第13章-随机振动试验复习过程

第13章-随机振动试验复习过程
第13章-随机振动试验复习过程

第13章-随机振动试

第13章随机振动试验

13.1 试验目的、影响机理、失效模式

产品在运输和实际使用中所遇到的振动,绝大多数就是随机性质的振动(而不是正弦振动)。例如,宇航器和导弹在发射和助推阶段的振动;火箭发动机的噪声和气动噪声使结构产生的振动;飞机(特别是高速飞机)的大功率喷气发动机的振动;飞机噪声使飞机结构产生的振动和大气湍流使机翼产生振动;飞机着陆和滑行时的振动;车辆在不平坦的道路上行驶时产生的振动;多变的海浪使船舶产生的振动等等都属于随机性质的振动。因此,随机振动试验才能更真实反映产品的耐振性能。

随机振动和正弦振动相比,随机振动的频率域宽,而且有一个连续的频谱,它能同时在所有频率上对产品进行激励,各种频率的相互作用远比用正弦振动仅对某些频率或连续扫频模拟上述振动的影响更严酷更真实和更有效。另外,用随机振动来研究产品的动态特性和结构的传递函数比用正弦振动的方法更为简单和优越。

随机振动和正弦振动一样能造成导线摩擦、紧固件松动、活动件卡死,从而破坏产品的连接、安装和固定。当随机振动激励造成的应力过大时,会使结构产生裂纹和断裂,特别在严重的共振状态下更为显著。长时间的随机振动,由于交变应力所产生的累积损伤,会使结构产生疲劳破坏。随机振动还会导致触点接触不良、带电元件相互接触或短路、焊点脱开、导线断裂以及产生强电噪声等。从而破坏产品的正常工作,使产品性能下降、失灵甚至失效。

为了能在试验室内模拟产品在现场所经受到的实际随机振动及其影响,工程技术人员为此付出了许多的努力。早在六十年代,国际上对随机振动的研究就十分活跃。不仅在理论上有了重大突破,而且有了较完善的试验方法和试验设备。1962年美国军标810中首先规定了随机振动试验方法。1964年英国国防部标准07-55中也提出了随机振动试验。1973年IEC公布了四个具有不同再现性宽带模拟式随机振动试验方法,到上世纪90年代又公布了数字式随机振动试验方法。目前国内的随机振动试验已很普及,随机振动试验设备,特别是一般用途的随机振动控制仪价格也不高。

13.2 随机振动的描述

在随机振动试验中,由于振动的质点处于不规则的运动状态,永远不会精确的重复,对其进行一系列的测量,各次记录都不一样,所以没有任何固定的周期。在任何确定的时刻,其振幅、频率、相位都不能预先知道,因此就不可能用简单的周期函数和函数的组合来描述。图13-1为典型的宽带随机振动时间历程。

图13-1 典型的宽带随机振动时间历程

由图13-1可见,随机过程最明显的特点是非周期性,瞬时值无法预测;但并非无规律可言,而是表现出统计规律性。因此对随机信号的研究,处理和分析必须用统计的方法来进行。对某一随机过程,通常用下列四个方面的信息来描述它:

时域:有平均值、均方值、均方根值、方差等。

幅值域:有概率分布、概率密度等。

时差域:有自相关函数、互相关函数。

频率域:有自功率谱密度、互功率谱密谋、频率响应函数以及相干函数。 随机过程有平衡的和非平稳的,有各态历经的和非各态历经的。有正态分布的和非正态分布的。在随机振动试验的范畴内,通常假定为平稳的、各态历经的,并且是正态分布的。所以本文的叙述都是从这一假定出发的。 13.2.1 时域信息

(1)平均值

它描述一随机变量或一组数据的平均状态。在数理统计和概率论中,此值称为数学期望,表示随机变量的位置特性。其数学表达式为:

?=T dt t x T X 0

)(1 (13-1)

在随机振动理论中,通常将平均值取为零,所以在随机振动试验中此值不常用。

(2)方均值

在随机振动试验中,方均值表示试验能量的大小,由于平均值取为零,故方均值就是方差,它描述一随机变量或一组数据在平均值周围的分散性,即在平均值上下的波动大小。其数学表达式为:

x 2 =dt t T T x )(10

2? (13-2)

(3)方均根值

它描述一随机变量或一组数据在平均值周围的集中程度。在随机振动理论中,由于将平均值取为零,所以方均根值就是标准偏差。其数学表达式为:

x 2?=T dt t x T

02)(1 (13-3)

此值在随机振动试验中表示有效幅值的大小。

13.2.2 幅值域信息

(1)幅值的概率分布

幅值的概率分布是描述随机振动瞬时幅值低于某一特定值的概率,它与幅值概率密度一道描述了随机振动瞬时幅值大小的分布规律。典型的幅值概率分布曲线如图13-2所示:

P(x)

-∞ 0 x 1 幅值 +∞

图13-2 幅值的概率分布曲线

由图13-2可见,P (x )是幅值x 的函数。幅值小于X 1的概率为P (X 1),幅值趋于正无穷大的概率P (+∞)≤1,,幅值趋于负无穷大的概率P (-∞)≥0,所以幅值的概率分布范围为0≤P (X )≤1,该分布主要用于对随机信号的分析和研究中,而在随机振动试验中不常用。

(2)幅值的概率密度

幅值的概率密度表示随机振动瞬时幅值落在某一区间内的概率。在随机振动试验中,幅值的概率密度曲线为正态分布曲线,并且平均值为零。为了分析方便,通常还将标准偏差σ规范化为1。其数学表达方式为: 2

221)(x e x P -=π

(13-4)

幅值的概率密度曲线如图13-3

图13-3 正态分布概率密度曲线

-5 -4 -3 -2 -1 0 1 2 3 4 5

由图13-3可见,概率密度曲线下的面积为1,所以通过概率密度曲线就很容易知道某瞬时幅值出现的概率,例如瞬间幅值为图13-3中的-(X +△X )的概率,就是概率密度曲线下那个长方条的面积。同时由图13-3还可以看出,随机振动的瞬间值大于3倍方均根值(+3ms )和小于3倍方均根值(-3rms )出现的概率非常小,约占0.26℅。在+3rms 和-3rms 之间出现的概率十分大,约占99.74﹪,这就是通常把3rms

值作为随机振动试验最大幅值的依据。当用磁记录仪和数据采集器记录随机振动信号时,要保证3rms 的瞬间幅值不削波。另外,随机疲劳计算时的最大加速度量级也是以3rms 值为依据的。rms 值就是标准偏差σ值,当将标准偏差σ规范化为1时,则这里的3rms 均表达为3σ。

13.2.3 时差域信息

上述的平均值、方均值、方均根值、幅值的概率分布、幅值的概率密度充分描述了随机振动在时域和幅值域中的各种信息,但没有给出频率含量与时间历程之间的信息。这些信息是在自相关函数和互相关函数中给出。

p(x 1)

