焓熵图

焓熵图

电子焓熵图中符号及单位

电子焓熵图中符号及单位 整理路学军 计算时减去熵值 压力:符号P. 单位MPa. 温度:符号t. 单位℃ 过热蒸汽区 比容符号υ 单位m3/kg 焓(比焓)符号h单位kj/kg. 比熵符号S. 单位kj/kg.K 饱和状态(蒸汽,水) 压力符号Ps 单位MPa 饱和温度(饱和水=饱和蒸汽)符号t s单位℃ 比容υ1饱和水单位m3/kg 比容υ11饱和蒸汽单位m3/kg 比焓符号h1饱和水单位kj/kg 比焓符号h11饱和蒸汽单位kj/kg 汽化潜热符号г 单位kj/kg 饱和水的比熵S1单位kj/kg.k 饱和蒸汽的比熵S11单位kj/kg.k 注:过冷水(未饱和水)的焓熵在过热蒸汽区 《发电厂热力设备》中的纸质焓熵图 流动速度V换算成为焓差V单位为m/S △h单位为j/kg时用式V=√2△h 如取值计算中V单位为m/S,△h单位为kj/kg,侧V=44.72√△h 等压热Qp及热焓H(推导过程)《物理、化学》54页 Qp=△H=△U+p△υ=(U2+p2υ2)(U1+p1υ1) H=m Cp T 其中Cp为等压比热单位kj/kg.K H≡U+pυH为技术功U为内能(物质温度的热能)pυ为膨胀功(工质的流动能,产生位移,具有压力势能)膨胀功产生位移的推动功 能量传递 做功→△w=p △υ(比容)传热→△q=T △S(比熵) dq R(功)=T ds(熵)绝热过程本式都为零 熵是体系混乱程度的量度。没有熵就没有热功的传递和转换 H=ST(绝热熵)+F(功函)+pυ(膨胀功) H=ST(绝热熵)+G(自由能) 功函的定义F≡U-TS(热温熵) 自由能的定义G=U+pυ-TS(热温熵) 功函、自由能具有方向和限度(矢量) 功函是电子要脱离原子,必须从费米能级跃进到真空静止电子(自由电子)能级这一跃进所需要的能量,叫功函。这一定义和电子的逸出功一样,只是从不同的角度讲的而已。 焓= +?(自己认为)

水蒸汽的焓熵图

水蒸汽的焓熵图 水蒸汽的焓熵图如下图所示。图中饱和水线x=1的上方为过热蒸汽区;c-d线为干饱和蒸汽线,在a-c-d线下面为湿蒸汽区,c-d线的上方为过热蒸汽区。h-s图中还绘制了等压线、等温线、等干度线和等容线。在湿蒸汽区,等压线与等温线重合,而且是一组斜率不同的直线。在过热蒸汽区,等压线与等温线分开,等压线为向上倾斜的曲线,而等温线是弯曲而后趋于平坦。此外,在h-s图上还有等容线(图中未画出),在湿蒸汽区中还有等干度线。由于等容线与等压线在延伸方向上有些近似(但更陡些),为了便于区别,在通常的焓熵图中,常将等容线印成红线或虚线。 水蒸汽的h-s图 由于工程上用到的蒸汽,常常是过热蒸汽或干度大于50%的湿蒸汽,故h-s 图的实用部分仅是它的右上角。工程上实用的h-s图,即是将这部分放大而绘制的。 水和水蒸汽性质计算机程序简介 目前大多数水和水蒸汽热力性质的计算软件均采用第六届国际水蒸汽性质会议上成立的国际公式化委员会提出的一套水和水蒸汽热力性质的公式。这套公式的适用范围:温度从273.16K到1073.15K,压力从理想气体极限值 (p=0)到100MPa。可以预计,在今后相当长的一段时间里工业上应用的水和水

