高中物理动量守恒

高中物理动量守恒
高中物理动量守恒

动量定理.动量守恒

【重要知识点】 1.弹性碰撞

特点:系统动量守恒,机械能守恒.

设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则有动量守恒:221101v m v m v m += 碰撞前后动能不变:2

22

212111210

121

v m

v m v m += 所以01

2

12

1v v m m m m +-=

0222

11v v m m m +=

(注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒) [讨论]

①当m l =m 2时,v 1=0,v 2=v 0(速度互换) ②当m l <m 2时,v 1>0,v 2>0(同向运动) ④当m l 0(反向运动)

⑤当m l >>m 2时,v 1≈v,v 2≈2v 0 (同向运动)、 2.非弹性碰撞

特点:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒 用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′

机械能的损失:)()(2

222

12112

12

222

12

112

1'+'-+=?v m v m v m v m E

3.完全非弹性碰撞

特点:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒. 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v

动能损失:22121

2

22212

1121)()(v m m v m v m

E k +-+=?

【训练题】

1.竖直上抛一质量为m 的小球,经t 秒小球重新回到抛出点,若取向上为正方向,那么小球的动量变化为 [ ]

A. -mgt

B.mgt

C.0

D.-1/2mgt

2.质量为m 的物体做竖直上抛运动,从开始抛出到落回抛出点用时间为t ,空气阻力大小恒为f 。规定向下为正方向,在这过程中物体动量的变化量为 [ ]

A .(mg+f)t

B .mgt

C .(mg-f)t

D .以上结果全不对 3.质量为m 的物体,在受到与运动方向一致的外力F 的作用下,经过时间t 后物体的动量由mv1增大到mv2,若力和作用时间改为,都由mv1开始,下面说法中正确的是 [ ] A .在力2F 作用下,经过2t 时间,动量增到4mv2 B .在力2F 作用下,经过2t 时间,动量增到4mv1 C .在力F 作用下,经过2t 时间,动量增到2mv2-mv1 D .在力F 作用下,经过2t 时间,动量增到2mv2

4.一质量为m 的小球,从高为H 的地方自由落下,与水平地面碰撞后向上弹起。设碰撞时间为t 并为定值,则在碰撞过程中,小球对地面的平均冲力与跳起高度的关系是 [ ]

A.跳起的最大高度h越大,平均冲力就越大

B.跳起的最大高度h越大,平均冲力就越小

C.平均冲力的大小与跳起的最大高度h无关

D.若跳起的最大高度h一定,则平均冲力与小球质量正比

5. 甲、乙两球在水平光滑轨道上沿同一直线同向运动,已知它们的动量分别为P甲=5kg·m/s P乙=7kg·m/s, 甲从后面追上乙并发生碰撞,碰后乙的动量变为10 kg·m/s,则两球的质量m甲与m乙的关系可能是

A.m乙=m甲

B.m乙=2m甲

C.m乙=4m甲

D.m乙=6m甲

6.如图2所示,固定斜面上除AB段粗糙外,其余部分是光滑的,物块与AB段间的动摩擦因数处处相同。当物块从斜面顶端滑下后,经过A点的速度与经过C点的速度相等,且AB=BC。已知物块通过AB段和BC段所用时间分别是t1和t2,动量变化量分别是Δp1和Δp2,则 [ ] A.t1=t2,Δp1=Δp2 B.t1>t2,Δp1=Δp2

C.t1>t2,Δp1<Δp2 D.t1=t2,Δp1=-Δp2

7.匀速向东行驶的小车上有两球分别向东、向西同时抛出,抛出时两球的动量大小相等,则[ ]

A.球抛出后,小车的速度不变B.球抛出后,小车的速度增加

C.球抛出后,小车的速度减小

D.向西抛出之球的动量变化比向东抛出之球的动量变化大

8.水平抛出在空中飞行的物体,不考虑空气阻力,则 [ ]

A.在相等的时间间隔内动量的变化相同

B.在任何时间内,动量变化的方向都是竖直方向

C.在任何对间内,动量对时间的变化率恒定

D.在刚抛出物体的瞬间,动量对时间的变化率为零

9.如图3所示、质量为m的小球以速度v0水平抛出,恰好与倾角为30°的斜面垂直碰撞,其弹回的速度大小与抛出时相等,则小球与斜面碰撞中受到的冲量大小是(设小球与斜面做用时间很短) [ ]

A.3mv0

B.2mv0

C.mv0

D.2mv0

10.某地强风的风速是20m/s,空气的密度是ρ=1.3kg/m3。一风力发电机的有效受风面积为S=20m2,如果风通过风力发电机后风速减为12m/s,且该风力发电机的效率为η=80%,则该风力发电机的电功率多大?

