电动汽车空调系统

电动汽车空调系统
电动汽车空调系统

电动汽车空调系统

、电动汽车空调系统

全球气候变暖、大气污染以及能源成本高涨等问题日趋严峻,汽车作为环境污染和能源消耗的主要来源之一,其节能减排问题受到了越来越广泛的重视,各国政府和汽车企业均将节能环保当作未来汽车技术发展的指导方向,这样节能环保的电动也就应运而生。电动汽车是集汽车技术、电子及计算机技术、电化学技术、能源与新材料技术于一体的高新技术产品,与普通内燃机汽车相比,具有无污染、噪声低及节省石油资源的特点。基于以上电动汽车的特点,它极有可能成为人类新一代的清洁环保交通工具,它的推广普及具有不可估量的重要意义。

电动汽车的出现也为电动汽车空调的研究开发提出了新的课题与挑战。汽车空调的功能就是把车厢内的温度、湿度、空气清洁度及空气流动性保持在使人感觉舒适的状态。在各种气候环境条件下,电动汽车车厢内应保持舒适状态,以提供舒适的驾驶和乘坐环境。另外,拥有一套节能高效的空调系统对电动汽车开拓市场也起到至关重要的作用。因此,在开发研制电动汽车同时, 必然也要对其配套的空调系统进行开发与研制。

对于目前传统燃油汽车空调系统,制冷主要采用发动机驱动的蒸汽压缩式制冷系统进行降温,而制热主要采用燃油发动机产生的余热。而对于电动汽车中的纯电动汽车以及燃料电池汽车来说,没有发动机作为空调压缩机的动力源,也不能提供作为汽车空调冬天制热用的热源,因此无法直接采用传统汽车空调系统的解决方案;对于混合动力车型来说,发动机的控制方式多样,故空调压缩机也不能采用发动机直接驱动的方案。综合以上原因,在电动汽车的开发过程中,必须研究适合电动汽车使用的新型空调系统。对于电动汽车来说,车上拥有高压直流电源,因此,采用电动热泵型空调系统,压缩机采用电机直接驱动,成为电动汽车可行的解决方案。

、电动汽车空调的特点

电动汽车空调与普通空调装置相比,电动汽车空调装置以及车内环境主要有以下特点:八、、?

1)汽车空调系统安装在运动的车辆上,要承受剧烈而频繁的振动与冲击,要求电动汽车

空调装置结构中的各个零部件都应具有足够抗振动冲击的强度和良好的系统气密性

能;

2)电动汽车大部分属于短距离代步,乘坐时间较短,加上电动汽车内乘员所占空间比

大,产生的热量相对较多,相对热负荷大,要求空调具有快速制冷、制热和低速运行能力;

3)电动汽车空调使用的是车上蓄电池提供的直流电源,压缩机工作效率高,控制可靠性

高,维护方便;

4)汽车车身隔热层薄,而且门窗多,玻璃面积大,隔热性能差,电动汽车也不例

外,致使车内漏热严重;

5)车内设施高低不平且有座椅,气流分配组织困难,难以做到气流分布均匀。

、国内外电动汽车空调发展现状

、国内电动汽车空调发展现状

早期的国产电动汽车由于受到蓄电池能力的限制,为了不影响电动汽车的续行里程,大多数电动汽车都没有配备空调系统。

随着国内电动汽车逐步产业化、市场化,电动汽车必然要配备空调系统。由于受到电动汽车独特性影响,对于电动汽车中的纯电动汽车以及燃料电池汽车来说,没有发动机作为空调压缩机的动力源,也不能提供作为汽车空调冬天制热用的热源,国内汽车厂家就从传统燃油汽车空调的基础上进行部分替换设计,将燃油发动机带动的压缩机替换成直流电机直接驱动的压缩机,控制上相应改变,来完成空调制冷的功能,目前替换设计效果基本能解决电动汽车空调的制冷问题,但制冷效率有待提高。由于没有燃油发动机产生的余热,制热功能国内厂家目前主要采用PTC 加热和电热管加热,这些加热模式虽能满足制热效果,但这些加热模式都是硬消耗电动汽车上的蓄电池电能,制热效率相对较低,影响电动汽车的续行里程。

