电液比例阀控液压缸系统建模与仿真

电液比例阀控液压缸系统建模与仿真
电液比例阀控液压缸系统建模与仿真

阀控缸位置伺服系统

河南科技大学 课程设计说明书 课程名称专业课程设计 题目阀控缸位置伺服系统设计与分析 学院农业工程学院 班级农电111 学生姓名王银肖 指导教师岳菊梅 日期 2015年4月3日

专业课程设计任务书 班级:农电111 姓名:王银肖学号: 111403010124 设计题目:阀控缸位置伺服系统设计与分析 一、设计目的 熟悉专业课程设计的相关规程、规定,了解控制系统设计数学模型的基本建立方法和相关算法的计算机模拟,熟悉相关计算的内容,巩固已学习的相关专业课程内容,学习撰写工程设计说明书,对控制系统相关状态进行模拟,对控制系统设计相关参数计算机计算设计有初步的认识。 二、设计内容 阀控缸位置伺服系统原理如下图所示。 三、设计要求: 1. 指出并分析电液位置控制系统的基本组成和特点。 2. 分析电液伺服阀的主要特性与其参数。 3. 电液伺服阀的选则与使用。 4. 设计电液阀伺服系统并画出仿真图。 四、设计时间安排 查找相关资料(2天)、确定总体方案,进行必要的计算。(1天)、对电力系统相关状态进行模拟,计算相关参数,(2天)、使用(MATLAB)等相关软件进行控制系统设计与仿真(2天)、撰写设计报告(2天)和答辩(1天)。 五、主要参考文献 [1] 易孟林,曹树平,刘银水.电液控制技术[M].武汉:华中科技大学出版社,2010. [2] 王正林,王盛开,陈国顺. MATALAB与控制系统仿真[M].北京:电子工业出版社.2005. [3] 刘超.MATALAB基础与实践教程[M],北京:机械工业出版社.2011. 指导教师签字:年月日

第一章电液位置控制系统 (1) §1.1液压控制系统概论 (1) §1.2电液控制系统的基本组成及特点 (3) 第二章电液伺服阀的特性与主要性能参数 (6) §2.1 静态特性 (6) §2.1.1 负载流量特性 (6) §2.1.2 空载流量特性 (7) §2.1.3 压力特性 (9) §2.1.4 内泄漏特性 (10) 第三章电液伺服阀的选择与使用 (11) §3.1电液伺服阀的选择的一般原则 (11) §3.2 电液伺服规格的确定 (12) 第四章阀控缸位置伺服系统的的设计及MATLAB仿真 (14) §4.1 电液比例阀控缸位置伺服系统建模设计 (14) §4.1.1阀控缸模型设计及分析 (14) §4.1.2仿真调试图 (14) 总结 (18) 参考文献 (19)

