公差配合计算

公差配合计算
公差配合计算

配合与配合公差(1学时)

※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※本节课内容:

1. 配合的概念

2. 配合类型

3. 配合公差

4. 配合制

5. 小结。

要求深刻理解与熟练掌握的重点内容:

本节课所讲授的术语和定义均要深刻理解与熟练掌握,特别要注意对以下知识点的掌握:

1.间隙配合、过盈配合、过渡配合这三种配合的公差带特点;

2.基准制(基孔制和基轴制)

本节课难点:

“过渡配合”的概念、“配合公差”的含义

教学方法:

1.启发式教学。

2.以多媒体为辅助教学手段。

※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※具体内容的详细教案如下:(加黑字表示板书内容或应有板书的地方)

注:首先对上次课的主要内容用2分钟进行小结。

一、“配合”概念

1. 间隙与过盈

+间隙X

孔的尺寸-轴的尺寸=代数差

Y

2.配合基本尺寸相同的,相互结合的孔、轴公差带之间的关系。(对一批零件而言)配合反映了机器上相互结合的零

件间松紧程度。

有三个含义: 1)必须是孔和轴

2)基本尺寸相同

3)对一批零件而言

二、配合类型

按公差带关系的不同,配合分为三种:

1)间隙配合 孔的公差带在轴公差带上方,即具有间隙的配合(包括X min =0的配合)。对一批零件而言,所有孔的尺寸≥轴的尺寸

特征参数: X max =D max -d min =ES -ei

X min =D min -d max =EI -es

X av =(X max +X min )/2

注:要讲清间隙的作用在于: 储存润滑油

补偿温度引起的尺寸变化

补偿弹性变形及制造与安装误差

2) 过盈配合 孔的公差带在轴公差带下方,即具有过盈的配合(包括Y min =0的配合)。对一批零件而言,所有孔的尺寸≤轴的尺寸

特征参数: Y min =D max -d min =ES -ei

Y

max =

D min -d max =EI -es

Y av =(Y max +Y min )/2

过盈配合用于孔、轴的紧固连接,不允许两者有相对运动。

注:要讲清过盈的作用在于及如何装配。

3)过渡配合 孔、轴公差带相互重叠,即可能具有X 或Y 的配合。(对一批零件而言)

间隙配合(见课件) 过盈配合 (见课件)

min =0

对一个具体的实际零件进行装配时,只能得到间隙(或过盈),只能得其一。

过渡配合主要用于孔、轴间的定位联结(既要求装拆方便;又要求对中性好)

特征参数: Xmax =Dmax -dmin =ES -ei

Ymax =Dmin -dmax =EI -es

X av (或Y av )=(X max +Y max )/2

三.配合公差T f :

允许间隙或过盈的变动量。当基本尺寸一定时,T f 表示配合精度,是使用要求(设计要求)

∣Xmax -Xmin ∣

T f =

∣Xmax -Ymax ∣=|ES -

ei -(EI -es )|=T D +T d

|Ymin -Ymax |

若要提高配合精度(即↓T f )可减小相配合的孔、轴尺寸公差(即↑相配合的孔、轴加工精度)。设计时,应使T f ≤T D +Td 。

注:要讲清它与尺寸公差之间的关系。 例2-2 孔 mm 分别与轴 、轴 mm 、轴 mm 形成配合,试画出配合的孔和轴公差带图解,说明配合类别,并求出特征参数及配合公差。

注:此例题概括了上述内容,要祥解。

例题讲完后,得出如下结论:

配合精度相同,配合性质不同(同一种孔可以和不同公差带的轴形成各种不同的配合)。

四、配合制

基孔制、基轴制

注:首先要讲清什么是基准制,然后结合教材图(见课件)讲什么是基孔制、基轴制。

孔 基准件 (下偏差0)(上偏差+IT ) 过盈配合(见课件)

基孔制 025.0050+Φ018.0002.050+

+Φ059.0043

.050+

+Φ025.0041.050--Φ

轴 非基准件

孔 非基准件

轴 基准件(上偏差0)(下偏差-IT )

注:在这里要讲清“以孔配轴或以轴配孔”不是基孔制或基轴制。 本节课小结 应小结如下内容:

有关“配合”的小结:

配合类型

配合公差

配合制

基轴制 注:结合课件上的图示口述。

公差配合与技术测量技术教案

《公差配合与技术测量技术》教案 课程性质和任务 性质:是机械类各专业的一门专业基础课。 任务:是使学生获得技术工所必须具备的公差和技术测量方面的基础知识与一定的实际工作技能,为专业工种应用公差标准和掌握检测技术打下基础。 课程教学目标 1.掌握公差配合、形位公差和表面粗糙度的标准及应用即看懂并学会有关公差与配合容在图纸上的标注方法和查阅有关表格。 2.了解有关测量的基本知识,理解常用量具的读数原理,掌握常用量具的使用方法。 绪论 课时:2课时 教学目的和要求: 本模块作为本课程的开篇,通过对互换性的讲解,引出了全课程的容,因此教学中要充分利用趣味性来引导学生对本课程特点的理解,提高学生的学习积极性.为此提出如下要求: 1. 了解互换性的含义; 2. 懂得学习《公差配合与技术测量基础》的重要性。 教学重点及难点: (1)掌握互换性的概念及其在机械制造业中的应用。 (2)掌握加工误差与公差之间的关系。 (3)理解标准化与计量、优先数的概念。 教学容: 一、互换性的概述 1、互换性的含义 在机械工业中,互换性是指制成的同一规格的一批零件或部件,不需作任何挑选,调整或辅助加工(如钳工修配),就能进行装配,并能满足机械产品的使用性能要求的一种特性。例:同型号的轴承、光管、螺钉等等。 互换性容:几何参数,力学性能,物理化学性能等方面。 2、作用 有利于组织专业化协作。 有利于用现代化工艺装配。 有利于采用流水线和自动线生产方式。 提高生产效率,降低成本,延长机器使用寿命。 3、分类 ①完全互换性:若零件在装配或更换时,不作任何选择,不需调整或修配,就能满足预定的使用 要求,则成为完全互换性(当不限定互换围时,称为完全互换法,也叫绝对互换法)。 ②不完全互换性:由于某种特殊原因只允许零件在一定围互换时,称为不完全互换法。 4、互换性条件 一批相同规格的零件具有互换性的条件为:实际尺寸在允许的围;形状误差在允许的围;位置误差在