(1)自相关函数

随机过程X (t )的自相关函数定义为在时刻t 和时刻t+τ的随机变量乘积的平均值,τ是时移,当平均时间T →∞时,平均值的极限便是自相关函数,其数学表达式为: dt t x t x T R x )()(1)(0ττ+=?T (13-5)

自相关函数描述了随机信号在特定时刻的瞬时值如何取决于先前出现的瞬时值。它反映了随机信号本身在不同时刻的相互关系,即间隔时间两侧的随机信号的相互依赖关系,从而在时差域上建立任何时刻的随机量值对未来量值的影响。

自相关函数在随机振动中的主要应用为:

自相关函数可以用来判别是否为宽带随机信号,这是因为对于宽带随机信号来说,当时移τ非常小时,x (t )和x (t+τ)相差很小的概率很大,这时Rx (τ→0)值非常大,表示关系密切。特别当τ=0时,Rx (τ=0)值最大,等于方均值,表示完全相关。当时移τ较大时,x (t )和x (t+τ)相差很小的概率很小。作平均计算正负对消,Rx (τ)值很小。并且随着τ值的增大,Rx (τ→∞)值很快衰减到零,表示x (t )和x (t+τ)之间没有依赖关系,说明对一般的随机振动,时间间隔很远的二个随机量之间不存在任何固定关系。宽带随机信号的自相关函数如图13-4所示:

图13-4 宽带随机的自相关函数

自相关函数可以把随机信号中的周期成份检测出来,这是因为任何周期信号在所有的时移上都有一定形状的自相关函数图形。例如正弦波的自相关函数为余弦形函数,在所有的时移上具有与正弦波一样的周期(相位角信息消失了)。所以对周期信号来说,因为它经过一个周期后又精确的重复过去的时间历程,因此当时移超过该周期时,其自相关函数必然重复前一段的形状。所以若在自相关函数图上发现时移趋于无穷大,Rx (∞)≠0,而有某种周期性,则说明该随机振动信号混有周期信号成分。

自相关函数通过福里叶转换可以得到自功率谱密度,用这种方法易于测量和分析,所以它是随机振动试验的基础与基本参数。

(2)互相关函数

互相关函数表示一随机振动信号x (t )在t 时刻的值和另一随机振动信号y (t+τ)时刻值乘积的平均值,它与自相关函数一样,同样是时移的函数。它表示了二个随机振动信号之间的依赖性。互相关函数的数学表达式:

dt t ty t x R T

t xy ?+=∞→0)()(lim )(ττ (13-6)

在随机振动试验中,利用互相关函数,可以确定一随机振动信号通过一给定系统所需的时间。因为信号在系统中的时间滞后值,可以通过输入和输出的互相关函数中的峰值位置来确定。互相关函数最大值偏离坐标中心位置的时间坐标移动值,就是信号通过系统的所需时间。如果一线性系统的输入通过几个通道输出,利用互相关函数的时移,可以确定那个通道的传输是主要的。互相关函数通过福里叶转换可以得到互功率谱密度。

13.2.4 频率域信息

(1)自功率谱密度

功率谱密度是描述随机振动信号各频率分量所包含的功率,在频率域是如何分布的,是随机振动在频率域上的一种统计特性。

在正弦振动试验中,振动的频率和幅值都是确定的,所以振动的功率(能量)是很清楚的,也是很好计算的。而随机振动由于振动的时间历程是明显的非周期性,所以必须用功率谱密度(方均谱密度)来计算。

随机振动信号可以看作由无限多个简谐运动组成,因此随机振动信号的功率谱便是在给定频率范围内简谐振动功率之和。简谐振动的功率正比于幅值的平方,所以在指定频率上,随机振动信号的功率谱密度为:

dt f t x T PSD T f T ??=→?∞→020

)(1lim (13-7)

上式可见,在指定频率上的功率谱密度就是信号在Δf 中的方均方值的平均值。理想的情况是,平均时间无限长,滤波器的带宽无限窄,这实际是不可能的,因此通常是用有限平均时间和有限带宽,这样PSD =x 2/Δf (方均值/单位间隔频率,故也称方均谱密度)。

功率谱密度在频率范围内的变化形式,即功率谱密度对频率的图型,称功率谱密度的频谱。功率谱密度的频谱还可以这样理解:如果将随机振动信号分割成许多小频带Δf ,并在每个频带上测出方均加速度值,然后除以Δf ,并令Δf →0,这时所得的函数称功率谱密度的频谱。由于功率谱密度的单位为g 2/Hz 即每单位频率上的加速度值的平方,所以在随机振动试验中又称加速度谱密度,功率谱密度的频谱又称加速度谱密度的频谱。功率谱密度(加速度谱密度)的单位由g 2/Hz 和m 2/s 4/Hz 二种表达形式,它们之间的关系为100倍的关系,即1g 2/Hz=100m 2/s 4/Hz 。

功率谱密度除用作提供频率域的信息外,还可以用来分析产品的动态特性、研究疲劳损伤、判别共振等,例如通过功率谱密度可以判明安装在运载工具上使用的产品所经受到的诸振动

中,那一种是主要的,那一种是可以忽略的,从且易于对产品进行设计改进。

(2)互功率谱密度

互功率谱密度描述两随机振动过程之间的频率信息,它不仅能提供按频率分布的能量大小,还能提供二信号之间的相互关系。从互功率谱密度中,我们可以得到系统的频响函数,可以确定振动响应与对其激励的时间关系。

上面介绍了如何用时域、幅值域、时差域和频率域的信号描述随机振动。而当前在试验内模拟现场随机振动,重现的主要是现场随机振动的有效频率成份(频率范围)、功率谱密度(加速度谱密度)、总均方根加速度,即保证这三个参数来自现场振动。但在具体进行随机振动时,振动台面的运动仍是随机振动的时间历程。该时间历程应该是现场随机振动时间历程的典型代表等。

13.3 随机过程

按功率谱谱密度频谱的形状,即按随机过程的频率结构,产品现场出现的随机振动主要有下列形式:

(1) 宽带随机振动

宽带随机振动是指振动的能量分布在一个较宽的频率范围内的振动,一般运载工具,特别是空中运载工具,典型的是喷气式飞机的振动,他们所产生的振动属于宽带随机振动。

(2) 窄带随机振动

窄带随机振动是指振动的能量分布在一个较窄的频率范围内的振动,例如螺旋浆飞机由于螺旋浆叶转动时所带动的的旋转压力场将产生窄带随机振动,窄带随机的中心频率是螺旋浆叶的通过频率及其谐波(一般到4阶),其窄带带宽为其通过频率(中心频率)及其各次谐波的±5%(漂移)。

