变频供水设备的基本工作原理

变频供水设备的基本工作原理
变频供水设备的基本工作原理

变频供水设备的工作原理

变频供水设备的基本工作原理是什么,关于这样的问题,南京尤孚泵业的小编为你介绍,通过文章介绍,对于变频供水设备的工作原理更加清晰明白。

变频供水设备的基本工作原理

根据用户用水量变化自动调节运行水泵台数和一台水泵转速,使水泵出口压力保持恒定。当用户用水量小于一台水泵出水量是,系统根据用水量变化有一台水泵变频调速运行,当用水量增加时管道系统内压力下降,这时压力传感器把检测到的信号传送给微机控制单元,通过微机运行判断,发出指令到变频器,控制水泵电机,使转速加快以保证系统压力恒定,反之当用水量减少时,使水泵转速减慢,以保持恒压。

当用水量大于一台泵出水时,第一台泵切换到工频运行,第二台泵开始变频调速运行,当用水量小于两台泵出水量时,能自动停止一台或二台泵运行。在整个运行过程中,始终保持系统恒压不变,使水泵始终工作在高校区,既保证用户恒压供水,又节省电能。设备不需配备专职操作人员。

适用范围:

1.高层楼宇及小区增压供水

2.自动循环系统加压

3.绿化喷灌

4.医疗卫生

5.淋浴系统

6.工业系统

7.反渗透系统等

以上就是南京尤孚泵业的小编通过文章介绍了关于变频供水设备的基本工作的原理介绍,如果有相关的关于变频供水设备的需求,可以在线咨询尤孚泵业的客服,客服会及时帮你提供最全面的服务。

南京尤孚泵业是全球不锈钢潜水泵,潜水电机领跑者.尤孚泵业拥有国际先进的设备,一流的生产线,拥有国际先进的测试设备,每个产品都经过严格的检验。

箱式变频无负压供水设备工作原理

箱式变频无负压供水设备工作原理 智能型箱式泵站主要是由密封结构水箱、增压设备、变频控制柜、稳流器及泵组组成。系统分两路进水,一路进水箱,一路进稳流器,当用水量小,自来水服务压力高时,智能型箱泵一体化泵站直接从自来水管网取水,叠压供水。当自来水服务压力低时,增压装置开始工作,将水箱内的水加压到设置的服务压力,进行差量补偿,从而达到节能、无二次污染、恒压供水的目的。对市政自来水管网没有影响,是供水领域的新一代节能产品。 智能型箱泵一体化泵功能特点 1、保持恒压压力 智能型箱式泵站实时通过压力传感器检测出口压力,将检测值和设定值进行比较运算,确定电机及水泵投入台数和变频器输出频率(反应为电机及水泵转速),以实现恒压供水的目的。当自来水管网压力波动使得压力值小于正常压力值,进水量暂时小于出水量时,系统自动将稳压装置关到适合的位置,并启动增压装置通过多点取水,进行加压,知道进水口压力口压力到达市政自来水管网正常压力值,确保设备进水口水量充足,以满足用户的用水需求。 2、高度自动化 系统能实现全自动控制,具有手动/自动切换、主副泵定时轮换、压力调整、恒压、高低电压保护、欠相保护、漏电保护、过载保护、过热保护、缺水保护、不用水停车、瞬间跳闸保护等功能。另可根据用户需求配置人机界面,可视化远程调整、监测和维护。 3、卫生-过流部件均采用不锈钢等食品级材料制造,符合国际涉水卫生规范。 4、叠压运行,节省费用 系统保证管道恒压是根据用水量的变化调整投入台套数和运转速度,用水量大时投入功率大,用水量小时投入功率小。小用水量时(如夜间)系统由小功率泵变频调速恒压供水。系统一直在高效率点运行。因而大大降低了运行费用。可节约能源60%以上。-如市政管网有一定的压力,运行是只需在市政压力基础上补压即可。与传统具有蓄水池的供水设备相比达到同样的效果而从电网吸取的功率较小。及恩呢该效果十分显著。-系统全自动运行无须专人值守:又因没有蓄水池等土建贮水设施,也没有水质处理仪器,免去定期清洗、消毒等工作。故进一步降低了运行费用。 5、反冲洗功能-系智能型箱式泵站具有反冲洗控制功能,当水箱使用一段时间后,系统利用水泵的高压水定期对水箱进行冲洗,同时将含有杂质的水排放出去,确保水箱内不会产生污垢,保证用户用水洁净。 智能型箱泵一体化泵站示意图