公差计算方法全套汇编

2012年12月20日不详 关键字: 六西格玛机械公差设计的RSS分析 1.动态统计平方公差方法 RSS没有充分说明过程均值的漂移,总是假设过程均值在名义设计规格的中心,这就是为什么能力最初看起来比较充分,但实际中这种情况是很少的原因,特别是在制造过程中工具受到磨损的时候。因此就有必要利用C来调整每一个名义设计值已知的或者估计的过程标准偏差,以此来说明过程均值的自然漂移,这一方法就称为动态统计平方公差方法(Dynamic Root-Sum-of-Squares Analysis, DRSS)。实际上,这种调整会使标准偏差变大,因而会降低装配间隙概率。 调整后就以一个均值累积漂移的临界值是否大于等于4.5来衡量六西格玛水平,即时,DRSS模型就简化为一个RSS模型,这一特征对公差分析有许多实际意义。从这一意义上讲,DRSS模型是一个设计工具,也是一个分析工具。因为DRSS模型考虑均值随时间的随机变异的影响,所以称之为动态模型。 2.静态极值统计平方公差方法 当假设的均值漂移都设定在各自的极值情况时,这种方法称为静态极值统计平方公差方法( Worse-Case Static Raot- Surn- of-Squares Anlysis, WC-SRSS),这一方法可以认为是一种极值情况的统计分析方法。为了有效地研究任意假定的静态条件,需要将公式(2-10)分母项中的偏倚机制转移到分了项中(注意:当均值漂移大于2σ时,就不能应用上述转换),同时必须用Cp,代替分母中的Cpk:

实际上,所有偏倚机制都可以利用来表示,但是当过程标准偏差改变时,如果利用作为转换日标,名义间隙值也会改变,这样就违背了均值和方差独立的假设。也就是说,用作为描述均值漂移的基础使得均值和方差之间正相关。而利用k为动态和静态分析提供了一个可行的和灵活的机制,同时保证了过程均值和方差的独立性。 3.设计优化 利用IRSS作为优化基础,当考虑5RS5和WC-SRSS作为基础时其逻辑和推理是相同的。(1)优化零部件的名义尺寸 在任一给定的需求条件和过程能力条件下,重新安排公式(2-10)就得到该优化方程的表达式:

尺寸链计算方法-公差计算

尺寸链计算 一.基本概念 尺寸链是一组构成封闭尺寸的组合。 尺寸链中的各个尺寸称为环。零件在加工或部件在装配过程中,最后得到的尺寸称为封闭环。组成环又分为增环和减环,当尺寸链中某组成环的尺寸增大时,封闭环的尺寸也随之增大,则该组成环称为增环。反之为减环。 补偿环:尺寸链中预先选定的某一组成环,可以通过改变其大小或位置,使封闭环达到规定要求。 传递系数ξ:表示各组成环对封闭环影响大小的系数。增环ξ为正值,减环ξ为负值。通常直线尺寸链的传递系数取+1或-1. 尺寸链的主要特征: ①.尺寸连接的封闭性;②.每个尺寸的变化(偏差)都会影响某一尺寸的精度。 二.尺寸链的分类 1.按应用范围分 工艺尺寸链:在零件加工过程中,几个相互联系的工艺尺寸形成的封闭链。 装配尺寸链:在设计或装配过程中,由几个相关零件的有关尺寸形成的封闭链。 2. 按构成尺寸链各环的空间位置分 线性尺寸链:各环位于平行线上 平面尺寸链:各环位于一个平面或相互平行的平面,各环不平行排列。 空间尺寸链:各环位于不平行的平面,需投影到三个座标平面上计算。 3.按尺寸链的形式分 a)长度尺寸链和角度尺寸链 b)装配尺寸链装、零件尺寸链和工艺尺寸链 c)基本尺寸链与派生尺寸链 基本尺寸链指全部组成环皆直接影响封闭环的尺寸链 派生尺寸链指一个尺寸链的封闭环为另一个尺寸链组成环的尺寸链。

d)标量尺寸链和矢量尺寸链 三. 基本尺寸的计算 把每个基本尺寸看成构成尺寸链的各环,验算其封闭环是否符合设计要求。是设计中尺寸链计算时首先应该进行的工作。 目前产品生产中经常出现错误的环节,大部分是基本尺寸链错误。特别是测绘设计的产品。由于原机的制造误差,测量系统的误差以及尺寸修约的误差,往往会使测绘设计与原设计产生很大的偏差,所以必须进行基本尺寸链的计算 四.解尺寸链的主要方法 根据零件尺寸的要求和相关标准确定零件尺寸公差,然后按照解尺寸链的最短途径原理的方法对尺寸公差进行验算和修正。 为了提高零件的装配精度,与其有关各零件表面形成的尺寸链环数必须最少。 a)极值法(完全互换法) 各组成环的公差之和不得大于封闭环的公差 即Σδi≤δN 不适合环数很多的尺寸链 b)概率法(不完全互换法) 设A表示组成环的算术平均值,σ表示均方根偏差,则一般各环的公差取±3σ。 σ=∑- i n A Xi/) ( c)选配法 将尺寸链中组成环的公差放大到经济可行的程度,然后选择合适的零件进行装配。 尺寸链计算程序 ①基本尺寸计算依据产品标准、产品装配图、零件图 ②公差设计计算可以先按推荐的公差等级标准选取公差值,然后按互换法进 行计算调整,决定各组成环的公差与极限偏差。 ③公差校核计算校核封闭环公差与极限偏差。 五. 计算举例

公差计算

问题5-1:公差计算 1.题目内容:配合件尺寸计算,根据所列已知条件,求其它各项填入表中。 2.公差与配合计算公式: 孔的上偏差ES=D max-D 孔的下偏差EI=D min-D 轴的上偏差es=d max-d 轴的下偏差ei=d min-d 孔的公差T h= D max- D min=ES-EI 轴的公差T s= d max - d min=es-ei 配合公差:T f=T h+T s 极限间隙X max= ES-ei,X min= EI-es 极限过盈Y max= EI-es,Y min= ES-ei 3.分析解答: 公差与偏差的计算,带入上面对应的公式,公式中只要已知两个值就可