在空调的主要零部件选用上,目前国内的电动汽车除了压缩机和控制模式,其他主要零部件还是沿用燃油汽车空调的零部件,冷凝设备主要用的是平行流冷凝器,蒸发设备主要用的是层叠式蒸发器,节流装置仍然是热力膨胀阀,制冷剂仍然是R134a。

据不完全了解,国内在大力开发电动汽车的厂家如奇瑞、比亚迪、一汽、上汽、江淮等目前电动汽车空调配套情况基本差不多,都处于上述的发展现状。

、国外电动汽车空调发展现状

国外电动汽车空调发展相对国内来说较成熟,国外电动汽车空调不乏有跟国内相似的模式,但在热泵电动汽车空调上已经有了一定的基础,日本本田纯电动车就采用了电驱动热泵式空调系统,系统中内置了一个反换流器控制压缩泵。此外,在特别寒冷的地区使用时,部分车型顾客可以选装一个燃油加热器采暖系统。

日本电装(DENSO公司早在几年前就开发了采用R134a制冷剂的电动汽车热泵型空调系统,其在热泵系统的风道中采用了车内冷凝器和蒸发器的结构。电装(DENS)公司在2003年还开发了由于自然工质CO良好的热物理性能,日本电装公司也为电动车开发了一套CO 热泵空调系统,系统也采用了在风道内设置2个换热器的方案,与R134a系统不同的是当系统为制冷模式时,制冷剂同时流经内部冷凝器和外部冷凝器。

为了减少空调对蓄电池的电能消耗,美国Amerigon公司开发了空调座椅,这种空调座椅上装有热电热泵,热电热泵的作用就是通过需要调温的空间之外的水箱转移热量,从而实现需要调温的空间制冷或制热。这种空调座椅除了节能还可以改善驾驶、乘坐的舒适性,在电动汽车上配套使用比较适合。

因此,国外电动汽车空调从节能高效和实用性上有所突破,国内电动汽车空调行业应积极向国外先进技术学习、借鉴,并在此基础上有所创新突破。

、电动汽车空调的发展趋势

电动汽车驱动能量来源于蓄电池,有别于传统燃油汽车,使得它的空调系统也不同于燃油汽车空调,由于作为驱动能量来源的蓄电池容量有限,空调系统的能耗对电动汽车的续行里程有较大的影响。同燃油汽车相比,对电动汽车空调系统的节能高效提出了更高的要求。同时,电动汽车空调必须要解决制冷、制热两大问题。根据电动汽车特有性质,目前电动汽车空调可采用热电(偶)空调系统和电动热泵型空调系统。

、热电(偶)电动汽车空调系统

该项技术具有很多适合电动汽车使用的特点,并且与传统机械压缩式空调系统相比,热电空气调节具有以下特点:

a)热电元件工作需要直流电源;

b)改变电流方向即可产生制冷、制热的逆效果;

c)热电制冷片热惯性非常小,制冷时间很短,在热端散热良好冷端空载的情况下,通电不到一分钟,制冷片就能达到最大温差;

d)调节组件工作电流的大小即可调节制冷速度和温度,温度控制精度可达°C,并且

容易实现能量的连续调节;

e)在正确设计和应用条件下,其制冷效率可达90%以上,而制热效率远大于1;

f)体积小、重量轻、结构紧凑, 有利于减小电动汽车的整备质量; 可靠性高、寿命长并且维护方便; 没有转动部件,因此无振动、无摩擦、无噪声且耐冲击。

热电(偶)制冷、制热工作原理如图 1 所示:

图1热电(偶)制冷、制热工作原理图

、热泵型电动汽车空调系统

该热泵型空调系统是在原有燃油汽车上进行改进的, 压缩机是由永磁直流无刷电机直接驱动,系统的工作原理图如图2所示。该系统与普通的热泵空调系统并无本质区别,由于在电动车上使用,压缩机等主要部件有其特殊性。而且国外热泵技术具备了一定的基础, 该技术最大的优点就是制冷、制热效率高, 相关企业开发的全封闭电动涡旋压缩机, 是由一个直流无刷电动机驱动,通过制冷剂回气冷却,具有噪声低,振动小,结构紧凑,质量

轻等优点。在测试条件为环境温度40C,车内温度27C,相对湿度50%的工况下,系统稳定时它能以1kW勺能耗获得的制冷量;当环境温度为-10 C,车内温度25C,以1kW勺能耗可以获得的制热量。在-10 C?40E的环境温度下,均能以较高的效率为电动汽车提供舒适的驾乘环境。若能

在零部件技术上得到改进,相应效率还可以得到提高。

图1热泵系统工作原理图

综合以上所述,从空调技术成熟性和能源利用效率比较来看,对于热电(偶)电动汽车空调系统,目前存在着热电材料的优值系数较低,制冷性能不够理想,并且热电堆产量受到构成热电元件的蹄元素产量的限制。不具备电动汽车空调节能高效的要求。这使得电动汽车空调更倾向于选用节能高效的热泵型空调,该技术方案对于不同类型电动汽车通用性较好,并且对整车结构改变较小,是将来电动汽车空调发展趋势。

目前热泵型电动汽车空调最大的软肋是低温制热问题,尤其是在东北地区,这也是将来该行业研究难题之一。为了使热泵型电动汽车空调更节能高效,可以从以下几个角度去着重解决:

a)开发更高效的直流涡旋压缩机;

b)开发控制更精准、更节能的硅电子膨胀阀;

c)采用高效的过冷式平行流冷凝器;

d)改善微通道蒸发器结构,使制冷剂蒸发更均匀。

此外,电动汽车开门的次数以及在行车中受车速、光照、怠速等因素的影响,空调湿热负荷大。压缩机乃至整个空调系统都要适应这种多因素变化的工况,因此热泵型电动汽

车空调系统变工况设计尤为重要。

电动汽车空调系统

电动汽车空调系统 、电动汽车空调系统 全球气候变暖、大气污染以及能源成本高涨等问题日趋严峻,汽车作为环境污染和能源消耗的主要来源之一,其节能减排问题受到了越来越广泛的重视,各国政府和汽车企业均将节能环保当作未来汽车技术发展的指导方向,这样节能环保的电动也就应运而生。电动汽车是集汽车技术、电子及计算机技术、电化学技术、能源与新材料技术于一体的高新技术产品,与普通内燃机汽车相比,具有无污染、噪声低及节省石油资源的特点。基于以上电动汽车的特点,它极有可能成为人类新一代的清洁环保交通工具,它的推广普及具有不可估量的重要意义。 电动汽车的出现也为电动汽车空调的研究开发提出了新的课题与挑战。汽车空调的功能就是把车厢内的温度、湿度、空气清洁度及空气流动性保持在使人感觉舒适的状态。在各种气候环境条件下,电动汽车车厢内应保持舒适状态,以提供舒适的驾驶和乘坐环境。另外,拥有一套节能高效的空调系统对电动汽车开拓市场也起到至关重要的作用。因此,在开发研制电动汽车同时, 必然也要对其配套的空调系统进行开发与研制。 对于目前传统燃油汽车空调系统,制冷主要采用发动机驱动的蒸汽压缩式制冷系统进行降温,而制热主要采用燃油发动机产生的余热。而对于电动汽车中的纯电动汽车以及燃料电池汽车来说,没有发动机作为空调压缩机的动力源,也不能提供作为汽车空调冬天制热用的热源,因此无法直接采用传统汽车空调系统的解决方案;对于混合动力车型来说,发动机的控制方式多样,故空调压缩机也不能采用发动机直接驱动的方案。综合以上原因,在电动汽车的开发过程中,必须研究适合电动汽车使用的新型空调系统。对于电动汽车来说,车上拥有高压直流电源,因此,采用电动热泵型空调系统,压缩机采用电机直接驱动,成为电动汽车可行的解决方案。 、电动汽车空调的特点 电动汽车空调与普通空调装置相比,电动汽车空调装置以及车内环境主要有以下特点:八、、? 1)汽车空调系统安装在运动的车辆上,要承受剧烈而频繁的振动与冲击,要求电动汽车