非对称液压缸的动态特性仿真研究_郝前华

第35卷第6期 2010年12月  广西大学学报:自然科学版J o u r n a l o f G u a n g x i U n i v e r s i t y :N a t S c i E d V o l .35N o .6D e c .2010 收稿日期:2010-07-22;修订日期:2010-08-29 基金项目:国家863项目资助课题(2003A A 430200) 通讯联系人:何清华(1946-),男,湖南岳阳人,中南大学教授,博士生导师;E -m a i l :h q h @m a i l .c s u .e d u .c n 。 文章编号:1001-7445(2010)06-0984-05非对称液压缸的动态特性仿真研究 郝前华1,何清华1,2,贺继林1,2,廖力达1,舒敏飞1 (1.中南大学机电工程学院,湖南长沙410083; 2.湖南山河智能机械股份有限公司,湖南长沙410100) 摘要:根据液流的连续性原理,通过对非对称液压缸进行受力分析,研究非对称液压缸的动态特性。在此基础 上,提出非对称液压缸的数学模型,得到了液压缸阻尼比、固有频率间的关系。根据其数学模型,运用M A T -L A B 软件对挖掘机铲斗液压缸动态特性进行仿真,得到了非对称液压缸的速度响应曲线和大腔的压力曲线, 直观地揭示了其动态特性。通过对影响铲斗液压缸动态特性的主要因素的分析,提出了加快其速度响应和改 善其运动平稳性的实用措施,指出降低铲斗液压缸的超调量与提高铲斗液压缸的响应速度存在矛盾,需要针 对具体情况协调考虑。 关键词:动态特性;非对称液压缸;仿真 中图分类号:T H 137 文献标识码:A S i m u l a t i o ns t u d y o nd y n a m i c c h a r a c t e r i s t i c s o f a s y m m e t r i c a l h y d r a u l i c c y l i n d e r H A OQ i a n -h u a 1,H EQ i n g -h u a 1,2,H EJ i -l i n 1,2,L I A OL i -d a 1,S H UM i n -f e i 1 (1.S c h o o l o f M e c h a n i c a l a n dE l e c t r i c a l E n g i n e e r i n g ,C e n t r a l S o u t hU n i v e r s i t y ,C h a n g s h a 410083,C h i n a ; 2.H u n a nS u n w a r dI n t e l l i g e n t M a c h i n e r y C o .L t d .,C h a n g s h a 410100,C h i n a )A b s t r a c t :O nt h eb a s i s o f c o n t i n u i t y p r i n c i p l eo f f l u i d s ,d y n a m i cc h a r a c t e r i s t i c s o f a s y m m e t r i c a l h y d r a u l i c c y l i n d e r a r e i n v e s t i g a t e db y m e a n s o f f o r c e e q u i l i b r i u m a n a l y s i s .B a s e d o nt h e p r o p o s e d m a t h e m a t i c a l m o d e l o f t h e c y l i n d e r ,r e l a t i o n s h i pb e t w e e nd a m p i n gr a t i o a n dn a t u r a l f r e q u e n c y i s o b t a i n e d a s w e l l a s t h e s i m u l a t i o nr e s u l t s o f d y n a m i cc h a r a c t e r i s t i c s o f h y d r a u l i cc y l i n d e r o f t h e b u c k e t o f a n e x c a v a t o r i n M A T L A B .T h e v e l o c i t y r e s p o n s e c u r v e a n d p r e s s c u r v e o f t h e l a r g e c h a m - b e r r e v e a l t h e d y n a m i c c h a r a c t e r i s t i c s v i s u a l l y .M e a s u r e s t oi n c r e a s e t h e v e l o c i t y r e s p o n s e a n dt o i m p r o v e t h e m o t i o n s t a b i l i t y o f t h e b u c k e t c y l i n d e r a r e p r o p o s e d b a s e d o n t h e a n a l y s i s o f t h e m a i n f a c t o r s i n f l u e n c i n gd y n a m i cc h a r a c t e r i s t i c s .T h ec o n t r a d i c t i o nb e t w e e nd e c r e a s i n go v e r s h o o t a n d i n c r e a s i n g r e s p o n s e s p e e d o f t h e c y l i n d e r n e e d s t o b e r e s o l v e d b y c o n s i d e r a t i o n s t o s p e c i f i c c i r c u m - s t a n c e s . K e y w o r d s :d y n a m i c c h a r a c t e r i s t i c s ;a s y m m e t r i c a l h y d r a u l i c c y l i n d e r ;s i m u l a t i o n 非对称液压缸具有结构紧凑、工作可靠及生产成本低等优点,因而广泛应用于车辆、工程机械、矿山机械等的液压系统中。非对称液压缸作为液压系统的主要执行元件,其动态特性是评价液压系统性能 的一个重要指标[1-3]。非对称液压缸在输入流量或负载发生变化时,输出压力会发生变化,活塞就会出

建立阀控缸系统负载流量方程时值得注意的问题

建立阀控缸系统负载流量方程时值得注意的问题 刘春荣 !""#$"%&$&$’(#)"%$*"+#,&&-./&0123)"%&$&4 5)/6#’&$"(&//#-’7/%$-#(879"#: ,%3’+3$;(&$* (东北大学<=>信箱,辽宁省沈阳市==???@电话: (?AB)A<>=BCBD) 摘要:对于阀控缸系统进行动态分析时,必然要用到负载流量。在建立负载流量方程时,有的文献上却出现了不易察觉的错误,这将直接影响到对系统进行正确的动态分析。文章分析了产生这种错误的 原因,指出了正确求出阀控缸系统负载流量的关键。 关键词:阀控制;负载流量;压缩性流量 中图分类号:EF=B@—),男,辽宁省锦州市人,副教授,硕士,从事流体传动与控制方面的教学与科研工作。 # ################################################################# B B液压与气动A??=年第B期 万方数据

(完整版)液压缸选型参考

【液压缸选定程序】 程序1:初选缸径/杆径(以单活塞杆双作用液压缸为例) ※ 条件一 已知设备或装置液压系统控制回路供给液压缸的油压P、流量Q及其工况需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)的大小(应考虑负载可能存在的额外阻力)。针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下: (1)输出力的作用方式为推力F1的工况: 初定缸径D:由条件给定的系统油压P(注意系统的流道压力损失),满足推力F1的要求对缸径D进行理论计算,参选标准缸径系列圆整后初定缸径D; 初定杆径d:由条件给定的输出力的作用方式为推力F1的工况,选择原则要求杆径在速比1.46~2(速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需结合液压缸回油背压、活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径d的选择。 (2)输出力的作用方式为拉力F2的工况: 假定缸径D,由条件给定的系统油压P(注意系统的沿程压力损失),满足拉力F2的要求对杆径d进行理论计算,参选标准杆径系列后初定杆径d,再对初定杆径d进行相关强度校验后确定。 (3)输出力的作用方式为推力F1和拉力F2的工况: 参照以上(1)、(2)两种方式对缸径D和杆径d进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。 ※ 条件二 已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)大小(应考虑负载可能存在的额外阻力)。但其设备或装置液压系统控制回路供给液压缸的油压P、流量Q等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。 (2)根据本设备或装置的作业特点,明确液压缸的工作速度要求。 (3)参照“条件一”缸径/杆径的初选方法进行选择。 注:缸径D、杆径d可根据已知的推(拉)力、压力等级等条件由下表进行初步查取。 不同压力等级下各种缸径/杆径对应理论推(拉)力表