11.如图11所示,C是放在光滑的水平面上的一块木板,木板的质量为3m,在木板的上面有两块质量均为m的小木块A和B,它们与木板间的动摩擦因数均为μ。最初木板静止,A、B 两木块同时以方向水平向右的初速度V0和2V0在木板上滑动,木板足够长, A、B始终未滑离木板。求:

(1)木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B所发生的位移;(2)木块A在整个过程中的最小速度。

V0 2V0

A B

C

图11

12.如图12所示,在一光滑的水平面上有两块相同的木板B 和C 。重物A (A 视质点)位于B 的右端,A 、B 、C 的质量相等。现A 和B 以同一速度滑向静止的C ,B 与C 发生正碰。碰后B 和C 粘在一起运动,A 在C 上滑行,A 与C 有摩擦力。已知A 滑到C 的右端面未掉下。试问:从B 、C 发生正碰到A 刚移动到C 右端期间,C 所走过的距离是C 板长度的多少倍?

13.如图13所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的1/4圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上。现有滑块A 以初速V 0从右端滑上B ,并以1/2 V 0滑离B ,确好能到达C 的最高点。A 、B 、C 的质量均为m ,试求:(1)木板B 上表面的动摩擦因素μ;(2)1/4圆弧槽C 的半径R ;(3)当A 滑离C 时,C 的速度。

14.如图所示,将质量均为m 厚度不计的两物块A 、B 用轻质弹簧相连接,只用手托着B 物块于H 高处,A 在弹簧弹力的作用下处于静止,将弹簧锁定.现由静止释放A 、B ,B 物块着地时解除弹簧锁定,且B 物块的速度立即变为0,在随后的过程中当弹簧恢复到原长时A 物块运动的速度为υ0,且B 物块恰能离开地面但不继续上升.已知弹簧具有相同形变量时弹性势能也相同. (1)B 物块着地后,A 向上运动过程中合外力为0时的速度υ1;

(2)B 物块着地到B 物块恰能离开地面但不继续上升的过程中,A 物块运动的位移Δx ;

(3)第二次用手拿着A 、B 两物块,使得弹簧竖直并处于原长状

态,此时物块B 离地面的距离也为H ,然后由静止同时释放A 、B ,

B 物块着地后速度同样立即变为0.求第二次释放A 、B 后,B 刚要离地时A 的速度υ2.

15.如图所示,质量为m =1kg 的滑块,以υ0=5m/s 的水平初速度滑上静止在光滑水平面的平板小车,若小车质量M =4kg ,平板小车长L =3.6m ,滑块在平板小车上滑移1s 后相对小

车静止.求:(g 取9.8m/s 2

(1)滑块与平板小车之间的滑动摩擦系数μ;

(2)若要滑块不滑离小车,滑块的初速度不能超过多少?

A

B C 图12 图13 A V 0 B C H

A B A

B

16.如图所示,质量均为M 的木块B A 、并排放在光滑水平面上,A 上固定一根轻质细杆,轻杆上端的小钉(质量不计)O 上系一长度为L 的细线,细线的另一端系一质量为m 的小球C ,现将C 球的细线拉至水平,由静止释放,求: (1)两木块刚分离时,C B A 、、速度各为多大?

(2)两木块分离后,悬挂小球的细线与竖直方向的最大夹角多少?

17.如图所示,两个质量均为4m 的小球A 和B 由轻弹簧连接,置于光滑水平面上.一颗质量为m 子弹,以水平速度v 0射入A 球,并在极短时间内嵌在其中.求:在运动过程中 (1)什么时候弹簧的弹性势能最大,最大值是多少? (2)A 球的最小速度和B 球的最大速度.