(3) 宽带+窄带随机振动

上面讲的螺旋浆飞机,除窄带随机振动外,更主要的是各种振源引起的宽带随机振动,所以螺旋浆飞机的振动是宽带+窄带随机振动。又如安装在履带车辆上使用的和通过履带车辆运输的产品,通常会经受到以宽带为主+窄带的随机振动。宽带随机振动来自车辆的基本运动、支承系统、路面不平。窄带随机振动来自履带拍击地面的运动。

(4) 宽带随机振动+周期振动

宽带随机振动+周期振动是指在宽带随机振动上叠加正弦振动,直升飞机的振动往往是在宽带随机振动的基础上叠加很高的正弦振动。宽带随机振动来自直升飞机的各种振源,正弦振动是由直升飞机的的旋转部件产生的,如主旋翼、尾旋翼、发动机和变速箱的振动。

13.4 随机振动试验条件

13.4.1 随机振动试验的试验条件(严酷等级)参数

随机振动试验的试验条件(严酷等级)是由试验频率范围(Hz)、功率谱密度(g2/Hz)、功率谱密度的频谱、总均方根加速度(G rms)、试验时间四个参数组成。

(1) 试验频率范围

频率范围是指产品安装平台的振动对产品产生有效激励的最高频率和最低频率之间的频率。典型的低频通常是取产品最低共振频率的一半或其安装平台

产生明显振动的最低频率;典型的高频是产品最高共振频率的两倍或其安装平台产生明显振动的最高频率,或是可以有效地、机械地传递振动的最高频率。通常认为机械传递的振动的最高频率是取2000Hz,尽管实际上常常会更低。如果需要2000Hz以上的频率,通常需要用噪声来进行。

(2)功率谱谱密度(g2/Hz)和功率谱谱密度的频谱

随机振动是以定义在相关频率范围内的PSD功率谱密度(ASD加速度谱密度)及功率谱谱密度的频谱的形式来表征。功率谱密度(加速度谱密度)是指单位频率上的能量,功率谱谱密度的频谱(加速度谱密度的频谱)是指振动能量在整个频率范围内的分布。

(3)总均方根加速度(G

rms

大家在谈到随机振动试验的试验条件(严酷等级)时,通常或习惯会用总均方根加速度(G rms)来衡量随机振动试验条件的高低或严酷程度,严格来说是不对的,也就是用G rms值来规定振动条件是不对的,因为总均方根加速度(G rms)值是功率谱谱密度的频谱在全频段范围内面积的积分,即方均根值,它不包含任何频率信息。因此G rms值通常用来进行试验误差控制与检测,以及根据试验样品的重量、体积、动态特性来选需多大推力(功率)的振动台。

从上述的叙述可见,评价随机振动试验应力大小的真正判据应该是“在给定频率范围内的加速度谱密度高低,即看随机振动试验的加速度谱密度频谱曲线,而不是看总均方根加速度(G rms S值)的高低”。对这一点,无论是GJB150还是GJB899在给机载设备振动应力时,一般只给出加速度谱密度,从不给出出总均方根加速度(G rms值)。(4)试验时间

试验时间就是进行随机振动的持续时间,通常分为功能(性能)和强度(耐久)二种试验时间。对空中运载工具及空中运载工具上使用的设备,耐久试验的时间通常为功能试验时间的1.6倍。

13.4.2随机振动试验条件要求

与其它环境试验项目一样,对元器件和货架产品(除特殊订货和特殊要求),一般都采用标准中的系列化的试验条件(严酷等级),对军品和新品应采用产品实际安装平台的振动条件。下面就以后者的事例此来说明随机振动试验的条件要求。

(1)宽带随机振动

目前试验室进行的随机振动试验大都是宽带随机振动,下面是来GJB3493 军用物资运输环境条件中解放与东风卡车、60T火车、IL76喷气运输机装货底板(货舱底板)测得的宽带随机振动谱及其用于设计输入和验收考核的宽带随机振动要求。该军标实际是由总装提出、军标中心组织、汇集全国电子、航空、船舶、交通等部门共同制订的。

图13-6 汽车野战运输垂直方向的宽带随机振动谱

图13-7铁路运输垂直方向的宽带随机振动谱

从上面的图13-5、图13-6、图13-7可见,图中的曲线是运输工具经数据分析、处理、归纳(极值包络)出来的频域振动曲线,从图中可以看出该振动曲线可以作为设计输入,但过于复杂,不能作为试验室的试验考核要求。图13-5、图13-6、图13-7的折线是对图中的曲线进行规范化处理得出的,一看大家就知道,这就可以作为试验室进行随机振动试验考核时的条件要求了(即输入随机振动控制仪的数据)。

(2) 扫描随机振动

扫描随机振动试验是指用窄带随机扫过试验所规定的频率范围的试验。其主要试验参数是频率范围、功率谱密度、扫描频速度。扫描随机振动试验主要用在振动台的随机激振能力,不能满足宽带随机振动试验要求的情况下,这是

随机振动名词解释

"脉冲响应函数" 英文对照 impulse response function; "脉冲响应函数" 在学术文献中的解释 1、h(t)是在初始时刻作用以单位脉冲而使单自由度系统产生的响应,所以称为脉冲响应函数.1·1·2频率响应函数H(ω)=1k-ω2m+iωcH(ω)是角频率为ω的单位简谐激励所引起的结构稳态简谐响应的振幅,称为频率响应函数,也称为转换函数 文献来源 2、Yεi,jtt+s作为时间间隔s的一个函数,度量了在其他变量不变的情况下Yi,t+s对Yj,t的一个脉冲的反应,因此称为脉冲响应函数 文献来源 "频率响应函数" 英文对照 frequency response function; "频率响应函数" 在学术文献中的解释 1、频率响应函数是指系统输出信号与输入信号的比值随频率的变化关系它是衡量高速倾斜镜工作性能的一个重要指标.通过抑制谐振峰可以改善高速倾斜镜的使用性能 文献来源 2、经傅利叶变换,得到频域内的导纳(一般用速度导纳来表示)表达式 Hv(ω)=v(ω)F(ω)=jω-ω2M+jωC+K(2)H(ω)又称为频率响应函数 文献来源 3、y(t)=A0eiωty(t)=iωA0eiωt(6)将(6)代入(3)得A0eiωt(RCiω+1)=Ajeiωt(7)和A0Aj=1RCiω+1=U(iω)(8)U(iω)称为频率响应函数 文献来源 "传递函数" 英文对照 transfer function of; transfer function; transfer function - noise; "传递函数" 在学术文献中的解释 1、由于传递函数的定义是两个拉普拉斯变换之比,所以使用时必须准确知道传递函数的类型,即,是位移、速度,还是加速度传递函数,才能避免出错 文献来源 2、而传递函数的定义是两个分量之比为两个传感器之间优势波的传递函数.它给我们的启发是任取两个已知传感器组成一个传递函数通过分析传递函数的特征可以判断两个分量的优势波和非优势波 文献来源