变频器工作原理图解

变频器工作原理图解 1 变频器的工作原理 变频器分为 1 交---交型输入是交流,输出也是交流 将工频交流电直接转换成频率、电压均可控制的交流,又称直接式变频器 2 交—直---交型输入是交流,变成直流再变成交流输出 将工频交流电通过整流变成直流电,然后再把直流电变成频率、电压、均可控的交流电 又称为间接变频器。 多数情况都是交直交型的变频器。 2 变频器的组成 由主电路和控制电路组成 主电路由整流器中间直流环节逆变器组成 先看主电路原理图

三相工频交流电经过VD1 ~ VD6 整流后,正极送入到缓冲电阻RL中,RL的作用是防止电流忽然变大。经过一段时间电流趋于稳定后,晶闸管或继电器的触点会导通 短路掉缓冲电阻RL ,这时的直流电压加在了滤波电容CF1、CF2 上,这两个电容可以把脉动的直流电波形变得平滑一些。由于一个电容的耐压有限,所以把两个电容串起来用。 耐压就提高了一倍。又因为两个电容的容量不一样的话,分压会不同,所以给两个电容分别并联了一个均压电阻R1、R2 ,这样,CF1 和CF2 上的电压就一样了。 继续往下看,HL 是主电路的电源指示灯,串联了一个限流电阻接在了正负电压之间,这样三相电源一加进来,HL就会发光,指示电源送入。 接着,直流电压加在了大功率晶体管VB的集电极与发射极之间,VB的导通由控制电路控制,VB上还串联了变频器的制动电阻RB,组成了变频器制动回路。我们知道, 由于电极的绕组是感性负载,在启动和停止的瞬间都会产生一个较大的反向电动势,这个反向电压的能量会通过续流二极管VD7~VD12使直流母线上的电压升高,这个电压 高到一定程度会击穿逆变管V1~V6 和整流管VD1~VD6。当有反向电压产生时,控制回路控制VB导通,电压就会通过VB在电阻RB释放掉。当电机较大时,还可并联外接电阻。 一般情况下“+”端和P1端是由一个短路片短接上的,如果断开,这里可以接外加的支流电抗器,直流电抗器的作用是改善电路的功率因数。 直流母线电压加到V1~V6 六个逆变管上,这六个大功率晶体管叫IGBT ,基极由控制电路控制。控制电路控制某三个管子的导通给电机绕组内提供电流,产生磁场使电机运转。 例如:某一时刻,V1 V2 V6 受基极控制导通,电流经U相流入电机绕组,经V W 相流入负极。下一时刻同理,只要不断的切换,就把直流电变成了交流电,供电机运转。 为了保护IGBT,在每一个IGBT上都并联了一个续流二极管,还有一些阻容吸收回路。主要的功能是保护IGBT,有了续流二极管的回路,反向电压会从该回路加到直流母线 上,通过放电电阻释放掉。 变频器主电路引出端子

变频器的工作原理及作用之欧阳学文创作

变频器的工作原理 欧阳学文 1、基本概念 (1)VVVF 改变电压、改变频率(Variable Voltage and Variable Frequency)的缩写。 (2)CVCF 恒电压、恒频率(Constant Voltage and Constant Frequency)的缩写。 通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。该设备首先要把三相或单相交流电变换为直流电(DC)。然后再把直流电(DC)变换为三相或单相交流电(AC)。变频器同时改变输出频率与电压,也就是改变了电机运行曲线上的n0,使电机运行曲线平行下移。因此变频器可以使电机以较小的启动电流,获得较大的启动转矩,即变频器可以启动重载负荷。 变频器具有调压、调频、稳压、调速等基本功能,应用了现代的科学技术,价格昂贵但性能良好,内部结构复杂但使用简单,所以不只是用于启动电动机,而是广泛的应用到各个领域,各种各样的功率、各种各样的外形、各种各样的体积、

各种各样的用途等都有。随着技术的发展,成本的降低,变频器一定还会得到更广泛的应用。 各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz(50Hz)或100V/60Hz(50Hz)。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把三相或单相交流电变换为直流电(DC)。然后再把直流电(DC)变换为三相或单相交流电(AC),我们把实现这种转换的装置称为“变频器”(inverter)。 变频器也可用于家电产品。使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。

变频器的工作原理

变频器工作原理 主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。整流器 最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。平波回路 在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。 逆变器 同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型pwm 逆变器为例示出开关时间和电压波形。 控制电路 是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。 (1)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。 (2)电压、电流检测电路:与主回路电位隔离检测电压、电流等。 (3)驱动电路:驱动主电路器件的电路。它与控制电路隔离使主电路器件导通、关断。(4)速度检测电路:以装在异步电动机轴机上的速度检测器(tg、plg 等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。 (5)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。