以计算出第三个值。 (1)Φ40 6 7 s H ,基本尺寸为40。 (2)对于孔H7,可判断它的下偏差EI=0,且已知孔公差T h = 根据孔的公差T h = D max - D min =ES-EI 得ES= T h +EI=,D max =, D min =40, (3)对于轴s7,已知es=,轴公差T s = 根据轴的公差T s = d max - d min =es-ei , 得ei=es-T s = d max =, d min =, (4)配合公差 T f =T h +T s =+= (5)因为是过渡配合,所以存在最大间隙和最大过盈 极限间隙X max = ES-ei=极限过盈Y max = EI-es== (6)画公差带图 公差带图的关键是零线和孔轴的公差带。 4.总结拓展:公差计算的题目很多,这类问题是考核的一个重要部分,学生在考试中有关公差配合计算题答题情况不理想。学生在遇到这类问题时,往往会放弃答题。其实这类题目很简单,只要记住公式,将已知数据带入公式进行简单的运算,就可以得到所要答案。计算非常简单,在运算的过 +41 +16

公差与配合教材(新版)

目录 课题一互换性与标准化概念 任务一互换性的基本概念 (1) 任务二标准化概念 (1) 任务三形位公差 (11) 任务四表面粗糙度 (29) 课题二尺寸链 任务一尺寸链基础 (36) 任务二工艺尺寸链 (40) 任务三装配尺寸链 (58) - 1 -

课题一互换性与标准化概念 任务一互换性的基本概念 在工厂的装配车间经常看到这样的情况,装配工人任意从一批相同规格的零件中取出其中一个装配到机器上,装配后机器就能正常工作。在生活中也有不少这样的例子,如轿车、自行车、手表的某个零件损坏后,买一个相同规格的零件,装好后就能照常使用,显得十分方便快捷。这些都是零件互换性的具体体现。 互换性就是指机器零部件相互之间可以替换,而且保证使用要求的一种特性。 互换性在现代化大规模生产中有着十分重要的意义。 在设计方面,按互换性进行设计可以最大限度地采用标准件和通用件,从而减少设计绘图的工作量,也有利于计算机辅助设计; 在制造方面,有利于组织大规模专业化生产; 在使用方面,便于维修和售后服务。 按互换性的程度又可把互换性分为完全互换和有限互换。 完全互换:对于同一规格的零件,若不加挑选和修配就能装配到机器上去,并且能满足使用要求,这种互换就称为完全互换。 完全互换一般用于大批量生产的标准零部件,如普通紧固螺纹制件、滚动轴承等。 有限互换:有时虽然是同一规格的零件,但在装配时需要进行挑选或修配才能满足使用要求,这种互换称为有限互换。 有限互换多用于生产批量小和装配精度要求高的情况。 任务二标准化概念 标准化是社会生产的产物,反过来它又能推动社会生产的发展。 标准是指对重复性事物和概念所做的同一规定。 标准化包含了标准制订、贯彻和修订标准的全部过程。 在机械制造中,标准化是实现互换性的必要前提。 技术标准(简称标准)即技术法规,是从事生产、建设工作以及商品流通等的一种共同技术依据,它以生产实践、科学试验及可靠经验为基础,由有关方面协调制订,由主管部门批准,以特定形式发布,作为共同遵守的准则和依据。 标准可以按不同级别颁布。 - 2 -

(完整版)公差与配合教案.

教案 1

一、新课导入: 极限配合与技术测量主要内容包括极限与配合、形位公差、表面粗糙度和技术测量,主要学习和研究互换性,围绕零件的制造误差和公差概念及其使用要求之间的关系,合理的解决生产成本、产品质量与效益之间的矛盾。 二、新授内容: 第一章概述 第一节互换性 (一)互换性基本概念: 所谓互换性是指在制成同一规格的零件中,不需要作任何挑选或附加加工(如选配或钳工加工)就可以组装成部件或整机,并能达到设计要求。 举例说明:自行车手机电脑零部件的互换性。 (二)互换性的种类: 根据零件的互换范围不同: a)完全互换性:零、部件在装配时,不需要作任何选择或附加加工。 b)不完全互换性:零、部件在装配时,允许进行附加加工、选择与调 整。 完全互换性在机器制造中被广泛采用。 (三)分组装配法:为了解决加工困难和装配精度要求之间的矛盾。 把零件的互换性范围限制在同一组内的方法,称为分组装配法。属于不完全互换性。 第二节加工误差和公差 (一)加工误差: 1、加工误差的定义:零件的实际尺寸和理论上的绝对准确尺寸之差。

2、加工误差的分类: a)尺寸误差; b)形状误差; c)位置误差; d)表面粗糙度误差; e)波纹度误差。(未标准化) (二)公差: 1、公差的定义:零件的尺寸、几何形状、几何位置关系及表面粗糙度参 数值允许变动的范围。 2、公差的分类: a)尺寸公差; b)形状公差; c)位置公差; d)表面粗糙度公差; 第三节极限与配合标准 (一)标准化和标准: a)标准化:制定标准和贯彻执行技术标准为主要内容的全部活动过程。 b)标准:指为产品和工程上的规格、技术要求及其检测方法方面等所作的 技术规定。 (二)国家有关标准: 标准分为:国家标准行业标准地方标准企业标准 第四节技术测量概念 (一)技术测量的意义和对象: a)技术测量是实现互换性的必要条件。 b)所谓技术测量就是把被测出的量值与具有计量单位的标准量进行比较 从而确定被测量的量值。 c)技术测量的对象:长度、角度、表面粗糙度和形位公差。

公差与配合标准表

公差与配合(摘自GB1800~1804-79)1.基本偏差系列及配合种类 .2.标准公差值及孔和轴的极限偏差值 基本尺寸 mm 公差等级 IT5 IT6 IT7 IT8 IT9 IT10 IT11 IT12 >6~10 >10~18 >18~30 >30~50 >50~80 >80~120 >120~180 >180~250 >250~315 >315~400 >400~500 6 8 9 11 13 15 18 20 23 25 27 9 11 13 16 19 22 25 29 32 36 40 15 18 21 25 30 35 40 46 52 57 63 22 27 33 39 46 54 63 72 81 89 97 36 43 52 62 74 87 100 115 130 140 155 58 70 84 100 120 140 160 185 210 230 250 90 110 130 160 190 220 250 290 320 360 400 150 180 210 250 300 350 400 460 520 570 630