18.质量为M =4.0kg 的平板小车静止在光滑的水平面上,如图所示,当t =0时,两个质量分别为m A =2kg 、m B =1kg 的小物体A 、B 都以大小为v 0=7m/s 。方向相反的水平速度,同时从小车板面上的左右两端相向滑动。到它们在小车上停止滑动时,没有相碰,A 、B 与车间的动摩

擦因素μ=0.2,取g =10m/s 2

,求:

(1)A 在车上刚停止滑动时,A 和车的速度大小

(2)A 、B 在车上都停止滑动时车的速度及此时车运动了多长时间。 (3)在给出的坐标系中画出小车运动的速度——时间图象。

A B v 0 v 0 2.0v /ms -1

t /s

0.51.5

O t/s

v/m.s -1

1 2

19.如图甲所示,小车B 静止在光滑水平上,一个质量为m 的铁块A (可视为质点),以水平速度v 0=4.0m/s 滑上小车B 的左端,然后与小车右挡板碰撞,最后恰好滑到小车的中点,已知

3=m

M

,小车车面长L =1m 。设A 与挡板碰撞无机械能损失,碰撞时间可忽略不计,g 取10m/s 2

,求:

(1)A 、B 最后速度的大小;

(2)铁块A 与小车B 之间的动摩擦因数;

(3)铁块A 与小车B 的挡板相碰撞前后小车B 的速度,并在图乙坐标中画出A 、B 相对

滑动过程中小车B 相对地面的速度v -t 图线。

20.如图所示,水平传送带AB 足够长,质量为M =1kg 的木块随传送带一起以v 1=2m/s 的速度向左匀速运动(传送带的速度恒定),木块与传送带的摩擦因数μ=05.,当木块运动到最

左端A 点时,一颗质量为m =20g 的子弹,以v 0=300m/s 的水平向右的速度,正对射入木块

并穿出,穿出速度v =50m/s ,设子弹射穿木块的时间极短,(g 取10m/s 2

)求: (1)木块遭射击后远离A 的最大距离;

(2)木块遭击后在传送带上向左运动所经历的时间。

21.在光滑的水平面上,静止放置着直径相同的小球A 和B ,它们的质量分别为m 和3m ,两球之间的距离为L .现用一大小为F 的水平恒力始终作用到A 球上,A 球从静止开始向着B 球方向运动,如图所示.设A 球与B 球相碰的时间极短、碰撞过程没有机械能损失,碰撞后两球仍在同一直线上运动.求:

(1)A 球第一次碰撞B 球之前瞬间的速度. (2)A 球到第二次碰撞B 球之前,A 球通过的总路程S .

22.如图所示,光滑轨道的DP 段为水平直轨道,PQ 段为

A B

M m L L F

A m B

A

B C

Q

O

R

半径是R的竖直半圆轨道,半圆轨道的下端与水平轨道的右端相切于P点.一轻质弹簧两端分别固定质量为2m的小球A和质量为m的小球B,质量为m的小球C靠在B球的右侧.现用外力作用在A和C上,弹簧被压缩(弹簧仍在弹性限度内),这时三个小球均静止于距离P端足够远的水平轨道上.若撤去外力,C球恰好可运动到轨道的最高点Q.已知重力加速度为g,求撤去外力前的瞬间,弹簧的弹性势能E是多大?

23.如图所示,A、B两物体与一轻质弹簧相连,静止在地面上.有一个小物体C从距A物体h高度处由静止释放,当下落至与A相碰后立即粘在一起向下运动,以后不再分开,当A和C运动到最高点时,物体B对地面恰好无压力.设A、B、C三物体的质量均为m,弹簧的劲度系数为k,不计空气阻力,且弹簧始终处于弹性限度内.若弹簧的弹性势能由劲度系数和形变量决定,求C物体下落时的高度h.

24.质量为M=3kg的平板车放在光滑的水平面上,在平板车的最左端有一小物块

(可视为质点),物块的质量为m=1kg,小车左端上方如图所示固定着一障碍物A,初始时,平板车与物块一起以水平速度v0=2m/s向左运动,当物块运动到障碍物A处时与A发生无机械能损失的碰撞,而小车继续向左运动,取重力加速度g=10m/s2.

⑴设平板车足够长,求物块与障碍物第一次碰撞后,物块与平板车所能获得的共同速度;

⑵设平板车足够长,物块与障碍物第一次碰撞后,物块向右运动对地所能达到的最大距离是s=0.4m,求物块与A第一次碰撞后到第二次碰撞前相对小车滑动的距离.

