A3950-电机驱动芯片

A3950-电机驱动芯片
A3950-电机驱动芯片

A3950 November 4, 2005

DMOS Full-Bridge Motor Driver

Functional Block Diagram

Control Logic Table1

Pin

Function PHASE ENABLE MODE SLEEP OUTA OUTB

11X1H L Forward

01X1L H Reverse

X011L L Brake (slow decay)

1001L H Fast Decay Synchronous Rectification2

0001H L Fast Decay Synchronous Rectification2

X X X0Z Z Sleep Mode

1X iindicates “don’t care,” Z indicates high impedence.

2To prevent reversal of current during fast decay synchronous rectification, outputs go to the high impedance state as the current approaches 0 A.

A3950

DMOS Full-Bridge Motor Driver ELECTRICAL CHARACTERISTICS at T J = 25°C, V BB = 8 to 36 V, unless noted otherwise

Characteristics Symbol Test Conditions Min.Typ.Max.Units

Motor Supply Current I BB f PWM < 50 kHz –68.5mA Charge pump on, outputs disabled–3 4.5mA Sleep mode––10μA

PHASE, ENABLE, MODE Input Voltage V IH 2.0––V V IL––0.8V

SLEEP Input Voltage V IH 2.7––V V IL––0.8V

PHASE, MODE Input Current1I IH V IN = 2.0 V–<1.020μA I IL V IN = 0.8 V–<–2.0–20μA

ENABLE Input Current I IH V IN = 2.0 V–40100μA I IL V IN = 0.8 V–1640μA

SLEEP Input Current I IH V IN = 2.7 V–2750μA I IL V IN = 0.8 V–<110μA

NFAULT Output Voltage V OL I sink = 1.0 mA––0.4V Input Hysteresis, except SLEEP V IHys100150200mV

Output On Resistance R DS(on)Source driver, I OUT = -2.8 A, T J=25°C–0.350.48ΩSource driver, I OUT = -2.8 A, T J=125°C–0.550.8ΩSink driver, I OUT = 2.8 A, T J=25°C–0.30.43ΩSink driver, I OUT = 2.8 A, T J=125°C–0.450.7Ω

Propagation Delay Time t pd PWM, change to source or sink ON–600–ns PWM, change to source or sink OFF–100–ns

Crossover Delay t COD–500–ns Protection Circuitry

UVLO Threshold V UV V BB increasing– 6.5–V UVLO Hysteresis V UVHys–250–mV Overcurrent Threshold2I OCP3––A Overcurrent Protection Period t OCP– 1.2–ms Thermal Warning Temperature T JW Temperature increasing–160–°C Thermal Warning Hysteresis T JWHys Recovery = T JW – T JWHys–15–°C Thermal Shutdown Temperature T JTSD Temperature increasing–175–°C Thermal Shutdown Hysteresis T JTSDHys Recovery = T JTSD – T JTSDHys–15–°C For input and output current specifications, negative current is defined as coming out of (sourcing) the specified device pin.

2Overcurrent protection is tested at 25°C in a restricted range and guaranteed by characterization.

THERMAL CHARACTERISTICS may require derating at maximum conditions, see application information

Characteristic Symbol Test Conditions*Value Units

Package Thermal Resistance RθJA 4-layer PCB based on JEDEC standard34oC/W 2-layer PCB with 3.8 in.2 copper both sides, connected by thermal vias43oC/W

*Additional thermal data available on the Allegro Web site. November 4, 2005

A3950

DMOS Full-Bridge Motor Driver

A Charge pump and VREG power-on delay (≈200 μs)

SLEEP ENABLE PHASE MODE

V OUTA

V BB

V BB

V OUTB

I OUTX

Timing Diagram: PWM Control

November 4, 2005

A3950

DMOS Full-Bridge Motor Driver

BLANK

NFAULT

Motor lead short condition

Normal dc

motor capacitance

Charge Pump

Counter

ENABLE,Source or Sink

I OUT x

I I V OUTA

V OUTB Timing Diagram: Overcurrent Control

November 4, 2005

A3950 DMOS Full-Bridge Motor Driver

VREG. This supply voltage is used to run the sink-side DMOS outputs. VREG is internally monitored and in the case of a fault condition, the outputs of the device are dis-abled. The VREG pin should be decoupled with a 0.22 μF capacitor to ground.

Charge Pump. The charge pump is used to generate a supply above V BB to drive the source-side DMOS gates. A 0.1 μF ceramic monolithic capacitor should be connected between CP1 and CP2 for pumping purposes. A 0.1 μF ceramic monolithic capacitor should be connected between VCP and VBB to act as a reservoir to run the high-side DMOS devices. The VCP voltage level is internally moni-tored and, in the case of a fault condition, the outputs of the device are disabled.

Shutdown. In the event of a fault due to excessive junction temperature, or low voltage on VCP or VREG, the outputs of the device are disabled until the fault condition is removed. At power-on the UVLO circuit disables the drivers.

Sleep Mode. Control input SLEEP is used to minimize power consumption when the A3950 not in use. This disables much of the internal circuitry, including the regulator and charge pump. A logic low setting puts the device into Sleep mode, and a logic high setting allows normal operation. After coming out of Sleep mode, provide a 1 ms interval before applying PWM signals, to to allow the charge pump to stabilize.

MODE. Control input MODE is used to toggle between

fast decay mode and slow decay mode. A logic high puts

the device in slow decay mode. Synchronus rectification is always enabled.

Braking. The braking function is implemented by driving the device in slow decay mode via the MODE setting and applying an enable chop command. Because it is possible to drive current in both directions through the DMOS switches, this configuration effectively shorts out the motor generated BEMF as long as the ENABLE chop mode is asserted. The maximum current can be approximated by V BEMF/R L. Care should be taken to insure that the maximum ratings of the device are not exceeded in worse case braking situations: high speed and high-inertia loads.