蒸汽的参数不会超出此一范围。国际公式化委员会拟定的水和水蒸汽热力性质公式简称IFC公式,IFC公式把整个区域分成6个子区域,如图2-10所示。不同的子区域采用不同的计算公式,各区域之间的边界线方程也分别用函数表达。各子区域的计算公式及边界线函数请读者参阅有关文献。 水蒸汽作工质的大量工程应用问题,主要关键是工质初、终态参数的确定。为了能适应各种工程问题热力计算的需要,计算程序都以子程序形式编制,应用时,只要根据不同的已知参数调用相应的子程序,即可确定其他状态参数。如文献[9]提供的“确定水和水蒸汽热力计算的FORTRAN程序”编制了9个子程序,各子程序的输入参数及功能如下: 序号子程序名 功能 已知输入 参数 输出结果参数 函数子程序1 PSK(T)T P 2 TSK(P)P T 子例程子程序3 PTF(P,T,V, H,S) p,t 过冷水、饱和水v,h、s 4 PTG(P,T,V, H,S) p,t 过热蒸汽、饱和蒸汽:v,h、s 5 PT(P,T,X, V,H,S) p,t 过冷水、过热蒸汽:v,h、s 6 PH(P,H,X, T,V,S) p,h 过冷水、饱和水、过热蒸汽、饱和蒸 汽、湿蒸汽:x,t,v,s 7 PS(P,S,X, T,V,H) p,s 过冷水、饱和水、过热蒸汽、饱和蒸 汽、湿蒸汽:x,t,v,h 8 HS(H,S,X, P,T,V) h,s 过热蒸汽、饱和蒸汽、湿蒸汽:x,p、 t,v 9 PX(P,X,T,p,x 饱和水、饱和蒸汽、湿蒸汽:t,v,h、

甲烷的性质

甲烷 甲烷分子式CH4。最简单的有机化合物。甲烷是没有颜色、 没有气味的气体,沸点-161.4℃,比空气轻,它是极难溶于 水的可燃性气体。甲烷和空气成适当比例的混合物,遇火花 会发生爆炸。化学性质相当稳定,跟强酸、强碱或强氧化剂 (如KMnO4)等一般不起反应。在适当条件下会发生氧化、热解及卤代等反应。 甲烷在自然界分布很广,是天然气、沼气、坑气及煤气的主要成分之一。它可用作燃料及制造氢、一氧化碳、炭黑、乙炔、氢氰酸及文字甲醛等物质的原料。 413kJ/mol、109°28′,甲烷分子是正四面体空间构型,上面的结构式只是表示分子里各原子的连接情况,并不能真实表示各原子的空间相对位置。 1.物质的理化常数: 国标编号21007 CAS号74-82-8 中文名称甲烷 英文名称methane;Marsh gas 别名沼气 分子式CH4 外观与性状无色无臭气体 分子量16.04 蒸汽压53.32kPa/-168.8℃闪点:-188℃ 熔点-182.5℃沸点:-161.5℃溶解性微溶于水,溶于醇、乙醚 密度相对密度(水=1)0.42(-164℃);相对密度(空气=1)0.55 稳定性稳定 危险标记4(易燃液体) 主要用途用作燃料和用于炭黑、氢、乙炔、甲醛等的制造 2.对环境的影响: 一、健康危害 侵入途径:吸入。 健康危害:甲烷对人基本无毒,但浓度过高时,使空气中氧含量明显降低,使人窒息。当空气中甲烷达25%-30%时,可引起头痛、头晕、乏力、注意力不集中、呼吸和心跳加速、共济失调。若不及时脱离,可致窒息死亡。皮肤接触液化本品,可致冻伤。 二、毒理学资料及环境行为 毒性:属微毒类。允许气体安全地扩散到大气中或当作燃料使用。有单纯

锅炉水蒸气的焓熵图及其使用说明

锅炉水蒸气的焓熵图及其使用说明本节概要 水蒸气不能作为理想气体处理~对蒸气热力性质的研究~包括状态方程式、比热容、热力学能、焓和熵等参数目前还难以用纯理论方法或纯实验方法得出能直接用于工程计算的准确而实用的方程。现多采用以实验为基础~以热力学一般关系式为工具的理论分析和实验相结合的方法~得出相关方程。这些方程依然十分复杂~仅宜于用计算机计算。为方便一般工程应用~由专门工作者编制出常用蒸气的热力性质表和图~供工程计算时查用。 本节介绍了由我国学者编撰的水和水蒸气热力性质表和h-s图及确定水和水蒸气热力性质的计算程序~考虑到我国的国情两者不应偏废。 本节内容 2.8.1 国际水蒸气骨架表和IFC公式 2.8.2 水蒸气表 2.8.3 水蒸气的焓熵图 2.8.4 水和水蒸气性质计算机程序简介 2.8.5 例题 本节习题 2-13、2-14 水蒸气的焓熵图 利用水蒸气表确定水蒸气状态参数的优点是数值的准确度高~但由于水蒸气表上所给出的数据是不连续的~在遇到间隔中的状态时~需要用内插法求得~甚为不便。另外~当已知状态参数不是压力或温度~或分析过程中遇到跨越两相的状态时~使用水蒸气表尤其感到不便。为了使用上的便利~工程上根据蒸汽表上已列出的