孔的极限差值(基本尺寸由大于10至315mm)μm

轴的极限偏差(基本尺寸由于大于10至315mm)

公差带级 >10~18>18~30 >30~50 >50~80 >80~120>120~180 >180~250>250~315 K 5 +9 +1 +11 +2 +13 +2 +15 +2 +18 +3 +21 +3 +24 +4 +27 +4 ▼6 +12 +1 +15 +2 +18 +2 +21 +2 +25 +3 +28 +3 +33 +3 +36 +4 7 +19 +1 +23 +2 +27 +2 +32 +2 +38 +3 +43 +3 +50 +4 +56 +4 M 5 +15 +7 +17 +8 +20 +9 +24 +11 +28 +13 +33 +15 +37 +17 +43 +20 6 +18 +7 +21 +8 +25 +9 +30 +11 +35 +13 +40 +15 +46 +17 +52 +20 7 +25 +7 +29 +8 +34 +9 +41 +11 +48 +13 +55 +15 +63 +17 +72 +20 N 5 +20 +12 +24 +15 +28 +17 +33 +22 +38 +23 +45 +27 +51 +31 +57 +34 ▼6 +23 +12 +28 +15 +33 +17 +39 +20 +45 +23 +52 +27 +60 +31 +66 +34 7 +30 +12 +36 +15 +42 +17 +50 +20 +58 +23 +67 +27 +77 +31 +86 +34 p 5 +26 +18 +31 +22 +37 +26 +45 +32 +52 +37 +61 +43 +70 +50 +79 +56 ▼6 +29 +18 +35 +22 +42 +26 +51 +32 +59 +37 +68 +43 +79 +50 +88 +56 7 +36 +18 +43 +22 +51 +26 +62 +32 +72 +37 +83 +43 +96 +50 +108 +56 注:标注▼者为优先公差等级,应优先选用。 形状和位置公差(摘自GB1182~1184-80) 形位公差符号 分类形状公差位置公差 项目直线 度 平面 度 圆度 圆柱 度 平行 度 垂直 度 倾斜 度 同轴 度 对称 度 位置 度 圆跳 动 全跳动 符号

公差计算方法大全

六西格玛机械公差设计的RSS分析 2012年12月20日不详 关键字: 六西格玛机械公差设计的RSS分析 1.动态统计平方公差方法 RSS没有充分说明过程均值的漂移,总是假设过程均值在名义设计规格的中心,这就是为什么能力最初看起来比较充分,但实际中这种情况是很少的原因,特别是在制造过程中工具受到磨损的时候。因此就有必要利用C来调整每一个名义设计值已知的或者估计的过程标准偏差,以此来说明过程均值的自然漂移,这一方法就称为动态统计平方公差方法(Dynamic Root-Sum-of-Squares Analysis, DRSS)。实际上,这种调整会使标准偏差变大,因而会降低装配间隙概率。 调整后就以一个均值累积漂移的临界值是否大于等于4.5来衡量六西格玛水平,即时,DRSS 模型就简化为一个RSS模型,这一特征对公差分析有许多实际意义。从这一意义上讲,DRSS

模型是一个设计工具,也是一个分析工具。因为DRSS模型考虑均值随时间的随机变异的影响,所以称之为动态模型。 2.静态极值统计平方公差方法 当假设的均值漂移都设定在各自的极值情况时,这种方法称为静态极值统计平方公差方法( Worse-Case Static Raot- Surn- of-Squares Anlysis, WC-SRSS),这一方法可以认为是一种极值情况的统计分析方法。为了有效地研究任意假定的静态条件,需要将公式(2-10)分母项中的偏倚机制转移到分了项中(注意:当均值漂移大于2σ时,就不能应用上述转换),同时必须用Cp,代替分母中的Cpk: 实际上,所有偏倚机制都可以利用来表示,但是当过程标准偏差改变时,如果利用作为转换日标,名义间隙值也会改变,这样就违背了均值和方差独立的假设。也就是说,用作为描述均值漂移的基础使得均值和方差之间正相关。而利用k为动态和静态分析提供了一个可行的和灵活的机制,同时保证了过程均值和方差的独立性。 3.设计优化 利用IRSS作为优化基础,当考虑5RS5和WC-SRSS作为基础时其逻辑和推理是相同的。(1)优化零部件的名义尺寸

公差配合计算

配合与配合公差(1学时) ※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※本节课内容: 1. 配合的概念 2. 配合类型 3. 配合公差 4. 配合制 5. 小结。 要求深刻理解与熟练掌握的重点内容: 本节课所讲授的术语和定义均要深刻理解与熟练掌握,特别要注意对以下知识点的掌握: 1.间隙配合、过盈配合、过渡配合这三种配合的公差带特点; 2.基准制(基孔制和基轴制) 本节课难点: “过渡配合”的概念、“配合公差”的含义 教学方法: 1.启发式教学。 2.以多媒体为辅助教学手段。 ※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※具体内容的详细教案如下:(加黑字表示板书内容或应有板书的地方) 注:首先对上次课的主要内容用2分钟进行小结。 一、“配合”概念 1. 间隙与过盈 +间隙X 孔的尺寸-轴的尺寸=代数差 Y 2.配合基本尺寸相同的,相互结合的孔、轴公差带之间的关系。(对一批零件而言)配合反映了机器上相互结合的零 件间松紧程度。 有三个含义: 1)必须是孔和轴

2)基本尺寸相同 3)对一批零件而言 二、配合类型 按公差带关系的不同,配合分为三种: 1)间隙配合 孔的公差带在轴公差带上方,即具有间隙的配合(包括X min =0的配合)。对一批零件而言,所有孔的尺寸≥轴的尺寸 特征参数: X max =D max -d min =ES -ei X min =D min -d max =EI -es X av =(X max +X min )/2 注:要讲清间隙的作用在于: 储存润滑油 补偿温度引起的尺寸变化 补偿弹性变形及制造与安装误差 2) 过盈配合 孔的公差带在轴公差带下方,即具有过盈的配合(包括Y min =0的配合)。对一批零件而言,所有孔的尺寸≤轴的尺寸 特征参数: Y min =D max -d min =ES -ei Y max = D min -d max =EI -es Y av =(Y max +Y min )/2 过盈配合用于孔、轴的紧固连接,不允许两者有相对运动。 注:要讲清过盈的作用在于及如何装配。 3)过渡配合 孔、轴公差带相互重叠,即可能具有X 或Y 的配合。(对一批零件而言) 间隙配合(见课件) 过盈配合 (见课件) min =0