箱式变频无负压供水设备工作原理

智能型箱式泵站主要是由密封结构水箱、增压设备、变频控制柜、稳流器及泵组组成。系统分两路进水,一路进水箱,一路进稳流器,当用水量小,自来水服务压力高时,智能型箱泵一体化泵站直接从自来水管网取水,叠压供水。当自来水服务压力低时,增压装置开始工作,将水箱内的水加压到设置的服务压力,进行差量补偿,从而达到节能、无二次污染、恒压供水的目的。对市政自来水管网没有影响,是供水领域的新一代节能产品。 智能型箱泵一体化泵功能特点 1、保持恒压压力 智能型箱式泵站实时通过压力传感器检测出口压力,将检测值和设定值进行比较运算,确定电机及水泵投入台数和变频器输出频率(反应为电机及水泵转速),以实现恒压供水的目的。当自来水管网压力波动使得压力值小于正常压力值,进水量暂时小于出水量时,系统自动将稳压装置关到适合的位置,并启动增压装置通过多点取水,进行加压,知道进水口压力口压力到达市政自来水管网正常压力值,确保设备进水口水量充足,以满足用户的用水需求。 2、高度自动化 系统能实现全自动控制,具有手动/自动切换、主副泵定时轮换、压力调整、恒压、高低电压保护、欠相保护、漏电保护、过载保护、过热保护、缺水保护、不用水停车、瞬间跳闸保护等功能。另可根据用户需求配置人机界面,可视化远程调整、监测和维护。 3、卫生-过流部件均采用不锈钢等食品级材料制造,符合国际涉水卫生规范。 4、叠压运行,节省费用 系统保证管道恒压是根据用水量的变化调整投入台套数和运转速度,用水量大时投入功

率大,用水量小时投入功率小。小用水量时(如夜间)系统由小功率泵变频调速恒压供水。系统一直在高效率点运行。因而大大降低了运行费用。可节约能源60%以上。-如市政管网有一定的压力,运行是只需在市政压力基础上补压即可。与传统具有蓄水池的供水设备相比达到同样的效果而从电网吸取的功率较小。及恩呢该效果十分显著。-系统全自动运行无须专人值守:又因没有蓄水池等土建贮水设施,也没有水质处理仪器,免去定期清洗、消毒等工作。故进一步降低了运行费用。 5、反冲洗功能-系智能型箱式泵站具有反冲洗控制功能,当水箱使用一段时间后,系统利用水泵的高压水定期对水箱进行冲洗,同时将含有杂质的水排放出去,确保水箱内不会产生污垢,保证用户用水洁净。 智能型箱泵一体化泵站示意图 箱式无负压供水设备是在组合式不锈钢水箱和变频恒压供水的基础上开发研制的,并加装防负压、防倒流、防水质恶化等控制装置。该设备与普通的变频供水设备和无负压供水设备相比,具有节能显著、噪音低、占少、可靠性高等优点,是目前最先进的供水模式。箱式

变频器结构及工作原理

变频器结构及工作原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备。如图1所示,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。 1. 整流器 它与单相或三相交流电源相连接,产生脉动的直流电压。 2. 中间电路,有以下三种作用: a. 使脉动的直流电压变得稳定或平滑,供逆变器使用。 b. 通过开关电源为各个控制线路供电。 c. 可以配置滤波或制动装置以提高变频器性能。 3. 逆变器 将固定的直流电压变换成可变电压和频率的交流电压。 4. 控制电路 它将信号传送给整流器、中间电路和逆变器,同时它也接收来自这些部分的信号。其主要组成部分是:输出驱动电路、操作控制电路。主要功能是: a. 利用信号来开关逆变器的半导体器件。 b. 提供操作变频器的各种控制信号。 c. 监视变频器的工作状态,提供保护功能。

现场对变频器以及周边控制装置的进行操作的人员,如果对一些常见的故障情况能作出判断和处理,就能大大提高工作效率,并且避免一些不必要的损失。为此,我们总结了一些变频器的基本故障,供大家作参考。以下检测过程无需打开变频器机壳,仅仅在外部对一些常见现象进行检测和判断。 以下检测过程无需打开变频器机壳,仅仅在外部对一些常见现象进行检测和判断。