各种数值~用不同的热力参数坐标制成各种水蒸气线图~以方便工程上的计算。除了前已述及的p-v图与T-s图以外~热工上使用较广的还有一种以焓为纵坐标、以熵为横坐标的焓熵图,即h-s图,。水蒸气的焓熵图如图2-9所示。图中饱和水线x =1的上方为过热蒸汽区,下方为湿蒸汽区。h-s图中还绘制了等压线、等温线、等干度线和等容线。在湿蒸汽区~等压线与等温线重合~是一组斜率不同的直线。在过热蒸汽区~等压线与等温线分开~等压线为向上倾斜的曲线~而等温线是弯曲而后趋于平坦。此外~在h-s图上还有等容线,图2-9中未画出,~在湿蒸汽区中还有等干度线。由于等容线与等压线在延伸方向上有些近似,但更陡些,~为了便于区别~在通常的焓熵图中~常将等容线印成红线或虚线。 图2-9水蒸气的h-s图

甲烷危险特性(甲烷理化性)

甲烷的危险有害特性表 标识中文名甲烷英文名Methane 分子式CH4危规号21007UN编号:1971 分子量16.04危险性类别第2.1类易燃气体 理化特性熔点(℃)-182.5沸点(℃)-161.5 燃烧热(kJ/mol)889.5 饱和蒸气压 (kPa) 53.32(-168.8℃) 相对密度(水=1) 0.42(-164℃) (空气=1) 0.55 外观性状无色无臭气体 溶解性微溶于水,溶于醇、乙醚 稳定性---聚合危害--- 禁忌物 强氧化剂、氟、 氯 燃烧(分解)产 物 一氧化碳、二氧化 碳 主要用途用作燃料和用于炭黑、氢、乙炔、甲醛等的制造 燃爆特性燃烧性易燃 建规火险分 级 甲 闪点(℃)-188引燃温度(℃)538 爆炸下限(V%) 5.3 爆炸上限 ( V%) 15 危险特性 易燃,与空气混合能形成爆炸性混合物,遇热源和明火有燃烧爆炸的危险。与五氧化溴、氯气、次氯酸、三氟化氮、液氧、二氟 化氧及其它强氧化剂接触剧烈反应 灭火方法 切断气源。若不能切断气源,则不允许熄灭泄漏处的火焰。喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾状水、 泡沫、二氧化碳、干粉 毒性及健康危 害 车间卫生标 准 未制定标准 侵入途径吸入、皮肤接触 急性毒性 LD50:无资料 LC50:无资料 健康危害 甲烷对人基本无毒,但浓度过高时,使空气中氧含量明显降低,使人窒息。当空气中甲烷达25%~30%时,可引起头痛、头晕、乏 力、注意力不集中、呼吸和心跳加速、共济失调。若不及时脱离, 可致窒息死亡。皮肤接触液化本品,可致冻伤。 急救措施皮肤接触若有冻伤,就医治疗 眼睛接触--- 吸入 迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医 食入--- 应急急救措施

-蒸汽和饱和蒸汽热焓表

热焓表(饱和蒸汽或过热蒸汽)1、饱和蒸汽压力- 焓表(按压力排列)

2、饱和蒸汽温度-焓表(按温度排列)

3、过热蒸汽温度、压力-焓表(一) 4、过热蒸汽温度、压力-焓表(二)

1吨280度的1MPa的过热蒸汽热焓为 1吨280度的1MPa的过热蒸汽折合3008300/29307600=0.1026吨标煤 1度电=404g标煤大型电厂折合390g标煤 1吨标煤减排二氧化碳2.4567(t-CO2/tce) 1度电折合二氧化碳:2.4567*404g=992.5g 1度(千瓦时)= 3600000焦耳,而标准煤的定义是:凡能产生29.27MJ的热量(低位)的任何数量的燃料折合为1kg标准煤。这样就可以算出来理论上(即能量完全转化的情况下)一千克标准煤可以发多少电了。