比例阀控制系统传递函数Word版

0 引言 最近10年来发展起来的电液比例控制技术新成员——伺服比例阀,实际上是电液比例技术与电液伺服阀的进一步的“取长补短”式的融合。伺服比例阀(闭环比例阀)内装放大器,具有伺服阀的各种特性:零遮盖、高精度、高频响,但其对油液的清洁度要求比伺服阀低,具有更高的工作可靠性。 电液伺服控制系统多数具有良好的控制性能,并具有一定的鲁棒性,有广泛的应用。电液伺服系统的动态特性是衡量一套电液伺服系统设计及调试水平的重要指标。电液伺服系统由电信号处理装置和若干液压元件组成,元件的动态性能相互影响,相互制约及系统本身所包含的非线性,致使其动态性能复杂,因此,电液伺服控制系统的仿真受到越来越多的重视。 电液技术的不断发展和人们对电液系统性能要求的不断提高,了解电液伺服系统过程中的动态性能和内部各参变量随时间的变化规律,已成为电液伺服系统设计和研究人员的首要任务在系统工作过程中,主要液压元件的动态响应、系统各部分的压力变化,执行元件的位移和速度等,都是人们非常关心的。 本文以电液伺服比例阀控液压缸为例,针对Matlab/Simulink 在电液伺服控制系统仿真分析中的局限性,采用AMESim 和Matlab/Simulink 联合仿真模型,取得了良好的效果。 1 系统组成及原理 电液伺服控制系统根据被控物理量(即输出量)分为电液位置伺服系统,电液速度伺服系统,电液力伺服系统三类。本文主要介绍电液位置伺服系统的仿真研究。其中四通阀伺服比例阀控液压缸的原理如图所示。

图1 阀控缸-负载原理图系统组成图 电液位置伺服控制系统是最为常见的液压控制系统,实际的伺服系统无论多么复杂,都是由一些基本元件组成的。控制系统结构框图见图2所示。 图2 电液伺服控制系统的结构框图

各种液压阀在液压系统中的作用

1.液压阀——方向控制阀 按用途分为单向阀和换向阀。单向阀:只允许流体在管道中单向接通,反向即切断。换向阀:改变不同管路间的通﹑断关系﹑根据阀芯在阀体中的工作位置数分两位﹑三位等;根据所控制的通道数分两通﹑三通﹑四通﹑五通等;根据阀芯驱动方式分手动﹑机动﹑电动﹑液动等。图2为三位四通换向阀的工作原理。P 为供油口,O 为回油口,A ﹑B 是通向执行元件的输出口。当阀芯处於中位时,全部油口切断,执行元件不动;当阀芯移到右位时,P 与A 通,B 与O 通;当阀芯移到左位时,P 与B 通,A 与O 通。这样,执行元件就能作正﹑反向运动。 60年代后期,在上述几种液压控制阀的基础上又研制出电液比例控制阀。它的输出量(压力﹑流量)能随输入的电信号连续变化。电液比例控制阀按作用不同,相应地分为电液比例压力控制阀﹑电液比例流量控制阀和电液比例方向控制阀等。 2.液压阀——流量控制阀 利用调节阀芯和阀体间的节流口面积和它所产生的局部阻力对流量进行调节,从而控制执行元件的运动速度。流量控制阀按用途分为5种。 (1)节流阀:在调定节流口面积后,能使载荷压力变化不大和运动均匀性要求不高的执行元件的运动速度基本上保持稳定。(2)调速阀:在载荷压力变化时能保持节流阀的进出口压差为定值。这样,在节流口面积调定以后,不论载荷压力如何变化,调速阀都能保持通过节流阀的流量不变,