高层楼房震动测试报告

目录 第1章测试的目的 (1) 第 2 章高层建筑结构现场动力特性测试方法 (3) 2.1概述 (3) 2.2 影响高层建筑动力测试的环境因素 (3) 2.3高层建筑结构脉动测试测点分类 (3) 2.3.1水平振动测点 (3) 2.3.2扭转振动测点 (4) 2.4测点及测站布置原则 (4) 2.4.1找好中心位置布置平移振动测点。 (4) 2.4.2在建筑物的两侧布置扭转测点 (4) 2.5 传感器布置的方法 (5) 第3章西安建筑科技大学XX大楼现场动力测试 (6) 3.1 结构概况 (6) 3.2 测试目的 (6) 3.4 测试仪器设备 (6) 3.5 测试方案 (6) 3.6 脉动过程记录 (7) 3.7结果分析 (9) 3.8 结论 (11) 参考文献 (12)

第1章测试的目的 高层建筑结构的动力特性指它的自振频率、振型及阻尼比.虽然这些动力特性可以通过理论计算求得,但通过测试所得的动力特性仍然具有重要意义。主要表现在以下几个方面: ①.检验理论计算 理论计算方法求结构的自振频率时存在误差。于在理论计算过程中,要先确定计算简图和结构刚度,而实际结构往往是比较复杂的,计算简图都要经过简化,常填充墙等非结构构件并不记入结构刚度,而且结构的质量分布、材料实际性能、施工质量等都不能很准确的计算。因此,计算周期与实测周期相比,往往相差很多,据统计,大约前者为后者的1.5--3倍。这样,如果直接采用理论计算的自振周期计算等效地震荷载,往往使内力及位移偏小,设计的结构不够安全。因此,理论周期要用修正系数加以修正。现场实测可以得到建筑物建成后实际的动力特性,因此是准确可靠的。所得数据可以与理论计算数据进行对照比较,验证理论计算,也可为设计类似的对于超高层建筑提供经验及依据。 ②.验证经验公式 通过实测手段对各种不同类型的建筑物进行测试以后,可归纳总结出结构周期的规律,得到计算结构振动周期的经验公式。在估算结构动力特性及估算地震作用时采用经验公式可快速得到结果,方便实用。由于实测周期大都采用脉动试验的方法得到,是反映结构在微小变形下的动力特性,得的周期都比较短,如果激振力加大,结构周期会加长。在地震作用下,随着地震烈度不同,房屋会有不同程度的开裂破坏,刚度降低,自振周期会变长。因此,完全按照脉动测试的周期来确定同类型结构的周期,将使计算等效地震力加大,设计偏于保守。所以由脉动方法得到的实测周期需要乘以修正系数,再计算等效地震力。在大量测试工作和积累了丰富资料的基础上,这个修正系数的大小视结构类型、填充墙的多少而定,大约在1.1-1.5之间。在给出经验公式时,计入这一修正系数,这样既可以简化计算,又与实际周期较为接近。 ③.为结构安全性评估及损伤识别提供依据 建筑结构的质量问题不容忽视,它是直接关系着千家万户的生命财产安全和安居乐业的大事,建筑结构的质量状态评估日益受到人们的重视。传统的经验性的评估方法存在许多缺陷和不足,静力检测结构的缺陷也有许多局限性。动力检测应用于整体结构的质量评估受到国内外学者的广泛关注。近10年来,国内外学者一直在寻找一种能适用于复杂结构整体质量评估的方法。目前,到

公路标准振动台法实验装置试验方法

公路标准振动台法实验装置试验方法 摘要:振动台法实验装置分为公路标准和水利标准,其中水利标准是我公司成熟产品,用于测定粗颗粒土的相对密度即无粘性土,公路标准用于测定无粘性自由排水粗料土、巨料土、(包括堆石料)等。 公路标准振动台法实验装置试验方法(干土法): 1、充分搅拌烘干试样,即使其颗粒分离程度尽可能小;然后大致分成三份。测定并记录空试筒质量。 2、用小铲或漏斗将任一份试样徐徐装入试筒,并注意使颗粒分离程度最小(装填宜使振毕密实后的试样等于或略低于筒高的1/3)抹平试样表面。然后可用橡皮锤或类似物敲击几次试筒壁,使试料下沉。 3、放置合适的加重底板于试料表面,轻轻转动几下,使加重底板与试样表面密合一致。卸下加重底板把手。 4、将试筒固定于振动台面上,装上套筒,并与试筒紧密固定,将合适的加重块置于加重底板上,其上部尽量不与套筒内壁接触。 5、设定振动台在振动频率50Hz下的垂直振动双振幅为0.5mm;或在振动频率60Hz下的垂直双振幅为0.35mm。振动试筒及试样等,在50Hz下振动10min,在60Hz下振动8min。振毕卸去加重块及加重底板。 6、按本规程2—5步骤进行第二层、第三层试料振动压实。但第三层振毕加重底板不再立即卸去。 7、卸去套筒,然后检查加重底板是否与试样表面密合一致,即按压加重底板边缘,看其是否翘起,若翘起则宜在试验报告中注明。 8、将百分表架支杆插入每个试筒导向瓦套中;刷净试筒顶沿面上及加重底板上位于试筒导向瓦两侧测量位置所积落的细粒土,并尽量避免将这些细粒土刷进试筒内,然后分别测读并记录试筒导向瓦每侧试筒顶沿面(中心线处)各三个百分表读数,共12个读数(其平均值即为终了百分表读数Rf)。 9、卸去加重底板,并从振动台面上卸下试筒。在此过程中,尽可能避免加重底板上及试筒沿面上落积的细粒土进入试筒里。如这些细粒土质量超过试样总质量的0.2%,应测定其质量并注明试验报告中。 10、在合适的台称上测定并记录试筒及试样总质量,扣除空试筒质量即为试样质量,或仔细地将试筒里试样全部倒入已知质量的盘中称量。计算最大干密度. 11、重复1—10步骤,直至获得一致的最大干密度值(最好在2%内)。如果发现产生过分的颗粒破碎或者是有棱角的石渣、堆石料或风化弱岩石料,则宜尽量制备足够数量代表性试样,以避免单个试样重复使用。 湿土法,结果整理、压实指标计算请参照相关规范。