不过,实际上因为不可能完全转化,所以肯定会低于理论值。国家发改委提供的数据是火电厂平均每千瓦时供电煤耗由2000年的392g标准煤降到360g标准煤,2020年达到320g标准煤。即一千克标准煤可以发三千瓦时的电。 按2009年全国发电标煤消耗342克/度计算: 1、反应式:C + O2 = CO2 2、条件:标煤碳元素含量85%(重量);C分子量12;CO2分子量44; 理想气体常数22.4升/摩尔。 则每发一度电产生的二氧化碳为:342克×0.85/12×44=1065.9克 1万立方的水如何折成吨标煤? 悬赏分:50 - 解决时间:2009-8-31 18:39 问题补充: 急用!我只要水的折算方法! 提问者:mapla - 二级 最佳答案 各类能源折算标准煤的参考系数 能源名称平均低位发热量折标准煤系数 原煤20934千焦/公斤0.7143公斤标煤/公斤 洗精煤26377千焦/公斤0.9000公斤标煤/公斤 其他洗煤8374 千焦/公斤0.2850公斤标煤/公斤 焦炭28470千焦/公斤0.9714公斤标煤/公斤 原油41868千焦/公斤1.4286公斤标煤/公斤 燃料油41868千焦/公斤1.4286公斤标煤/公斤 汽油43124千焦/公斤1.4714公斤标煤/公斤 煤油43124千焦/公斤1.4714公斤标煤/公斤 柴油42705千焦/公斤1.4571公斤标煤/公斤 液化石油气47472千焦/公斤1.7143公斤标煤/公斤 炼厂干气46055千焦/ 公斤1.5714公斤标煤/公斤 天然气35588千焦/立方米12.143吨/万立方米 焦炉煤气16746千焦/立方米5.714吨/万立方米 其他煤气3.5701吨/万立方米 热力0.03412吨/百万千焦 电力3.27吨/万千瓦时 1、热力其计算方法是根据锅炉出口蒸汽和热水的温度压力在焓熵图(表)内查得每千克的热焓减去给水(或回水)热焓,乘上锅炉实际产出的蒸汽或热水数量(流量表读出)计算。如果有些企业没有配齐蒸汽或热水的流量表,如没有焓熵图(表),则可参下列方法估算: (1)报告期内锅炉的给水量减排污等损失量,作为蒸汽或热水的产量。 (2)热水在闭路循环供应的情况下,每千克热焓按20千卡计算,如在开路供应时,则每千克热焓按70千卡计算(均系考虑出口温度90℃,回水温度20℃)。

甲烷理化性质及危险特性表

甲烷理化性质及危险特性表 稳定性:稳定 聚合危险性:不聚合 禁忌物:强氧化剂、氟、氯。 有害燃烧产物:一氧化碳、二氧化碳。 健康危害数据 甲烷对人基本无毒,但浓度过高时,使空气中氧含量明显降低,使人窒息。当空气中甲烷达 25%?30%时,可引 起头痛、头晕、乏力、注意力不集中、呼吸和心跳加速、共济失调。若不及时脱离,可致窒息死亡。皮肤接触液化本 品,可致冻伤。 泄漏紧急处理 迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制岀入。切断火源。建议应急处理人员戴自给正压式呼 吸器,穿防静电工作服。尽可能切断泄漏源。合理通风,加速扩散。喷雾状水稀释、溶解。构筑围堤或挖坑收容产生 的大量废水。如有可能,将漏岀气用排风机送至空旷地方或装设适当喷头烧掉。也可以将漏气的容器移至空旷处,注 意通风。漏气容器要妥善处理,修复、检验后再用。 运输注意事项: 采用刚瓶运输时必须戴好钢瓶上的安全帽。钢瓶一般平放,并应将瓶口朝同一方向,不可交叉;高度不得超过车 辆的防护栏板,并用三角木垫卡牢,防止滚动。运输时运输车辆应配备相应品种和数量的消防器材。装运该物品的车 辆排气管必须配备阻火装置,禁止使用易产生火花的机械设备和工具装卸。严禁与氧化剂等混装混运。夏季应早晚运 输,防止日光曝晒。中途停留时应远离火种、热源。公路运输时要按规定路线行驶,勿在居民区和人口稠密区停留。 铁路运输时要禁止溜放。 储存注意事项: 储存于阴凉、通风的库房。远离火种、热源。库温不宜超过 30 'C 。应与氧化剂等分开存放,切忌混储。采用防爆 型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备。 操作注意事项: 密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。远离火种、热源,工作场所严禁吸烟。 使用防爆型的通风系统和设备。防止气体泄漏到工作场所空气中。避免与氧化剂接触。在传送过程中,钢瓶和容器必 须接地和跨接,防止产生静电。搬运时轻装轻卸,防止钢瓶及附件破损。配备相应品种和数量的消防器材及泄漏应急 处理设备。 包装类别:052 包装方法:钢质气瓶。