电动汽车空调国内外现状和发展趋势

电动汽车空调国内外发展现状及发展趋势 摘要:本文分析了电动汽车空调系统的特点,介绍了国内外电动汽车空调发展现状,根据现状和实际使用需求叙述了电动汽车空调的发展趋势。 关键字:电动汽车空调发展现状热泵发展趋势 引言 全球气候变暖、大气污染以及能源成本高涨等问题日趋严峻,汽车作为环境污染和能源消耗的主要来源之一,其节能减排问题受到了越来越广泛的重视,各国政府和汽车企业均将节能环保当作未来汽车技术发展的指导方向,这样节能环保的电动也就应运而生。电动汽车是集汽车技术、电子及计算机技术、电化学技术、能源与新材料技术于一体的高新技术产品,与普通内燃机汽车相比,具有无污染、噪声低及节省石油资源的特点。基于以上电动汽车的特点,它极有可能成为人类新一代的清洁环保交通工具,它的推广普及具有不可估量的重要意义。 电动汽车的出现也为电动汽车空调的研究开发提出了新的课题与挑战。汽车空调的功能就是把车厢内的温度、湿度、空气清洁度及空气流动性保持在使人感觉舒适的状态。在各种气候环境条件下,电动汽车车厢内应保持舒适状态,以提供舒适的驾驶和乘坐环境。另外,拥有一套节能高效的空调系统对电动汽车开拓市场也起到至关重要的作用。因此,在开发研制电动汽车同时,必然也要对其配套的空调系统进行开发与研制。 对于目前传统燃油汽车空调系统,制冷主要采用发动机驱动的蒸汽压缩

式制冷系统进行降温,而制热主要采用燃油发动机产生的余热。而对于电动汽车中的纯电动汽车以及燃料电池汽车来说,没有发动机作为空调压缩机的动力源,也不能提供作为汽车空调冬天制热用的热源,因此无法直接采用传统汽车空调系统的解决方案;对于混合动力车型来说,发动机的控制方式多样,故空调压缩机也不能采用发动机直接驱动的方案。综合以上原因,在电动汽车的开发过程中,必须研究适合电动汽车使用的新型空调系统。对于电动汽车来说,车上拥有高压直流电源,因此,采用电动热泵型空调系统,压缩机采用电机直接驱动,成为电动汽车可行的解决方案。 1.电动汽车空调的特点 电动汽车空调与普通空调装臵相比,电动汽车空调装臵以及车内环境主要有以下特点: 1)汽车空调系统安装在运动的车辆上,要承受剧烈而频繁的振动与冲击, 要求电动汽车空调装臵结构中的各个零部件都应具有足够抗振动冲击的强度和良好的系统气密性能; 2)电动汽车大部分属于短距离代步,乘坐时间较短,加上电动汽车内乘员 所占空间比大,产生的热量相对较多,相对热负荷大,要求空调具有快速制冷、制热和低速运行能力; 3)电动汽车空调使用的是车上蓄电池提供的直流电源,压缩机工作效率高, 控制可靠性高,维护方便; 4)汽车车身隔热层薄,而且门窗多,玻璃面积大,隔热性能差,电动汽车 也不例外,致使车内漏热严重;

