膜片弹簧的力学性能分析.

膜片弹簧的力学性能分析.

膜片弹簧的力学性能分析

膜片弹簧是膜片弹簧离合器的关键零件,其设计质量的优劣不仅直接影响离合器的使用性能和使用寿命,而且还影响离合器与整车的匹配。因此在设计膜片弹簧离合器时,精确计算膜片弹簧的负载特性是非常重要的。目前,膜片弹簧的设计仍普遍采用美国人J.o.Almen和Laszlo所提出的近似公式(简称A-L

公式),但工程人员在设计制造膜片弹簧的实践中发现,根据A-L公式设计的膜片弹簧,在膜片弹簧试制后的试验中,其大端载荷、升程等均不能完全符合设计要求,往往需要修改膜片弹簧尺寸参数,再进行试验。这样,既延长了试制周期,又增加了成本。因此,有必要寻找一种更有效的计算方法。本文以膜片弹簧为研究对象,首先介绍了传统的A-L计算方法和膜片弹簧的基本特性。然后,采用有限元的方法对膜片弹簧进行力学性能的仿真分析研究。利用ANSYS参数化设计语言APDL,建立膜片弹簧自由状态下的三维参数化模型,大大简化了复杂繁琐的建模过程;通过适当的方法,对三维模型进行映射网格划分,确定相应的边界条件,建立起膜片弹簧的有限元模型。模拟加载过程,计算得到膜片弹簧负载特性曲线,通过实验结果的比较,验证了有限元模型的正确性。在膜片弹簧有限元分析的基础上,建立膜片弹簧负载特性的数学回归模型,对A-L公式系数进行了修正,提高了其计算的精度。通过对应力分布的分析和膜片弹簧失效的特点,确定了其疲劳危险区域,利用材料的σ-N曲线,采用ANSYS疲劳分析模块估算了膜片弹簧的疲劳寿命。最后,建立了膜片弹簧的优化模型,对其进行结构优化,取得了较好的结果。

Q235拉伸力学性能研究报告

Q235钢轴向拉伸试验报告 1.研究目的 观察Q235钢在拉伸时的各种现象,并测定Q235钢在拉伸时的屈服极限σs,强度极限σb,伸长率δ和断面收缩率ψ,研究Q235钢拉伸时的力学性能。 2.实验原理 试件装在试验机上,受到缓慢增加的拉力作用,对应每一个拉力F,试件标距l有一个伸长量?l。表示F和?l的关系的曲线,称为F-?l曲线。F-?l曲线与试件的尺寸有关。为了消除试件尺寸的影响,把拉力F除以试件的横截面积A,得出正应力σ;同时,把伸长量?l除以标距的原始长度l,得到应变ε: σ= F ε=?l l 以σ为纵坐标,ε为横坐标做出表示σ与ε的关系曲线,称为σ-ε曲线(应力-应变曲线),通过应力-应变曲线得到Q235钢在轴向拉伸下的力学性能。 3.实验方法 为了便于比较不同材料的实验结果,对试件的形状、加工精度、加载速度、实验环境等,国家标准都有统一规定。按国家标准 GB228

—2010中的有关规定,本实验中的拉伸试件采用国家标准中规定的圆截面长试件即: l0 =10 d0 (长试件) 式中: l0--试件的初始计算长度(即试件的标距); d0 --试件在标距内的初始直径。 实验前用游标卡尺和圆规测量试件的直径d0和标距l0,所用游标卡尺的量程为200mm精度为±0.02mm。经多次测量求平均值,试件的直径d0和标距l0尺寸如表1,使用万能试验机上的传感器测量试件受力大小,用引伸计测定试件的变形量。 实验采用YYU-15/50轴向变形引伸计, 引伸计的标距为50mm,变形为15mm,相对误差优于一级,用于常规拉伸试验机。引伸计测量精度一级:标距相对误差±1.0%,示值误差(相对)±1.0%,(绝对)±3.0微米。引伸计由传感器、放大器和记录器三部分组成。传感器直接和被测构件接触。构件上被测的两点之间的距离a1b1为标距,构件被拉伸或压缩后被测的两点之间的距离a2b2,标距的变化a2b2与a1b1之差即为线变形。把引伸计用橡皮筋固定在试件上,随着构件变形,引伸计的传感器会随着变形,记录器(或读数器)将自动记录变形信息。

弹簧钢的性能介绍

A [常用牌号]:常用合金弹簧钢的牌号、化学成分、热处理、力学性能及用途。常用的合金弹簧钢有60Si2Mn、50CrVA、30W4Cr2VA等。 60Si2Mn钢是应用最广泛的合金弹簧钢,其生产量约为合金弹簧钢产量的80%。它的强度、淬透性、耐回火性都比碳素弹簧钢高,工作温度达250℃,缺点是脱碳倾向较大,适于制造厚度小于10mm 的板簧和截面尺寸小于25mm的螺旋弹簧,在重型机械、铁道车辆、汽车、拖拉机上都有广泛的应用。 30W4Cr2VA是高强度的耐热弹簧,用于500℃以下工作的 [弹簧成型方法]:对直径或板簧厚度大于10 mm的大弹簧,可在比正常淬火温度高出50~80℃的温度热成形,对直径或板簧厚度小于8~10mm的小弹簧,常用冷拔弹簧钢丝冷卷成形。 [为保证弹簧具有高的强度和足够的韧性,通50CrVA钢的力学性能与60Si2Mn钢相近,但淬透性更高,钢中Cr和V能提高弹性极限、强度、韧性和耐回火性,常用于制作承受重载荷、工作温度较高及截面尺寸较大的弹簧。锅炉主安全阀弹簧、汽轮机汽封弹簧等。 常采用淬火+中温回火。对热成形弹簧,可采用热成形余热淬火,对热冷成形的弹簧,有时可省去淬火、中温回火工艺,成形后只需进行200~300℃进行去应力退火即可。弹簧钢热处理后通常进行喷丸处理,其目的是在弹簧表面产生残余压应力,以提高弹簧的疲劳强度。 [性能]:硬度为40~48HRC,有较高的弹性极限和疲劳强度,以及一定的塑性和韧性 弹簧是起缓冲、减振和储能等作用。弹簧一般是在交变应力下工作,常见的破坏形式是疲劳破坏,因此,必须具有高的屈服点和屈强比(σs/ σb)、弹性极限、抗疲劳性能,以保证弹簧有足够的弹性变形能力并能承受较大的载荷。同时,弹簧钢还要求具有一定的塑性与韧性,一定的淬透性,不易脱碳及不易过热。一些特殊弹簧还要求有耐热性、耐蚀性或在长时间内有稳定的弹性。 中碳钢和高碳钢都可作弹簧使用,但因其淬透性和强度较低,只能用来制造截面较小、受力较小的弹簧。合金弹簧钢则可制造截面较大、屈服极限较高的重要弹簧。 [化学成分]:合金弹簧钢为中、高碳成分,一般wC=%~%,以满足高弹性、高强度的性能要求。加入的合金元素主要是Si、 Mn、Cr,作用是强化铁素体、提高淬透性和耐回火性。但加入过多的Si会造成钢在加热时表面容易脱碳,加入过多的Mn容易使晶粒长大。加入少量的V和Mo可细化晶粒,从而进一步提高强度并改善韧性。此外,它们还有进一步提高淬透性和耐回火性的作用。