公差配合与测量技术知识点

《公差配合与测量技术》知识点 绪言 互换性是指在同一规格的一批零件或部件中,任取其一,不需任何挑选或附加修配就能装在机器上,达到规定的功能要求,这样的一批零件或部件就称为具有互换性的零、部件。 通常包括几何参数和机械性能的互换。 允许零件尺寸和几何参数的变动量就称为公差。 互换性课按其互换程度,分为完全互换和不完全互换。 公差标准分为技术标准和公差标准,技术标准又分为国家标准,部门标准和企业标准。 第一章圆柱公差与配合 基本尺寸是设计给定的尺寸。实际尺寸是通过测量获得的尺寸。 极限尺寸是指允许尺寸变化的两个极限值,即最大极限尺寸和最小极限尺寸。最大实体状态是具有材料量最多的状态,此时的尺寸是最大实体尺寸。 与实际孔内接的最大理想轴的尺寸称为孔的作用尺寸,与实际轴外接的最小理想孔的尺寸称为轴的作用尺寸。 尺寸偏差是指某一个尺寸减其基本尺寸所得的代数差。 尺寸公差是指允许尺寸的变动量。 公差=|最大极限尺寸 - 最小极限尺寸|=上偏差-下偏差的绝对值 配合是指基本尺寸相同的,相互结合的孔与轴公差带之间的关系。 间隙配合:孔德公差带完全在轴的公差带上,即具有间隙配合。 间隙公差是允许间隙的变动量,等于最大间隙和最小间隙的代数差的绝对值,也等于相互配合的孔公差与轴公差的和。 过盈配合,过渡配合 T=ai, 当尺寸小于或等于500mm时,i=0.45+0.001D(um), 当尺寸大于500到3150mm时,I=0.004D+2.1(um). 孔与轴基本偏差换算的条件:1.在孔,轴为同一公差等级或孔比轴低一级配合2.基轴制中孔的基本偏差代号与基孔制中轴的基本偏差代号相当 3.保证按基轴制形成的配合与按基孔制形成的配合相同。 通用规则,特殊规则 例题 基准制的选用:1.一般情况下,优先选用基孔制。2.与标准件配合时,基准制的选择通常依标准件而定。3.为了满足配合的特殊需要,允许采用任一孔,轴公差带组合成配合。 公差等级的选用:1.对于基本尺寸小于等于500mm的较高等级的配合,由于孔比同级轴加工困难,当标准公差小于等于IT8时,国家标准推荐孔比轴低一级相配合,但对标准公差大于IT8级或基本尺寸大于500mm的配合,由于孔德测量精度比轴容易保证,推荐采用同级孔,轴配合。2.既要满足设计要求,又要考虑工艺的可能性和经济性。 各种配合的特性:间隙:主要用于结合件有相对运动的配合。 过盈:主要用于结合件没有相对运动的配合。 过渡:主要用于定位精确并要求拆卸的相对静止的联结。

公差与配合的标注

3、公差与配合的标注 (l)在装配图中的标注 国家标准规定,在装配图上标注公差与配合时,配合代号一般用相结合的孔与轴的公差带代号组合表示,即在基本尺寸的后面将代号写成分数的形式,分子为孔的公差带代号。分母为轴的公差带代号。孔和轴的公差带代号分别由基本偏差代号与公差等级两部件组成。 也可以注写成Φ50H7/K6和Φ50F8/h7的形式。 当配合代号的分子中出现基孔制代号H,而分母中同时出现基轴制代号h 时,则称为基准件相互配合,如Φ50H7/K6,它既可以视为基孔制,也可视为基轴制,是一种最小间隙为零的间隙配合。如分子分母均无基准件代号,则属于某一孔公差带与某一轴公差带组成的配合.在装配图中公差号配合的标注见图8. (2)零件图中尺寸公差的标注 在零件图中尺寸公差的标注形式有三种:

l)在基本尺寸后面只标注公差带代号。公差带代号应注写在基本尺寸的右边,如图9 所示,这种标注形式适合于大批量生产的零件。 2)在基本尺寸后面标注极限偏差、表示极限偏差的数字要比基本尺寸的数字小一号,如图9.b所示,偏差值一般要注写三位有效数字,上偏差注写在基本尺寸的右上力;下偏差应与基本尺寸注写在同一底线上。若其中有一个偏差值为零时,要以占位,并与上偏差或下偏差小数点前的个位数字对齐。如果上下偏差数值相同。符号相反,则应首先在基本尺寸的右边注上“士”号,再填写偏差数字,其高度与基本尺寸数字相同,如图10所示.这种标注形式适合于单件或小批量生产的零件。 3)在基本尺寸的后面同时标注公差带代号和极限偏差数值,此时极限偏差数值应加括号,如图9c所示。 如有侵权请联系告知删除,感谢你们的配合! 如有侵权请联系告知删除,感谢你们的配合!

我国尺寸公差与配合标准的发展历史

我国尺寸公差与配合标准的发展历史 1944年:国民党政府制定了“尺寸公差与配合”的国家标准,但实际使用的是日本、德国、美国标准. 1955年:参照苏联标准,第一机械工业部颁布“公差与配合”的部颁标准,此标准只是将苏联标准(OCT标准)付与了中文名词. 1959年:颁布了“公差与配合”的国家标准GB159~174 (简称“旧国标”)(精度等级偏低、配合种类偏少). 1979年:参照国际标准制定了“公差与配合”的国家标准GB1800~1804 —1979(简称“新国标”)取代GB159~174—1959. 1992~1996年上述新国标进行了部分修订,将《公差与配合》改为《极限与配合》, 用《极限与配合基础第一部分:词汇》(GB/T1800.1—1996)替代GB1800-1979中的《公差与配合的术语及定义》;用《一般公差线性尺寸的未注公差》(GB/T1804—1992)替代《未注公差尺寸的极限偏差》(GB1804—1979) 国家标准《极限与配合》中,公差与配合部分的标准主要包括: GB/T1800.1—1997《极限与配合基础第1部分:词汇》 GB/T1800.2—1998《极限与配合基础第2部分:公差、 偏差和配合的基本规定》 GB/T1800.3—1998《极限与配合基础第3部分:标准公 差和基本偏差数值表》 GB/T1800.4—1999《极限与配合标准公差等级和孔、 轴的极限偏差表》 GB/T1801—1999《极限与配合公差带和配合的选择》 GB/T1804—2000《一般公差未注公差的线性和角度尺 寸的公差》 2009年11月1日实施: GB/T1800.1—2009《极限与配合第1部分:公差、偏差 和配合的基础》 GB/T1800.2—2009《极限与配合第2部分:标准公差等 级和孔、轴极限偏差表》 GB/T1801—2009 《极限与配合公差带和配合的选择》 GB/T4249-2009 《公差原则》 GB/T16671-2009 《几何公差最大实体要求、最小实体 要求和可逆要求》 GB/T1182-2008 《几何公差形状、方向、位置和跳动 公差标准》 GB/T 1031-2009 《表面结构轮廓法表面粗糙度参 数及其数值》 GB/T 3177-2009 《光滑工件尺寸的检验》 GB/T 3505-2009 《表面结构轮廓法术语、定义 及表面结构参数》