无负压变频供水设备工作原理

无负压变频供水设备主要由水泵机组、测压稳压罐、压力传感器、变频控制柜等组成,能始终维持压力表压力(即用户管网水压)等于用户设定值。可用于一般生活或生产供水。供水系统组成方式有: 1、变频恒压供水设备与市政管网并网恒压供水,在供水压力可满足需要时,自动停运全部水泵。否则,恒压供水设备起动,增大压力满足用水要求。 2、附加小泵或气压罐,为完全消除小流量或零流量供水电耗,可增加辅助小泵或辅助气压罐,当供水量小或零供水时,自动停运主泵,使小泵或气压罐运行。无负压变频供水设备的分类: 无负压变频供水设备一种新型变频供水设备。分为箱式无负压设备和罐式无负压设备。系统串接在市政自来水管网压力不足的地方,通过传感器检测出口压力并与设定值进行比较,运算出需要增加的压力值,确定水泵投入运行台数和电机转速。该设备最大限度地利用了市政自来水管网的原有压力,对市政管网不产生负压,用不锈钢水箱或无负压罐取代老式水池,减少了用水二次污染。是供水领域新一代节能型产品。 无负压变频供水设备与传统供水设备优缺点对比 传统设计:普通变频恒压 供水设备CFSS无负压(无吸程)供水设备 供水方式普通的给水设备如果直接 串接到自来水管道上,工作 时会有吸程,使自来水管网 产生负压,如果大面积使用 就会出现抢水现象,使整个 城市给水出现混乱。于是人 们采用修不锈钢水箱或设 置水池的给水方式二次加 压给水,自来水全部放入不 锈钢水箱或水池中,再二次 加压给水。 采用真空抑制技术,使给水 设备与自来水管网直接串 接,不产生负压,不用建水 池,设水箱。 供水质量纯净的自来水全部放入水 池中,各种脏物极易进入水 池,严重污染水源,尤其夏 天,水极易变质、变味,影 响用户的身体健康。 纯净的自来水经加压后直 接供到住户,稳流补偿器S US304不锈钢材质,密封连 接,不产生任何污染,用户 可以喝到符合卫生标准的 饮用水。 节水水箱的渗、跑、冒、滴、漏 现象严重,大量的水白白流 失。水箱还需定期消毒冲 洗,耗费一定的水资源。 全封闭结构运行,避免了 渗、跑、冒、滴、漏等现象 发生,取消水箱,节约了消 毒冲洗用水。经过对8个地 区105家顾客调查测算,综 合节水可达13%以上。 无负压变频供水设备最新技术产品简报

变频器工作原理

1 变频器的工作原理 我们知道,交流电动机的同步转速表达式位: n=60 f(1-s)/p (1) 式中n———异步电动机的转速; f———异步电动机的频率; s———电动机转差率; p———电动机极对数。 由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 2变频器控制方式 低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。 2.1U/f=C的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 2.2电压空间矢量(SVPWM)控制方式 它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。 2.3矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。

无负压变频供水设备的工作原理

随着二次供水加压技术的发展,箱式无负压变频供水设备从根本上解决了这些问题。据“供水设备推广中心”的资料显示,该设备不需建造水塔,投资小、占地少,采用水气自动调节、自动运转、节能与自来水自动并网,停电后仍可供水,调试后数年不需看管。比建造水塔节约投资70%,比建造高位水箱节约投资60%,大大节约土建投资。下面我们来了解下它的工作原理。 当公共供水管网≤0.2Mpa时(可自由设定0.2—0.4Mpa)无负压装置关闭,无负压进水装置打开,由水箱供水,反之当公共供水管网压力≥0.2Mpa时,延时10分钟(时间可调整)无负压装置打开无负压进水装置关闭,由公共供水管网供水。无负压水箱内存储的水通过智能控制每6小时循环一次确保水质新鲜、纯净。 箱式无负压供水设备的变频泵以一定的转速运行,利用自来水原有的压力实现叠加能确保用户所需的压力和压力恒定。无负压水箱变频泵的进水口与无负压装置和无负压进水装置连接,通过无负压装置的开启与停止达到自来水管网不产生负压在无负压装置起停的同时无负压进水装置会做出与无负装置相反的动作。 自来水管网停水无负压装置自动关闭,水箱的无负压进水装置自动打开由水箱供水。当水箱液位低至一定程度时,无负压进水装置自动关闭,设备自动停机,

复电时自动投入运行。 智能型箱式泵站主要是由密封结构水箱、增压设备、变频控制柜、稳流器及泵组组成。系统分两路进水,一路进水箱,一路进稳流器,当用水量小,自来水服务压力高时,智能型箱泵一体化泵站直接从自来水管网取水,叠压供水。当自来水服务压力低时,增压装置开始工作,将水箱内的水加压到设置的服务压力,进行差量补偿,从而达到节能、无二次污染、恒压供水的目的。对市政自来水管网没有影响,是供水领域的新一代节能产品。 上田泵业是专业从事各类给排水成套设备生产和销售的企业。产品涵盖一体化预制泵站,无负压变频箱式供水泵站,污水提升装置,油水分离装置,地埋式一体化污水处理装置,食品级不锈钢水箱,智能控制柜等,深受广大用户的欢迎。