汽车膜片弹簧离合器应用与发展

机械工程学报 汽车膜片弹簧离合器应用与发展 肖啸 摘要:离合器在我们的生活中并不陌生厂、生活中的很多机械装置都包含离合器。虽然具体的安装和结构形式不同,但它们的作用都是相同的。深入了解离合器的工作原理,对我们更好地理解生活中的机械有很大的益处。离合器是汽车传动系中的重要部件,主要功用是是切断和实现发动机对传动系的动力传递,保证汽车平稳起步,保证传动系统换挡时工作平顺以及限制传动系统所承受的最大转矩,防止传动系统过载。膜片弹簧离合器是近年来在轿车和轻型汽车上广泛采用的一种离合器,它的转矩容量大而且较稳定,操作轻便,平衡性好,也能大量生产,对于它的研究已经变得越来越重要。膜片弹簧离合器相对于螺旋弹簧离合器有着一系列的优点:膜片弹簧的非线性特性使在摩擦片整个磨损过程中保证压盘受到压紧力基本保持不变,保证离合器工作性能更稳定;膜片弹簧的分离指起到分离杠杆的作用,这样,省去了多组分离杠杆装置,零件数目减少,质量也减轻;在满足相同压紧力的情况下,膜片弹簧的轴向尺寸较螺旋弹簧小,在有限的空间内便于布置,使离合器的结构更为紧凑;同时膜片弹簧是圆形旋转对称零件,平衡性好,在高速时,其压紧力降低很少。并且制造工艺水平的不断提高,膜片弹簧离合器越来越广泛运用在现在汽车中。 关键词:离合器膜片弹簧摩擦片操纵机构压盘 Automobile diaphragm spring clutch application and development Xiao Xiao Abstract:the clutch in our life, life is no stranger to plant many mechanical devices are included in the clutch. Though the installation and structure is different, but their functions are the same. Insight into the working principle of the clutch for us to understand life better machinery is of great benefit. Clutch is an important part in automotive transmission system, is the main function is to cut off the and realize the engine to the transmission of power transmission, ensure smooth start of the car, for ensuring the smooth and transmission when shifting transmission system on the maximum torque, to prevent the transmission system overload. Diaphragm spring clutch is widely used in cars and light motor vehicles in recent years of a clutch, its great capacity of torque and relatively stable, convenient operation, good balance, can also be a large number of production, has become more and more important for its research. Diaphragm spring clutch is relative to the spiral spring clutch has a series of advantages: the nonlinear characteristics of diaphragm spring to make the whole process of wear and tear in friction, maintain invariable pressure plate by basic compaction force, to ensure the clutch performance is more stable; Separation of the diaphragm spring refers to the separation of leverage effect, in this way, eliminating the leverage multiple sets of separation device, part number, quality and to reduce; To meet the same compression force, axial size of the diaphragm spring is a spiral spring is small, within the limited space to decorate, make the structure of the clutch is more compact; Diaphragm spring is round rotation symmetric parts at the same time, good balance, at high speed, reduce the pressure force is seldom. And manufacturing technology level unceasing enhancement, the diaphragm spring clutch is more and more widely used in the car now. Key words:clutch Diaphragm spring friction plate Operating mechanism Pressure plat 0 国内外研究现状 汽车离合器有摩擦式离合器、液力偶合器、电磁离合器等几种。摩擦式离合器又分为湿式和干式两种。液力偶合器:靠工作液(油液)传递转矩,外壳与泵轮连为一体,是主动件;涡轮与泵轮相对,是从动件。当泵轮转速较低时,涡轮不能被带动,主动件与从动件之间处于分离状态;随着泵轮转速的提高,涡轮被带动,主动件与从动件之间处于接合状态。电磁离合器:靠线圈的通断电来控制离合器的接合与分离。如在主动与从动件之间放置磁粉,则可以加强两者之间的接合力,这样的离合器称为磁粉式电磁离合器。摩擦式离合器:按其从动盘的数目,又分为单盘式、双盘式和多盘式等几种。湿

弹簧模型的动力学分析方法

弹簧模型的动力学分析方法 【例二】如图所示,劲度系数为21,k k 的轻质弹簧竖直悬挂,两弹簧之间有一质量为1m 的重物,最下端挂一质量为2m 的重物,用一力竖直向上缓慢托起2m ,当力为多少时,两弹簧的总长等于弹簧原长之和 解析: 两弹簧的总长等于弹簧原长之和,必定是弹簧1k 伸长,弹簧2k 压缩,且形变量21x x =1m 对1m 物体有g m x k x k 12211=+2k 对2m 物体有222x k g m F +=2m 【变式3静止时物块对箱顶P 的压力为2 G 箱顶P 【变式4】如图所示,在倾角为θ弹簧相连的物块B A ,,它们的质量分别为B A m m ,劲度系数为k ,C 为一固定挡板,现开始用一恒力F 方向拉物块A 使之向上运动,求物块B 刚要离开C 的加速度a 和从开始到此时物块A 的位置d (变式3图) (变式4图) 【变式5】如图所示,水平面上质量均为m 的两木块A ,弹簧连接,整个系统处于平衡状态,A 向上做加速度为a 的匀加速直线运动,取木块A 中实线部分表示从力F 作用在木块A 到木块B 块A 的位移x 之间的关系,则() 甲乙 【2】如图所示,B A ,两个物快的重力分别是N G A ,3=计,系统沿着竖直方向处于静止状态,此时弹簧的弹力的拉力和地板受到的有压力有可能是() 【5定在小车上,右端与一小球相连,