最新物理动量守恒定律练习题20篇

最新物理动量守恒定律练习题20篇 一、高考物理精讲专题动量守恒定律 1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求: (1)A球与B球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B球的最小速度. 【答案】(1);(2);(3)零. 【解析】 试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有: 碰后A、B的共同速度 损失的机械能 (2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时A、B的速度,C的速度

可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的 ,故B 的最小速度为零 . 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v

经典验证动量守恒定律实验练习题(附答案)

验证动量守恒定律 由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单 位,那么小球的水平射程的数值就等于它们的水平速度。 在右图中分别用OP、OM和O/N表示。因此只需验证: m1?OP=m1?OM+m2?(O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为:m1?OP=m1?OM+m2?ON,两个小球的直径也不需测量 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得小l车A的质量m1=0.40kg,小车B的质量m2=0.20kg,由以上测量结果可得:碰前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G由静止开始滚下,记录纸上的垂直投影点。B球落点痕迹如图2所示,其中米尺水平放置。且平行于G.R.Or所在的平面,米尺的零点与O 点对齐。 (1)碰撞后B球的水平射程应取为______cm. (2)在以下选项中,哪些是本次实验必须进行的测量?答:

高中物理动量守恒定律解题技巧及练习题

高中物理动量守恒定律解题技巧及练习题 一、高考物理精讲专题动量守恒定律 1.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。已知磁场的磁感应强度B=0.5T ,导轨的间距与导体棒的长度均为L=0.5m ,导轨的半径r=0.5m ,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s 2,不计空气阻力。 (1)求导体棒刚进入凹槽时的速度大小; (2)求导体棒从开始下落到最终静止的过程中系统产生的热量; (3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J ,求导体棒第一次通过最低点时回路中的电功率。 【答案】(1) 210/v m s = (2)25J (3)9W 4 P = 【解析】 【详解】 解:(1)根据机械能守恒定律,可得:212 mgh mv = 解得导体棒刚进入凹槽时的速度大小:210/v m s = (2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点 根据能力守恒可知,整个过程中系统产生的热量:()25Q mg h r J =+= (3)设导体棒第一次通过最低点时速度大小为1v ,凹槽速度大小为2v ,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:12mv Mv = 由能量守恒可得: 22 12111()22 mv mv mg h r Q +=+- 导体棒第一次通过最低点时感应电动势:12E BLv BLv =+ 回路电功率:2 E P R =

高考物理动量守恒定律试题经典及解析

高考物理动量守恒定律试题经典及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求: (1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2 014 mv ;(2) 0mv 【解析】 【详解】 解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以 2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速 度相等,有:2 12 v v = 而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:0 12 v v = ,20 v v = 所以第一次碰撞中的机械能损失为:2 2 22012011 11222 2 24 E m v m v mv mv ?=--=g g g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-= 2.(16分)如图,水平桌面固定着光滑斜槽,光滑斜槽的末端和一水平木板平滑连接,设物块通过衔接处时速率没有改变。质量m 1=0.40kg 的物块A 从斜槽上端距水平木板高度h=0. 80m 处下滑,并与放在水平木板左端的质量m 2=0.20kg 的物块B 相碰,相碰后物块B 滑行x=4.0m 到木板的C 点停止运动,物块A 滑到木板的D 点停止运动。已知物块B 与木板间的动摩擦因数 =0.20,重力加速度g=10m/s 2,求: (1) 物块A 沿斜槽滑下与物块B 碰撞前瞬间的速度大小; (2) 滑动摩擦力对物块B 做的功; (3) 物块A 与物块B 碰撞过程中损失的机械能。 【答案】(1)v 0=4.0m/s (2)W=-1.6J (3)E=0.80J

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

高中物理-动量守恒定律教案

高中物理-动量守恒定律(一) ★新课标要求 (一)知识与技能 理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围 (二)过程与方法 在理解动量守恒定律的确切含义的基础上正确区分内力和外力 (三)情感、态度与价值观 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题 ★教学重点 动量的概念和动量守恒定律 ★教学难点 动量的变化和动量守恒的条件. ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 上节课的探究使我们看到,不论哪一种形式的碰撞,碰撞前后mυ的矢量和保持不变,因此mυ很可能具有特别的物理意义。 (二)进行新课 1.动量(momentum)及其变化 (1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。记为p=mv. 单位:kg·m/s 读作“千克米每秒”。 理解要点: ①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。 师:大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念. ②矢量性:动量的方向与速度方向一致。 师:综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生