变频器工作原理_0

变频器工作原理 要想做好变频器维修,当然了解变频器基础知识是相当重要的,也是迫不及待的。下面我们就来分享一下变频器维修基础知识。大家看完后,如果有不正确地方,望您指正,如果觉得还行支持一下,给我一些鼓动!变频器维修入门--电路分析图对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成 通用变频器的整流电路是由三相桥式整流桥组成。它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。当电源电压为三相380V时,整流器件的最大反向电压一般为1200;-;1600V,最大整流电流为变频器额定电流的两倍。 滤波电路 逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。 通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。 逆变电路 逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。 常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的

变频器定义及工作原理概述

变频器定义及工作原理概述 变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。 变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS 控制晶闸管)、IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的VVVF变频器已投入市场并获得了广泛应用。 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 VVVF:改变电压、改变频率 CVCF:恒电压、恒频率。各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均为400V/50Hz或200V/60Hz(50Hz),等等。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC)。 用于电机控制的变频器,既可以改变电压,又可以改变频率。 变频器的工作原理 我们知道,交流电动机的同步转速表达式位: n=60 f(1-s)/p (1) 式中 n———异步电动机的转速; f———异步电动机的频率; s———电动机转差率; p———电动机极对数。 由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 变频器控制方式 低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。 1U/f=C的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性

变频恒压供水设备工作原理及原理图片

变频恒压供水设备工作原理及原理图 变频恒压供水设备工作原理这一相关知识,由兴崛供水为您全面讲述并提供工作原理图。 变频恒压供水设备工作原理:交流电动机的旋转速度与输入电的频率成正比,变频调速供水设备就是基于上述原理,采用压力传感器、可编程控制器、变频器及水泵电机构成以及设定压力为基准的闭环自动调节系统,具有控制水泵恒压供水的功能;通过压力传感器按受管网的压力信号,经微机与设定压力进行比较运算,输出调节参数送给变频器控制其频率的变化。用水量多时,频率提高,电机泵转数加快;反之频率降低,电机泵转数下降,既能保证用户用水又节省电能。 变频恒压供水设备一台变频器控制多台水泵”的多泵控制系统。在这里兴崛供水利用PLC设计一套变频调速恒压供水系统,该系统可根据管网瞬间压力变化自动调节某台水泵的转速和多台水泵的投入及退出,使管网主干管出口端保持在恒定的设定压力值,并满足用户的流量需求,使整个系统始终保持高效节能的最佳状态。可实现恒压变量、双恒压变量等控制方式,多种启停控制方式,该系统可以通过人意修改参数指令(如压力设定值、控制顺序、控制电机数量、压力上下限、PID值、加减速时间等);具有完善的电气安全保护措施,对过流、过压、欠压、过载、断水等故障均能自行诊断并报警。 兴崛变频恒压供水设备是非常理想的一种节能供水设备,节能效果好,结构紧凑,占地面积小,运行稳定可靠,使用寿命长,方案设计灵活,供水压力可调,流量可大可小,完全可以取代水塔、高位水箱及各种气压式供水设备,可彻底免除水质的二次污染。全自动变频恒压供水设备亦用于改造原有老式泵房设备,改造后同样可以达到高效节能、自动恒压供水的目的。 变频恒压供水设备组成: 变频恒压供水设备主要由水泵机组、测压稳压罐、压力传感器、变频控制柜等组成,能

变频器工作原理解

变频器工作原理图解 通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。该设备首先要把三相或单相交流电变换为直流电(DC)。然后再把直流电(DC)变换为三相或单相交流电(AC)。变频器同时改变输出频率与电压,也就是改变了电机运行曲线上的n0,使电机运行曲线平行下移。因此变频器可以使电机以较小的启动电流,获得较大的启动转矩,即变频器可以启动重载负荷。变频器具有调压、调频、稳压、调速等基本功能,应用了现代的科学技术,价格昂贵但性能良好,内部结构复杂但使用简单,所以不只是用于启动电动机,而是广泛的应用到各个领域,各种各样的功率、各种各样的外形、各种各样的体积、各种各样的用途等都有。随着技术的发展,成本的降低,变频器一定还会得到更广泛的应用。 1 变频器的工作原理变频器分为 1 交---交型输入是交流,输出也是交流将工频交流电直接转换成频率、电压均可控制的交流,又称直接式变频器 2 交—直---交型输入是交流,变成直流再变成交流输出将工频交流电通过整流变成直流电,然后再把直流电变成频率、电压、均可控的交流电又称为间接变频器。多数情况都是交直交型的变频器。2 变频器的组成由主电路和控制电路组成主电路由整流器中间直流环节逆变器组成先看主电路原理图三相工频交流电经过