处于压缩状态,若忽略小球与小车间的摩擦力,则在此段时间内小车可能是() A.向右做加速运动 B.向右做减速运动 C.向左做加速运动 D.向左做减速运动 左右 【6】如图所示,质量均为m 的物体B A ,通过一劲度系数为k 的轻质弹簧相连,开始时B 放在地面上,B A ,都处于静止状态,现通过细绳缓慢地将A 向上提升距离1L 时,B 刚要离开地面,若将A 加速向上拉起,B 刚要离开地面时,A 上升的距离为2L A.k mg L L ==21 B.k mg L L 221==A 121,L L k mg L >=.121,2L L k mg L >=B 【10】一个弹簧秤放在水平地面上,Q 为与轻质弹簧上端连在一起的弹簧秤,P 为一重物,已知P 的质量kg M 5.10=,Q 的质量kg m 5.1=,弹簧的质量不计,劲度系数m N k /800=,系统处于静止状态,如图所示,现给P 施加一个方向竖直向上的力F ,使其从静止开始向上做匀加速运动,已知在前内F 为变力,后F 变为恒力,求力F 的最大值与最小值(g 取10m/2s ) 【8】一根劲度系数为k 、质量不计的轻质弹簧上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度,如图所示,现让木板由静止开始以加速度)(g a a <匀加速向下运动,求经过多长时间木板开始与物体分 离

弹簧力学性能

弹簧力学性能

弹簧钢丝和弹性合金丝(上) 东北特殊钢集团大连钢丝制品公司徐效谦 弹性材料是机械和仪表制造业广泛采用的制作各种零件和元件的基础材料,它在各类机械和仪表中的主要作用有:通过变形来吸收振动和冲击能量,缓和机械或零部件的震动和冲击;利用自身形变时所储存的能量来控制机械或零部件的运动;实现介质隔离、密封、软轴连接等功能。还可以利用弹性材料的弹性、耐蚀性、导磁、导电性等物理特性,制成仪器、仪表元件,将压力、张力、温度等物理量转换成位移量,以便对这些物理量进行测量或控制。 1 弹性材料的分类 1.1 按化学成分分类 弹性材料可分为:碳素弹簧钢、合金弹簧钢、不锈弹簧钢、铁基弹性合金、镍基弹性合金、钴基弹性合金等。 1.2 按使用特性分类 根据弹性材料使用特性,可作如下分类: 1.2.1 通用弹簧钢 (1)形变强化弹簧钢:碳素弹簧钢丝。 (2)马氏体强化弹簧钢:油淬火回火钢丝。 (3)综合强化弹簧钢:沉淀硬化不锈钢丝 1.2.2 弹性合金

(1)耐蚀高弹性合金 (2)高温高弹性合金 (3)恒弹性合金 (4)具有特殊机械性能、物理性能的弹性合金 2 弹簧钢和弹性合金的主要性能指标 2.1 弹性模量 钢丝在拉力作用下产生变形,当拉力不超过一定值时,变形大小与外力成正比,通常称为虎克定律。公式如下: ε=σ/E 式中ε—应变(变形大小) σ—应力(外力大小) E —拉伸弹性模量 拉伸弹性模量(又称为杨氏弹性模量或弹性模量)是衡量金属材料产生弹性变形难易程度的指标,不同牌号弹性模量各不相同,同一牌号的弹性模量基本是一个常数。 工程上除表示金属抵抗拉力变形能力的弹性模量外(E),还经常用到表示金属抵抗切应力变形能力的切变弹性模量(G)。 拉伸弹性模量与切变弹性模量之间有一固定关系:G = E,μ称为泊桑比,同一牌号的泊桑比是一 + ) 1(2μ

弹簧失效的原因分析

弹簧失效的原因分析 弹簧失效的原因分析 一、佛山弹簧分解弹簧永久变形及其影响因素 弹簧的永久变形是弹簧失效的主要原因之一 弹簧的永久变形,会使弹簧的变形或负荷超出公差范围,而影响机器设备的正常工作。 检查弹簧永久变形的方法 1.快速高温强压处理检查弹簧永久变形:是把弹簧压缩到一定高度或全部并紧,然后放在开水中或温箱保持10~60分钟,再拿出来卸载,检查其自由高度和给定工作高度下的工作载荷。 2.长时间的室温强压处理检查弹簧永久变形:是在室温下,将弹簧压缩或压并若干天,然后卸载,检查其自由高度和给定工作高度下的工作载荷。 二、弹簧断裂及其影响因素 弹簧的断裂破坏也是弹簧的主要失效形式之一 弹簧断裂形式可分为;疲劳断裂,环境破坏(氢脆或应力腐蚀断裂)及过载断裂。 弹簧的疲劳断裂: 弹簧的疲劳断裂原因:属于设计错误,材料缺陷,制造不当及工作环境恶劣等因素。 疲劳裂纹往往起源于弹簧的高应力区,如拉伸弹簧的钩环、压缩弹簧的内表面、压缩弹簧(两端面加工的压缩弹簧)的两端面。 受力状态对疲劳寿命的影响 (a)恒定载荷状态下工作的弹簧比恒定位移条件下工作的弹簧,其疲劳寿命短得多。 (b)受单向载荷的弹簧比受双向载荷的弹簧的疲劳寿命要长得多。 (c)载荷振幅较大的弹簧比载荷振幅较少的弹簧的疲劳寿命要短得多。 腐蚀疲劳和摩擦疲劳 腐蚀疲劳:在腐蚀条件下,弹簧材料的疲劳强度显著降低,弹簧的疲劳寿命也大大缩短。 摩擦疲劳:由于摩擦磨损产生细微的裂纹而导致破坏的现象叫摩擦疲劳。 弹簧过载断裂 弹簧的外加载荷超过弹簧危险截面所有承受的极限应力时,弹簧将发生断裂,这种断裂称为过载断裂。 过载断裂的形式 (a)强裂弯曲引起的断裂; (b)冲击载荷引起的断裂; (c)偏心载荷引起的断裂 佛山弹簧后处理的缺陷原因及防止措施 缺陷一:脱碳 对弹簧性能影响:疲劳寿命低 缺陷产生原因:1、空气炉加热淬火未保护气2、盐浴脱氧不彻底 防止措施:1、空气炉加热淬火应通保护气或滴有机溶液保护:盐浴炉加热时,盐浴应脱氧,杂质BAO质量分数小于0.2%。2、加强对原材料表面质量检查 缺陷二:淬火后硬度不足