从而使执行元件的运动速度稳定。(3)分流阀:不论载荷大小,能使同一油源的两个执行元件得到相等流量的为等量分流阀或同步阀;得到按比例分配流量的为比例分流阀。(4)集流阀:作用与分流阀相反,使流入集流阀的流量按比例分配。(5)分流集流阀:兼具分流阀和集流阀两种功能 3.液压阀——压力控制阀 按用途分为溢流阀﹑减压阀和顺序阀。(1)溢流阀:能控制液压系统在达到调定压力时保持恒定状态。用於过载保护的溢流阀称为安全阀。当系统发生故障,压力升高到可能造成破坏的限定值时,阀口会打开而溢流,以保证系统的安全。(2)减压阀:能控制分支回路得到比主回路油压低的稳定压力。减压阀按它所控制的压力功能不同,又可分为定值减压阀(输出压力为恒定值)﹑定差减压阀(输入与输出压力差为定值)和定比减压阀(输入与输出压力间保持一定的比例)。(3)顺序阀:能使一个执行元件(如液压缸﹑液压马达等)动作以后,再按顺序使其他执行元件动作。油泵产生的压力先推动液压缸1运动,同时通过顺序阀的进油口作用在面积A 上,当液压缸1运动完全成后,压力升高,作用在面积A 的向上推力大於弹簧的调定值后,阀芯上升使进油口与出油口相通,使液压缸2运动。 4.液压阀的作用和简介 用于降低并稳定系统中某一支路的油液压力,常用于夹紧、控制、润滑等油路。有直动型、先导型、叠加型之分。

液压系统比例阀控制器

第六章 液壓系統比例閥控制器 6.1 前言 比例控制閥主要用於開迴路控制(open loop control);比例控制閥的輸出量與輸入信號成比例關係,且比例控制閥內電磁線圈所產生的磁力大小與電流成正比。 在傳統型式的液壓控制閥中,只能對液壓進行定值控制,例如:壓力閥在某個設定壓力下作動,流量閥保持通過所設定的流量,方向閥對於液流方向通/斷的切換。因此這些控制閥組成的系統功能都受到一些限制,隨著技術的進步,許多液壓系統要求流量和壓力能連續或按比例地隨控制閥輸入信號的改變而變化(圖6-1.1)。液壓伺服系統雖能滿足其要求,而且精度很高,但對於大部分的工業來說,他們並不要求系統有如此高的品質,而希望在保證一定控制性能的條件下,同時價格低廉,工作可靠,維護簡單,所以比例控制閥就是在這種背景下發展起來的。 比例控制閥可分為壓力控制閥,流量控制及方向控制閥三類(如圖6-1.2所示)。 1.壓力控制閥:用比例電磁閥取代引導式溢流閥的手調裝置便成為 引導式比例溢流閥,其輸出的液壓壓力由輸入信號連續 或按比例控制。 2.流量控制閥:用比例電磁閥取代節流閥或調速閥的手調裝置而以 輸入信號控制節流閥或調速閥之節流口開度,可連續或 按比例地控制其輸出流量。故節流口的開度便可由輸入 信號的電壓大小決定。 3.方向控制閥:比例電磁閥取代方向閥的一般電磁閥構成直動式比 例方向閥,其滑軸不但可以換位,而且換位的行程可以 連續或按比例地變化,因而連通油口間的通油面積也可 以連續或按比例地變化,所以比例方向控制閥不但能控 制執行元件的運動方向外,還能控制其速度。 以上各種比例閥所作動的液壓元件為液壓缸或液壓馬達。

液压缸设计

第一章液压系统设计 1.1液压系统分析 1.1.1 液压缸动作过程 3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。1.1.2液压系统设计参数 (1)合模力; (2)最大液压压28Mp; (3)主缸行程700㎜; (4)主缸速度υ 快=38㎜/s、 υ 慢=4.85㎜/s。 1.1.2分析负载 (一)外负载压制过程中产生的最大压力,即合模力。 (二)惯性负载 设活塞杆的总质量m=100Kg,取△t=0.25s (三)阻力负载 活塞杆竖直方向的自重 活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。 静摩擦阻力 动摩擦阻力 由此得出液压缸在各个工作阶段的负载如表****所示。

表*** 液压缸在各个工作阶段的负载F 工况负载组成负载值F工况负载组成负载值F 启动981保压3150×103加速537补压3150×103快速491快退+G10301按上表绘制负载图如图***所示。 F/N v/mm·s-1 537 491 981 38 4.85 0 l/mm 0 l/mm -491 -981 -38 由已知速度υ 快=38㎜/s、 υ 慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如 图***所示。 1.2确定执行元件主要参数 1.2.1 液压缸的计算 (一)液压缸承受的合模力为3150KN,最大压力p1=28Mp。 鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。 由合模力和负载计算液压缸的面积。 将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:

阀控非对称缸液压伺服系统建模与仿真分析

煤矿机械 Coal Mine Machinery Vol.32No.10Oct.2011 第32卷第10期2011年10月 引言 随着水下机器人技术的不断发展,水下机器人的作业范围和作业水深不断增加。在恶劣的海洋环境下,要完成复杂的水下作业任务,水下机器人上搭载的机械手的作用显得尤为重要。没有机械手,水下机器人充其量只是一个观察探测台架。目前,水下机械手多为液压驱动关节式,主要包括线性关节和转动关节,线性关节主要依靠直线液压缸的伸缩实现有限范围内的摆动,转动关节则依靠液压马达实现有限范围的转动或连续回转,每个关节都可以通过液压伺服系统精确控制,实现机械手自身的作业动作。 阀控非对称缸是水下液压机械手的重要驱动环节,由于其结构的不对称及非线性等特点,可能产生跳跃谐振或等幅振荡,直接影响整个机械手液压伺服系统的动态特性。本文主要研究水下液压机械手线性关节的阀控非对称缸位置伺服系统,在具体分析阀控非对称缸控制特性的基础上进行动态特性的推导、建模及仿真,为各线性关节伺服控制系统的设计和分析提供参考。 1阀控非对称液压缸位置伺服系统建模 以非对称液压缸为研究对象,进行动态特性分 析和数学建模,系统物理模型如图1所示。 图1 伺服阀控非对称液压缸模型 (1)伺服阀的负载压力-流量特性 图1中,各物理量以箭头方向为正,以液压缸正向移动Y >0为例,伺服阀的流量方程为 Q 1=C d WX v 2(p s -p 1)/r 姨=A 1d y (1)Q 2=C d WX v 2p 2/r 姨=A 2d y d t (2)式中Q 1———液压缸无杆腔流量,m 3/s ; Q 2——— 液压缸有杆腔流量,m 3/s ;C d ——— 阀的流量系数,取c d =0.7;W ——— 窗口面积梯度,m ;X v ——— 伺服阀位移,m ;p 1——— 伺服阀无杆腔压力,MPa ;p 2——— 伺服阀有杆腔压力,MPa ;p s ——— 油源压力,MPa ;r ——— 液压油密度,kg/m 3。流经伺服阀2个节流窗口的流量并不等于负载流量Q L ,定义为 阀控非对称缸液压伺服系统建模与仿真分析 李玲珑 1,2 ,孙斌1,张奇峰1 (1.机器人学国家重点实验室中国科学院沈阳自动化研究所,沈阳110016;2.中国科学院研究生院,北京100039) 摘要:结合水下液压机械手线性关节的阀控非对称缸位置伺服系统,分析了阀控非对称缸的负载压力-流量特性,建立了阀控缸流量连续性方程和液压缸的力平衡方程,推导了阀控缸位置控制系统动态特性的数学模型,只增加负载环节就可以构成新的液压伺服系统模型。采用MAT -LAB 软件对阀控缸位置控制系统进行动态特性仿真分析,验证了系统模型的正确性。 关键词:液压位置伺服控制;阀控非对称缸;仿真中图分类号:TH137.5文献标志码:A 文章编号:1003-0794(2011)10-0089-03 Model and Simulation Analysis of Asymmetrical Hydraulic Cylinder Controlled by Servo-valve LI Ling-long 1,2,SUN Bin 1,ZHANG Qi-feng 1 (1.State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016, China;2.Graduate School of the Chinese Academy of Sciences,Beijing 100049,China ) Abstract:Based on asymmetric cylinder position servo system of linear joints of underwater hydraulic manipulator,Load pressure-flux characteristics of asymmetric cylinder controlled by servo-valve was analyzed.Flux continuity equation of cylinder controlled by servo -valve and the balance equation of hydraulic cylinder were established.The dynamic characteristics mathematics model for position control system in cylinder controlled by servo-valve was deduced,a new hydraulic servo control system would be obtained through changing load based on this model .MAT-LAB language software was used to carry through dynamic characteristics simulation analysis for position control system in cylinder controlled by servo-valve. Key words:hydraulic position servo control ;asymmetrical cylinder controlled by valve ;simulation p 1 p 2 p 5A 2 A 1V 2 V 1 Q 2Q 1 p r X M B y K e F l Y 89

解决液压系统同步的有效方法

解决机械设计中四只油缸工作同步的有效方法在机械行业液压系统设计中,长期以来,一套液压站油路控制四只相同油缸工作中的同步,是一项比较难以解决的难题。 本人在公司机械产品设计中,设计了一套液压站及油管布线图,在联接液压站阀块与机械上油缸的管路系统上新增采用了同步阀,终于解决了这一难题。现提供液压站油路控制四只相同油缸工作中的同步,与大家交流,供参考。 1.在油管路上,设计增加了3只同步阀(见下图)。同步阀规格的选用,视油管孔径及油管接头规格,可上网查找相应的同步阀。 2.在机械产品的油管路设计上,要用相同规格的无缝钢管,即使用油管内径相同的油管。 3.从液压站阀块出油口接头至同步阀1后,从同步阀1两出油口至同步阀2和同步阀3的进油口油管长度要相等,油管需弯曲时,控制弯曲半径相等。 4.从同步阀2和同步阀3的出油口至4只油缸的上腔进口的油管长度要相等,油管需弯曲时,控制弯曲半径相等。