最新公差计算方法大全资料

六西格玛机械公差设计的RSS分析2012年12月20日不详 关键字: 六西格玛机械公差设计的RSS分析 1.动态统计平方公差方法 RSS没有充分说明过程均值的漂移,总是假设过程均值在名义设计规格的中心,这就是为什么能力最初看起来比较充分,但实际中这种情况是很少的原因,特别是在制造过程中工具受到磨损的时候。因此就有必要利用C来调整每一个名义设计值已知的或者估计的过程标准偏差,以此来说明过程均值的自然漂移,这一方法就称为动态统计平方公差方法(Dynamic Root-Sum-of-Squares Analysis, DRSS)。实际上,这种调整会使标准偏差变大,因而会降低装配间隙概率。 调整后就以一个均值累积漂移的临界值是否大于等于4.5来衡量六西格玛水平,即时,DRSS 模型就简化为一个RSS模型,这一特征对公差分析有许多实际意义。从这一意义上讲,DRSS 模型是一个设计工具,也是一个分析工具。因为DRSS模型考虑均值随时间的随机变异的影响,所以称之为动态模型。 2.静态极值统计平方公差方法 当假设的均值漂移都设定在各自的极值情况时,这种方法称为静态极值统计平方公差方法( Worse-Case Static Raot- Surn- of-Squares Anlysis, WC-SRSS),这一方法可以认为是一种极值情况

的统计分析方法。为了有效地研究任意假定的静态条件,需要将公式(2-10)分母项中的偏倚机制转移到分了项中(注意:当均值漂移大于2σ时,就不能应用上述转换),同时必须用Cp,代替分母中的Cpk: 实际上,所有偏倚机制都可以利用来表示,但是当过程标准偏差改变时,如果利用作为转换日标,名义间隙值也会改变,这样就违背了均值和方差独立的假设。也就是说,用作为描述均值漂移的基础使得均值和方差之间正相关。而利用k为动态和静态分析提供了一个可行的和灵活的机制,同时保证了过程均值和方差的独立性。 3.设计优化 利用IRSS作为优化基础,当考虑5RS5和WC-SRSS作为基础时其逻辑和推理是相同的。(1)优化零部件的名义尺寸 在任一给定的需求条件和过程能力条件下,重新安排公式(2-10)就得到该优化方程的表达式:

尺寸链及公差叠加分析

课程培训目标: ?能够计算装配零件的最小和最大壁厚、间隙、或干涉, ?能够创建几何公差或正负公差的尺寸链,分析公差叠加结果, ?能够创建、分析复杂的公差叠加分析工具,包含几何公差,名义尺寸,实效条件尺寸,和正负公差, ?能够分析通用装配条件的公差叠加分析, ?能够分析浮动紧固件的公差叠加分析,如何定义螺栓,轴类,或孔类公差, ?能够分析固定紧固件的公差叠加分析,如何定义螺栓,间隙孔,槽,凸缘,和整体尺寸的公差,以及螺纹孔的投影公差, ?能够计算在不同的基准方案下的最大,最小间隙, ?掌握一套逻辑的,系统的,数量化的公差分析方法, 课程包含主要内容: 课程参与者能够解决实际工作中面对的从简单到复杂的装配体的公差叠加分析。培训中以理论讲授和实践练习相结合来分析尺寸公差和几何公差的叠加分析,比较分析不同的基准设置情况下的输出结果。 培训大纲: ?尺寸链分析的起点 ?创建正负尺寸链 ?如何计算,如何确定影响贡献公差叠加结果的尺寸因素 ?如何分析:最差条件法Wost Case ?哪些几何公差影响公差叠加结果? ?均值分析:Mean ?边界计算:GD&T,MMC,LMC和RFS材料条件修正情况下, ?等边正负公差转换 2.复杂装配体的正负尺寸公差叠加分析 ?计算方法 ?尺寸链分析工具制作 ?分析工具的应用 ?最大、最小间隙的分析结果输出 ?合格率的计算 ?Cpk与公差叠加分析 ?统计公差的分析及计算 ?6Sigma公差设计方法

3.公差叠加的2D分析法–水平方向公差叠加和竖直方向的公差叠加分析?尺寸链分析的起点 ?创建正负尺寸链 ?最小、最大间隙的分析结果输出 4.装配体的公差叠加分析 ?装配体中零件间的尺寸链如何建立 ?不同的尺寸布局方案的公差叠加分析 ?尺寸公差定义的装配体中公差叠加分析复杂性 ?最小,最大间隙结果输出 ?公差的优化 ?合格率的计算 ?与几何公差的比较 5.浮动螺栓装配分析 ?几何公差控制的实效边界和补偿公差 ?内边界,外边界,均值边界 ?公差叠加分析中直径到半径的转化方法 ?轮廓度的叠加分析分解方法 ?基准浮动因素 ?几何公差浮动因素 ?复杂装配体的几何公差尺寸链建立方法 ?分析的标准化模板, 6.固定螺丝装配分析 ?计算装配体的最大、最小间隙 ?投影公差的因素 ?正向设计固定螺栓装配总成 ?逆向设计固定螺栓装配总成 ?对于孔类、槽类、凸缘和轴类装配体的分析 ?确定所有的几何公差因素 ?独立特征和阵列特征的不同分析方法 7.几何公差复杂装配体实例分析 ?对零件进行GD&T定义 ?装配设计方案 ?螺纹特征