汽车离合器拉式膜片弹簧结构参数多目标优化设计

文章编号: 1009-3818(2000)03-0059-03 汽车离合器拉式膜片弹簧结构 参数多目标优化设计 郭惠昕 何哲明 唐黔湘 (常德师范学院机械工程系 湖南常德 415003) 摘 要: 通过对拉式膜片弹簧载荷-变形特性和应力-变形特性的综合分析,考虑各种约束条件,提出了一种新的多目标优化设计数学模型,该模型可以使摩擦片磨损前后离合器后备系数和离合器分离力的变化较小。模型的求解采用多目标优化设计的理想点法。设计实例表明,模型建立合理,具有实用意义。 关键词: 汽车离合器;拉式膜片弹簧;结构参数;多目标优化设计 中图分类号: TH 135:TH122 文献标识码: A 1 拉式膜片弹簧的载荷-变形特性 目前通用的拉式膜片弹簧载荷-变形特性仍采 用1936年J.O.Almen 与https://www.360docs.net/doc/517295624.html,slo 提出的近似公式 [1][2] ,在结合位置,载荷P 1作用在支承半径L 与 加载半径e 处(图1),在L 或e 处产生的大端变形量为 1,则 : 图1 拉式膜片弹簧结构尺寸简图 P 1= Eh 1 ln R r 6(1- 2)(L -e) 2 (H - 1 R -r L -e )(H - 12 R -r L -e )+h 2(1) 收稿日期:2000-06-14第一作者:男 38岁 副教授 在分离位置时,小端分离载荷P 2作用在小端半径r P 处,小端总变形量为 2(不包括分离指弯曲变形),则: P 2= Eh 2 ln R r 6(1- 2)(L -r p ) 2 (H - 2 R -r L -r p )(H - 22 R -r L -r p )+h 2(2) 2 多目标优化设计目标函数和设计变 量 2.1 第一子目标函数 如图2(a)所示,离合器结合时工作点为b,摩擦片磨损到极限位置时工作点变为a ,由于膜片弹簧的非线性特性,压紧力将随着磨损量不同而变化。为了使离合器后备系数稳定,结合可靠不打滑,应使离合器在使用过程中压紧力随摩擦片磨损的变化最小。为此,在bsa 范围内取包括端点a 和凸点s 的10点,取各点压紧力对b 点压紧力变化量的平均值为目标函数: F 1(x )=1 10 10 k=1|P 1k -P 1b |(3)式中: 1a = 1b -i !s 0,其中i 为摩擦面对数,单摩擦片离合器其值为2,!s 0为每对摩擦面的最大容 许磨损量,取0.5~1.0mm ; 1s =L -e R -r [H -1/3(H 2-2h 2)]。2.2 第二子目标函数 膜片弹簧离合器具有分离轻便的特点,若再追 求分离力最小,将导致asb 段曲线上拱,离合器后备系数稳定性变差。但计算和实际使用发现,分离力随摩擦片的磨损而变化,且分离力增加幅度较大。如图2(b ),新离合器彻底分离点为c ,磨损到极限位置时为c ,与! 1 对应的小端变形变化量为! 2 。第12卷第3期常德师范学院学报(自然科学版) Vol.12No.3 2000年9月 Journal of Changde Teachers University(Natural Science Edition) Sep.2000

碟形弹簧疲劳失效

碟形弹簧疲劳失效 碟形弹簧单位体积的变形能较大,用于吸收冲击和消散能量,在受到载荷长期冲击作用时,产生径向贯穿裂纹;碟簧工作时位于碟簧凹面内环面和端面交界处,承载最大拉应力,以下是碟簧失效分析: 1.由于材料成分不合理,成分偏析导致碟簧性能不均匀,例如,60Si2Mn作为碟簧材料时,含Si量偏低,降低碟簧屈服强度,导致零件提前发生脆变,甚至开裂;含P量偏高,则加剧钢的脆性倾向和成分偏析;而杂物的存在则分割了基体的连续性,成为裂纹敏感的区域,特别当分布于零件表面时,容易造成压力集中,为应力腐蚀开裂优先选择了通道。 2.加工产生裂纹。碟形弹簧由热锻加工成型,淬火+高温回火调质处理,喷丸强化处理表面,整个加工过程中会出现碟簧内部微裂纹,造成应力集中,在使用过程中若负载过大会加速碟簧疲劳失效甚至开裂。 3.应力腐蚀。碟簧工作时承受拉应力,当碟簧卸除载荷,其内部依然保持着残余拉应力,若碟簧长期工作在酸性液体或湿度较大环境,在拉应力作用下,溶液中的氢发生聚集,吸附在表面的空穴、腐蚀坑等缺陷处,使表面能或原子健的结合力降低,局部应力集中加剧,当裂纹的形核功大于裂纹尖端应力强度因子时,从而导致环境脆断微裂纹的形核和扩展,出现微裂纹,导致碟簧过早疲劳失效。 4.热处理不合理。碟簧热处理时,调质处理,由于回火温度与回火后的冷却速度不当或出现偏差(譬如回火后的冷却速度过于缓慢),产生高温回火脆性;热处理表面出现脱碳现象,对碟簧的疲劳寿命产生不良影响,使碟簧的弹性极限和疲劳寿命恶化,有利于促成裂纹的形成。 5.使用环境使碟簧产生进一步的脆化。碟簧长期工作在高温或低温的环境下,其组织缓慢发生变化,出现进一步脆化。 6.长时间使用产生材料脆化。材料长时间使用,碟簧内部组织达到甚至超出其力学性能极限,造成脆化出现,过早产生疲劳失效。 以上每一种原因都会造成碟形弹簧在工作时产生疲劳失效,给生产应用带来损失,因此探究碟形弹簧承受载荷与形变之间的关系就十分具有应用价值,针对目前碟簧的计算公式都适用于中小载荷下的局限,探究碟簧在大载荷下的应力应变关系,得出精度较高的计算式就显得十分必要。