5.从4只油缸的下腔出油口的油管至液压站阀块进油口的长度要相等,油管需弯曲时,控制弯曲半径相等。 6.同步阀在出厂之前,均已调试好,在按上述5点要求安装好后,即可进行调试,在调试时,一般同步阀不需调整,即可达到4只油缸同步的目的,如四只相同油缸工作中还有差异,则对同步阀进行微调,就可达到四只相同油缸工作同步的要求。 7.根据以上原理,可方便解决2只油缸、3只油缸……N只油缸工作的同步问题。 1、两个油缸外载荷的偏差,如两个液压油缸的阻力不同、摩擦力不同会导致不平衡。其中阻力小的油缸位移量就会大一些。 2、内部摩擦力的不同,如每个油缸的活塞与油缸之间,活塞杆与密封件之间的摩擦里的差距导致油缸不同步。 3、两个油缸的输油管路上液压油沿程阻力的不同导致油缸出现不同步。 4、控制原件调整的偏差导致流量的偏差出现不同步,如每个油缸使用独立的节流阀会出现进出油的流量的差别影响到两个油缸的同步。 5、被支撑件的油缸支撑点最初就已经出现偏差,即初始状态就是偏斜的。 6、液压油缸使用时间过长后出现活塞与油缸之间内泄漏导致双油缸不同步。 双油缸运行不同步的解决办法:

第六章电液比例阀与比例控制回路(2015)

第六章
电液比例阀及 比例控制回路
6.1 概述
本 章 介 绍
6.2 电液比例阀 6.3 电液比例控制基本回路 6.4 电液比例控制工业应用

6.1 概述
从广义讲,凡是输出量,如压力、流量、位移、速度、加速 度等,能随输入信号连续地按比例地变化的控制系统,都称 为比例控制系统。从这个意义上说,伺服控制也是一种比例 控制。电液比例控制可以分为开环控制和闭环控制。
图6-1 电液比例开环控制系统方框图
图6-2 电液比例闭环控制系统方框图

目前,最常用的分类方式是按被控对象(量或参数)来进行分 类。则电液比例控制系统可以分为: 比例流量控制系统 比例压力控制系统 比例流量压力控制系统 比例速度控制系统 比例位置控制系统 比例力控制系统 比例同步控制系统

电液比例控制技术的发展动力
1.传统的液压控制方式是开关型控制。它通过电磁驱动或手动驱动来 实现液压流体的通、断和方向控制,从而实现被控对象的机械化和自 动化。但是这种方式无法实现对液流流量、压力连续地按比例地控制 ,同时控制的速度比较低、精度差、换向时冲击比较大。
2.当需要高性能的速度或位置控制时,以前电液伺服阀曾经是唯一实 用的解决办法。电液伺服阀是一种高技术条件的方向和流量控制阀, 不可避免地带来成本高、不耐污染、维修不便等问题。在并不需要伺 服阀的全部性能潜力的应用场合,这些问题可能成为主要的缺点。
3.发展电液比例阀的主要目的在于填补从简单的通/断电磁阀控制与复 杂的电液伺服控制之间的空白。虽然比例阀的部分性能指标不如伺服 阀,但对许多应用场合来已经够用了,同时可以体现出明显的成本和维 护优势。

GD系列模拟比例阀控制器接线及使用说明(V50高达版)

GD-PVAA-2430-11-Bx型电子放大器(电液比例控制器) 欧式板,用于单电磁铁带阀芯位置反馈的比例阀 GD-PVAA-2430-11-Bx型电液比例控制器用于 控制4WRE10-10/24型带阀芯位置反馈的直动式两位 四通比例方向阀,根据误差信号的大小,提供相应电 磁铁电流,调节阀芯位置。 放大器按照输入电压的变化成比例地控制阀芯 位置,对电磁铁提供适量电流。具有非对称上升/下降 斜坡发生器和PDF控制器,可对阀作出精确调整。 放大器在出厂前已与配用的比例阀进行了统调, 具有优化而稳定的特性。 命名规则 GD - PVA A - 24 30 - 11 - BVJE GA-Atos 比例放大器11-1路输入1路输出B- 板式结构 兼容出线A--模拟型21-2路输入1路输出M- 模块结构GD-力士乐D--数控型12-1路输入2路输出V- 输入电压控制兼容出线24-输入电压24V 22-2路输入2路输出I - 输入电流控制 30-输出电流3A J- 军品 15-输出电流1.5A E - 使能端有效 1. 方框图