电动汽车空调系统

电动汽车空调系统 3.1、电动汽车空调系统 全球气候变暖、大气污染以及能源成本高涨等问题日趋严峻,汽车作为环境污染和能源消耗的主要来源之一,其节能减排问题受到了越来越广泛的重视,各国政府和汽车企业均将节能环保当作未来汽车技术发展的指导方向,这样节能环保的电动也就应运而生。电动汽车是集汽车技术、电子及计算机技术、电化学技术、能源与新材料技术于一体的高新技术产品,与普通燃机汽车相比,具有无污染、噪声低及节省石油资源的特点。基于以上电动汽车的特点,它极有可能成为人类新一代的清洁环保交通工具,它的推广普及具有不可估量的重要意义。 电动汽车的出现也为电动汽车空调的研究开发提出了新的课题与挑战。汽车空调的功能就是把车厢的温度、湿度、空气清洁度及空气流动性保持在使人感觉舒适的状态。在各种气候环境条件下,电动汽车车厢应保持舒适状态,以提供舒适的驾驶和乘坐环境。另外,拥有一套节能高效的空调系统对电动汽车开拓市场也起到至关重要的作用。因此,在开发研制电动汽车同时,必然也要对其配套的空调系统进行开发与研制。 对于目前传统燃油汽车空调系统,制冷主要采用发动机驱动的蒸汽压缩式制冷系统进行降温,而制热主要采用燃油发动机产生的余热。而对于电动汽车中的纯电动汽车以及燃料电池汽车来说,没有发动机作为空调压缩机的动力源,也不能提供作为汽车空调冬天制热用的热源,因此无法直接采用传统汽车空调系统的解决方案;对于混合动力车型来说,发动机的控制方式多样,故空调压缩机也不能采用发动机直接驱动的方案。综合以上原因,在电动汽车的开发过程中,必须研究适合电动汽车使用的新型空调系统。对于电动汽车来说,车上拥有高压直流电源,因此,采用电动热泵型空调系统,压缩机采用电机直接驱动,成为电动汽车可行的解决方案。

电动汽车空调系统方案

电动汽车加装空调系统方案 现阶段的电动汽车空调控制系统主要分两种: 1、热电(偶)空调控制系统 2、热泵型空调控制系统 热电偶空调控制系统具有很多适合电动汽车使用的特点,并且与传统机械压缩式空调系统相比,热电空气调节具有以下特点: a)、热电元件工作需要直流电源; b)、改变电流方向即可产生制冷、制热的逆效果; c)、热电制冷片热惯性非常小,制冷时间很短,在热端散热良好冷端空载的情况下,通电不到一分钟,制冷片就能达到最大温差; d)、调节组件工作电流的大小即可调节制冷速度和温度,温度控制精度可达0.001℃,并且容易实现能量的连续调节; e)、在正确设计和应用条件下,其制冷效率可达90%以上,而制热效率远大于1; f)、体积小、重量轻、结构紧凑,有利于减小电动汽车的整备质量;可靠性高、寿命长并且维护方便;没有转动部件,因此无振动、无摩擦、无噪声且耐冲击 但是对于热电(偶)电动汽车空调系统,目前存在着热电材料的优值系数较低,制冷性能不够理想,并且热电堆产量受到构成热电元件的蹄元素产量的限制。不具备电动汽车

空调节能高效的要求。这使得电动汽车空调更倾向于选用节能高效的热泵型空调。 热泵型空调控制系统是在原有燃油汽车上进行改进的,该技术最大的优点就是制冷、制热效率高,相关企业开发的全封闭电动涡旋压缩机,是由一个直流无刷电动机驱动,通过制冷剂回气冷却,具有噪声低,振动小,结构紧凑,质量轻等优点。 综上所述:电动汽车所优先选用的空调系统为冷暖一体式热泵型空调控制系统。加热系统采用传统的PTC加热系统,制冷系统采用蓄电池直接驱动电动压缩机,通过脉宽调制对压缩机转速进行调整,从而调节制冷量,冷凝设备主要用的是平行流冷凝器,蒸发设备主要用的是层叠式蒸发器,节流装置仍然是热力膨胀阀,制冷剂仍然是R134a。 空调各部件尺寸根据各个供应商送样决定。