随机振动分析报告

Alex-dreamer制作PSD:(可以相互传阅学习,但是鄙视那些拿着别人成果随意买卖!)PSD随机振动应用领域很广,比如雷达天线,飞机,桥梁,天平,地面,等等行业。虽然现在对这方面公开资料很少,但是我相信以后会越来越多,发展的越来越成熟。学术的浪潮总体是向前的,不会因为几个大牛保密自己的成果就会阻止我们对PSD研究,因此结合我的经验和爱好,我研究了一下两种PSD加载分析。我标价的原则是含金量大小和花费我的时间以及我的经验值,如果你觉得值,就买;不值就不要下了。因为我始终认为:士为知己者死,女为悦己者容。算是互相尊重。如果你得到这份资料,那就祝你好运! Good luck!-Alex-dreamer(南理工) 一:目的:根据abaqus爱好者提出的PSD随机振动分析,提出功率谱如何定义及如何加载?如果功率谱是加速度的平方,如何加载?如果在输入点施加载荷功率谱如何定义?本文将给出详细的分析过程。 二:随机振动基本概念 1. 随机振动的输入量和输出量都是概率统计值,因此存在不确定性。输入量为PSD (功率谱密度)曲线,分为加速度、速度、位移或者力的PSD曲线;最常见的是加速度PSD,常用语BASE MOTION基础约束加载。 2. 随机振动的响应符合正态分布,PSD实际上是随机变量的能量分布,也就是在不同频率上的方差值,反映不同频率处的振动能量,PSD曲线所围成的面积是随机变量总响应的方差值; 3. RMS为随机变量的标准方差,将PSD曲线包络面积开平方即为RMS。 4. 随机振动输出的位移、应力、应变等值都是对应不同频率的方差值(即PSD值),量纲为x^2,当然也可以输出这些变量的均方根值(即RMS值);abaqus6.10以上版本可以直接在场变量里面输出设置。见下文。 5. 如果是单个激励源,定义为非相关性分析,如是多个激励源,则需要定义相关性参数。因此出现type=uncorrelated。 三:模型简介: 1)该模型很简单,是hypermesh中一个双孔模型。 2)网格划分在hypermesh中完成,保证了雅克比>0.7以及网格其它质量的要求。网格与几何具有较高的吻合度。 3)方案1(对应connect模型):在上方两个孔采用全约束方式,且加载的功率谱PSD密度是加速度功率谱,也就是说基于BASE基础约束,进行随机振动 PSD分析。结果分析底部孔处某节点的结果响应。 4)方案2(对应connect模型):在底部圆孔施加载荷force类型的功率谱PSD,

振动台试验方案设计实例

一、振动台试验方案 1试验方案 1.1工程概况 本工程塔楼结构体系为“三维巨型空间框架-钢筋混凝土核心筒”结构体系,主要由4个核心筒、钢骨混凝土(SRC)外框架、3个避难层联系桁架三部分构成,图1-2、图1-3分别是B塔结构体系构成示意图和建筑效果图。特别指出的是本工程在14、24楼层的联系桁架的腹杆以及32、48楼层的斜撑为防屈曲支撑(UBB)构件。设计指标为小震不屈服,大震屈服耗能。具体位置示意见图1-4。 本工程的自振周期约为 6.44秒,超过了《建筑抗震设计规范》(GB-50011-2001)设计反应谱长为6秒的规定。本工程存在5个一般不规则和2个特别不规则类型,5个一般不规则类型分别是扭转不规则、凹凸不规则、刚度突变、构件间断和承载力突变。2个特别不规则是高位转换和复杂连接。 1.2 模拟方案 1、模拟方案选择 动力试验用的结构模型必须根据相似律进行设计,模型动力相似律的建立以结构运动方程为基础,选择若干主要控制参数作为模拟控制的对象,依据Buckingham的π定理,经无量纲分析导出控制参数的无量纲积,据此确定各控制参数的相似比率。 结构动力试验的相似模型大致分为四种: (1)弹塑性模型理论上可以重现结构反应的时间过程,使模型和原型的应力分布一致,并可模拟结构的破坏。由于要严格考虑重力加速度对应力反应的影响,必须满足S a=S g=1(S a=模型加速度/原型加速度,S g为重力加速度相似系数,各相似系数之间的关系见表1),即模型加速度反应与原型加速度反应一致,这一要求大大限制模型材料的选择。因为在缩尺模型中,几何比(S l)很小,在Sa=Sg=1的条件下,要满足Sa=S E/S l Sρ=1,即S l=S E/Sρ,必须使模型材料的弹模

随机振动试验报告

随机振动试验报告 高等桥梁结构试验报告 讲课老师: 张启伟(教授) 姓名: 史先飞 学号: 1232627 试验报告 1 试验目的 1.过试验进一步加深对结构模态分析理论知识的理解; 2.熟悉随机振动试验常用仪器的性能与操作方法; 3.复习和巩固随机振动数据测量和分析中有关基本概念; 4.掌握通过多点激振、单点拾振的方法,利用DASP2005软件进行模态分析的基本操作步骤。

2 试验仪器和设备 1. ZJY-601振动与控制教学实验仪系统(ZJY-601A型振动教学实验仪、激励锤、YJ9-A型压电型加速度传感器等)。 2. DASP 16通道接口箱。 3. 装有“DASP2005智能数据采集和信号分析系统”软件的PC机。 4. 有关设备之间的联接电缆。 3 试验原理 3.1模态叠加原理 N自由度线性振动系统的运动微分方程是一组耦合的方程组: 引入模态矩阵Φ和模态坐标(广义坐标或主坐标)q,使X= Φq。 如果阻尼矩阵能对角化,方程组即可解耦: 解耦后的第i个方程为: 可见,采用固有振型描述振动的模态坐标后,N自由度线性振动系统的振动响应可以表示为N阶模态响应的叠加。 3.2实模态理论 实模态理论建立在无阻尼的假设基础上。在实模态理论中,模态频率就是系统的无阻 ,尼模态固有频率错误~未找到引用源。;而固有振型矩阵中的各元素都是实数,它们之间i 的相位差是0?或180?。 系统在P点激励,l点测量的频响函数为:

K,,式中,称为频率比,,为模态固有频率。当,则: ,,,,,/,,,iiiiiMi 取频响函数矩阵的一列或一行,如第P列,就可确定振动系统的全部动力特性(模态参数)。 3.3伪实模态理论 某些有阻尼振动系统有时会出现与实模态一样的实数振型,而非复数振型,但其模态 2,,,,,1固有频率为,具有这种性质的振动系统的模态称为伪实模态。伪实模态理diii 论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化模态称为伪实模态。在伪实模态下,各测点的相位差都是0?或180?。 伪实模态理论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化的情况。一般情况下,阻尼矩阵对角化的充要条件为: 上式也是有阻尼振动系统方程解耦的充要条件。 总之,H(ω)建立了模态参数与频响函数的关系。因此,利用实验测出的H(ω) 值,即可计算出系统的模态参数。根据频响函数的互易定理及模态理论,只需 H(ω)矩阵的一列(或一行)即可求出全部模态参数。