甲烷物性参数

甲烷分子式CH4。最简单的有机化合物。甲烷是没有颜色、没有气味的气体,沸点-161.4℃,比空气轻,它是极难溶于水的可燃性气体。甲烷和空气成适当比例的混合物,遇火花会发生爆炸。化学性质相当稳定,跟强酸、强碱或强氧化剂(如KMnO4)等一般不起反应。在适当条件下会发生氧化、热解及卤代等反应。甲烷在自然界分布很广,是天然气、沼气、坑气及煤气的主要成分之一。它可用作燃料及制造氢、一氧化碳、炭黑、乙炔、氢氰酸及甲醛等物质的原料。 413kJ/mol、109°28′,甲烷分子是正四面体空间构型,上面的结构式只是表示分子里各原子的连接情况,并不能真实表示各原子的空间相对位置。 甲烷的产生:据德国核物理研究所的科学家经过试验发现,植物和落叶都产生甲烷,而生成量随着温度和日照的增强而增加。另外,植物产生的甲烷是腐烂植物的10到100倍。他们经过估算认为,植物每年产生的甲烷占到世界甲烷生成量的10%到30%。 1.物质的理化常数: 国标编号21007 CAS号74-82-8 中文名称甲烷 英文名称methane;Marsh gas 别名沼气 分子式CH4 外观与性状无色无臭气体 分子结构:甲烷分子是正四面体形分子、非极性分子。 分子量16.04 蒸汽压53.32kPa/-168.8℃闪点:-188℃ 熔点-182.5℃沸点:-161.5℃溶解性微溶于水,溶于醇、乙醚 密度相对密度(水=1)0.42(-164℃);相对密度(空气=1)0.55 稳定性稳定 危险标记4(易燃液体) 主要用途用作燃料和用于炭黑、氢、乙炔、甲醛等的制造 2.对环境的影响: 一、健康危害 侵入途径:吸入。

健康危害:甲烷对人基本无毒,但浓度过高时,使空气中氧含量明显降低,使人窒息。当空气中甲烷达25%-30%时,可引起头痛、头晕、乏力、注意力不集中、呼吸和心跳加速、共济失调。若不及时脱离,可致窒息死亡。皮肤接触液化本品,可致冻伤。 二、毒理学资料及环境行为 毒性:属微毒类。允许气体安全地扩散到大气中或当作燃料使用。有单纯性窒息作用,在高浓度时因缺氧窒息而引起中毒。空气中达到25~30%出现头昏、呼吸加速、运动失调。 急性毒性:小鼠吸入42%浓度×60分钟,麻醉作用;兔吸入42%浓度×60分钟,麻醉作用。 危险特性:易燃,与空气混合能形成爆炸性混合物,遇热源和明火有燃烧爆炸的危险。与五氧化溴、氯气、次氯酸、三氟化氮、液氧、二氟化氧及其它强氧化剂接触剧烈反应。 燃烧(分解)产物:一氧化碳、二氧化碳。 3.现场应急监测方法: 4.实验室监测方法:气相色谱法《空气中有害物质的测定方法》(第二版),杭士平编 可燃溶剂所显色法;容量分析法《水和废水标准检验法》第20版(美) 5.环境标准: 前苏联车间空气中有害物质的最高容许浓度300mg/m3 美国车间卫生标准窒息性气体 6.应急处理处置方法: 一、泄漏应急处理 迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。合理通风,加速扩散。喷雾状水稀释、溶解。构筑围堤或挖坑收容产生的大量废水。如有可能,将漏出气用排风机送至空旷地方或装设适当喷头烧掉。也可以将漏气的容器移至空旷处,注意通风。漏气容器要妥善处理,修复、检验后再用。二、防护措施