高三物理 弹簧中的动力学问题(上)

弹簧中的动力学问题

弹簧中的动力学问题 知识分析 两个物体之间用轻质弹簧连在一起,连接的弹簧或为原长,或已压缩而被锁定。这样包括弹簧的系统与第三个物体相互作用(碰撞、子弹射入等)。这是这类问题的典型物理情境。首先应注意上述两种情况的区别:已完全压缩的弹簧没有缓冲作用,应将系统当作一个整体来处理;没压缩的弹簧有缓冲作用,只有碰撞的两个物体组成系统,与弹簧相连的另一端的物体没有参与。 此类问题还应注意:把相互作用的总过程划分为多个依次进行的子过程,分析确定哪些子过程机械能是守恒的,哪些子过程机械能不守恒。还有一个常见的物理条件:当弹簧最长或最短(或弹簧中弹性势能最大)时,弹簧两端的物体速度相等。 典型例题 【例1】一物体从某一高度自由落下,落在直立于地面的轻弹簧上,如右 图所示。在A点,物体开始与弹簧接触到B点时,物体速度为 零,然后被弹回。下列说法中正确的是() A.物体从A下降到B的过程中,动能不断变小 B.物体从B上升到A的过程中,动能不断变大 C.物体从A下降到B,以及从B上升到A的过程中,速率都是 先增大,后减小 D.物体在B点时,所受合力为零 【例2】如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,另一端与质量为m2档板B相连,弹簧处于原长时,B恰位于滑道的末端O点。 A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求: (1)物块A在与挡板B碰撞前瞬间速度v的大小; (2)弹簧最大压缩量为d时的弹性势能Ep(设弹簧处于原长时弹性势能为零)。

弹簧常用材料力学性能、标准及特点

标准号标准名称牌号直径规格(mm)剪切模量 G (MPa ) 推荐硬度HRC 推荐使用温度 ℃ 性 能 25~80 B 级:0.08~13.040Mn ~ 70Mn C 级:0.08~13.0 D 级:0.08~6.0 60~80 G1组:0.08~6.0T8MnA ~T9A G2组:0.08~6.060Mn ~70Mn F 组:2.0~5.0 65Mn 70A 类、B 类 2.0~12.0 A 类、 B 类、 C 类 2.0~14.0 60Si2MnA 65Si2MnWA 70SI2MnA GB/T2271GB/T5218GB/T5219GB/T5220GB/T5221GB/T4357 GB/T4358 GB/T4359GB/T4360GB/T4361GB/T4362弹簧常用材料力学性能、标准及特点 (摘自GB/T1239.6-92) 45~5079000-40~250 高温时强度性能稳定,用于较高温度下的高应力弹簧。 铬硅弹簧钢 丝 55CrSiA 0.8~6.0 高温时强度性能稳定,用于较高温度下的弹簧,如内燃机阀门弹簧等。 阀门用铬钒 弹簧钢丝 50CrVA 0.5~12.07900045~50-40~210 高温时强度性能稳定,用于较高温度下的弹簧,如内燃机阀门弹簧等。 铬钒弹簧钢 丝 50CrVA 0.8~12.0 7900045~50-40~210 有较强的疲劳强度,用于较高工作温度的高应力内燃机阀门弹簧或其他类似弹簧。 硅锰弹簧钢 丝 1.0~1 2.0 7900045~50-40~200 强度高,较好的弹性、易脱碳。用于普通机械的较大弹簧。 阀门用油淬 火回火铬钒弹簧钢丝 50CrVA 1.0~10.0油淬火回火 硅锰弹簧钢丝 60Si2MnA 79000-40~200 79000---40~210 2.0~6.0 79000 强度高,弹性好。易脱碳,用于叫高负荷的弹簧。A 类和B 类用于一般用途的弹簧,B 类和C 类用于汽车悬挂弹簧。 阀门用油淬 火回火铬硅弹簧钢丝55CrSi 1.6~8.079000--40~250 有较强的疲劳强度,用于较高工作温度的高应力内燃机阀门弹簧或其他类似弹簧。 --40~130 强度高,性能好。用于内燃机阀门弹簧或类似用途弹簧。 油淬火回火碳素弹簧钢丝55、60、 60Mn 、65、65Mn 、70、 70Mn 、75、8079000--40~150 强度高,性能好。适用于普通机械用弹簧。B 类比A 类强度高。 阀门用油淬火回火碳素弹簧钢丝 --40~150 强度高,性能好。B 级、C 级和D 级分别用于低、中和高应力弹簧。 琴钢丝 79000 --40~130 强度高,韧性好。用于重要的小弹簧,G2组较G1 组强度高,F 组主要用于阀弹簧。 碳素弹簧钢丝79000