VD1 ~ VD6 整流后,正极送入到缓冲电阻RL中,RL的作用是防止电流忽然变大。经过一段时间电流趋于稳定后,晶闸管或继电器的触点会导通短路掉缓冲电阻RL ,这时的直流电压加在了滤波电容CF1、CF2 上,这两个电容可以把脉动的直流电波形变得平滑一些。由于一个电容的耐压有限,所以把两个电容串起来用。耐压就提高了一倍。又因为两个电容的容量不一样的话,分压会不同,所以给两个电容分别并联了一个均压电阻R1、R2 ,这样,CF1 和CF2 上的电压就一样了。继续往下看,HL 是主电路的电源指示灯,串联了一个限流电阻接在了正负电压之间,这样三相电源一加进来,HL就会发光,指示电源送入。接着,直流电压加在了大功率晶体管VB的集电极与发射极之间,VB的导通由控制电路控制,VB上还串联了变频器的制动电阻RB,组成了变频器制动回路。我们知道,由于电极的绕组是感性负载,在启动和停止的瞬间都会产生一个较大的反向电动势,这个反向电压的能量会通过续流二极管VD7~VD12使直流母线上的电压升高,这个电压高到一定程度会击穿逆变管V1~V6 和整流管VD1~VD6。当有反向电压产生时,控制回路控制VB导通,电压就会通过VB在电阻RB释放掉。当电机较大时,还可并联外接电阻。一般情况下“+”端和P1端是由一个短路片短接上的,如果断开,这里可以接外加的支流电抗器,直流电抗器的作用是改善电路的功率因数。直流母线电压加到V1~V6 六个逆变管上,这六个大功率晶体管叫IGBT ,基极由控制电路控制。控制电路控制某三个管子的导通给电机绕组内提供电流,产生磁场使电机运转。例如:某一时刻,V1 V2 V6 受基极控制

高层变频供水设备工作原理及特点

高层变频供水设备工作原理及特点 高层变频供水设备工作原理 设备初次运行时,先根据当地自来水管网进水压力最低限值限定为压力保护值,稳流补偿器内空气通过真空抑制装置直至完全排出,设备通电置于自动工作状态。微机控制系统实时检测自来水管网进水压力与用户管网供水压力。 用水低峰时,当自来水管网供水量足、供水压力完全满足用户管网压力要求,微机控制系统控制水泵进入睡眠状态或由稳压系统进入稳压、保压状态,用户的用水均从设备旁通管直接供给用户,节能100%。 用水高峰时,当自来水管网供水量足、压力不足时,微机控制系统根据水泵进水口的自来水进水压力和用户所需用水量,变频软启动水,实行叠加增压,差多少,补多少,即充分利用自来水管网原有压力,又确保用户所需压力恒定。 当自来水管网供水压力下降到事先设定的保护压力值时,微机控制系统通过限压保护装置保证自来水管网供水压力不再下降、底层直供水用户管网压力不破坏,加压用户的水量又能够满足。 当系统停电时,恢复自来水管网自然供水;来电时,自动唤醒。当自来水管网停水,稳流补偿器内水位下降到最低水位时,系统自动停机;来水时,恢复正常运行。 高层变频供水设备特点 1、节省投资50%左右,无需修建蓄水池或屋顶水箱,采用叠压供水,减小设备初期投入。

2、高效节能,运行成本低:可充分利用市政管网供水压力,差多少、补多少、不产生负压、与传统供水设备相比可节能30%—90%。停电也可维持市政管网水压供水。 3、智能化程度高,操作简单,节省人力:该设备由全自动智能化控制器控制,自行根据用户的用水量和管网的自来水压力进行调节,实行无人值守。并且采用人机界面(文本、数字)显示,使客户更加直观的看到设备的运行状况。 4、环保卫生:设备全封闭运行,彻底消除水源二次污染。 5、保护功能齐全:具有完美的过载、短路、过压、欠压、缺相、过流、短路、水源缺水等自动保护功能。在异常情况下能进行信号报警、自检、故障判断等。 6、占地少安装方便:整套设备只有一组供水控制柜、无负压稳流罐和水泵机组三部分,安装非常简单方便。 7、延长设备的使用寿命:对多台泵组均能可靠的实现软启动,使电网和管网免冲击,并且轮流运转,大大延长了水泵及电机的使用寿命。设备寿命可延长3倍以上。

变频恒压供水原理.