甲烷理化性质与危险特性表

甲烷理化性质及危险特性表 物质名称:甲烷英文名称:methane 危险性类别:第2.1类易燃气体危险货物编号:21007UN编号:1971 物化特性 熔点(℃)-182.5沸点(℃)-161.5溶解性微溶于水,溶于醇、乙醚。 相对密度(空气=1)0.55 饱和蒸气压 (kPa) 53.32(-168.8 ℃) 燃烧热889.5kJ/mol 相对密度(水=1) 0.42(-164 ℃) 外观与气味无色无臭气体。 火灾爆炸危险数据 闪点(℃)-188爆炸极限(%)上限15下限5.3引燃温度(℃)538 临界温度(℃)-82.6临界压力(MPa)4.59燃烧性本品易燃,具窒息 性。 灭火剂雾状水、泡沫、二氧化碳、干粉。 灭火方法切断气源。若不能切断气源,则不允许熄灭泄漏处的火焰。喷水冷却容器,可能的话将容器从火 场移至空旷处。 危险特性易燃,与空气混合能形成爆炸性混合物,遇热源和明火有燃烧爆炸的危险。与五氧化溴、氯气、 次氯酸、三氟化氮、液氧、二氟化氧及其它强氧化剂接触剧烈反应。 反应活性数据 稳定性:稳定聚合危险性:不聚合禁忌物:强氧化剂、氟、氯。有害燃烧产物:一氧化碳、二氧化碳。 健康危害数据 侵入途径吸入、皮肤接触 急性毒性LD50无资料LC50无资料 健康危害 甲烷对人基本无毒,但浓度过高时,使空气中氧含量明显降低,使人窒息。当空气中甲烷达25%~30%时,可引起头痛、头晕、乏力、注意力不集中、呼吸和心跳加速、共济失调。若不及时脱离,可致窒息死亡。皮肤接触液化本品,可致冻伤。 泄漏紧急处理 迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防静电工作服。尽可能切断泄漏源。合理通风,加速扩散。喷雾状水稀释、溶解。构筑围堤或挖坑收容产生的大量废水。如有可能,将漏出气用排风机送至空旷地方或装设适当喷头烧掉。也可以将漏气的容器移至空旷处,注意通风。漏气容器要妥善处理,修复、检验后再用。 运输注意事项: 采用刚瓶运输时必须戴好钢瓶上的安全帽。钢瓶一般平放,并应将瓶口朝同一方向,不可交叉;高度不得超过车辆的防护栏板,并用三角木垫卡牢,防止滚动。运输时运输车辆应配备相应品种和数量的消防器材。装运该物品的车辆排气管必须配备阻火装置,禁止使用易产生火花的机械设备和工具装卸。严禁与氧化剂等混装混运。夏季应早晚运输,防止日光曝晒。中途停留时应远离火种、热源。公路运输时要按规定路线行驶,勿在居民区和人口稠密区停留。铁路运输时要禁止溜放。 储存注意事项: 储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。应与氧化剂等分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备。 操作注意事项: 密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止气体泄漏到工作场所空气中。避免与氧化剂接触。在传送过程中,钢瓶和容器必须接地和跨接,防止产生静电。搬运时轻装轻卸,防止钢瓶及附件破损。配备相应品种和数量的消防器材及泄漏应急处理设备。 包装类别:O52 包装方法:钢质气瓶。 废弃处置:处置前应参阅国家和地方有关法规。建议用焚烧法处置。 急救措施

Methane sat(甲烷饱和温度对照表)

REFPROP Version 8.02014-2-18 11:22:56 2: methane: V/L sat. p=10.0 to 4600.0 kPa Liquid Vapor Liquid Vapor Temperature Pressure Density Density Enthalpy Enthalpy (C)(kPa)(kg/m^3)(kg/m^3)(kJ/kg)(kJ/kg) 1-178.0720.000445.600.41051-57.001480.94 2-174.4430.000440.660.59543-44.661487.81 3-171.6740.000436.840.77503-35.222492.94 4-169.4150.000433.690.95080-27.465497.05 5-167.4860.000430.97 1.1236-20.821500.50 6-165.7970.000428.57 1.2940-14.973503.48 7-164.2880.000426.40 1.4625-9.7265506.10 8-162.9090.000424.42 1.6293-4.9513508.44 9-161.64100.00422.59 1.7946-0.55734510.56 10-160.48110.00420.88 1.9587 3.5214512.50 11-159.39120.00419.28 2.12167.3347514.28 12-158.37130.00417.77 2.283610.921515.93 13-157.41140.00416.34 2.444614.310517.46 14-156.49150.00414.98 2.604917.528518.90 15-155.63160.00413.67 2.764420.593520.25 16-154.80170.00412.42 2.923323.522521.52 17-154.01180.00411.22 3.081626.330522.72 18-153.26190.00410.06 3.239329.028523.86 19-152.53200.00408.95 3.396631.626524.94 20-151.83210.00407.87 3.553334.133525.97 21-151.15220.00406.82 3.709736.557526.95 22-150.50230.00405.80 3.865638.903527.89 23-149.87240.00404.81 4.021241.179528.79 24-149.25250.00403.85 4.176543.389529.65 25-148.66260.00402.91 4.331445.538530.47 26-148.08270.00402.00 4.486147.630531.27 27-147.52280.00401.10 4.640549.668532.03 28-146.97290.00400.23 4.794751.657532.77 29-146.44300.00399.38 4.948653.598533.48 30-145.92310.00398.54 5.102455.495534.16 31-145.41320.00397.72 5.255957.351534.82 32-144.91330.00396.91 5.409359.167535.46 33-144.42340.00396.12 5.562560.945536.08 34-143.95350.00395.35 5.715662.688536.67 35-143.48360.00394.59 5.868664.398537.25 36-143.03370.00393.84 6.021466.075537.81 37-142.58380.00393.10 6.174167.723538.36 38-142.14390.00392.38 6.326769.341538.89 39-141.71400.00391.66 6.479270.931539.40 40-141.29410.00390.96 6.631772.494539.89 41-140.88420.00390.26 6.784174.033540.38 42-140.47430.00389.58 6.936475.547540.85 43-140.07440.00388.917.088777.037541.30 44-139.68450.00388.247.240978.506541.75 45-139.29460.00387.587.393179.952542.18 46-138.91470.00386.947.545381.378542.60 47-138.53480.00386.297.697482.784543.01 48-138.16490.00385.667.849584.171543.41 49-137.80500.00385.048.001685.540543.79 50-137.44510.00384.428.153886.890544.17 51-137.09520.00383.818.305988.224544.54 52-136.74530.00383.208.458089.540544.90 53-136.39540.00382.608.610290.841545.25 54-136.05550.00382.018.762392.126545.59 55-135.72560.00381.428.914593.396545.92 56-135.39570.00380.849.066894.651546.25