路面不平度的模拟与汽车非线性随机振动的研究报告

清华大学学报自 然科学版JOURNAL OF TSINGHUA UNIVERSITY SCIENCE AND TECHNOLOGY1999年 第39卷第8 期Vol.39 No.8 1999 路面不平度的模拟与汽车非线性随机振动的研 究* 金睿臣,宋健 文摘预测汽车的随机振动响应对汽车的开发设计是非常重要的。实际汽车存在许多非线性环节,需采用非线性振动模型进行研究,在这种情况下,通常采用的频域分析方法一般不再适用。应用机械系统分析软件ADAMS建立了11自由度汽车非线性振动模型,并用由伪白噪声法生成的符合实际路面统计特性的伪随机序列来模拟路面不平度。在此基础上,利用数值算法在时域中对汽车的非线性随机振动响应进行了计算机仿真计算研究。结果表明,这种方法对研究汽车的非线性随机振动是有效的。 关键词汽车动力学;ADAMS软件;非线性随机振动;路面不平度分类号U 461;O 322 Simulation of the road irregularity and study of nonlinear random

vibration of the automobile JIN Ruichen,SONG Jian Department of Automotive Engineering,State Key Laboratory of Automotive Safety and Energy Conservation,Tsinghua University,Beijing 100084,China Abstract To use the simulation technique is very important to predict the random vibration of the automobile.Because there are many nonlinear factors in a real automobile,a nonlinear vibration model should be necessarily used.In this case,the frequency domain methods can not be applicable.Under the help of the mechanical system simulation program ADAMS,an 11 DOF nonlinear vibration model of the automobile was built.By means of pseudo white noise,pseudo random sequences,which can simulate the random irregularities of a road,were generated.Based on these,using numerical method,the random vibration of the automobile was studied.The results of simulation have demonstrated the validity of the method. Key words vehicle dynamics;program ADAMS;nonlinear random vibration; road irregularities 汽车以一定的速度行驶时,路面的随机不平度通过轮胎、悬架等弹性、阻尼元件传递到车身上,并通过座椅将振动传递到人体。研究这种汽车振动一般是在频域进行的,这种方法是建立在汽车为线性振动系统的基础上的。

某建筑振动台试验方案设计

、振动台试验方案 1 试验方案 1.1 工程概况 本工程塔楼结构体系为“三维巨型空间框架-钢筋混凝土核心筒” 结构体系,主要由4个核心筒、钢骨混凝土(SRC外框架、3个避难层联系桁架三部分构成,图1-2、图1-3分别是B塔结构体系构成示意图和建筑效果图。特别指出的是本工程在14、24楼层的联系桁架的腹杆以及32、48楼层的斜撑为防屈曲支撑 (UBB构件。设计指标为小震不屈服,大震屈服耗能。具体位置示意见图1-4 o 本工程的自振周期约为6.44 秒,超过了《建筑抗震设计规范》(GB-50011-2001)设计反应谱长为6秒的规定。本工程存在5个一般不规则和2 个特别不规则类型,5个一般不规则类型分别是扭转不规则、凹凸不规则、刚度突变、构件间断和承载力突变。2个特别不规则是高位转换和复杂连接。 1.2 模拟方案 1 、模拟方案选择 动力试验用的结构模型必须根据相似律进行设计,模型动力相似律的建立以结构运动方程为基础,选择若干主要控制参数作为模拟控制的对象,依据 Buckingham的n定理,经无量纲分析导出控制参数的无量纲积,据此确定各控制参数的相似比率。 结构动力试验的相似模型大致分为四种: (1 )弹塑性模型理论上可以重现结构反应的时间过程,使模型和原型的 应力分布一致,并可模拟结构的破坏。由于要严格考虑重力加速度对应力反应的影响,必须满足S a=S g=1 (S a=模型加速度/原型加速度,S g为重力加速度相似系数,各相似系数之间的关系见表1),即模型加速度反应与原型加速度反应一致,这一要求大大限制模型材料的选择。因为在缩尺模型中,几何比(S l)很小,在 Sa=Sg=1的条件下,要满足Sa=SE/S l S P=1,即S=S E/S p必须使模型材料的弹模很小或材

ABAQUS软件随机振动分析 final

ABAQUS软件随机振动分析 在工程中,结构一般需要对它进行随机振动分析。典型的例子是:通过机床的振动响应分析进行机床的结构设计,通过对结构的地震响应分析。在电子产品设计中,ABAQUS软件不仅仅能对电子产品进行冲击、热场、加工等过程进行数值模拟,还可以对电子产品在随机振动下产品的响应性能做出很好预测,以优化产品设计。 本例题就某电子产品在随机激励作用下的响应结构为例,采用如下图所示的简化模型,分析在特定随机激励(如图2)中,分析该结构的响应。 图 1 某电子产品结构简化图 图2 随机激励的谱分布 载荷边界条件为:四个底座固支,并在分析过程中,受到随机激励。需要分析整个结构在运动过程中的响应。 启动ABAQUS/CAE,在Start Session对话框中,选择Create Model Database按钮。

一导入模型 由于IGES文件给的是实体模型,我们在 计算中产用shell模型,所以我们需要通过 ABAQUS/CAE中对shell的编辑功能对模型进 行修改。 导入IGES文件成Shell格式。 1.在主菜单选择File ->Import->Part, 进入Import Part对话框。选择相应的 IGES文件,点击按钮。 2.在弹出的Create Part From IGES File 对话框中,如下图,对话框的Topology选择Shell选项,Name选项填写random。 二利用CAE编辑修改模型 在主菜单选择Shape ->Shell->Remove Face,用鼠标点击选择模型中的面,选上之后面会变红色,点击鼠标中键,就可以去掉该面。重复操作,得到下图模型。