螺栓断裂原因分析

螺栓断裂原因分析 螺栓的抗拉强度比想象中强得多,以一只M20×80的8.8级高强螺栓为例,它的重量只有0.2公斤,而它的最小拉力载荷是20吨,高达它自身重量的十万倍,一般情况下,我们只会用它紧固几十公斤的部件,只使用它最大能力的千分之一。即便是设备中其它力的作用,也不可能突破部件重量的千倍,因此螺栓的抗拉强度是足够的,不可能因为螺栓的强度不够而损坏。 很多螺栓断裂的最终分析认为是超过螺栓的疲劳强度而损坏,但是螺栓在横向振松实验中只需一百次即可松动,而在疲劳强度实验中需反复振动一百万次才会损坏。换句话说,螺栓在使用其疲劳强度的万分之一时即松动了,我们只使用了螺栓能力的万分之一,所以说螺栓的损坏也不是因为螺栓疲劳强度。 静态紧固用螺栓很少会自行松动,也很少出现断裂情况。但是在冲击,振动,变载荷情况下使用的螺栓就会出现松动和断裂的情况。 所以我认为螺栓损坏的真正原因是松动。螺栓松动后,螺纹和连接件之间产生微小间隙,冲击和振动会产生巨大的动能mv^2,这种巨大的动能直接作用于螺栓,受轴向力作用的螺栓可能会被拉断。受径向力作用的螺栓可能会被剪断。 因此设计时,对于关键的运动部位的连接紧固要注意防松设计。 自锁螺母尼龙锁紧螺母以上为两种形式的锁紧螺母。 对于弹簧垫片的放松效果,一直存在争议。 弹簧垫圈的放松原理是在把弹簧垫圈压平后,弹簧垫圈会产生一个持续的弹力,使螺母和螺栓连接副持续保持一个摩擦力,产生阻力矩,从而防止螺母松动。同时弹簧垫圈开口处的尖角分别嵌入螺栓和被连接件的表面,从而防止螺栓相对于被连接件回转。

以M16螺栓连接为例,实验显示用约10N.m的螺栓预紧力矩就可以将16弹簧垫圈完全压平。弹簧垫圈只能提供10N.m的弹力,而10N.m的弹力对于280N.m的螺栓预紧力矩来说可以忽略,其次,这么小的力,不足以使弹簧垫圈切口处的尖角嵌入螺栓和被连接件表面。折卸后观察,螺栓和被连接件表面都没有明显的嵌痕。所以,弹簧垫圈对螺栓的防松作用可以忽略。另外,在螺栓与被连接件之间增加一个垫圈,如果垫圈质量有问题,相当于给螺栓连接又增加了一个安全隐患。

弹簧钢的性能介绍

[常用牌号]: 常用合金弹簧钢的牌号、化学成分、热处理、力学性能及用途。 常用的合金弹簧钢有60Si2Mn、50CrVA、30W4Cr2VA等。 60Si2Mn钢是应用最广泛的合金弹簧钢,其生产量约为合金弹簧钢产量的80%。它的强度、淬透性、耐回火性都比碳素弹簧钢高,工作温度达250℃,缺点是脱碳倾向较大,适于制造厚度小于10mm的板簧和截面尺寸小于25mm的螺旋弹簧,在重型机械、铁道车辆、汽车、拖拉机上都有广泛的应用。 30W4Cr2VA是高强度的耐热弹簧,用于500℃以下工作的 [弹簧成型方法]: 对直径或板簧厚度大于10 mm的大弹簧,可在比正常淬火温度高出50~80℃的温度热成形,对直径或板簧厚度小于8~10mm的小弹簧,常用冷拔弹簧钢丝冷卷成形。 为保证弹簧具有高的强度和足够的韧性,通常50CrVA钢的力学性能与60Si2Mn钢相近,但淬透性更高,钢中Cr和V能提高弹性极限、强度、韧性和耐回火性,常用于制作承受重载荷、工作温度较高及截面尺寸较大的弹簧。锅炉主安全阀弹簧、汽轮机汽封弹簧等。 常采用淬火+中温回火。对热成形弹簧,可采用热成形余热淬火,对热冷成形的弹簧,有时可省去淬火、中温回火工艺,成形后只需进行200~300℃进行去应力退火即可。弹簧钢热处理后通常进行喷丸处理,其目的是在弹簧表面产生残余压应力,以提高弹簧的疲劳强度。 [性能]: 硬度为40~48HRC,有较高的弹性极限和疲劳强度,以及一定的塑性和韧性弹簧是起缓冲、减振和储能等作用。弹簧一般是在交变应力下工作,常见的破坏形式是疲劳破坏,因此,必须具有高的屈服点和屈强比(σs/ σb)、弹性极限、抗疲劳性能,以保证弹簧有足够的弹性变形能力并能承受较大的载荷。同时,弹簧钢还要求具有一定的塑性与韧性,一定的淬透性,不易脱碳及不易过热。一些特殊弹簧还要求有耐热性、耐蚀性或在长时间内有稳定的弹性。 中碳钢和高碳钢都可作弹簧使用,但因其淬透性和强度较低,只能用来制造截面较小、受力较小的弹簧。合金弹簧钢则可制造截面较大、屈服极限较高的重要弹簧。[化学成分]: 合金弹簧钢为中、高碳成分,一般wC=0.5%~0.7%,以满足高弹性、高强度的性能要求。加入的合金元素主要是Si、Mn、Cr,作用是强化铁素体、提高淬透性和耐回火性。但加入过多的Si会造成钢在加热时表面容易脱碳,加入过多的Mn容易使晶粒长大。加入少量的V和Mo可细化晶粒,从而进一步提高强度并改善韧性。此外,它们还有进一步提高淬透性和耐回火性的作用。 55Si2Mn特性:强度大、弹性极限好,屈服比值高,热处理后韧性较好,焊接性差,冷变形塑性低,切削性尚好,淬透性较65、65Mn钢高,临界淬透直径:油中约为25~57mm;水中约为44~88mm;此钢宜油淬、水淬时有形成裂纹倾向,无回火脆性倾向,且具有抗回火稳定和抗松弛稳定性;钢中夹杂物较高,轧制较困难,表面易出疵病,脱碳倾向大;适宜在淬火并中温回火状态下使用。用途:适用于制造铁道车辆、汽车、拖拉机等承受中等载荷的扁形弹簧、直径<25mm的螺旋形弹簧、缓冲弹簧以及汽缸安全阀门等高应力下工作的重要弹簧。 55Si2MnB特性:性能与55Si2Mn钢相近,但淬透性更高,在油中临界淬透直径约为90~180mm,疲劳强度也显著提高。用途:适用于制造中、小型截面的钢板弹簧,如汽车上的前后副钢板弹簧。