2. 主要特性(硬件版本:V5.x ) 3. 一般技术条件 3.1. 电源要求 电液比例控制器使用24V 直流供电。电源必须经过适当的稳压,或整流滤波。电源应能够输出功率100W ,如果电源为单相整流器,需要外接10000uF/40V 电容器滤波;如果电源使用的是三相整流器,可以外接4700uF/40V 滤波电容器。 3.2. 接线要求 ? 所有输入控制电压信号线和位移传感器接线必须使用带屏蔽接地线的屏蔽电缆,并将屏蔽地线紧固在电路板屏蔽盒的固定螺母处,也可以直接接地线端(10A 或10C ),远电路板端开路。 ? 电磁铁接线:电缆<20米时,截面为2×1mm 2 ;屏蔽电缆<40米时,截面为2×1.5mm 2 。 ? 位移传感器接线:屏蔽电缆<20米时,截面为3×0.25mm 2 ;屏蔽电缆<40米,截面为3×0.5mm 2 。 3.3. 输入信号 电液比例控制器接受外部输入的控制电压信号(V 型)或电流信号(I 型)。外部输入的控制电压信号一般来自可编程控制器(PLC )、控制微机、函数发生器等控制装置,也可以简单地来自一般电位器,电流信号同样可以来自上述自动化装置,也可以来自某些位置传感器。 电源 正极接6A (或6C ) 负极接10A (或10C ) 额定 :24V DC 有前面板“电源”绿色指示灯 整流及滤波:V RMS =21-27V (最大脉冲峰值=2Vpp ) 供给电磁铁电流 I MAX =3.3A ,PWM 型方波 额定输入控制电压 (工厂预调) GD-PVAA-2430-11-BV :支持±10V 输入模式; GD-PVAA-2430-11-BI :支持4-20mA 输入电流模式 信号输入阻抗 GD-PVAA-2430-11-BV :电压信号Ri>100K Ω; GD-PVAA-2430-11-BI :Ri=100Ω 电位器供电 相对于18AC ,接点16AC 供+10V/10mA ,接点26A 供-10V/-10mA 输出电流使能信号 向接点20A 提供+9V ~ +24VDC ,使能功率输出电路,接点20A 悬空或接信号地,禁止功率输出,前面板“故障”红色指示灯复用 斜坡供电 0.02-5S ;需要提供使能信号(短路8A 和28A ) 断线/短路保护指示 前面板“故障”红色指示灯,指示位移传感器断路,或电磁铁负载短路,或无使能信号 插板格式 欧式100X160mm (见DIN41494标准中的插板单元) 配用连接支架 型号为GD-PVAB-1,匹配有DIN41612/D 凸头及接线端子 位移传感器驱动信号频率 2.5kHz 工作温度 0~40℃(军品 -40~60℃)

液压缸设计说明书

1 设计课题 1.1设计要求 设计一台铣削专用机床液压系统用液压缸,要求液压系统完成的工作循环是:工件夹紧→工作台快进→工作台工进→工作台快退→工件松开。 1.2原始数据 运动部件的重力为25000N,快进、快退速度为5m/min,工进速度为100~1200mm/min,最大行程为400mm,其中工进行程为180mm,最大切削力为20000N,采用平面导轨,夹紧缸的行程为20mm,夹紧力为30000N,夹紧时间为1s。

2 液压系统的发展概况 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。 由于液压技术广泛应用了高技术成果,如自动控制技术、计算机技术、微电子技术、磨擦磨损技术、可靠性技术及新工艺和新材料,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。 液压系统在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题:减少元件和系统的内部压力损失,以减少功率损失。主要表现在改进元件内部流道的压力损失,采用集成化回路和铸造流道,可减少管道损失,同时还可减少漏油损失。 减少或消除系统的节流损失,尽量减少非安全需要的溢流量,避免采用节流系统来调节流量和压力。采用静压技术,新型密封材料,减少磨擦损失。发展小型化、轻量化、复合化、广泛发展通径电磁阀以及低功率电磁阀。改善液压系统性能,采用负荷传感系统,二次调节系统和采用蓄能器回路。为及时维护液压系统,防止污染对系统寿命和可靠性造成影响,必须发展新的污染检测方法,对污染进行在线测量,要及时调整,不允许滞后,以免由于处理不及时而造成损失。 液压系统维护已从过去简单的故障拆修,发展到故障预测,即发现故障苗头时,预先进行维修,清除故障隐患,避免设备恶性事故的发展。 要实现主动维护技术必须要加强液压系统故障诊断方法的研究,当前,凭有经验的维修技术人员的感宫和经验,通过看、听、触、测等判断找故障已不适于现代工业向大型化、连续化和现代化方向发展,必须使液压系统故障诊断现代化,加强专家系统的研究,要总结专家的知识,建立完整的、具有学习功能的专家知识库,并利用计算机根据输入的现象和知识库中知识,用推理机中存在的推理方法,推算出引出故障的原因,提高维修方案和预防措施。要进一步引发液压系统故障诊断专家系统通用工具软件,对于不同的液压系统只需修改和增减少量的规则。 另外,还应开发液压系统自补偿系统,包括自调整、自润滑、自校正,在故障发生之前,进市补偿,这是液压行业努力的方向。 电子技术和液压传动技术相结合,使传统的液压传协与控制技术增加了活力,扩大了应用领域。实现机电一体化可以提高工作可靠性,实现液压系统柔性化、智能化,改变液压系统效率低,漏油、维修性差等缺点,充分发挥液压传动出力大、贯性小、响应快等优点,其主要发展动向如下:[1]