Overcurrent Protection. The voltage on the output pins relative to supply are monitored to ensure that the motor lead is not shorted to supply or ground. If a short is detected, the full-bridge outputs are turned off, flag NFAULT is driven low, and a 1.2 ms fault timer is started.

After this 1.2 ms period, t OCP, the device will then be allowed to follow the input commands and another turn-on is attempted. If there is still a fault condition, the cycle repeats. If, after t OCP expires, it is determined that the short condi-tion is not present, the NFAULT pin is released and normal operation resumes.

Diagnostic Output. The NFAULT pin signals a problem with the chip via an open drain output. A motor fault, under-voltage condition, or T J > 160°C will drive the pin active low. This output is not valid when SLEEP puts the device into minimum power dissipation mode.

TSD. Two die temperature monitors are integrated on the chip. As die temperature increases towards the maximum, a thermal warning signal will be triggered at 160°C. This fault drives the NFAULT low, but does not disable the operation of the chip. If the die temperature increases further, to approxi-mately 175°C, the full-bridge outputs will be disabled until the internal temperature falls below a hysteresis of 15°C.

Functional Description November 4, 2005

A3950

DMOS Full-Bridge Motor Driver

Power Dissipation . First order approximation of power dissipation in the A3950 can be calculated by first examining the power dissipation in the full-bridge during each of the operation modes. The A3950 features synchronous rectifica-tion, a feature that effectively shorts out the body diode by turning on the low R DS(on) DMOS driver during the decay cycle. This significantly reduces power dissipation in the full-bridge. In order to prevent shoot-through, where both source and sink driver are on at the same time, the A3950 implements a 500 ns typical crossover delay time. For this period, the body diode in the decay current path conducts the current until the DMOS driver turns on. This does affect

power dissipation and may need to be considered in high current, high ambient temperature applications. In addition, motor parameters and switching losses can add power dis-sipation that could affect critical applications.

Drive Current . This current path is through source DMOS driver, motor winding, and sink DMOS driver. Power dissi-pation is I 2R loses in one source and one sink DMOS driver, as shown in the following equation:

)

(2DS(on)Source DS(on)Sink D R R I P += (1)

Fast Decay with Synchronous Rectification . This decay mode is equivalent to a phase change where the oppo-site drivers are switched on. When in fast decay, the motor current is not allowed to go negative (direction change). Instead, as the current approaches zero, the drivers turn off. The power calculation is the same as the drive current calcu-lation, equation 1:

Slow Decay SR (Brake Mode). In this decay mode, both sink drivers turn on, allowing the current to circulate through the sink drivers and the load. Power dissipation is I 2R loses in the two sink DMOS drivers:

)

(2DS(on)Sink D R I P =2× (2)

Layout . The printed circuit board should include a heavy ground plane. For optimum electrical and thermal perfor-mance, the exposed thermal pad of the device should be sol-dered directly to an exposed copper area directly under the device. The load supply pin, VBB, should be decoupled with an electrolytic capacitor (typically 100 μF) in parallel with a ceramic capacitor placed as close as possible to the device. The ceramic capacitors between VCP and VBB, connected to VREG, and between CP1 and CP2, should be as close to the pins of the device as possible, in order to minimize lead inductance.

Applications Information

Drive current

Fast decay with synchronous rectification (reverse)Slow decay with synchronous rectification (brake)

231Figure 1. Current Decay Patterns

November 4, 2005

A3950 DMOS Full-Bridge Motor Driver

Ground. A star ground should be located as close to the

A3950 as possible. The copper ground plane directly under the exposed thermal pad makes a good location for the star ground point. The exposed pad can be connected to ground for this purpose.

SENSE Pin. A low value resistor can be placed between the SENSE pin and ground for current sensing purposes. To minimize ground-trace IR drops in sensing the output current level, the current sensing resistor should have an independent ground return to the star ground point. This trace should be as short as possible. For low value sense resistors, the IR drops in the PCB can be significant, and should be taken into account.

When selecting a value for the sense resistor be sure not to exceed the maximum voltage on the SENSE pin of ±500 mV.

Terminal List Table

Name Number Description NFAULT1Fault output, open drain

MODE2Logic input

PHASE3Logic input for direction control GND4Ground

SLEEP5Logic input

ENABLE6Logic input

OUTA7DMOS full-bridge output A SENSE8Power return

VBB9Load supply voltage

OUTB10DMOS full-bridge output B

CP111Charge pump capacitor terminal CP212Charge pump capacitor terminal GND13Ground

VCP14Reservoir capacitor terminal

VREG15Regulator decoupling terminal

NC16No connection

Pad–Exposed pad for thermal dissipation connect to pins 4,13

November 4, 2005

LP Package, 16-Pin TSSOP with Exposed Thermal Pad

The products described here are manufactured under one or more U.S. patents or U.S. patents pending.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such de p ar t ures from the detail spec i f

i c a t ions as may be required to permit improvements in the per f or m ance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro products are not authorized for use as critical components in life-support devices or sys t ems without express written approval. The in f or m a t ion in c lud e d herein is believed to be ac c u r ate and reliable. How e v e r, Allegro MicroSystems, Inc. assumes no re s pon s i b il i t y for its use; nor for any in f ringe m ent of patents or other rights of third parties which may result from its use.

Copyright?2005 AllegroMicrosystems, Inc.