甲烷转化

K.M.Shen for helpful discussions and communications.Experimental studies were supported by the Center for Emergent Superconductivity,an Energy Frontier Research Center,headquartered at Brookhaven National Laboratory (BNL)and funded by the U.S.Department of Energy under grant DE-2009-BNL-PM015,as well as by a Grant-in-Aid for Scientific Research from the Ministry of Science and Education (Japan)and the Global Centers of Excellence Program for Japan Society for the Promotion of Science.C.K.K.acknowledges support from the FlucTeam program at BNL under contract DE-AC02-98CH10886.J.L.acknowledges support from the Institute for Basic Science,Korea.I.A.F.acknowledges support from Funda??o para a Ciência e a Tecnologia,Portugal,under fellowship number SFRH/BD/60952/2009.S.M.acknowledges support from NSF grant DMR-1120296to the Cornell Center for Materials Research.Theoretical studies at Cornell University were supported by NSF grant DMR-1120296to Cornell Center for Materials Research and by NSF grant DMR-0955822.The original data are archived by Davis Group,BNL,and Cornell University. Supplementary Materials www.sciencemag.org/content/344/6184/612/suppl/DC1Materials and Methods Supplementary Text Figs.S1to S9 References (42–45)Movies S1and S2 21November 2013;accepted 20March 201410.1126/science.1248783 Direct,Nonoxidative Conversion of Methane to Ethylene,Aromatics,and Hydrogen Xiaoguang Guo,1Guangzong Fang,1Gang Li,2,3Hao Ma,1Hongjun Fan,2Liang Yu,1Chao Ma,4Xing Wu,5Dehui Deng,1Mingming Wei,1Dali Tan,1Rui Si,6Shuo Zhang,6Jianqi Li,4Litao Sun,5Zichao Tang,2Xiulian Pan,1Xinhe Bao 1* The efficient use of natural gas will require catalysts that can activate the first C –H bond of methane while suppressing complete dehydrogenation and avoiding overoxidation.We report that single iron sites embedded in a silica matrix enable direct,nonoxidative conversion of methane,exclusively to ethylene and aromatics.The reaction is initiated by catalytic generation of methyl radicals,followed by a series of gas-phase reactions.The absence of adjacent iron sites prevents catalytic C-C coupling,further oligomerization,and hence,coke deposition.At 1363kelvin,methane conversion reached a maximum at 48.1%and ethylene selectivity peaked at 48.4%,whereas the total hydrocarbon selectivity exceeded 99%,representing an atom-economical transformation process of methane.The lattice-confined single iron sites delivered stable performance,with no deactivation observed during a 60-hour test.T he challenge of converting natural gas into transportable fuels and chemicals (1)has been spurred by several emerging indus-trial trends,including rapidly rising demand for H 2(for upgrading lower-quality oils)and a global shortage of aromatics caused by shifting refinery targets toward gasoline.Light olefins,which are key chemical feedstocks,are currently made from methanol,which itself is made through multistage catalytic transformations via syngas (a mixture of H 2and CO)(2,3),although there is also ongoing research to convert syngas directly to light olefins (4,5).However,in all such approaches,either CO or H 2is needed to remove oxygen from CO,result-ing in a carbon-atom utilization efficiency below 50%.Despite their low efficiency,high capital and production costs,and enormous CO 2emissions, syngas routes dominate current and near-term in-dustrial practices for natural gas conversion (6,7).Direct conversion of CH 4is potentially more economical and environmentally friendly but is challenging because CH 4exhibits high C –H bond strength (434kJ/mol),negligible electron affinity,large ionization energy,and low polarizability (8).In the pioneering work of Keller and Bhasin in the early 1980s,CH 4was activated with the assistance of oxygen (9).This finding initiated a worldwide research surge to explore the high-temperature (>1073K)oxidative coupling of methane (OCM)to C 2hydrocarbons (10,11).Hundreds of catalytic materials have since been synthesized and tested,principally during the 1990s,as well as in recent years.Unfortunately,the presence of O 2leads irreversibly to overoxidation,resulting in a large amount of the thermodynamically stable end-products