液压系统伺服比例阀数字控制技术研究

液压气动与密封/2015年第03期 收稿日期:2014-12-08 作者简介:须民健(1984-),男,重庆人,工程师,硕士,研究方向:智能工程机械设备、智能交通。 doi:10.3969/j.issn.1008-0813.2015.03.009 0引言 在采用伺服比例控制的液压系统中,力值的精确 控制是衡量系统性能最重要的技术指标,控制的基本原理是通过调节伺服比例阀线圈电流控制阀芯开口,以达到流量及压力的控制。而对伺服比例阀线圈电流的控制,目前有模拟控制和数字控制两种方式。模拟控制以V/I 转换电路、运算放大电路、功率放大电路、可调电位器为主组成控制放大器,控制比例阀比例电磁铁线圈电流和衔铁推力的大小,从而改变其阀口大小[1]。由于模拟器件自身固有的缺点,如元件温漂大、分散性大、对外围阻容元件参数依赖性大等,使得模拟控制的功能较为单一、控制参数难以灵活调整和量化处理,此外,模拟控制器与计算机之间无法实时通信,不能实现力值的闭环控制,严重影响了设备的自动化与智能化的水平。所以,本文介绍了一种伺服比例阀的数字控制技术,采用微型处理器与比例阀控制芯片实现比例电磁铁线圈电流的数字控制与精密控制,具有响应快、控制灵活、集成度高、稳定性好、易于扩展应用等特点。 1比例阀特性与控制芯片选择 1.1比例阀特性 比例阀是液压控制系统中关键控制部件之一,其 电-机械转换装置采用比例电磁铁,它把来自比例控制 放大器的电流信号转换成力或位移。其工作原理是将两端的等效电压转换成正比的电流信号,进而产生与电流成正比例的阀心位移[2]。比例阀的特性及工作可靠性,对电液比例控制系统和组件具有十分重要的影响,比例电磁铁产生的推力大,结构简单,对油质要求不高,维护方便,成本低廉[3]。为研究需要,本文采用德国Have 公司的PWVP 型比例阀进行研究与实验,压力控制范围为0~700bar ,与电气控制相关的主要技术参数如表1: 表1比例阀电气参数表 参数名称技术指标 额定电压(U N )24V 线圈电阻(R 0) 24?冷态电流(I 0) 1A 额定电流(I N ) 0.63A 冷态功率(P 0) 24W 额定功率(P N )9.5W 颤振频率(F )60~150Hz 颤振幅值(A m )(0.2~0.4)×I0 由于比例阀线圈磁铁的磁滞特性和运动的摩擦[4],会导致比例阀的稳态特性存在滞环现象,影响阀的动态响应性能,减小滞环的有效方法是在比例阀电流信号中叠加一定频率的颤振信号,给电磁铁一个间断的脉冲电流,使阀芯一直处于非常小的运动状态,可防止阀芯卡死。颤振频率一般取值为60~150Hz ,颤振幅值不宜太大,过大易引起输出电流及负载特性的变化,一般取值为冷态电流的30%。当额定电压为24V 时,PWVP 型比例阀实际的控制电流范围为0.1~0.63A ,其 液压系统伺服比例阀数字控制技术研究 须民健,李文锋,廖强,习燕 (招商局重庆交通科研设计院有限公司,重庆400067) 摘要:介绍了液压系统中伺服比例阀的功能及特性,对几种常用的比例阀数字控制芯片进行了分析和对比,采用了基于ARM 内核LPC1112处理器和TLE7242控制芯片的硬件设计方案,进行了电路设计及驱动软件设计,完成对比例电磁铁的数字控制和精密控制,进一步提高了液压系统的智能化程度。关键词:液压系统;比例阀;数字控制;TLE7242;比例电磁铁 中图分类号:TH137 文献标志码:A 文章编号:1008-0813(2015)03-0032-03 Research of Proportional Valves Digitally Control Technology for Hydraulic System XU Min-jian,LI Wen-feng,LIAO Qiang,XI Yan (China Merchants Chongqing Communications Reserch&Design Institute Co.,Ltd.,Chongqing 400067,China) Abstract :Introduce the functions and features of servo proportional valve for hydraulic system,analyzed and compared for several common digital control chip of proportional valve,using the LPC1112ARM core-based processor and TLE7242,make the design of hardware circuit and conduct driver software,to complete digital control and precise control of the proportional solenoid,and further improve the intelligence of the hydraulic system. Key words :hydraulic system;proportional valve;digital control;TLE7242;proportion electro-magnet 32

相关文档
最新文档