f y =在0x x =附近有定义,如果0→?x 时,y ?与x ?的比x y ??(也叫函数的平均变化率) 有极限,即 x y ??无限趋近于某个常数,我们把这个极限值做函数()x f y = 在0x x =处的导数,记作()0x f '或.0 x x y =' 即 ()()()()().0 00000 0lim lim lim 0x x x f x f x x f x x f x y x f x x x x --=?-?+=??='→→?→? 2、导数的几何意义 函数()x f y =在0x 处的导数()0x f ',表示曲线()x f y =在点()()00,x f x P 处的切线PT 的斜率,即 ()0tan x f '=α,其中α为切线的倾斜角,如图3—1所示,过点P 的切线方程为()(). 000x x x f y y -'=-同样,可以定义曲线()x f y =在0x x =的法线为过点()()00,x f x P 与曲线()x f y =在0x x =的切线垂直的直线.过点P 的法线方程为=-0y y () ()()().01 0≠'-'- x f x x x f 3、导数的物理意义:设0=t 时刻一车从某点出发,在t 时刻车走了一定的距离().t S S =在10~t t 时刻,车 走了()(),01t S t S -这一段时间里车的平均速度为()() ,0 101t t t S t S --当1t 与0t 很接近时,该平均速度近似 于0t 时刻的瞬时速度.若令~1t 0t ,则可以认为 ()()0 101lim 1t t t S t S t t --→,即()0 t S '就是0t 时刻的瞬时速度.

14导数的定义及导数的计算

第11节 导数的定义及导数的计算 (14) 一.知识要点: 1.导数的定义:割线1l 的斜率=00()() f x x f x y x x +?-?=??,当x ? 趋于0时得到()f x 在0x 处切线的斜率:0000()()lim lim l x x f x x f x y k x x ?→?→+?-?==??也称()f x 在0x 处的导数。 2.导函数的定义:若()f x 在区间(,)a b 上的每一点x 处都有导数,导数记为 ()f x ',则0 ()() ()lim x f x x f x f x x ?→+?-'=?,称()f x '为()f x 的导函数。 3.导数的几何意义:()f x 在0x 处的导数值等于曲线()f x 在点00(,())P x f x 处切线的斜率。即:0()l k f x '=. 4.常见导数公式:0C '= 1 ()x x α αα-'= (sin )cos x x '= (cos )sin x x '=- ()ln x x a a a '=()x x e e '= 1(log )ln a x x a '= 1 (ln )x x '= 5.导数运算法则: (1).[]()()()()f x g x f x g x '''±=± (2)[]()()()()()()f x g x f x g x f x g x '''?=?+? (3)2 ()()()()()()()f x f x g x f x g x g x g x ''' ??-=???? 6.复合函数求导:(理) (()),(),()y f g x y f u u g x ===设,则()().y f u u x '''=? 二.考点评析 例1.利用导数定义求函数的导数 (1)2 348y x x =-+ (2)1y x x =+ y x l 1 l f(x 0) f(x 0+x) y x x 0x 0+x O y x L f(x) P(x 0,f(x 0)) o x 0

导数的概念教案

【教学课题】:§2.1 导数的概念(第一课时) 【教学目的】:能使学生深刻理解在一点处导数的概念,能准确表达其定义;明确其实际背 景并给出物理、几何解释;能够从定义出发求某些函数在一点处的导数;明确 一点处的导数与单侧导数、可导与连续的关系。 【教学重点】:在一点处导数的定义。 【教学难点】:在一点处导数的几种等价定义及其应用。 【教学方法】:系统讲授,问题教学,多媒体的利用等。 【教学过程】: 一) 导数的思想的历史回顾 导数的概念和其它的数学概念一样是源于人类的实践。导数的思想最初是由法国数学家费马(Fermat )为研究极值问题而引入的,但导数作为微积分的最主要的概念,却是英国数学家牛顿(Newton )和德国数学家莱布尼兹(Leibniz )在研究力学与几何学的过程中建立起来的。 二)两个来自物理学与几何学的问题的解决 问题1 (以变速直线运动的瞬时速度的问题的解决为背景)已知:自由落体运动方程为:21()2 s t gt =,[0,]t T ∈,求:落体在0t 时刻(0[0,]t T ∈)的瞬时速度。 问题解决:设t 为0t 的邻近时刻,则落体在时间段0[,]t t (或0[,]t t )上的平均速度为 00 ()()s t s t v t t -= - 若0t t →时平均速度的极限存在,则极限 000 ()()lim t t s t s t v t t →-=- 为质点在时刻0t 的瞬时速度。 问题2 (以曲线在某一点处切线的斜率的问题的解决为背景)已知:曲线)(x f y =上点00(,)M x y ,求:M 点处切线的斜率。 下面给出切线的一般定义;设曲线C 及曲线C 上的一点M ,如图,在M 外C 上另外取一点N ,作割线MN ,当N 沿着C 趋近点M 时,如果割线MN 绕点M 旋转而趋于极