Preliminary dimensions, for reference only Dimensions in millimeters

(reference JEDEC MO-153 ABT)

A B Terminal #1 mark area

Exposed thermal pad (bottom surface)

基于专用控制芯片的直流无刷电机控制器

第26卷第3期孝感学院学报V OL.26 NO.3 2006年5月JOURNAL OF XIAOGAN UNIVERSITY M A Y.2006 基于专用控制芯片的直流无刷电机控制器 方天红 (孝感学院物理系,湖北孝感432000) 摘 要:介绍了以摩托罗拉公司的专用控制芯片M C33035、M C33039为核心构成的应用于绕线机单片机控制系统上的直流无刷电机控制器的设计。 关键词:单片机;直流无刷电机;脉冲宽度调制 中图分类号:T N492 文献标识码:A 文章编号:1671 2544(2006)03 0090 03 本文介绍的是绕线机单片机控制系统中决定绕线产品质量的基于专用控制芯片的直流无刷电机控制器的设计,该系统主要包括无刷电机控制器和步进电机控制器两部分。在无刷电机控制器设计中,调速精度、电机定子位置检测、测速单元电路等是关键。 永磁无刷直流电机控制器结构有多种形式,最初是采用分离元件组成的庞大而复杂的模拟控制电路。由于调试难度大,稳定性差,已逐渐被淘汰。以单片机为控制核心,结合使用专用电机控制芯片,给永磁无刷直流电机调速装置的设计带来了极大的便利,这种集成模拟控制芯片控制功能强、保护功能完善、工作性能稳定,组成的系统所需外围电路简单、抗干扰能力强,特别适用于工作环境恶劣,对控制器体积和性价比要求比较高的场合。 本文介绍以单片机AT89C52为控制核心,结合使用MC33035和M C33039构成的永磁无刷直流电机控制器的设计。选用的无刷电机为上海哈瑞无刷电机有限公司生产,型号为55ZWN24 120 01,参数为最高转速7000r/min,功率为120W。同时,验证了设计的正确性和测试控制器的调速精度。 1 直流无刷电机控制器控制原理 MC33035是摩托罗拉公司研制的第二代无刷直流电机控制专用集成电路,它包含开环三相或四相电机控制所需的全部有效功能。该器件由具有良好整流序列的转子位置译码器、可提供传感器功率的温度补偿参考、频率可编程的锯齿波振荡器、完全可访问的误差放大器以及3个非常适用于驱动大功率M OSFET的大电流推挽底部驱动器组成,因而它是一种功能齐全的电机控制器。加1片MC33039电子测速器将无刷直流电动机的转子位置信号进行F/V转换,形成转速反馈信号,即可构成转速闭环调节系统。外接6个功率开关器件组成三相逆变器,就可驱动三相永磁无刷直流电机。控制器电路构成如图1 所示。 图1 控制器电路构成 从电机转子位置检测器送来的三相位置检测信号(SA、SB、SC)一方面送入MC33035,经芯片内部译码电路结合正反转控制端、起停控制端、制动控制端、电流检测端等控制逻辑信号状态,经过运算后,产生逆变器三相上、下桥臂开关器件的6 收稿日期:2006 01 12 作者简介:方天红(1979 ),男,湖北赤壁人,孝感学院物理系讲师,硕士。 90

电机驱动芯片

自动0701 李欢20074998 LMD18200是美国国家半导体公司(NS)推出的专用于直流电动机驱动的H桥组件。同一芯片上集成有CMOS控制电路和DMOS功率器件,利用它可以与主处理器、电机和增量型编码器构成一个完整的运动控制系统。LMD18200广泛应用于打印机、机器人和各种自动化控制领域。 内部机构和引脚说明: 注释:光电编码器是通过读取光电编码盘上的图案或编码信息来表示与光电编码器相连的电机转子的位置信息的,即判断方位。 LMD18200工作原理:

内部集成了四个DMOS管,组成一个标准的H型驱动桥。通过充电泵电路为上桥臂的2个开关管提供栅极控制电压,充电泵电路由一个300kHz左右的工作频率。可在引脚1、11外接电容形成第二个充电泵电路,外接电容越大,向开关管栅极输入的电容充电速度越快,电压上升的时间越短,工作频率可以更高。引脚2、10接直流电机电枢,正转时电流的方向应该从引脚步到引脚10;反转时电流的方向应该从引脚10到引脚2。电流检测输出引脚8可以接一个对地电阻,通过电阻来输出过流情况。内部保护电路设置的过电流阈值为10A,当超过该值时会自动封锁输出,并周期性的自动恢复输出。如果过电流持续时间较长,过热保护将关闭整个输出。过热信号还可通过引脚9输出,当结温达到145度时引脚9有输出信号 LMD18200提供双极性驱动方式和单极性驱动方式。双极性驱动是指在一个PWM周期里,电动机电枢的电压极性呈正负变化。双极性可逆系统虽然有低速运行平稳性的优点,但也存在着电流波动大,功率损耗较大的缺点,尤其是必须增加死区来避免开关管直通的危险,限制了开关频率的提高,因此只用于中小功率直流电动机的控制。本文中将介绍单极性可逆驱动方式。单极性驱动方式是指在一个PWM周期内,电动机电枢只承受单极性的电压。 该应用电路是Motorola 68332CPU与LMD18200接口例子,它们组成了一个单极性驱动直流电机的闭环控制电路。在这个电路中,PWM控制信号是通过引脚5输入的,而转向信号则通过引脚3输入。根据PWM控制信号的占空比来决定直流电机的转速和转向。采用一个增量型光电编码器来反馈电动机的实际位置,输出AB两相,检测电机转速和位置,形成闭环位置反馈,从而达到精确控制电机。

步进电机驱动芯片类型

随着工业和家电领域、玩具马达及机器人市场的需求持续稳定成长,步进电机驱动控制芯片得到越来越广泛的应用。步进电机驱动芯片是集成有CMOS 控制电路和DMOS 功率器件的芯片,利用它可以与主处理器、电机和增量型编码器构成一个完整的运动控制系统。可以用来驱动直流电机、步进电机和继电器等感性负载。 步进电机驱动分电压型和电流型两种,那它们之间有什么区别呢?如何判断驱动芯片是电压型的还是电流型的? 1、电压型 直流电路采用电容器滤波。在波峰(电压较高)时,由电容器储存电场能,在波谷(电压较低)时,电容器将释放电场能来进行补充,从而使直流电压保持平稳。直流电路是一个电压源,故称为电压型。 2、电流型 直流电路采用电抗器滤波。在波峰(电流较大)时,由电抗器储存磁场能,在波谷(电流较小)时,电抗器将释放磁场能来进行补充,从而使直流电流保持平稳。直流电路是一个电流源,故称为电流型。 步电机系统解决方案