变频调速恒压供水系统工作原理设备投入运行前,首先应设定设备的工作压力等相关运行参数,设备运行时,由压力传感器连续采集供水管网中的水压及水压变化率信号,并将其转换为电信号传送至变频控制系统,控制系统将反馈回来的信号与设定压力进行比较和运算,如果实际压力比设定压力低,则发出指令控制水泵加速运行,如果实际压力比设定压力高,则控制水泵减速运行,当达到设定压力时,水泵就维持在该运行频率上。如果变频水泵达到了额定转速(频率),经过一定时间的判断后,如果管网压力仍低于设定压力,则控制系统会将该水泵切换至工频运行,并变频启动下一台水泵,直至管网压力达到设定压力;反之,如果系统用水量减少,则系统指令水泵减速运行,当降低到水泵的有效转速后,则正在运行的水泵中最先启动的水泵停止运行,即减少水泵的运行台数,直至管网压力恒定在设定压力范围内。主泵停止工作,副泵进行供水也为变频恒压供水方式,进一步提高了工作效率,节约了能源。系统构成系统特点高效节能。按需要设定供水压力,根据管网用水量来变频调节水泵转速,使水泵始终在高效率工况下运行,同普通的无塔供水设备相比,节能效果达20%。对电网冲击小,保护功能完善。消除了水泵电机直接起动时对电网的冲击和干扰,并且设备控制系统具有短路、过流、过压、过载、欠压、过热等多种保护功能,大大提高了工作效率,延长了水泵的使用寿命。人机界面触摸面板操作,设定参数灵活方便。可灵活设定频率下限、加速时间、减速时间、换泵时间等各种工作参数,能够显示系统运行时间,查阅各种故障原因。定时唤醒功能。由于系统是根据管网用水量的多少来决定投入运行水泵的台数,所以当用水量长期在某一小范围内变化时就会使得某台水泵长期运行而磨损严重,而其他水泵长期不使用造成生锈,设定本功能后则可方便的解决该问题。对于同流量的多台水泵,为使各泵平均工作时间相同,须设置定时换泵功能。在设定了定时换泵功能后,当一台变量泵连续工作时间超过设定值后,且有变量泵处于“休息”状态,则变频器自动切换启动“休息”时间最长的变量泵,并停止原变量泵,以保证各台水泵运行时间均等,延长水泵使用寿命。换泵时间可任意设定。当变频器发生故障时,能够自动转换至工频运行,确保供水不间断。突然停电后再来电,设备能够自动启动运行。

变频器的工作原理及作用

变频器的工作原理 1、基本概念 (1)VVVF 改变电压、改变频率(Variable Voltage and Variable Frequency)的缩写。 (2)CVCF 恒电压、恒频率(Constant Voltage and Constant Frequency)的缩写。 通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。该设备首先要把三相或单相交流电变换为直流电(DC)。然后再把直流电(DC)变换为三相或单相交流电(AC)。变频器同时改变输出频率与电压,也就是改变了电机运行曲线上的n0,使电机运行曲线平行下移。因此变频器可以使电机以较小的启动电流,获得较大的启动转矩,即变频器可以启动重载负荷。 变频器具有调压、调频、稳压、调速等基本功能,应用了现代的科学技术,价格昂贵但性能良好,内部结构复杂但使用简单,所以不只是用于启动电动机,而是广泛的应用到各个领域,各种各样的功率、各种各样的外形、各种各样的体积、各种各样的用途等都有。随着技术的发展,成本的降低,变频器一定还会得到更广泛的应用。 各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz(50Hz)或100V/60Hz(50Hz)。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把三相或单相交流电变换为直流电(DC)。然后再把直流电(DC)变换为三相或单相交流电(AC),我们把实现这种转换的装置称为“变频器”(inverter)。 变频器也可用于家电产品。使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。 2. 电机的旋转速度为什么能够自由地改变? (1) r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm。例如:4极电机60Hz 1,800 [r/min],4极电机50Hz 1,500 [r/min],电机的旋转速度同频率成比例。 本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地取决于电机的极数和频率。电机的极数是固定不变的。由于极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以不适合改变极对数来调节电机的速度。另外,频率是电机供电电源的电信号,所以该值能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。 n = 60f/p,n: 同步速度,f: 电源频率,p: 电机极数,改变频率和电压是最优的电机控制方法。如果仅改变频率,电机将被烧坏。特别是当频率降低时,

(完整版)变频器原理及应用试卷

变频器原理及应用试卷 一.选择题 1.下列选项中,按控制方式分类不属于变频器的是( D )。 A .U/f B .SF C .VC D .通用变频器 2.下列选项中,不属于按用途分类的是( C )。 A .通用变频器 B .专用变频器 C .VC 3.IPM 是指( B )。 A .晶闸管 B .智能功率模块 C .双极型晶体管 D .门极关断晶闸管 4.下列选项中,不是晶闸管过电压产生的主要原因的是( A )。 A .电网电压波动太大 B .关断过电压 C .操作过电压 D .浪涌电压 5.下列选项中不是常用的电力晶体管的是( D )。 A .单管 B .达林顿管 C .GRT 模块 D .IPM 6.下列选项中,不是P-MOSFET 的一般特性的是( D )。 A .转移特性 B .输出特性 C .开关特性 D .欧姆定律 7.集成门极换流晶闸管的英文缩写是( B )。 A .IGBT B .IGCT C .GTR D .GTO 8.电阻性负载的三相桥式整流电路负载电阻L R 上的平均电压O U 为( A )。 A .2.342U B .2U C .2.341U D .1U 9.三相桥式可控整流电路所带负载为电感性时,输出电压平均值d U 为为( A ) A .2.342cos U B .2U C .2.341U D .1U 10.逆变电路中续流二极管VD 的作用是( A )。 A .续流 B .逆变 C .整流 D .以上都不是 11.逆变电路的种类有电压型和( A )。 A .电流型 B .电阻型 C .电抗型 D .以上都不是 12.异步电动机按转子的结构不同分为笼型和( A )。