热泵型电动汽车空调系统性能试验研究上课讲义

热泵型电动汽车空调系统性能试验研究 1.1 研究背景及意义 目前,随着人类越来越多的使用燃油汽车,汽车尾气排放出的二氧化碳加剧了全球 气候极端变化。我国的石油资源的探明储量极其有限,早在2009 年,石油消费进口依 存度就突破了“国际警戒线”(50%),高达52%。汽车保有量却是逐年增加,如果 汽车几乎完全依赖于化石燃料,很容易受到国际石油价格的冲击,甚至导致燃料的供应 中断。再者,燃油汽车的尾气排放出大量的污染物如PM10(可吸入颗粒物)、NOx(氮 氧化物)、SO2(二氧化硫)和VOCs(挥发性有机化合物)等,已经成为我国城市大 气污染的主要污染源,严重危害了人们的健康。纯电动汽车是以电能驱动的,具有燃 油汽车无法比拟的优点,主要表现在:一、污染少、噪声低。其本身不排放污染大气 的有害气体,即使按所耗电量换算为发电厂的排放,除硫和微粒外,其它污染物也显著 减少,且电动汽车电动机的发出的噪声较燃油汽车发动机小得多;二、能源的利用具有 多元化,电力可以从多种一次能源如煤、核能、水力、太阳能、风能、潮汐能等获得, 能源利用更加安全;三、可在夜间利用电网的廉价“谷电”进行充电,起到平抑电网的 峰谷差的作用;四、效率更高和控制更容易实现智能化。 作为一种具有环保和节能优势的先进交通工具,电动汽车受到了越来越广泛的关注。美、日、欧等发达国家不惜投入巨资进行电动汽车的研究开发,取得了丰硕的研究成果,纯电动汽车目前在许多发达国家已得到商业化的应用。我国电动汽车发展起步 较晚,但国家从维护能源安全,改善大气环境,提高汽车工业竞争力和实现我国汽车工 业的跨越式发展的战略高度考虑,从“八五”开始到现在,电动汽车研究一直是国家计 划项目,并在2001 年设立了“电动汽车重大科技专项”,通过组织企业、高校和科研 机构,集中各方面力量进行技术攻关。与此同时,上海、广州和深圳等地的地方政 府也出台了相应的扶持新能源汽车的发展政策,计划实现电动汽车在本地的产业化。 电动汽车代表未来汽车发展的方向,各国政策的扶持为电动汽车的发展铺平了道 路,近年来,它们在全世界范围内呈现出欣欣向荣的的发展态势,据国外著名金融杂志 JP Morgan 报道,预计到2020 年全球将有1100 万辆电动汽车上市销售,这意味着到那时电动汽车将分别占有北美20%和全球13%的市场份额,但目前电动汽车的发展遇到 很多技术问题,特别动力电池技术,续驶里程的提高和充电网络的建设等问题。 空调系统作为改善驾驶员工作条件、提高工作效率、提高汽车安全性及为乘员营造 健康舒适的乘车环境的重要手段,对燃油汽车和电动汽车而言,都是必不可少的。电 动汽车用空调系统与普通的汽车(内燃机驱动)空调相比,由于原动机不同而引发一系 列新变化。主要体现在:1)普通的汽车空调系统的压缩机依靠发动机通过一个电磁离 合器驱动,而电动汽车空调压缩机自带电动机独立驱动;2)电动汽车没有用来采暖的 发动机余热,不能提供作为汽车空调冬天采暖用的热源,必须自身具有供暖的功能,即 要求制冷、制热双向运行的热泵型空调系统。 纯电动汽车空调系统制冷、供暖和除霜所需能量均来自于整车动力电池。作为电动 汽车功耗最大的辅助子系统,空调系统的使用将极大的降低其续驶里程。因而,通过优 化电动汽车空调系统的设计以提高其性能对提高电动汽车续驶里程,推广电动汽车的应 用有着重要意义。 1.2.2 热泵式汽车空调研究现状 汽车空调系统是实现对车厢内空气进行制冷、加热、换气和空气净化的装置。随着 汽车的日益普及以及人们对汽车的舒适性、安全性要求的提高,汽车空调系统已经成为 现代汽车上必不可少的装置。汽车空调工作环境的特殊性如需要承受频繁的震动和冲