由于负载一般都是感性的,它和电源之间必有无功功率传送,因此在中间的直流环节中,需要有缓冲无功功率的元件。 如果采用大电容器来缓冲无功功率,则构成电压源型变频器;如采用大电抗器来缓冲无功功率,则构成电流源型变频器。 深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。我们和全球产品性价比高的生产厂家合作,结合本公司专家团队多年的客户服务经验,给客户提供有市场竞争力的步进电机系统解决方案。我们的主要产品有信浓(SHINANO KENSHI)混合式步进电机、日本脉冲(NPM)永磁式步进电机、减速步进电机、带刹车步进电机、直线步进电机、空心轴步进电机、防水步进电机以及步进驱动器、减振垫、制振环、电机引线、拖链线、齿轮、同步轮、手轮等专业配套产品。我们还供应德国TRINAMIC驱动芯片和日本NPM运动控制芯片。根据客户配套需要,我们还可以提供其他种类及其他品牌微电机产品的配套服务。也提供NPM的线性磁轴电机(直线电机)及技术支持和服务。 步电机系统解决方案

L298电机驱动芯片资料

L298 Jenuary 2000DUAL FULL-BRIDGE DRIVER Multiwatt15 ORDERING NUMBERS :L298N (MultiwattVert. L298HN (MultiwattHoriz. L298P (PowerSO20 BLOCK DIAGRAM . OPERATING SUPPLY VOLTAGE UP TO 46V . TOTAL DC CURRENT UP TO 4A . LOW SATURATION VOLTAGE . OVERTEMPERATURE PROTECTION . LOGICAL ”0”INPUT VOLTAGE UP TO 1.5V (HIGHNOISE IMMUNITY DESCRIPTION The L298is an integrated monolithic circuit in a 15-lead Multiwatt and PowerSO20packages. It is a high voltage, high current dual full-bridge driver de-signedto acceptstandardTTL logic levels anddrive inductive loads such as relays, solenoids, DC and steppingmotors. Two enableinputs are provided to enableor disablethe deviceindependentlyof thein-put signals. The emitters of the lower transistors of each bridge are connected togetherand the corre-sponding external terminal can be used for the con-nectionof an externalsensing resistor.Anadditional supply input is provided so that the logic works at a lower voltage. PowerSO20

电机驱动芯片资料全

A4954 双路全桥式DMOS PWM 电动机驱动器 特点 ?低R DS(on)输出 ?过电流保护(OCP) 电动机短路保护 o o电动机引脚接地短路保护 o电动机引脚电池短路保护 ?低功耗待机模式 ?可调PWM 电流限制 ?同步整流 ?部欠压锁定(UVLO) ?交叉电流保护 描述 通过脉宽调制(PWM) 控制两个直流电动机,A4954 能够承受峰值输出电流达±2 安培,并使电压达到40 伏特。 输入端通过应用外部PWM 控制信号以控制直流电动机的速度与方向。部同步整流控制电路用来降低脉宽调制(PWM) 操作时的功率消耗。 部电路保护包括过电流保护、电动机接地或电源短路、因滞后引起的过热关机、V BB欠压监视以及交叉电流保护。 A4954 采用带有外置散热板的16 引脚TSSOP 小型封装(后缀LP)。该封装为无铅封装,且引脚框采用100% 雾锡电镀。 ?功能方框图

A4950 全桥式DMOS PWM 电动机驱动器特点 ?低R DS(开)输出 ?过电流保护(OCP) o电动机短路保护 o电动机引脚接地短路保护 o电动机引脚电池短路保护 ?低功耗待机模式 ?可调PWM 电流限制 ?同步整流 ?部欠压锁定(UVLO) ?交叉电流保护

描述 通过脉宽调制(PWM) 控制直流电动机,A4950 能够提供±3.5 安培的峰值输出电流,工作电压为40 伏特。 该产品可提供输入端子,通过外部施加的PWM 控制信号控制直流电动机的速度与方向。采用部同步整流控制电路降低脉宽调制(PWM) 操作时的功率消耗。 部电路保护包括过电流保护、电动机引脚接地短路或电源短路、带时延的过热关机、V BB欠压监视以及交叉电流保护。 A4950 采用带有外露散热板的8 引脚SOICN 小型封装(后缀LJ)。该封装为无铅封装,且引脚框采用100% 雾锡电镀。 ? 功能方框图 A4938 三相无刷直流电动机预驱动器 功能及优点 ?驱动6 N-通道MOSFET ?同步整流,减少功率耗散

基于MC33035芯片的无刷直流电机驱动系统设计

基于MC33035的无刷直流电机驱动控制系统设计 摘要 随着社会的发展和人民的生活水平提高,人们对交通工具的需求也在不断发展和提高。电动自行车作为一种“绿色产品”已经在全国各省市悄然兴起,进入千家万户,成为人们,特别是中老年人和女士们理想的交通工具,受到广大使用者的喜爱。 MC33035的典型控制功能包括PWM开环速度控制、使能控制(起动或停止) 、正反转控制和能耗制动控制。此芯片具有过流保护、欠压保护、欠流保护、又因此芯片低成本、高智能化、从而简化系统构成、降低系统成本、增强系统性能、满足更多应用场合的需要。 设计的直流无刷电机控制器是采用 MC33035 芯片控制的,以本次设计结果表明,MC33035的典型控制功能带有可选时间延迟锁存关断模式的逐周限流特性以及内部热关断等特性。电动自行车作为一种新型交通工具已经在社会上引起很大的影响并受到广大使用者的喜爱。 关键词:电动自行车,无刷直流电机,MC33035,位置传感器