的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。 (2)动量的变化量: 定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。 强调指出:动量变化△p是矢量。方向与速度变化量△v相同。 一维情况下:Δp=mΔυ= mυ2- mΔυ1矢量差 【例1(投影)】 一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少? 【学生讨论,自己完成。老师重点引导学生分析题意,分析物理情景,规范答题过程,详细过程见教材,解答略】 2.系统内力和外力 【学生阅读讨论,什么是系统?什么是内力和外力?】 (1)系统:相互作用的物体组成系统。 (2)内力:系统内物体相互间的作用力 (3)外力:外物对系统内物体的作用力 〖教师对上述概念给予足够的解释,引发学生思考和讨论,加强理解〗 分析上节课两球碰撞得出的结论的条件: 两球碰撞时除了它们相互间的作用力(系统的内力)外,还受到各自的重力和支持力的作用,使它们彼此平衡。气垫导轨与两滑块间的摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。 3.动量守恒定律(law of conservation of momentum) (1)内容:一个系统不受外力或者所受外力的和为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。 公式:m1υ1+ m2υ2= m1υ1′+ m2υ2′ (2)注意点: ①研究对象:几个相互作用的物体组成的系统(如:碰撞)。 ②矢量性:以上表达式是矢量表达式,列式前应先规定正方向; ③同一性(即所用速度都是相对同一参考系、同一时刻而言的) ④条件:系统不受外力,或受合外力为0。要正确区分内力和外力;当F内>>F外时,系统动量可视为守恒; 思考与讨论: 如图所示,子弹打进与固定于墙壁的弹簧相连的木块, 此系统从子弹开始入射木块到弹簧压缩到最短的过程中,

动量与动量守恒定律练习题(含参考答案)

高二物理3-5:动量与动量守恒定律 1.如图所示,跳水运动员从某一峭壁上水平跳出,跳入湖水中,已知 运动员的质量m =70kg ,初速度v 0=5m/s 。若经过1s 时,速度为v = 5m/s ,则在此过程中,运动员动量的变化量为(g =10m/s 2 ,不计空气阻力): ( ) A. 700 kg·m/s B. 350 kg·m/s B. C. 350(-1) kg·m/s D. 350(+1) kg·m/s 2.质量相等的A 、B 两球在光滑水平面上,沿同一直线,同一方向运动,A 球的动量p A =9kg?m/s ,B 球的动量p B =3kg?m/s .当A 追上B 时发生碰撞,则碰后A 、B 两球的动量可能值是( ) A .p A ′=6 kg?m/s ,p B ′=6 kg?m/s B .p A ′=8 kg?m/s ,p B ′=4 kg?m/s C .p A ′=﹣2 kg?m/s ,p B ′=14 kg?m/s D .p A ′=﹣4 kg?m/s ,p B ′=17 kg?m/s 3.A 、B 两物体发生正碰,碰撞前后物体A 、B 都在同一直线上运动,其位移—时间图象如图所示。由图可知,物体A 、B 的质量之比为: ( ) A. 1∶1 B. 1∶2 C. 1∶3 D. 3∶1 4.在光滑水平地面上匀速运动的装有砂子的小车,小车和砂子总质量为M ,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为: ( ) A. v 0 B. 0Mv M m - C. 0mv M m - D. ()0M m v M - 5.在光滑水平面上,质量为m 的小球A 正以速度v 0匀速运动.某时刻小球A 与质量为3m 的静止 小球B 发生正碰,两球相碰后,A 球的动能恰好变为原来的14.则碰后B 球的速度大小是( ) A.v 02 B.v 06 C.v 02或v 06 D .无法确定