电动汽车空调的现状与发展

电动汽车空调的现状与发展 The status and the development trend of electric vehicle air conditioning 摘要:本文分析了电动汽车空调的结构,制冷系统原理,特点和发展状况,并且为了提高其舒适性,分析发展趋势以及更好的汽车空调新技术。 Abstract:The paper analyzes the electrical automobile air conditioners’ characteristics and development status in order to improve its comfort, and want to find out new technology of air conditioner to make it better. 关键词:电动汽车(Electric automobile)电动汽车的结构(Electrical automobile’structure)空调系统(air conditioner)现状(present situation)发展趋势(the development trend) 前言: 汽车空调在当今社会的汽车配置中可以说是重中之重,在各种季节、天气及其它行驶条件下,大家都希望车厢内保持舒适的状态。汽车空调的功能就是把车厢内的温度、湿度、空气清洁度及空气流动性保持在使人感觉舒适的状态。而对于新一代的纯电动环保型汽车来说空调的设置无疑与现在的主流汽车有所不同,但匹配空调系统又是

完全必要的,所以拥有一套节能高效的空调系统是现今市场的急切需要的。 正文: 电动汽车的结构: 电动汽车的组成包括电力驱动及控制系统、驱动力传动等机械系统、完成既定任务的工作装置等。电力驱动及控制系统是电动汽车的核心,也是区别于内燃机汽车的最大不同点。电力驱动及控制系统由驱动电动机、电源和电动机的调速控制装置等组成。电动汽车的其他装置基本与内燃机汽车相同。 1. 电源 电源为电动汽车的驱动电动机提供电能,电动机将电源的电能转化为机械能,通过传动装置或直接驱动车轮和工作装置。目前,电动汽车上应用最广泛的电源是铅酸蓄电池,但随着电动汽车技术的发展,铅酸蓄电池由于比能量较低,充电速度较慢,寿命较短,逐渐被其他蓄电池所取代。正在发展的电源主要有钠硫电池、镍铬电池、锂电池、燃料电池、飞轮电池等,这些新型电源的应用,为电动汽车的发展开辟了广阔的前景。 2. 动机调速控制装置 电动机调速控制装置是为电动汽车的变速和方向变换等设置的,其作用是控制电动机的电压或电流,完成电动机的驱动转矩和旋转方向的控制。

电动汽车空调系统设计指南

电动汽车空调系统设计指南

目 次 1 范围 (1) 2 规范性引用文件 (1) 3 设计依据标准 (1) 3.1 欧盟标准 (1) 3.2 美国标准 (1) 3.3 国家标准 (1) 3.4 行业标准 (2) 3.5 企业标准 (3) 4 基本要求 (3) 5 空调系统结构布置与设计内容....................................... (4) 5.1 空调系统方案设计 (4) 5.2 HVAC总成选型与布置设计 (4) 5.3 空调控制面板设计 (5) 5.4 空调系统的风道设计 (5) 5.5 压缩机选型设计及压缩机安装支架设计 (7) 5.6 冷凝器及储液器设计 (7) 5.7 冷凝器风扇的选型与安装结构设计 (7) 5.8 制冷管路设计 (8) 5.9 电气控制原理设计与协调 (8) 5.10 空调系统的性能指标及系统试验 (9) 附录A(规范性附录) 空调系统设计流程 (10)

目 次 本指南是充分借鉴公司电动车型空调系统设计过程中的经验及积累的数据、结合公司现有的实际情况及未来发展需要编写而成的,旨在指导公司空调系统的设计工作,期望在空调系统设计的过程中,提高设计效率和精度,本指南将在本公司所有电动车型空调系统设计中实施,并在实践过程中进一步提高完善。