变频恒压供水工作原理

变频恒压供水工作原理 变频恒压供水设备工作原理 恒压自动供水设备是采用水泵与用数字式变频调速器西门子V20变频器开发的具有内置PID控制的变频设备。本型号变频器是由控制性能强大,功能齐全、操作简单易上手,无需附加其它的控制单元,大大提高啦设备的工作效率,降低啦运行成本。变频恒压供水设备利用与门为风机、泵类、空气压缩机等流量和压力控制特点而研制的与用变频控制器。利用变频器的一拖三功能,而不采用昂贵的PLC就可以自动控制泵的启停,而丏内置PID功能不现场进传压力表连用,同而完成供水压力的闭环控制,使供水压力维持在设定的压力附近。工作原理: 变频恒压供水系统采用变频器设定压力,也可采用面板内部设定压力,,采用一个压力传感器,反馈为0~10V,检测管网压力,压力传感器将信号送入变频器PID 回路,PID回路处理之后,增加或减少变频器的输出频率。如在一定延时时间内,压力还是不足或过大,则通过变频器作工频/变频切换起动另一台水泵,使实际管网压力不设定压力相一致。另外,随着用水量的减少,变频器自动减少输出频率,达到了节能的目的。 变频恒压供水系统控制图,以一台变频器控制一台水泵为例,: 例:使用进传压力表,量程0-10kg,反馈0-10v,要求5kg压力供水,上限6kg,下限4kg,面板起动停止,电位器给定目标值。 现场管网压力反馈至变频器,频率由0HZ开始逐渐上升,内置PID功能可以通过调节参数来控制频率变化的速率,当达到指定5Kg压力时,频率恒定输出,当压力超过5kg时,频率会下降,直至5kg保持,当频率小于5HZ时,延时 10分钟,变频器会进入休眠状态,当压力再次发生变化时再唤醒变频器各项功能,这样可以有效的节约能源的同时满足管网供水要求。

交-直-交变频器的工作原理

交-直-交变频器的工作原理是什么啊? 悬赏分:0 |解决时间:2008-7-7 12:57 |提问者:287365311 最佳答案 引言 宝钢2050热轧厂是1989年投产的,原设计以直流机为主。随着交流变频和交流机的大幅度使用。为了适应新时期用户的对产品产量的更高要求,我们对现场设备进行了改造。将以前的直流传动改造成交流传动,这种改造从卷取区的卷取机改造开始。先后对1#、2#、3#卷取机传动控制系统进行了交流化改造。下面以2#卷取机为例,将卷取机传动系统改造的情况作一介绍。2#卷取机传动系统采用了带公用整流器结构,如图1所示。各电机用的逆变装置分挂在整流器上,包括一台卷筒电机,两台夹送辊电机和三台助卷辊电机。其中:卷筒电机采用同步电机,夹送辊和助卷辊采用异步机,电机由西门子典型的矢量控制的交-直-交变频器系统供电,卷筒励磁由SD进行调节控制。电机带有脉冲编码器,调速性能优良,空载时速度环静态精度为0.01%,速度调节时间小于100ms,电流环调节时间小于10ms。 字串9 图1 系统结构图 2 传动系统结构 2.1 整流/回馈部分 整流单元使用的功率元件为晶闸管,进线的交流电压通过整流向连接逆变器的直流电压母线提供电动状态能量并构成多电机传动系统。整流单元由4000kVA 6kV/650V整流变压器供电,带有自耦变压器和6脉冲整流/回馈单元,产生890V 直流母线电压。卷筒、夹送辊和助卷辊电机的逆变装置就挂在这个直流母线上,没有设直流开关及断路器。曾经考虑使用直流快开作为直流母线短路保护,由于一般情况下,电机或逆变器短路保护在逆变器内部可以实现。而纯粹的直流母线短路现象几乎难以发生,如果配以快开,每年需要维护,而且维护量很大,故没有采取这种短路保护。 以上控制方式称做共用直流母线的多电机传动控制方式,它具有以下显著的特点: (1) 采用共用直流母线和共用制动单元, 可以减少整流器和制动单元的配置,结构简单合理们; (2) 共用直流母线的中间直流电压恒定, 电容并联储能容量大;

相关文档
最新文档