CO 2and H 2O.Thus,the carbon utili-zation efficiency of OCM remains relatively low (12,13).Slow progress in discovering new cata-lysts to circumvent this problem has hindered further development,and no economically viable process has been put into practice so far. In a recent report,elemental sulfur was used as a softer oxidant than O 2(14):For a 5%CH 4/Ar mixture at 1323K,the best catalyst,PdS/ZrO 2,gave a CH 4conversion of ~16%and ethylene selectivity near 20%,albeit at the expense of the by-products CS 2and H 2S (14).In contrast,the bifunctional catalysts based on Mo/zeolites cata-lyze CH 4conversion to aromatics (benzene and naphthalene)nonoxidatively,thereby avoiding CO 2formation (15–18).CH 4is activated on the metal sites forming CH x species,which dimerize to C 2H y .Subsequent oligomerization on the acidic sites located inside the zeolite pores yields ben-zene and naphthalene,as well as copious amounts of coke (19–21).Commercial prospects for this process are further hampered by the instability of zeolites at the very high reaction temperatures.To achieve direct conversion of CH 4efficient-ly,the challenges lie in cleaving the first C –H bond while suppressing further catalytic dehy-drogenation,avoiding both CO 2generation and coke deposition.We report that these conditions can be met using lattice-confined single iron sites embedded in a silica matrix.These sites activate CH 4in the absence of oxidants,generating methyl radicals,which desorb from the catalyst surface and then undergo a series of gas-phase reactions to yield ethylene,benzene,and naphthalene as the only products (with ethylene dominating at short space-times for a selectivity of ~52.7%at 1293K).A methane conversion as high as 48.1%is achieved at 1363K. The catalysts were obtained by fusing ferrous metasilicate with SiO 2at 1973K in air and from commercial quartz,followed by leaching with aqueous HNO 3and drying at 353K (22).The resulting catalyst was designated 0.5%Fe?SiO 2(?denotes confinement and here represents a cat-alyst characterized by the lattice-confined single iron sites embedded within a silica matrix).It con-tained 0.5weight percent (wt %)Fe and had a Brunauer –Emmett –Teller surface area of <1m 2/g.The catalyst was activated in a fixed-bed micro-reactor in the reaction atmosphere [90volume percent (vol %)CH 4/N 2]at 1173K.The efflu-ent was analyzed by online gas chromatography (GC).At 1223K,CH 4conversion was 8.1%(Fig.1A)and increased with temperature,exceeding 48.1%at 1363K (Fig.1B).Only ethylene,ben-zene,and naphthalene were produced;neither coke nor CO 2was detected,despite the relative-ly high reaction temperature.A single-pass yield of 48%hydrocarbons is achieved at 1363K and 21.4liters per gram of catalyst (gcat)per hour.Selectivities vary from 40.9to 52.1%for ethylene,21.0to 29.1for benzene,and 23.6to 38.2%for naphthalene,over the investigated temperature range (1223to 1363K). By comparison,a blank experiment (an empty reactor with no catalyst)under the same conditions showed a CH 4conversion of only 2.5%,and 95%of the product was coke (Fig.1A).A test with unmodified SiO 2as the catalyst yielded virtually 1 State Key Laboratory of Catalysis,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,Peo-ple ’s Republic of China.2State Key Laboratory of Molecular Reaction Dynamics,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,People ’s Republic of China.3State Key Laboratory of Fine Chemicals,Institute of Coal Chemical Engineering,School of Chemical Engineering,Dalian University of Technology,Dalian 116012,People ’s Republic of China.4Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,People ’s Republic of China.5Nano-Pico Center,Key Laboratory of Micro-Electro-Mechanical System (MEMS)of Ministry of Education,Southeast University,Nanjing 210096,People ’s Republic of China.6Shanghai Synchrotron Radiation Facility,Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201204,People ’s Republic of China.*Corresponding author.E-mail:xhbao@dicp.ac.cn 9MAY 2014VOL 344 SCIENCE www.sciencemag.org 616REPORTS o n J u l y 12, 2016 h t t p ://s c i e n c e .s c i e n c e m a g .o r g /D o w n l o a d e d f r o m

相关文档
最新文档