THE BRUSHLESS DC MOTOR DRIVE SYSTEM DESIGN BASED ON MC33035 CHIP ABSTRACT With the rapid development of technology, new energy technologies in recent years have been widely used. For example, the small size, light weight, high efficiency, low noise, large capacity and high reliability features such as permanent magnet brushless DC motor-driven bike. MC33035 Typical control functions include open loop PWM speed control so that it can control (start or stop), reversing control and braking control. This chip is overcurrent protection, undervoltage protection, under current protection, and therefore chip cost, high intelligence, which simplifies the system structure, lower system costs, increase system performance to meet the needs of more applications. The design of the brushless DC motor controller is controlled by MC33035 chip to this design results show that, MC33035 typical time delay control with an optional latch-by-week shutdown mode current limiting characteristics, and internal thermal shutdown characteristics. Electric bicycles as a mode of transportation has caused a great impact on society and loved by the majority of users. KEY WORDS: electric-bicycle, brushless DC motor, MC33035, position sensors

19 IR_IRMCK F171-灵活易用的电机控制芯片

IRMCK/F171-灵活易用的电机控制芯片 IRMCK/F171 灵活易用的电机控制芯片
国际整流器公司 2012-1-11

内容
? 概述 概 ? 传统方案存在的问题 ? IR的解决方案:简单易用的电机控制 芯片IRMCF171 ? 方案辅助工具和测试结果 ? 结论

概述
? 全球能源短缺导致越来越严格的政府节能规章出 台 ? 在中国 能效标签制度的实施以及能效标准的不 在中国,能效标签制度的实施以及能效标准的不 断提高使很多电器转向变频控制 ? 变频空调已经完全确立了市场的主导地位 ? 家电的变频化趋势也越来越明确,电机调速市场 竞争将更加激烈,产品更新的周期越来越短。随 之而来的新产品研发风险也越来越大 之而来的新产品研发 险也越来越大 ? 节能热点:
– – – – 高效率永磁电机 无位置传感正弦波控制 宽的调速范围 低的振动和噪声

传统方案存在的问题
? ? ? ? 大容量存储单元的高速DSP或32位单片机 软件算法复杂,控制器计算任务繁重 软件算法复杂 控制器计算任务繁重 对于传统的软件编程控制方案,完成电机控制算法已经很复杂, 对于系统设计人员的要求很高
1. 2. 3. 熟悉实时的FOC控制算法,熟悉相关的外设; 熟悉DSP或32位RISC的C或汇编语言编程; 熟悉各种数模混合电路,高压电路和功率开关电路.
?
?
开发周期长,开发成本和开发风险都很高
后续的软件维护成本高

电机控制系统框图
IR电机控制IC-IRMCF171

小功率低成本的无刷直流电动机控制器

小功率低成本的无刷直流电动机控制器研制 合肥工业大学自动化研究所肖本贤 摘要:针对电动助力车与压缩机电机的特点,对其驱动控制进行了研究,提出了一种高效低价的小型控制器的设计。主要介绍以专用控制芯片MCC33035、MC33039、IR2130为核心构成的永磁无刷直流电动机控制器结构,主要涉及核心控制电路的构成、功率开关元件的驱动以及必要的保护措施。 1 引言 永磁无刷直流电动机是近年随着电力电子器件及新型永磁材料发展而迅速成熟起来的一种新型机电一体化电机,既具有交流电机的结构简单、运行可靠、维护方便等优点,又具备直流电机那样固有的优越的起动性能和调速特性,而无机械式换向机构,现以广泛应用于各种调速驱动场合,其应用前景看好,尤其从当今的环保、能源、效率等综合因素出发,水磁无刷直流电机可望在未来的电动车及冰箱或空调类永磁压缩机领域占有主导地位。 永磁无刷直流电动机控制器结构已有多种形式,有最初复杂的模拟式到近来以单片机为核心的数字式,但新型电机控制专用芯片的出现,给无刷直流电机调速装置设计带来了极大的便利,这种集成模拟控制芯片控制功能强、保护功能完善、工作性能稳定,组成的系统所需外围电路简单、抗干扰能力强、特别适用于对控制器体积、价格性能比要求较高的场合。 2 无刷直流电机的驱动控制电路 无刷直流电动机功率开关电路一般采用桥式或非桥式驱动,由于三相星形桥式驱动方式,其绕组利用率较高、力矩波动小,因而被大量采纳。图1 是其工作原理图,对压缩机类负载,其输入可采用220V/50HZ市电输入、二极管单相全桥整流、电容滤波后得到;而对电动车其直流电源一般均为蓄电池。图中主回路功率器件选用POWER-MOSFET,驱动电路采用IR公司生产的六输出高压MOS栅极驱动器IR2130。

步进电机驱动芯片THB6064

THB6064H大功率、高细分两相混合式 步进电机芯片式驱动器

一. 特性: ● 双全桥MOSFET驱动,低导通电阻导通Ron = 0.4 Ω (上桥+下桥) ,大电流4.5V(峰值) ● 高耐压50V DC ● 多细分可选(1/2,1/8,1/10, 1/16, 1/20, 1/32, 1/40, 1/64) ● 自动半流锁定 ● 衰减方式连续可调 ● 内置温度保护及过流保护 重量:9.86 g (typ.) 二. 框图

三. 管脚说明:

管脚 编号 输入/ 输出 符号 功 能 描 述 1 输出 ALERT 温度波爱护及过流保护输出端(常态为1,过流保护时为0) 2 —— SGND 信号地外部与电源地相连 3 —— OSC1B B相斩波频率控制端 4 输入 PFD 衰减方式控制端 5 输入 V ref 电流设定端(0——3V) 6 输入 VMB 电机驱动电源 B相电源 与A相电源相连 7 输入 M1 细分数选择端(详见附表) 8 输入 M2 细分数选择端(详见附表) 9 输入 M3 细分数选择端(详见附表) 10 输出 OUT2B B相功率桥输出端2 11 —— NFB B相电流检测端 应连接大功率检测电阻,典型值0.15Ω 12 输出 OUT1B B相功率桥输出端1 13 —— PGNDB B相驱动电源地与A相电源地及信号地相连 14 输出 OUT2A A相功率桥输出端2 15 —— NFA A相电流检测端 应连接大功率检测电阻,典型值0.15Ω 16 输出 OUT1A A相功率桥输出端1 17 —— PGNDA A相驱动电源地与B相电源地及信号地相连 18 输入 ENABLE 使能端ENABLE=0所有输出为0,ENABLE=1正常工作 19 输入 RESET 上电复位端 20 输入 VMA 电机驱动电源A相电源 与B相电源相连 21 输入 CLK 脉冲输入端 22 输入 CW/CCW 电机正反转控制端 23 —— OSC1A A相斩波频率控制端 24 输入 V DD 5V电源 芯片工作电源要求稳定 25 输出 Down 半流锁定控制端 四. 电气参数: 最高额定值Absolute Maximum Ratings(Ta =25℃)

电机驱动IC UCC3626手册

UCC2626UCC3626 PRELIMINARY FEATURES ?Two Quadrant and Four Quadrant Operation ?Integrated Absolute Value Current Amplifier ?Pulse-by-Pulse and Average Current Sensing ?Accurate, Variable Duty Cycle Tachometer Output ?Trimmed Precision Reference ?Precision Oscillator ?Direction Output Brushless DC Motor Controller BLOCK DIAGRAM DESCRIPTION The UCC3626motor controller IC combines many of the functions re-quired to design a high performance,two or four quadrant,3-phase,brushless DC motor controller into one package.Rotor position inputs are decoded to provide six outputs that control an external power stage.A precision triangle oscillator and latched comparator provide PWM mo-tor control in either voltage or current mode configurations.The oscilla-tor is easily synchronized to an external master clock source via the SYNCH input.Additionally,a QUAD select input configures the chip to modulate either the low side switches only,or both upper and lower switches,allowing the user to minimize switching losses in less de-manding two quadrant applications. The chip includes a differential current sense amplifier and absolute value circuit which provide an accurate reconstruction of motor current,useful for pulse by pulse over current protection as well as closing a current control loop.A precision tachometer is also provided for imple-menting closed loop speed control.The TACH_OUT signal is a variable duty cycle,frequency output which can be used directly for digital con-trol or filtered to provide an analog feedback signal.Other features in-clude COAST,BRAKE,and DIR_IN commands along with a direction output, DIR_OUT.

无刷直流电机驱动电路 dsp

基于 DSP 的无刷直流电机控制系统的设计
2010-1-13 22:24:00 来源:
摘 要:介绍了以高性能 TMS320F2812 DSP 芯片为核心的无刷直流电机控制系统的设 计和实现,主要包括系统硬件电路的主要构成,电机的控制策略及软件结构。 实验 表明,该系统结构简单紧凑,控制精度高,具有良好的静态和动态性能。 关键词:无刷直流电机;TMS320F2812;控制系统 Design of Control System of Brushless DC Motor Based on DSP WANG Chen-yang, ZHANG Qi, XIONG Jiu-long Abstract: The design and implementation of brushless DC motor control system based on high performance DSP TMS320F2812 is introduced in this paper, it is made up of three aspects, the main structure of system hardware, the strategy of motor controlling and software structure。 Experimental results show that the system has a simple and compact structure,high control precision and good dynamic and static characteristics. Key Words:brushless DC motor;TMS320F2812;control system 1. 引言 无刷直流电机利用电子换向器取代了传统直流电机中的机械电刷和机械换向器, 因此不仅保留了直流电动机运行效率高和调速性能好等优点, 又具有交流电动机的结 构简单、运行可靠、维护方便等优点。由于不受机械换向限制,易于做到大容量、高 转速,目前在航天、军工、数控、冶金、医疗器械等领域已得到大量应用。 TMSF2812 DSP 是 TI 公司新推出的基于 TMS320C2xx 内核的定点数字信号处理器。器件上集成了 多种先进的外设,具有灵活、可靠的控制和通信模块,完全可以采用单芯片实现电机 控制系统的控制和通信功能,使得电机控制系统简单化、模块化,为电机及其他运动 控制领域应用的实现提供了良好的平台。 本文设计和实现了基于 TI 公司 TMS320F2812 DSP 芯片的无刷直流电机控制系统,整个系统结构紧凑,功能完善。 2. 系统硬件设计 系统的硬件框图如图 1 所示,可以看出基本上包括一个以 TMS320F2812 DSP 为核 心的 DSP 控制板,一块配套的功率驱动板和一台无刷直流电机。