高中物理-动量守恒定律及其应用(实验)教案

高中物理-动量守恒定律及其应用(实验)教案 【学习目标】 1.知道动量与冲量的概念,理解动量定理与动量守恒定律. 2.会用动量定理与动量守恒定律解决实际应用问题. 3.明确探究碰撞中的不变量的基本思路. 【要点导学】 1.冲量与动量的概念理解. 2.运用动量定理研究对象与过程的选择. 3.动量守恒定律的适用条件、表达式及解题步骤. 4.弹性碰撞和非弹性碰撞 (1)弹性碰撞:___________________________________ (2)非弹性碰撞:____________________________________ (3)在光滑水平面上,质量为m 1的小球以速度v 1与质量为m 2的静止小球发生弹性正碰,根据动量 守恒和机械能守恒,碰后两个小球的速度分别为: v 1’=_____________v 2’=_____________。 【典型例题】 类型一 冲量与动量定理 【例1】质量为m 的小球,从沙坑上方自由下落,经过时间1t 到达沙坑表面,又经过时间2t 停在沙坑里。 求: (1)沙对小球的平均阻力F ; (2)小球在沙坑里下落过程所受的总冲量I 的大小. 类型二 动量守恒定律及守恒条件判断 【例2】 把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、 弹、 车,下列说法正确的是( ) A .枪和弹组成的系统,动量守恒 B .枪和车组成的系统,动量守恒 C .三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系 统动量近似守恒 D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合 力为零 【变式训练1】如图A 、B 两物体的质量之比m A ∶m B =3∶2,原来静止在平板小车C 上,A 、B 间有 一根被压缩了的弹簧,A 、B 与平板车上表面间的滚动摩擦系数相同,地面光滑,当弹簧突然释放后, 则( ) A .A 、B 组成的系统动量守恒 B .A 、B 、 C 组成的系统动量守恒 C .小车向左运动 D .小车向右运动 类型三 动量守恒与能量守恒的综合应用 【例3】在静止的湖面上有一质量为M=100kg 的小船,船上站一个质量为m=50kg 的人。船长6米, A B C

高中物理动量守恒定律练习题及答案及解析

高中物理动量守恒定律练习题及答案及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求: (1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =01 4 P E mgx =0(2043)v gx =+【解析】 试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°= 1 2 mv 12 解得:103v gx = 又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011 322 v v gx == (2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P + 1 2 ?2mv 22=0+2mg?x 0sin30° 解得:E P =2mg?x 0sin30°? 1 2?2mv 22=mgx 0?34 mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,

高考物理动量守恒定律试题经典

高考物理动量守恒定律试题经典 一、动量守恒定律 选择题 1.如图所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m =2M 的小物块.现使木箱瞬间获得一个水平向左、大小为v 0的初速度,下列说法正确的是 A .最终小物块和木箱都将静止 B .最终小物块和木箱组成的系统损失机械能为20 3 Mv C .木箱速度水平向左、大小为0 2v 时,小物块的速度大小为04 v D .木箱速度水平向右、大小为 03v . 时,小物块的速度大小为023 v 2.如图所示,小车的上面是由中间凸起的两个对称曲面组成,整个小车的质量为m ,原来静止在光滑的水平面上。今有一个可以看做质点的小球质量也为m ,以水平速度v 从左端滑上小车,恰好到达小车的最高点后,又从另一个曲面滑下。关于这个过程,下列说法正确的是( ) A .小球滑离小车时,小车又回到了原来的位置 B .小球滑到小车最高点时,小球和小车的动量不相等 C .小球和小车相互作用的过程中,小车和小球系统动量始终守恒 D .车上曲面的竖直高度若高于2 4v g ,则小球一定从小车左端滑下 3.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L ,宽轨间距为2L 。轨道处于竖直向下的磁感应强度为B 的匀强磁场中,质量分别为m 、2m 的金属棒a 、b 垂直于导轨静止放置,其电阻分别为R 、2R ,现给a 棒一向右的初速度v 0,经t 时间后两棒达到匀速运动两棒运动过程中始终相互平行且与导轨良好接触,不计导轨电阻,b 棒一直在宽轨上运动。下列说法正确的是( )