导数的概念及运算

导数概念及其意义 自主梳理 1.函数的平均变化率 一般地,已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx =x 1-x 0,Δy =y 1- y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商________________________=Δy Δx 称作函数y =f (x )在区间[x 0,x 0+Δx ](或[x 0+Δx ,x 0])的平均变化率. 2.函数y =f (x )在x =x 0处的导数 (1)定义:函数y =f (x)在点x 0处的瞬时变化率______________通常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即______________________________. (2)几何意义 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是过曲线y =f (x )上点(x 0,f (x 0))的____________.导函数y =f ′(x )的值域即为_切线斜率的取值范围. 3.函数f (x )的导函数 如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,又称作f (x )的导函数,记作____________. 4.基本初等函数的导数公式表 原函数 导函数 f (x )=C f ′(x )=______ f (x )=x α (α∈Q *) f ′(x )=______ (α∈Q *) F (x )=sin x f ′(x )=__________ F (x )=cos x f ′(x )=____________ f (x )=a x (a >0,a ≠1) f ′(x )=____________(a >0,a ≠1) f (x )=e x f ′(x )=________ f (x )=lo g a x (a >0,a ≠1,且x >0) f ′(x )=__________(a >0, a ≠1,且x >0) f (x )=ln x f ′(x )=__________ 5.导数运算法则 (1)[f (x )±g (x )]′=__________;(2)[f (x )g (x )]′=______________; (3)????f (x )g (x )′=______________ [g (x )≠0].

导数的概念及运算(基础+复习+习题+练习)

导数的概念及运算 一,导数的概念 1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ?时,则函数 ()y f x =相应地有增量)()(00x f x x f y -?+=?,如果0→?x 时,y ?与x ?的比 x y ??(也叫函数的平均变化率)有极限即 x y ??无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0x x y =',即0000()() ()lim x f x x f x f x x ?→+?-'=? 在定义式中,设x x x ?+=0,则0x x x -=?,当x ?趋近于0时,x 趋近于0x ,因 此,导数的定义式可写成 000000 ()()()() ()lim lim x o x x f x x f x f x f x f x x x x ?→→+?--'==?-. 2.求函数()y f x =的导数的一般步骤:()1求函数的改变量)()(x f x x f y -?+=? ()2求平均变化率 x x f x x f x y ?-?+= ??)()(;()3取极限,得导数y '=()f x '=x y x ??→?0lim 3.导数的几何意义: 导数0000()() ()lim x f x x f x f x x ?→+?-'=?是函数)(x f y =在点0x 处的瞬时变化率,它 反映的函数)(x f y =在点0x 处变化.. 的快慢程度. 它的几何意义是曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果 )(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 000()()()y f x f x x x -='- 4.导函数(导数):如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一 个),(b a x ∈,都对应着一个确定的导数()f x ',从而构成了一个新的函数()f x ', 称这个函数()f x '为函数)(x f y =在开区间内的导函数,简称导数,也可记作y ',即()f x '=y '=x x f x x f x y x x ?-?+=??→?→?)()(lim lim 00 函数)(x f y =在0x 处的导数0 x x y =' 就是函数)(x f y =在开区间),(b a )) ,((b a x ∈

15导数的概念及计算

导数的概念及计算 一、知识概述 导数的概念及其基本运算是本周学习的重点内容,导数有着丰富的实际背景和广泛使用,通过对平均变化率的分析入手,层层深入,展现了从平均变化率到瞬时变化率的过程,指明了瞬时变化率就是导数,介绍了导数的一般定义.并借助函数图象,运用观察和直观分析阐明了曲线的切线斜率和导数间的关系.导数的计算主要包括两个方面,首先是几个常见函数的导数,然后是基本初等函数的导数公式和导数的运算法则,关键在于使用这些公式和法则求简单函数的导数. 二、重难点知识归纳 1.变化率和导数 (1)平均变化率 通常把式子称为函数f(x)从x1到x2的平均变化率. 令,, 则平均变化率可表示为 (2)导数的概念 一般地,函数y=f(x)在x=x0处的瞬时变化率是 则称它为函数y=f(x)在x=x0处的导数(derivative),记作或,即

当x变化时,便是x的一个函数,则称它为f(x)的导函数(derivative funtion)(简称导数),记作或,则. (3)注意事项: 弄清“函数f(x)在点x0处的导数”、“导函数”、“导数”之间的区别和联系,可以从以下几个方面来认识. ①函数在一点处的导数,就是在该点的函数改变量和自变量的改变量之比的极限,它是一个常数,不是变数. ②导函数(导数)是一个特殊的函数,它的引出和定义始终贯穿着函数思想,对于每一个确定的值x0,都对应着一个确定的导数,根据函数的定义,在某一区间内就构成了一个新函数,即导数. ③函数y=f(x)在点x0处的导数就是导函数在x=x0处的函数值,即 =.这也是求函数在x=x0处的导数的方法之一. (4)导数的几何意义 函数y=f(x)在点x0处的导数就是曲线y=f(x)在点处的切线的斜率k,即. 2.导数的计算 (1)基本初等函数的导数公式 ①若f(x)=c,则; ②若,则; ③若f(x)sinx,则;

相关文档
最新文档