几种电机驱动的比较

智能车竞赛中直流电机调速系统的设计与比较 王名发,江智军,邹会权 时间:2009年12月04日 字 体: 大中小关键词:直流电机调速系统MC33886VNH3SP30BTS7960BDT340IIRF3205 摘 要:针对大学生智能车竞赛中直流电机的驱动设计了6种方案,经过实验比较分析了各种方案的优缺点,最后确立了一套驱动能力强、体积小、性能稳定的驱动方法,可广泛应用于40 V以下的大功率直流电机驱 动的场合。 关键词:直流电机;调速系统; MC33886; VNH3SP30; BTS7960B; DT340I; IRF3205 目前大电流直流电机多采用达林顿管或MOS管搭制H桥PWM脉宽调制,因此体积较大;另一方面,由于分立器件的特性不同,使得驱动器的特性具有一定的离散性;此外,由于功率管的开关电阻比较大,因此功耗也很大,需要功率的散热片,这无疑进一步加大了驱动器的体积。随着技术的迅猛发展,基于大功率MOS管的H桥驱动芯片逐渐显现出其不可替代的优势。但目前能提供较大电流输出的集成芯片不是很多。例如飞思卡尔半导体公司推出的全桥驱动芯片MC33886和33887、意法半导体公司推出的全桥驱动芯片VNH3SP30、英飞凌公司推出的高电流PN半桥驱动芯片BTS7960。ST微电子公司推出的TD340驱动器芯片是一种用于直流电机的控制器件,可用于驱动N沟道MOSFET管。 本文在第三、四届大学生智能车大赛中分别尝试了上面提到的5块电机驱动芯片设计的驱动电路,通过现场调试发现它们的优缺点,确定了驱动能力强、性能稳定的驱动方案,并得到了很好的应用。 1 直流电机驱动原理 目前直流电机的驱动方式主要有2种形式:线性驱动方式和开关驱动方式。其中线性驱动方式可以看成一个数控电压源。该驱动方式的优点是驱动电机的力矩纹波很小,可应用于对电机转速要求非常高的场合;缺点是该方式通常比较复杂,成本较高,尤其是要提高驱动的功率时,相应的电路成本将提升很多[1]。本文针对H桥驱动电路在智能车竞赛中的应用加以分析。 目前的H桥驱动主要有3种方式。图1(a)中H桥的4个桥臂都使用N沟道增强型MOS管;图1(b)中H 桥的4个桥臂都使用P沟道增强型MOS管;图1(c)中上H桥臂分别使用P沟道增强型MOS管和N沟道增强MOS管。由于P沟道MOS管的品种少、价格较高,导通电阻和开关速度等都不如N沟道MOS管,因此最理想的情况应该是在H桥的4个桥臂都使用N沟道MOS管。但是在如图1(a)中可以看到,为了使电机正转,Q1和Q4应该导通,因此S4电压应该高于Q4的源极电压,S1电压应该高于Q1的源极电压,由于此时Q1的源极电压近似等于Vcc,因此就要求S1必须大于(Vcc+Vgs)。在很多电路中除非作一个升压电路否则是比较困难得到的,因此图1(a)这种连接方式比较少见。同理,图1(b)中为了使电机正转,S4电压就必须低于0V- VGS,在使用时也不方便。因此最常用的是图1(c)的电路,该电路结合了上述2种电路各自的优点,使用方便。本文针对3种形式电路进行设计,并进行实验比较分析。

JY01A无刷电机驱动IC

直流无刷电机 驱动IC 版本号:V1.0 日期:2013年5月28日

一.特色: 三.封装形态 二.简介: ● 军工品质,工作稳定 ● 用于有霍尔/无霍尔无刷电机驱动 ● 正/反转控制,软切换功能 ● 转速线性调节 ● 过流保护 ● 短路保护 ● 欠压保护 ● DSP 核H_PWM 驱动低噪音 ● JYKJ 特有技术,保证了在任何工况下电机都能正常运转 ● 有霍尔与无霍尔应用自动识别功能 ● 外围电路简单,使用方便 JY01A 是一款多功能的无刷电机驱动IC ,可用于有霍尔、无霍尔无刷电机驱动。具备调速,正反转,过流保护,短路保护,欠压保护等功能,军工级品质,工作稳定,防干扰能力强等特点。

四.电气特性: (一)绝对最大额定值 V DD………………………………………………………………………………相对于GND+5.5V 所有输入电压…………………………………………………………GND-0.5V—VDD+0.5V 所有吸入输出电流………………………………………………………… IOL/8mA,IOH/5mA 工作温度…………………………………………………………………………………-40℃~85℃储存温度…………………………………………………………………………………-50℃~125℃ (二)直流特性 符号符号描述最小值典型值最大值单位条件 V DD电源 4.55 5.5V正常工作环境下 V IL 输入IO低电平00.3V TTL电平 V IH 输入IO高电平35 5.5V TTL电平 IOL低电平吸入电流58mA TTL电平 IOH高电平输出电流35mA TTL电平 Vjd模拟输入电平05V模拟输入电平范围 Ijd模拟输入电流100nA模拟输入电流值

几种用于IGBT驱动的集成芯片汇编

几种用于I G B T驱动的集成芯片

几种用于IGBT驱动的集成芯片 2. 1 TLP250( TOSHIBA公司生产) 在一般较低性能的三相电压源逆变器中,各种与电流相关的性能控制,通过检测直流母线上流入逆变桥的直流电流即可,如变频器中的自动转矩补偿、转差率补偿等。同时,这一检测结果也可以用来完成对逆变单元中IGBT实现过流保护等功能。因此在这种逆变器中,对 IGBT驱动电路的要求相对比较简单,成本也比较低。这种类型的驱动芯片主要有东芝公司生产的 TLP250,夏普公司生产的 PC923等等。这里主要针对 TLP250做一介绍。 TLP250包含一个 GaAlAs光发射二极管和一个集成光探测器, 8脚双列封装结构。适合于 IGBT或电力 MOSFET栅极驱动电路。图 2为 TLP250的内部结构简图,表 1给出了其工作时的真值表。 TLP250的典型特征如下: 1)输入阈值电流(IF): 5 mA(最大); 2)电源电流(ICC): 11 mA(最大);

3)电源电压(VCC): 10~ 35 V; 4)输出电流(IO): ± 0.5 A(最小); 5)开关时间(tPLH /tPHL):0.5 μ s(最大); 6)隔离电压:2500 Vpms(最小)。 表2给出了TLP250的开关特性,表3给出了TLP250的推荐工作条件。 注:使用 TLP250时应在管脚 8和 5间连接一个0.1 μ F的陶瓷电容来稳定高增益线性放大器的工作,提供的旁路作用失效会损坏开关性能,电容和光耦之间的引线长度不应超过 1 cm。 图 3和图 4给出了 TLP250的两种典型的应用电路。