高三物理涉及弹簧的力学问题

涉及弹簧的力学问题 1.弹簧的作用力分析 弹簧在弹性限度内,产生的弹力遵从胡克定律f=kx ,式中x 指相对原长的形变量。当形变量变化Δx 时,弹力也发生相应的变化Δf ,且Δf=k Δx 。 例1 如图1,轻弹簧上端固定,下端挂一质量为m o 的平盘,盘内放一质量为m 的物体。当盘静止时,弹簧的长度比其自然长度伸长了L 。今向下拉盘,使弹簧再伸长ΔL 后停止,然后松手放开。设弹簧总处在弹性限度内,则刚松开手时,盘对物体的支持力等于 (A)(1十ΔL /L)mg (B)(1十ΔL /L)(m 十m 。)g (C) ΔL(m 十m 。)g/L (D) ΔL ·mg /L 解析:对系统,静止时 kL =(m 十m o )g ① 再下拉ΔL 后松手瞬间,有 k(L+ΔL)—(m+m 。)g =(m+m 。)a ② 由①②得k ΔL =(m 十m 。)a ③ 图1 此时系统所受的合外力为k ΔL ,也可直接用Δf=k Δx 得出。 对物体m :N 一mg =ma ④ 联立③④得N =(1十ΔL/L)·mg 本题也可用特殊值验证:令ΔL =0,N =mg 只有选项(A)正确。 2.弹簧振子的运动分析 例2 一弹簧振子作简谐振动,周期为T 。 (A)若t 时刻和(t 十Δt)时刻振子运动的位移大小相等、方向相同,则Δt 一定等于T 的整数倍。 (B)若t 时刻和(t 十Δt)时刻振子运动速度大小相等、方向相反,则一Δt 定等于T /2的整数倍 (C)若Δt =T ,则t 时刻和(t 十Δt)时刻振子运动的加速度一定相等 (D)若Δt =T /2,则T 时刻和(t 十Δt)时刻弹簧的长度一定相等 解析 (1)弹簧振子作简谐振动,其位移x 一时间t 关系图线 应是正弦或余弦曲线。设为正弦曲线,如图2,并在图上找出t 和 (t 十Δt)两个时刻及其对应的a 、b 两点。 (2)从x 一t 图上可看出,虽然t 和(t 十Δt)两时刻振子位移x 大小相等、方向相同,但时间Δt 可不等于T 的整数倍,故选项(A)错。 (3)已知过x 一t 图线上某点的切线斜率表示速度。由图可看出,过a 、b 两点所作切线的斜率大小相等、符号相反(表示速度方向相反),但Δt 不等于T /2的整数倍,故选项(B)错。 (4)若Δt =T ,由简谐振动的周期性可知,和(t 十Δt)两时刻振子的位移一定等大同向,故两时刻的受力完全相同,振子的加速度一定相等,故选项(C)正确。 (5)若Δt =T /2,则可从x 一t 图明确看出,若t 时刻弹簧被拉伸,则(t 十Δt)时刻弹簧被压缩,二者的长度不等,故选项(D)错。 3.弹簧储能变化分析 例3 质量为m 的钢板与直立轻弹簧上端连结,弹簧下端固定在地上。平衡时,弹簧的压缩量为x 0,如图3。一物体从钢板正上方距离为3x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连。它们到达最低点后又向上运动。已知物体质量也为m 时,它们恰能回到O 点。若物块质量为2m ,仍从A 处自由落下,则物块和钢板回到O 点时,还具有向上的速度,求物块向上运动到达的最高点与O 点的距离。 解析 物块与钢板相碰前的速度 ① 006gx V

膜片弹簧离合器的设计与分析

膜片弹簧离合器的设计与分析 第一章离合器概述 1.1离合器的简介: 联轴器、离合器和制动器是机械传动系统中重要的组成部分,共同被称为机械传动中的三大器。它们涉与到了机械行业的各个领域。广泛用于矿山、冶金、航空、兵器、水电、化工、轻纺和交通运输各部门。 离合器是一种可以通过各种操作方式,在机器运行过程中,根据工作的需要使两轴分离或结合的装置。 对于以内燃机为动力的汽车,离合器在机械传动系中是作为一个独立的总成而存在的,它是汽车传动系中直接与发动机相连的总成。目前,各种汽车广泛采用的摩擦离合器是一种依靠主从动部分之间的摩擦来传递动力且能分离的装置。它主要包括主动部分、从动部分、压紧机构、和操纵机构等四部分。 离合器作为一个独立的部件而存在。它实际上是一种依靠其主、从动件之间的摩擦来传递动力且能分离的机构,见图1-1离合器工作原理图 图1-1离合器工作原理图 1—飞轮;2—从动盘;3—离合器踏板;4—压紧弹簧;5—变速器第一轴;6—从动盘毂

1.2汽车离合器的主要的功用: 1.保证汽车平稳起步: 起步前汽车处于静止状态,如果发动机与变速箱是刚性连接的,一旦挂上档,汽车将由于突然接上动力突然前冲,不但会造成机件的损伤,而且驱动力也不足以克服汽车前冲产生的巨大惯性力,使发动机转速急剧下降而熄火。如果在起步时利用离合器暂时将发动机和变速箱分离,然后离合器逐渐接合,由于离合器的主动部分与从动部分之间存在着滑动磨擦的现象,可以使离合器传出的扭矩由零逐渐增大,而汽车的驱动力也逐渐增大,从而让汽车平稳地起步。 2.便于换档: 汽车行驶过程中,经常换用不同的变速箱档位,以适应不断变化的行驶条件。如果没有离合器将发动机与变速箱暂时分离,那么变速箱中啮合的传动力齿轮会因载荷没有卸除,其啮合齿面间的压力很大而难于分开。另一对待啮合齿轮会因二者圆周速度不等而难于啮合。即使强行进入啮合也会产生很大的齿端冲击,容易损坏机件。利用离合器使发动机和变速箱暂时分离后进行换档,则原来啮合的一对齿轮因载荷卸除,啮合面间的压力大大减小,就容易分开。而待啮合的另一对齿轮,由于主动齿轮与发动机分开后转动惯量很小,采用合适的换档动作就能使待啮合的齿轮圆周速度相等或接近相等,从而避免或减轻齿轮间的冲击。 3.防止传动系过载: 汽车紧急制动时,车轮突然急剧降速,而与发动机相连的传动系由于旋转的惯性,仍保持原有转速,这往往会在传动系统中产生远大于发动机转矩的惯性矩,使传动系的零件容易损坏。由于离合器是靠摩擦力来传递转矩的,所以当传动系内载荷超过摩擦力所能传递的转矩时,离合器的主、从动部分就会自动打滑,因而起到了防止传动系过载的作用。 膜片弹簧离合器的优点: (1)、弹簧压紧力均匀,受离心力影响小 (2)、即使摩擦片磨损,压紧负荷也不减小 (3)、离合器结构简单,轴向尺寸小,动平衡性能好