A .a 棒开始运动时的加速度大小为220 3B L v Rm B .b 棒匀速运动的速度大小为 3 v C .整个过程中通过b 棒的电荷量为 23mv BL D .整个过程中b 棒产生的热量为20 3 mv 4.如图所示,弹簧的一端固定在竖直墙壁上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑,则 A .在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒 B .在小球从圆弧槽上下滑运动过程中小球的机械能守恒 C .在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒 D .小球离开弹簧后能追上圆弧槽 5.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( ) A .在A 离开竖直墙前,A 、 B 与弹簧组成的系统机械能守恒,之后不守恒 B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒 C .在A 离开竖直墙后,A 、B 速度相等时的速度是223E m D .在A 离开竖直墙后,弹簧的弹性势能最大值为 3 E 6.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是 A .A B 组成的系统机械能守恒

【物理】 物理动量守恒定律专题练习(及答案)

【物理】 物理动量守恒定律专题练习(及答案) 一、高考物理精讲专题动量守恒定律 1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2 m ? 的压缩气体,每级总质量均为 2 M ,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。 【答案】116.54m 【解析】对模型甲: ()00M m v mv =-?-?甲 21085=200.5629 v h m m g =≈甲甲 对模型乙第一级喷气: 10022 m m M v v ??? ?=-- ???乙 解得: 130m v s =乙 2s 末: ‘ 11=10m v v gt s -=乙乙 22 11 1'=402v v h m g -=乙乙乙 对模型乙第一级喷气: ‘120=)2222 M M m m v v v ??--乙乙( 解得: 2670= 9 m v s 乙 2 2222445=277.10281 v h m m g =≈乙乙 可得: 129440 += 116.5481 h h h h m m ?=-≈乙乙甲。 2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧 被压缩瞬间 的速度 ,木块 、 的质量均为 .求:

高中物理_复习:《验证动量守恒定律实验》教学设计学情分析教材分析课后反思

复习:《实验:验证动量守恒定律》教学设计 一、教学目标: 【知识与技能】 1、明确验证动量守恒定律的基本思路; 2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法; 3、掌握实验数据处理的方法; 【过程与方法】 1、学习根据实验要求,设计实验,完成气垫导轨实验和斜槽小球碰撞实验的设计方法; 2、学习根据实验数据进行处理、归纳、总结的方法。 【情感态度与价值观】 1、通过对实验方案的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性。 2、通过对实验数据的记录与处理,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题,解决问题,提高创新意识。 3、在对实验数据处理、误差处理的过程中合作探究、头脑风暴,提高学生合作探究能力。 4、在对现象规律的语言阐述中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引伸到各事物间的关联性,使自己溶入社会。 【教学重难点】 教学重点:验证动量守恒定律的实验探究 教学难点:速度的测量方法、实验数据的处理. 【教学过程】 (一)复习导入:问题1、动量守恒定律的内容是什么? 2、动量守恒的条件是什么? (二)讲授新课 实验方案一:气垫导轨以为碰撞实验 1、实验器材 气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等. 2、实验步骤

(1)测质量:用天平测出滑块的质量. (2)安装:正确安装好气垫导轨. (3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量;②改变滑块的初速度大小和方向③通过放置橡皮泥、振针、胶布等改变能量损失). (4)验证:一维碰撞中的动量守恒. (5)数据处理 1.滑块速度的测量:v =Δx Δt ,式中Δx 为滑块挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间. 2.验证的表达式:m 1v 1+m 2v 2=m 1v′1+m 2v′2。 (6)注意事项 气垫导轨应水平 [典例1] 现利用图(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有A 、B 两个滑块,滑块A 右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B 左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间. 实验测得滑块A 的质量m1=0.310 kg ,滑块B 的质量m2=0.108 kg ,遮光片的 宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz. 将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为ΔtB =3.500 ms ,碰撞前后打出的纸带如图(b)所示. 实验测得滑块A 的质量m1=0.310 kg ,滑块B 的质量m2=0.108 kg ,遮光片的 宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz. 将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为ΔtB =3.500 ms ,碰撞前后打出的纸带如图(b)所示. (b) 若实验允许的相对误差绝对值× 100%最大为5%,本实验是否在误差范围内验证了动量守恒

高中物理动量守恒定律解题技巧讲解及练习题(含答案)

高中物理动量守恒定律解题技巧讲解及练习题(含答案) 一、高考物理精讲专题动量守恒定律 1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞. ①求弹簧恢复原长时乙的速度大小; ②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得: 又知 联立以上方程可得,方向向右。 (2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为: 2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求: ①物块C的质量? ②B离开墙后的运动过程中弹簧具有的最大弹性势能E P? 【答案】(1)2kg(2)9J 【解析】 试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2 即m c=2 kg ②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大