随机振动理论综述

随机振动理论综述 摘要:本文对随机振动理论在现代工程中的应用以及该理论在现阶段的发展做了简要的论述,还简单的说明了随机振动在抗震方面的应用。此外,还介绍了对随机振动理论的分析和计算的方法。最后具体的阐述了随机振动试验的类型和方法。 关键词:随机振动、抗震分析、试验 1、引言 随机振动是一门用概率与统计方法研究受随机载荷的机械与结构系统的稳定性、响应、识别及可靠性的技术学科。[1] 20世纪50年代的中期,为解决航空与宇航工程中所面临的激励的随机性,将统计力学、通讯噪声及湍流理论中已有的方法移植到机械振动中来,初步形成了随机振动这门学科。[2] 1958年在美国麻省理工学院举办的随机振动暑期讨论班以及该讨论班文集的出版可认为是随机振动作为一门学科诞生的标准,此后,随机振动在环境测量、数学理论、振动引起的损伤、系统的识别与诊断、试验技术以及结构在随机荷载下的响应分析与可靠性研究等方面都有了很大的发展。 随机振动理论是机械振动或结构动力学与概率论相结合的产物,而作为一种技术学科乃是由工程实践需要而产生并为工程实践服务的。近10年来,在理论基础、分析方法、数值计算、信号分析测试技术和实验研究、载荷分析、环境减振降噪、设计优化、故障诊断、工程可靠性分析等诸多方面,得到了全方位的发展,结构工程、地震工程、海洋工程、车辆工程、包装工程、机械工程、飞行器、土木工程等方面有了广泛的应用,并与其它相关学科如非线性振动、有限元方法等相结构交叉而产生新的生长点,如非线性随机振动,随机分叉与随机浑沌,随机有限元等方面并取得长足进展,跟上了国际的发展潮流,有些研究达到了国际先进水平,在国际学术交流中发挥了影响。[3]近20年来,我国在随机振动领域做出了多项具有国际影响的突破性成果,包括虚拟激励法、复模态理论、FPK方程的哈密顿理论体系和非线性随机系统的密度演化理论等方面的贡献。 作为机械振动或结构动力学与概率论及其分支相结合的产物,随机振动是关于机械或结构系统对随机激励的稳定性、响应及可靠性的一整套理论的总称,是现代应用力学的一个分支。 2、随机振动在抗震方面的应用 地震是一种能对人类的生产和生活带来极大破坏的自然灾害,对工程结构的破坏更是非常严重,人类一直对其进行研究,以提高工程结构的抗震能力。自1947年Housner首次用随机过程描述地震动以来的半个多世纪,随机振动理论在工程抗震中得到应用并迅速发展,日益成为一种较为先进合理的抗震分析工具。 地震发生的时间、空间和强度特征不仅随时间变化,而且具有明显的随机性。主要表现在:同样的基本条件下得到的地震动时程曲线不相同。地震荷载不同于静载也不同于其他的动力荷载,是一种随机荷载,每次的动力作用的频率样本不一。荷载的频率大小、峰谷值高

振动台模型试验

01 建筑结构的整体模型模拟地震振动台试验研究,从模型的设计制作、确定试验方案、进行试验前的准备工作、到最后实施试验和对试验报告数据进行处理,整个过程历时较长、环节较多。显然,预先了解和把握振动台试验的总体过程,做到有目的、有计划、有方法,才能较顺利地完成该项工作。介绍将会按照以下顺序依此进行: 1 模型制作 2 试验方案 3 试验前的准备 4 实施试验 5 试验报告 6 试验备份 02 1 模型制作 振动台试验模型的制作,在获得足够的原型结构资料后,至少需要把握这样几个关键环节: (1)依据试验目的,选用试验材料; (2)熟读图纸,确定相似关系; (3)进行模型刚性底座的设计; (4)根据模型选用材料性能,计算模型相应的构件配筋; (5)绘制模型施工图; (6)进行模型的施工。 对上述各条的设计原则以及注意事项等,分述如下。 1.1 选用模型材料 模型试验首先应明确试验目的,然后根据原型结构特点选择模型的类型以及使用材料。比如,试验是为了验证新型结构设计方法和参数的正确性时,研究范围只局限在结构的弹性阶段,则可采用弹性模型。弹性模型的制作材料不必与原型结构材料完全相似,只需在满足结构刚度分布和质量分布相似的基础上,保证模型材料在试验过程中具有完全的弹性性质,有时用有机玻璃制作的高层或超高层模型就属于这一类。另一方面,如果试验的目的是探讨原型结构在不同水准地震作用下结构的抗震性能时,通常要采用强度模型。强度模型的准确与否取决于模型与原型材料在整个弹塑性性能方面的相似程度,微粒混凝土整体结构模型通常属于这一类。以上分析也显现了模型相似设计的重要性。 在强度模型中,对钢筋混凝土部分的模拟多由微粒混凝土、镀锌铁丝和镀锌丝网制成,其物理特性主要由微粒混凝土来决定,有时也采用细石混凝土直接模拟原型混凝土材料,水泥砂浆模型主要是用来模拟钢筋混凝土板壳等薄壁结构,石膏砂浆制作的模型,它的主要优点是固化快,但力学性能受湿度影响较大;模拟钢结构的材料可采用铜材、白铁皮,有时也直接利用钢材。总之,模型材料的选用要综合就近取材及经费等因素,同时要注意强度、弹性模量的换算等。 1.2 模型相似设计 把握大型模型振动台试验,最关键的是正确的确定模型结构与原型结构之间的相似关系。目前常用的相似关系确定方法有方程分析法和量纲分析法两种,它们之间的区别是显而易见的:当待求问题的函数方程式为已知时,各相似常数之间满足的相似条件可由方程式分析得出;量纲分析法的原理是著名的相似定理:相似物理现象的π数相等;个物理参数、个基本量纲可确定()个nkkn[$#8722]π数。当待考察问题的规律尚未完全掌握、没有明确的函数关系式时,多用到这种方法。高层建筑结构模拟地震振动台试验研究中包含诸多的物理量,各物理量之间无法写出明确的函数关系,故多采用量纲分析法。 量纲分析法从理论上来说,先要确定相似条件(π数),然后由可控相似常数,推导其余的相似常数,完成相似设计。在实际设计中,由于π数的取法有着一定的任意性,而且当参与物理过程的物理量较多时,可组成的数也很多,将线性方程组全部计算出来比较麻烦;另一方面,若要全部满足与这些π数相应的相

随机振动试验研究

随机振动试验研究 摘要:随机振动试验中存在许多“失控”现象,随机振动控制理论通常把试验“失控”的原因归于:(1)共振激励太大,超出了控制仪的动态范围;(2)台面、工装、试验件三者产生共振,造成试验中过大的冲击。本文主要针对随机振动试验中的“失控”现象,从工装角度分析其现象形成的原因,并提出解决问题的方法。 关键词:随机振动试验失控现象工装 振动试验是军用设备环境试验项目之一,是产品可靠性试验的重要组成部分。振动试验是在实验室条件下产生一个人工可控的振动环境,该环境模拟产品生命周期内的使用振动环境,使产品经受与实际使用过程的振动环境相同或相似的振动激励作用,考核产品在预期使用过程的振动环境作用下,能否达到设计所规定的各项技术要求,同时也是考核产品结构强度和可靠性的一个主要试验方法。 1、基本概念 1.1 随机振动的定义 严格来说一切振动都是随机的,当随机因素可以忽略时,可看做是确定性振动,这时,可以用简单函数或这些函数的组合来描述。另一种不能用确定函数而只能用概率和统计方法描述振动规律的运动称为随机振动。 1.2 振动的分类 振动按其时域波形的特征可分为确定性振动和非确定性振动。 确定性振动是指振动物理盈随时间的变化规律可用确定的数学关系式来表达的一类振动。 非确定性振动是指振动物理量随时间的变化规律无法用确定的数学关系式来表达,而只能用概率论和统计学的方法来描述的一类振动。随机振动属非确定性振动。 2、随机振动试验中的失控现象及解决方法 2.1 随机振动设备组成及功用 在试验室振动试验中,试件一般通过适当的试验工装安装在振动台,试验工装与振动台的组合用于模拟预期使用过程中平台产生的振动环境,如图1所示。大多数情况下,振动使用条件所对应的振动控制点选择在试件与试验工装的连接界面上,其代表了预期使用过程中平台对装备的振动环境激励。在理想状态情况下,即试件相对与振动台和试验工装可以近似作为刚体处理,如果在试件与试验工装连接界面的振动响应将与预期使用过程一致,可以认为试件经受了符合预期使用过程的振动环境考核。 图1 当试件的尺寸和重量较大,或固有频率较低时,由于试件与振动台、试验工装的动力耦合作用,试验时振动环境的模拟结果往往偏离理想的试验条件。这样即使在试件与试验工装连接界面的振动控制点达到了规定的振动加速度试验条件,试件上的振动响应也会与预期使用过程中装备上的振动响应不一致,从而导致试件的过试验或欠试验。因此,在实验室振动环境试验中,需要采取适当的控制方法,以改善试件的过试验或欠试验,使得试验结果更接近预期试验情况。 2.2 失控现象及其解决途径 在复杂结构的高频振动试验中,测试系统的各部分连接一定要牢靠,否则因