电动汽车空调系统设计指南 1范围 本指南概述了电动汽车空调系统设计依据标准、基本要求、空调系统结构布置与设计内容。 本指南适用于新产品空调系统的设计,老产品改进和改型的空调系统设计可参照执行。 2规范性引用文件 下列文件对本文件的引用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 Q/J B022 电动汽车HVAC总成技术条件 Q/J C021 空调系统参数匹配计算指南 Q/FD TSF6 001 整车空调系统环模试验及路试技术要求 3空调系统设计依据标准 以下标准是空调系统设计过程中性能和结构应依据的标准,空调系统国内国外设计指标及试验项目详见各标准内相关规定。 3.1 欧盟标准 672/2010/EU机动车辆玻璃表面的除霜和除雾系统 2006/40/EC 机动车辆空调系统的排放 ECE R100 关于认证机动车辆的统一规定,涉及施工安全与功能安全的特殊要求 ECE R122 关于M类、N类 及O类车辆在其加热系统方面认证的统一规定 3.2 美国标准 SAE J 2344-2010 电动汽车安全指南 SAE J 902-1999 乘用车前风窗除霜系统 SAE J 381-2000 载货车、大客车及多用途车风窗玻璃除霜系统试验规程和性能要求 49 CFR 393 G77 加热器 FMVSS 101 操纵件、指示器及信号装置的标志 FMVSS 103 风窗玻璃除霜和除雾系统 FMVSS 302 内饰材料的易燃性

电动汽车空调的取暖方案

电动汽车空调的取暖方案 电动汽车具有悠久的历史,存在的时间并不比内燃机汽车短。早期的电动汽车由于受到蓄电池等因素的限制,其空调系统的设计思路是在使用过程中不消耗电能。一种方法是在对蓄电池充电的同时为车室内提供暖气,此方法只适用于短距离的驾驶。即在电动汽车开始运行阶段,车室内能保持舒适的温度,随着运行时间的增加,空调系统的性能迅速下降。另一种方法是利用独立的小型燃油装置提高电动汽车车室内的环境温度,此方法虽能较好的满足车室内供暖的要求,但是燃烧产物依然会对环境造成污染。随着科学技术的不断进步,电动汽车室内取暖的方法也越来越多,如采用PTC加热器、空调座椅、热泵空调系统等方法。 1、采用PTC加热器取暖 PTC泛指正温度系数很大的半导体材料或元器件,通常是指正温度系数热敏电阻。当PTC热敏电阻的温度超过居里温度时,其电阻值会急剧增加,从而使加热器的功率变得很小。目前,在环境温度较低时,大部分电动汽车均采用PTC热敏电阻做成的加热器来提高车室内的环境温度。 利用PTC热敏电阻制成的加热器为电动汽车车室内供暖时,虽然具有恒温发热、无明火、温升速度快、成本低、使用寿命长、绿色环保、不需要控制系统等优点,且不需要改动暖风机总成的壳体,但是能耗较高。当车室内要满足除霜、取暖等相关法规要求时,PTC 需要达到3kW以上的功率。这样不仅会对蓄电池产生较大的影响,同时还会产生异味,存在安全隐患。由于PTC加热器是直接将电能转化为热能的取暖装置,其最大能效比仅为1。对于电动汽车而言,PTC加热器并不是最佳的取暖方案。 2、采用电机冷却液余热,同时辅助PTC加热器取暖 电动汽车在行驶过程中,需要对驱动电机进行冷却,因此可采用与传统内燃机汽车相类似的取暖方法,即利用电机冷却液的余热来提高车室内的环境温度。当冷却液的余热无法满足车室内取暖的要求时,此时再辅以PTC加热器取暖。 由此可知,采用此方法为电动汽车的车室内供热时,在PTC加热器不工作的情况下,几乎不消耗电能,但是需要增加一些管路、阀门、加热器等部件,同时还需要对控制系统进行重新设计。 3、采用空调座椅取暖 当直流电通过不同导体组成的闭合回路时,除了产生不可逆的焦耳热之外,还会在不同

相关文档
最新文档