高考物理动量守恒定律练习题

高考物理动量守恒定律练习题 一、高考物理精讲专题动量守恒定律 1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求: ①物块C的质量? ②B离开墙后的运动过程中弹簧具有的最大弹性势能E P? 【答案】(1)2kg(2)9J 【解析】 试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2 即m c=2 kg ②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大 (m A+m C)v3=(m A+m B+m C)v4 得E p=9 J 考点:考查了动量守恒定律,机械能守恒定律的应用 【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题. 2.如图所示,两块相同平板P1、P2置于光滑水平面上,质量均为m。P2的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L。物体P置于P1的最右端,质量为2m且可以看作质点。P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起,P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内)。P与P2之间的动摩擦因数为μ,求: (1)P1、P2刚碰完时的共同速度v1和P的最终速度v2; (2)此过程中弹簧最大压缩量x和相应的弹性势能E p。

最新物理动量守恒定律练习

最新物理动量守恒定律练习 一、高考物理精讲专题动量守恒定律 1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ; (2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地? 【答案】(1)1m (2)4282 25 t s = 【解析】 【分析】 根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】 解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122 mgL mv mv μ= - 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:22 01211()(cos53)22 mv m M v mg R R =++- 联立解得:1R m = (2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有: 22 00311(cos53)22 mv mv mg R R =+- 解得:322/v m s = 物块从C 抛出后,在竖直方向的分速度为:38 sin 532/5 y v v m s =?= 这时离体面的高度为:cos530.4h R R m =-?=

验证动量守恒定律实验

物理一轮复习学案 第六周(10.8—10.14)第四课时 验证动量守恒定律实验 【考纲解读】 1.会用实验装置测速度或用其他物理量表示物体的速度大小. 2.验证在系统不受外力的作用下,系统内物体相互作用时总动量守恒. 【重点难点】 验证动量守恒定律 【知识结构】 一、验证动量守恒定律实验方案 1.方案一 实验器材:滑块(带遮光片,2个)、游标卡尺、气垫导轨、光电门、天平、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等。 实验情境:弹性碰撞(弹簧片、弹性碰撞架);完全非弹性碰撞(撞针、橡皮泥)。 2.方案二 实验器材:带细线的摆球(摆球相同,两套)、铁架台、天平、量角器、坐标纸、胶布等。实验情境:弹性碰撞,等质量两球对心正碰发生速度交换。 3.方案三 实验器材:小车(2个)、长木板(含垫木)、打点计时器、纸带、天平、撞针、橡皮泥、刻度尺等。 实验情境:完全非弹性碰撞(撞针、橡皮泥)。 4.方案四 实验器材:小球(2个)、斜槽、天平、重垂线、复写纸、白纸、刻度尺等。 实验情境:一般碰撞或近似的弹性碰撞。 5.不同方案的主要区别在于测速度的方法不同:①光电门(或速度传感器);②测摆角(机械能守恒);③打点计时器和纸带;④平抛法。还可用频闪法得到等时间间隔的物体位置,从而分析速度。 二、验证动量守恒定律实验(方案四)注意事项 1.入射球质量m1应大于被碰球质量m2。否则入射球撞击被碰球后会被弹回。 2.入射球和被碰球应半径相等,或可通过调节放被碰球的立柱高度使碰撞时球心等高。否则两球的碰撞位置不在球心所在的水平线上,碰后瞬间的速度不水平。 3.斜槽末端的切线应水平。否则小球不能水平射出斜槽做平抛运动。 4.入射球每次必须从斜槽上同一位置由静止释放。否则入射球撞击被碰球的速度不相等。5.落点位置确定:围绕10次落点画一个最小的圆将有效落点围在里面,圆心即所求落点。6.水平射程:被碰球放在斜槽末端,则从斜槽末端由重垂线确定水平射程的起点,到落地点的距离为水平射程。

高中物理动量守恒定律练习题及答案

高中物理动量守恒定律练习题及答案 一、高考物理精讲专题动量守恒定律 1.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111 -22 m gl m v m v μ=- 解得:17m/s v = 碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v ' =+ 取向左为正方向,由题意11m/s v =-', 解得:24m/s v =

相关文档
最新文档