公差与配合的实用选择教程

第二章光滑圆柱的公差与配合 ?第一节光滑圆柱的公差与配合的概念 ?第二节公差与配合标准的组成与特点 ?第三节公差配合的选择 Back

一、有关尺寸的术语、定义 设计图样上的尺寸标注?100±0.14mm 1、基本尺寸(D ,d )?100 2、极限尺寸:允许尺寸变化的两各界限值。 最大极限尺寸:D max d max 最小极限尺寸:D min d min 3、实际尺寸:在零件上实际测量的尺寸。 举例:一批轴尺寸为?100±0.14mm ,若某一轴 实际尺寸为?99.92mm ,判断其合格性。 第一节光滑圆柱的公差与配合的概念

4、实体状态和实体尺寸 最大实体状态:合格零件占有材料最多时的状态 最大实体尺寸:D min d max 最小实体状态:合格零件占有材料最小时的状态 最小实体尺寸:D max d min 二、尺寸偏差、公差 1、尺寸偏差:某一尺寸—基本尺寸所得的代数差 2、实际偏差:实际尺寸—基本偏差=实际偏差

3、极限偏差极限尺寸—基本尺寸=极限偏差 上偏差:ES=D max -D es=d max -d 下偏差:EI=D min -D ei=d min -d 实际偏差在极限偏差范围内即为合格 极限偏差在图样上的标注: ?100±0.14mm ?50?25说明:偏差可为正、负、零。1.00+020.0033 .0??

4、尺寸公差:T D T d 定义:允许尺寸的变动量 ?100±0.14mm ,变动量为0.28 计算:T D =D max -D min =ES-EI T D =d max -d min =es-ei 说明:①公差值为正直 ②公差大小反映零件加工的难易程度, 尺寸的精确程度。动画演示 5、尺寸的公差带图 为清晰表达一批轴和孔的公差与配合,引入公差带图。 不画孔、轴的结构,只画放大了的孔、轴公差带。

线性尺寸链公差分析

線性尺寸鏈公差分析. 程序設計用于(1D)線性尺寸鏈公差分析。程序解決以下問題: 1公差分析,使用算術法"WC"(最差條件worst case)綜合和最優化尺寸鏈,也可以使用統計學計算"RSS"(Root Sum Squares)。 2溫度變化引起的尺寸鏈變形分析。 3使用"6 Sigma"的方法拓展尺寸鏈統計分析。 4選擇裝配的尺寸鏈公差分析,包含組裝零件數的最優化。 所有完成的任務允許在額定公差值內運行,包括尺寸鏈的設計和最優化。 計算中包含了ANSI, ISO, DIN以及其他的專業文獻的數據,方法,算法和信息。標准參考表:ANSI B4.1, ISO 286, ISO 2768, DIN 7186 計算的控制,結構及語法。 計算的控制與語法可以在此鏈接中找到相關信息"計算的控制,結構與語法". 項目信息。 “項目信息”章節的目的,使用和控制可以在"項目信息"文檔裏找到. 理論-原理。 一個線性尺寸鏈是由一組獨立平行的尺寸形成的封閉環。他們可以是一個零件的相互位置尺寸(Fig.A)或是組裝單元中各個零件尺寸(Fig. B). 一個尺寸鏈由分開的部分零件(輸入尺寸)和一個封閉零件(結果尺寸)組成。部分零件(A,B,C...)可以是圖面中的直接尺寸或者是按照先前的加工工藝,組裝方式。所給尺寸中的封閉零件(Z)表現爲加工工藝或組裝尺寸的結果,結果綜合了部分零件的加工尺寸,組裝間隙或零件的幹涉。結果尺寸的大小,公差和極限直接取決于部分尺寸的大小和公差,取決于部分零件的變化對封閉零件變化的作用大小,在尺寸鏈中分爲兩類零件: - 增加零件- 部分零件,該零件的增加導致封閉零件的尺寸增加 - 減少零件- 部分零件,封閉零件尺寸隨著該零件的尺寸增加而減小 在解決尺寸鏈公差關系的時候,會出現兩類問題: 5公差分析- 直接任務,控制 使用所有已知極限偏差的部分零件,封閉零件的極限偏差被設置。直接任務在計算中是明確的同時通常用于在給定圖面下檢查零件的組裝與加工。 6公差合成- 間接任務,設計

公差与配合教学大纲

教学大纲___________________________________________________________________ 计划学时:总32学时其中讲课:26学时实验:6学时 适用专业:机械工程及自动化、工业工程 参考教材: 1. 韩进宏.互换性与技术测量. 北京:机械工业出版社,2004.07 2. 王伯平. 互换性与测量技术基础. 北京:机械工业出版社,2005.01 3. 谢铁邦.李柱.席宏卓.互换性与技术测量.武汉:华中科技大学出版社,2002.01 4. 史锦屏. 互换性与技术测量实验指导书.济南:济南大学出版社,2004.06 课程的教学目的与任务 “互换性与技术测量”是一门综合性的应用技术基础课,它既是联系设计类和工艺类课程的纽带,也是从基础课与技术基础课教学过渡到专业课教学的桥梁。该学科将实现互换性生产的标准化领域与计量学领域的有关知识结合在一起,涉及机械、电子产品的设计、制造、质量控制等诸多方面。课程的学习旨在使学生掌握有关互换性生产原则及公差与配合的规律与选用;掌握圆柱结合的精度设计原则及检测技术;掌握零件形位公差标准、选用原则及检测技术;理解常用零部件的几何精度设计原则与方法,具备精度设计方法及技术测量的基本技能。 课程的基本要求 1. 掌握几何量公差、标准化以及计量学的基本知识,深刻领会上述几方面在实现和发展互换性生产、 保证产品质量中所起的重要作用。 2. 确切理解有关公差标准的基本术语和定义,掌握标准的内容和特点。初步掌握选用公差、进行精 度设计的基本原则。 3. 建立测量技术的基本概念,了解常用测量方法与测量器具的原理,学会分析测量误差与测量结果 的处理。通过实验,初步掌握常用仪器的操作技能。 各章节授课内容、教学方法及学时分配建议(含课内实验) 第一章绪论建议学时:1 第一节互换性与公差的概念 第二节标准化与优先数系 第三节几何量检测的重要性及其发展 授课方法:以课堂讲授为主,辅助课堂练习,课堂讨论、课外作业及自学来完成。第二章:几何量测量技术基础建议学时:1 第一节测量与检验的概念 第二节长度基准与量值传递 第三节计量仪器和测量方法分类 第四节测量误差 授课方法:以课堂讲授为主,辅助课堂练习,课堂讨论、课外作业及自学来完成,并通过实验来强化知识掌握。 第三章孔、轴的极限与配合建议学时:6