钢锭_坯_在轧制过程中出现翘皮及断裂等常见缺陷的原因分析和防止途径

甘肃冶金 2001年3月 第1期钢锭(坯)在轧制过程中出现翘皮及断裂等常见缺陷的原因分析和防止途径 贾 静 (兰州钢铁公司 甘肃省 兰州市 730020) 摘 要 分析了钢锭(坯)轧制过程中出现翘皮、裂纹、断裂等常见缺陷的原因,并且提出了解决问题的途径。 关键词 分析解决 缺陷 途径 1 前言 钢锭(坯)在轧制过程中会出现翘皮、裂缝、断裂等多种缺陷而致废。由于种种原因,90年代初以来,特别是近几年里,钢锭(坯)轧裂和翘皮的数量骤然上升并有居高不下之势。为此,我们将近几年来发生的钢锭(坯)轧废情况统计分析结果列于表1(数据以每年退换钢锭的数量为依据)。 表1 钢锭(坯)轧裂退换统计表 年 份钢 种废品数量致 废 原 因小 时(t) 1995 1996 1997 1998 1999Q195—Q235沸钢258钢锭重接19.08t,翘皮、断裂Q235镇静钢—  Q195—Q235沸钢118翘皮、断裂 150220M nSi连铸坯70夹杂、断裂 20M nSi钢47断裂 Q195—Q235沸钢44翘皮、断裂 150220M nSi连铸坯80夹杂、断裂 1502Q235连铸坯40脱方 Q235镇静钢100纵裂纹、发纹 Q195—Q235沸钢220翘皮、断裂 Q235镇静钢110裂纹、断裂 Q195—Q235沸钢20断裂、裂口 Q235镇静钢240纵裂纹、裂口、断裂 258 235 264 330 260 9 收稿日期:2000-12-28

表1的统计结果表明: 早期镇静钢锭质量比沸腾钢锭的好,但近两年来质量有下滑趋势。 钢锭(坯)在轧制过程中退废的主要缺陷是翘皮、裂纹和断裂。平均每年退换钢锭293t ,由此造成的经济损失30余万元。 根据金属学和钢的热塑性变形原理,结合现场生产的实际情况,作者对这些缺陷的成因从炼钢工艺和轧钢工艺两方面进行分析。2 炼钢工艺对钢锭质量的影响2.1 化学成分的影响 对于碳素结构钢来讲,就元素影响而言造成轧制过程中出现裂纹、断裂极为有关的元素有S 、M n 、P 、Cu 。2.1.1 元素S 、M n 的影响及S 的“ 热脆”缺陷对大量轧裂钢锭化学成分的分析结果表明,元素S 的超标准上限及元素Mn 的低标准下限是钢锭轧裂的重要原因。 高硫钢锭经轧制后通身四面都有严重裂缝,有时只经过粗轧几道就断成碎块。其致废的机理是:S 是生铁或燃料中天然存在的杂质,由于S 在固态Fe 中的溶解度很小,几乎不能溶解。它在钢中以FeS 的形式存在,而FeS 和Fe 易形成熔点较低(仅有985℃)的共晶体,当钢在1100~1200℃进行热加工时,分布于晶界的低熔点共晶体固熔化而导致开裂,这就是通常所说的S 的“热脆”现象。在冶炼中为了清除S 的有害作用,必须增加钢中的含M n 量,使Mn 与S 优先形成高熔点的M nS,其熔点高达1620℃而且呈粒状分布于晶粒中,从而可以有效地防止或避免S 在钢中的“热脆”现象。2.1.2 元素P 的影响及P 的“冷脆”缺陷 通常,元素P 超标的钢锭在热轧过程中不出现裂纹或断裂,但成品坯(材)冷却至室温就会发生“冷脆”现象,在远远小于钢材力学指标力的作用下就发生脆断。 其机理是:室温下钢中的P 可全部溶于钢的铁素体中,使钢的强度、硬度增加,塑性、韧性显著降低。这种钢坯(材)的“冷脆”现象在我厂的生产中偶有发生。2.1.3 元素Cu 的影响及富Cu 轧制的网状裂纹 1997年10月,我厂轧制的Q 235镇静钢68方坯有两批总重量101.36t 成品钢坯表面出现了严重的裂纹,其症状如图1所示,可见钢坯通身有网状裂纹。经取样做成分分析发现Cu 含量在0.6%~0.8%,严重超标。 图1 富铜轧制的网状裂纹 元素Cu 超标造成钢锭热轧开裂的原因是:由于西域废钢资源的特点,含Cu 量有时较高。当钢中含Cu 量超过0.4%且它在加热炉中的氧化性气氛中较长时间加热时,由于选择性氧化的结果,在钢的表面氧化铁皮下会富集一薄层熔点低于1100℃的富Cu 合金,这层合金在约1100℃时熔化并浸蚀钢的表层,使钢在热加工时开裂并多形成网状裂纹。 因此,在技术标准中对碳素结构钢中残余铜元素的含量有明确规定,应该不高于0.3%。2.2 炼钢脱氧操作及浇注工艺的影响 我厂轧制钢锭从脱氧方式上分沸腾钢和镇静钢。由于钢液脱氧方式及结晶热力学的条件10

相关文档
最新文档