电机驱动芯片

马达专用控制芯片LG9110 芯片特点: 低静态工作电流; 宽电源电压范围:2.5V-12V ; 每通道具有800mA 连续电流输出能力; 较低的饱和压降; TTL/CMOS 输出电平兼容,可直接连CPU ; 输出内置钳位二极管,适用于感性负载; 控制和驱动集成于单片IC 之中; 具备管脚高压保护功能; 工作温度:0 ℃-80 ℃。 描述: LG9110 是为控制和驱动电机设计的两通道推挽式功率放大专用集成电路器件,将分立电路集成在单片IC之中,使外围器件成本降低,整机可靠性提高。该芯片有两个TTL/CMOS 兼容电平的输入,具有良好的抗干扰性;两个输出端能直接驱动电机的正反向运动,它具有较大的电流驱动能力,每通道能通过750 ~800mA 的持续电流,峰值电流能力可达1.5 ~2.0A ;同时它具有较低的输出饱和压降;内置的钳位二极管能释放感性负载的反向冲击电流,使它在驱动继电器、直流电机、步进电机或开关功率管的使用上安全可靠。LG9110 被广泛应用于玩具汽车电机驱动、步进电机驱动和开关功率管等电路上。 管脚定义: 1 A路输出管脚、2和3 电源电压、4 B路输出管脚、5和8地线、6 A路输入管脚、7 B路输入管脚 恒压恒流桥式1A驱动芯片L293 L293是著名的SGS公司的产品,内部包含4通道逻辑驱动电路。其后缀有B、D、E等,除L293E为20脚外,其它均为16引脚。其额定工作电流为1A,最大可达1.5A,Vss电压最小4.5V,最大可达36V;Vs电压最大值也是36V,但经过我的实验,Vs电压应该比Vss电压高,否则有时会出现失控现象。 恒压恒流桥式2A驱动芯片L298N L298也是SGS公司的产品,比较常见的是15脚Multiwatt封装的 L298N,内部同样包含4通道逻辑驱动电路。 1、15脚是输出电流反馈引脚,其它与L293相同。在通常使用中这两个引脚也可以直接接地。

电机控制及驱动芯片手册

E? cient Semiconductor Solutions for Motor Control and Drives Applications ] w https://www.360docs.net/doc/517466776.html,/motorcontrol]

Contents Solutions for Motor Control and Drives 04 Low-Voltage Applications 06 High-Voltage Applications 08 Choosing the right Microcontroller 10 Product Families 12 Low-Voltage Products 12 High-Voltage Products 20 Microcontrollers 26 Sensors 27 Support Tools 28

4 REDUCE YOUR OVERHEAD by capitalizing on the integration capabilities and function- ality of In? neon’s motor control solutions. Our extensive portfolio covers a wide range of voltage and power classes, supporting a broad application spectrum across the industrial, consumer and automotive markets. This guide showcases the full range of products spanning, microcontrollers, gate drivers, MOSFETs, IGBTs, voltage regulators, sensors, integrated bridge driver ICs, integrated power modules and high-power modules. With our power products and microcontrollers, you can design e? cient, robust and cost- e? ective control units for virtually all types of motors, from brushless DC and permanent magnet synchronous motors, through induction and stepper motors to switched reluctance motors. We complement this vast product o? ering with excellent customer support from our ap- plication experts, technical documentation and online education. We also deliver a variety of evaluation and application kits supporting all motor designs. Each application kit comes with a reference code and instructions, along with all the software you need to start and successfully complete your design as rapidly as possible. We hope you enjoy exploring the bene? ts of our e? cient semiconductor solutions for motor control and drives applications. E? cient Semiconductor Solutions for Motor Control and Drives Applications

介绍几种机器人驱动芯片(电机)

介绍几种机器人驱动芯片(电机) 注:本文已经投稿至《电子制作》) 在自制机器人的时候,选择一个合适的驱动电路也是非常重要的。最初,通常选用的驱动电路是由晶体管控制继电器来改变电机的转向和进退,这种方法目前仍然适用于大功率电机的驱动,但是对于中小功率的电机则极不经济,因为每个继电器要消耗20~100mA的电力。 当然,我们也可以使用组合三极管的方法,但是这种方法制作起来比较麻烦,电路比较复杂,因此,我在此向大家推荐的是采用集成电路的驱动方法: 马达专用控制芯片LG9110 芯片特点: ??低静态工作电流; ??宽电源电压范围:2.5V-12V ; ??每通道具有800mA 连续电流输出能力; ??较低的饱和压降; ??TTL/CMOS 输出电平兼容,可直接连CPU ; ??输出内置钳位二极管,适用于感性负载; ??控制和驱动集成于单片IC 之中;

??具备管脚高压保护功能; ??工作温度:0 ℃-80 ℃。 描述: LG9110 是为控制和驱动电机设计的两通道推挽式功率放大专用集成电路器件,将分立电路集成在单片IC之中,使外围器件成本降低,整机可靠性提高。该芯片有两个TTL/CMOS 兼容电平的输入,具有良好的抗干扰性;两个输出端能直接驱动电机的正反向运动,它具有较大的电流驱动能力,每通道能通过750 ~800mA 的持续电流,峰值电流能力可达1.5 ~2.0A ;同时它具有较低的输出饱和压降;内置的钳位二极管能释放感性负载的反向冲击电流,使它在驱动继电器、直流电机、步进电机或开关功率管的使用上安全可靠。LG9110 被广泛应用于玩具汽车电机驱动、步进电机驱动和开关功率管等电路上。 管脚定义: 1 A 路输出管脚、2和3 电源电压、4 B 路输出管脚、5和8 地线、6 A 路输入管脚、7 B 路输入管脚 2、恒压恒流桥式1A驱动芯片L293 图2是其内部逻辑框图 图3是其与51单片机连接的电路原理图

相关文档
最新文档