内螺纹小径的计算与公差

内螺纹小径的计算与公差 a. 内螺纹小径的基本尺寸计算(D1) 螺纹小径基本尺寸=内螺纹基本尺寸-螺距×系数 例:内螺纹M8的小径基本尺寸 8-1.25×1.0825=6.646875≈6.647 b. 内螺纹6H级的小径公差(以螺距为基准)及小径值计算 P0.8 +0. 2 P1.0 +0. 236 P1.25 +0.265 P1.5 +0.3 P1.75 +0.335 P2.0 +0.375 P2.5 +0.48 内螺纹6H级的下限偏差公式D1+HE1即内螺纹小径基本尺寸+偏差 注:6H级的下偏值为“0” 内螺纹6H级的上限值计算公式=D1+HE1+TD1即内螺纹小径基本尺寸+偏差+公差 例:6H级M8内螺纹小径的上限值 6.647+0=6.647 6H级M8内螺纹小径的下限值 6.647+0+0.265=6.912 c. 内螺纹6G级的小径基本偏差(以螺距为基准)及小径值计算 P0.8 +0.024 P1.0 +0.026 P1.25 +0.028 P1.5 +0.032 P1.75 +0.034

P2.0 +0.038 P2.5 +0.042 内螺纹6G级的小径下限值公式=D1+GE1即内螺纹基本尺寸+偏差 例: 6G级M8内螺纹小径的下限值 6.647+0.028=6.675 6G级M8内螺纹小径的上限值公式D1+GE1+TD1即内螺纹基本尺寸+偏差+公差 例: 6G级M8内螺纹小径的上限值是6.647+0.028+0.265=6.94 注:①内螺纹的牙高直接关系到内螺纹的承载力矩的大小,故在毛坯生产中应尽量在其6H级上限值以内 ②在内螺纹的加工过程中,内螺纹小径越小会给加工具——丝锥的使用效益有所影响.从使用的角度讲是小径越小越好,但综合考虑时一般采用小径的在中限至上限值之间,如果是铸铁或铝件时应采用小径的下限值至中限值之间 ③内螺纹6G级的小径在毛坯生产中可按6H级执行,其精度等级主要考虑螺纹中径的镀层,故只在螺纹加工时考虑丝锥的中径尺寸而不必考虑光孔的小径。

公差配合教学大纲

《公差配合与测量技术》教学大纲 一、课程性质和任务 本课程是高职学院机械类(数控技术应用机械制造、模具设计与制造、数控技术应用、机电一体化、焊接技术等)专业的一门专业技术基础课,它涉及几何量公差与技术测量两个范畴。它是联系机械设计课程与机械制造课程的纽带是从基础课学习过度到专业课学习的桥梁。 本课程的主要任务是从互换性的角度出发,围绕误差与公差两个概念研究产品使用要求与制造要求之间的矛盾,培养学生正确应用国家标准和检测方法。 二、课程教学目标 本课程的教学目标是:从互换性角度出发,通过系统简练地介绍几何量公差的有关标准、选用方法和误差检测的基本知识,使学生学到有关精度设计和几何量检测的基础理论知识和基本技能。 ( 一 ) 知识教学目标 1. 系统、简练地宣传贯彻国家颁布的几何量公差的有关标准和选用方法。 2. 从保证机械零件的互换性和几何精度出发,介绍测量技术的基本理论和方法。 ( 二 ) 能力培养目标 1. 掌握有关互换性、公差、检测及标准化的概念。 2. 掌握公差配合、形位公差、表面粗糙度标准的规定并能正确选用及标注。 3. 基本掌握常用件的公差配合及常用检测方法。 4. 掌握尺寸传递概念,尺寸链的计算方法。 5.理解计量器具的分类、常用度量指标、测量方法并能正确应用。 三、教学内容和要求 理论教学模块 概论 1、掌握互换性的概念及互换性在设计、制造、使用和维修等方面的重要作用。 2、掌握互换性与公差、检测的关系。 3 、理解标准化与、优先数的概念。 ( 一) 极限与配合及检测 1 、正确理解有关尺寸、公差、偏差、配合等术语和定义。

2 、掌握公差与配合标准的相关规定、熟练应用公差表格、正确进行相关参数的计算。 3 、初步学会公差与配合的正确选用。 4 、掌握计量器具的选择和验收极限的确定。 ( 二 ) 形状和位置公差及检测 1 、熟记形位公差特征项目符号及名称,基本学会分析典型的形位公差带的形状、大小、方向和位置。 2、掌握评定形位误差时“最小条件”的概念及“最小条件”的意义。 3、理解最小包容区与公差带的关系。 4、理解独立原则、相关原则在图样上的标注、含义、检验手段和主要应用场合。 5、掌握形位公差的选用及标注方法。 6、了解形位公差的检测方法。 ( 三 ) 表面粗糙度和检测 1 、了解粗糙度的实质及对零件使用性能的影响和粗糙度的测量方法及原理。 2 、掌握粗糙度评定参数的含义、应用场合、选用方法和标注方法。 3、初步掌握表面粗糙度的选用。 (四)测量技术基础 1、了解测量的基本概念及尺寸传递、测量误差等概念。 2、理解测量方法、计量器具的分类及常用的度量指标。 3、掌握基本技术测量理论和方法。 ( 五 ) 光滑极限量规 1、了解光滑极限量规的作用、种类。 2、理解泰勒原则的含义。 3、掌握工作量规的公差带的分布及设计方法。 ( 六 )键和花键的公差及其检测 1、掌握平键连接的公差与配合、形位公差和表面粗糙度的选用与标注。 2、掌握矩形花键连接的定心方式。 3、掌握矩形花键连接的公差配合、形位公差、表面粗糙度的选用与标注。 4、了解平键、花键连接采用的基准制及检测方法。 (七)普通螺纹结合的公差及其检测 1、了解普通螺纹的使用要求、主要几何参数及其对互换性的影响和常用的检测方法。

相关文档
最新文档