振动测试作业报告

振动测试技术期末总结 学号: 班级:建筑与土木工程(1504班) 姓名:杨允宁 2016年4月27日

目录 1 振动测试概述 (1) 1.1 振动的分类: (1) 1.1.1 按自由度分类: (1) 1.1.2 按激励类型分类: (1) 1.1.3 振动规律分类: (1) 1.1.4 按振动方程分类: (1) 1.2 振动基本参量表示方法: (2) 1.2.1 振幅(u): (2) 1.2.2 周期(T)/频率(f): (2) 1.2.3 相位( ): (2) 1.2.4 临界阻尼(C cr) (2) 1.2.5 结构的阻尼系数(c): (2) 1.2.6 对数衰减率(δ): (3) 1.3 振动测试仪器分类及配套使用: (3) 1.3.1 振动测试仪器分类 (3) 1.3.2 振动测试仪器配套使用: (4) 1.4 窗函数的分类及用途 (5) 1.4.1 矩形窗(Rectangular窗): (5) 1.4.2 三角窗(Bartlett或Fejer窗): (5) 1.4.3 汉宁窗(Hanning窗): (5) 1.4.4 海明窗(Hamming窗) (6) 1.4.5 高斯窗(Gauss窗) (6) 1.5 信号采集及分析过程中出现的问题及解决方法 (7) 1.5.1 信号采集和分析过程中出现的问题 (7) 1.5.2 解决方法 (7) 2 惯性式速度型与加速度型传感器 (8) 2.1 惯性式传感器的分类: (8) 2.2 常用加速度计传感器的工作原理及力学模型: (8) 2.2.1 电动式(磁电式)传感器: (8) 2.2.2 压电式传感器: (9) 2.3 非惯性传感器: (11) 2.3.1 电涡流式传感器: (11) 2.3.2 参量型传感器: (11) 3 振动特性参数的常用量测方法 (11) 3.1 简谐振动频率的量测: (12) 3.1.1 李萨(Lissajous)如图形比较法: (12) 3.1.2 录波比较法: (12) 3.1.3 直接测频法: (12) 3.2 机械系统固有频率的测量 (13) 3.2.1 自由振动法: (13) 3.2.2 强迫振动法: (13) 3.3 简谐振幅值测量 (13)

振动试验台技术方案

注:一下内容仅供参考。如有雷同,纯属巧合。 振动试验台技术方案 本技术方案是依据要求方提出的振动试验台主要技术参数和标准GB/T8419-2007、GB/T18707.1-2002编制,用于对工程机械座椅、工程机械车灯以及其它零部件进行振动试验的液压振动台系统。详细介绍如下: 一、液压振动台系统的构成和原理方框图 液压振动台系统由液压振动台(含振动台体、台面、电液伺服阀等)、液压油源和管路系统、油源电控、模拟和数字控制系统等几部分构成。 液压振动台系统原理方框图如下。 图 1 液压振动台系统原理方框图

二、液压振动台的设计 液压振动台包括振动台体、台面、伺服阀、传感器及连接过渡等部分,作为执行元件直接带动控制对象动作。 1、要求的主要技术参数 1.1 频率范围:0.5~200Hz 1.2 加速度:0~ 2.5g 1.3 振幅:0~±160 mm 1.4 有效负载:0~400 kg, 1.5 台面大小:1米x 1米 2、最大功能曲线的设计估算 2.1 按规范的PSD设计 可以认为是窄带随机,且是多个试验曲线,我们可以取它们的包络作为评估依据。 表1: EM1 EM2 EM3 EM4 EM5 EM6 EM7 EM8 EM9 Freq 2 2.25 2.25 2.25 3.25 8.5 3.25 3.75 4.5 1.33 RMS 1.39 1.75 1.48 0.82 1.42 1.39 1.82 0.87

图2 根据表1和图2,最大速度发生在EM2,按3∑准则,此处的速度为:0.372m/Sec。但按振幅160mm(O-P),则等速度与等位移段交越频率为:0.37Hz。而主要技术指标中指定下限频率为0.5Hz,这样一来,160mm(o-P)的行程则浪费。 2.2 按行程、速度和加速度设计 依据标准GB/T8419-2007中5.1条《注:在EM1和EM2的情况下,振动器能够产生振幅最少为±7.5cm,频率为2Hz的模拟正弦振动(见5.4.1)》。此时的速度要达到0.94m/s。 按振幅160mm(O-P),则等速度与等位移段交越频率为:0.94Hz;按最大加速度2.5g,则等速度与等加速度段交越频率为:4.18Hz。均在要求的工作频率范围内。 2.3 最大功能曲线 综上所述,按照最大行程±160mm,最大速度0.94m/s,最大加速度2.5g和要求的工作频率,最大功能曲线如图3。 频率(Hz) 0.5 0.94 2 4.19 150 200 位移(mm) 160 160 75 35 0.028 0.0038 速度(m/s) 0.5 0.94 0.94 0.94 0.026 0.0048 加速度(g) 0.32 0.56 1.2 2.5 2.5 0.62

第13章-随机振动试验复习过程

第13章-随机振动试 验

第13章随机振动试验 13.1 试验目的、影响机理、失效模式 产品在运输和实际使用中所遇到的振动,绝大多数就是随机性质的振动(而不是正弦振动)。例如,宇航器和导弹在发射和助推阶段的振动;火箭发动机的噪声和气动噪声使结构产生的振动;飞机(特别是高速飞机)的大功率喷气发动机的振动;飞机噪声使飞机结构产生的振动和大气湍流使机翼产生振动;飞机着陆和滑行时的振动;车辆在不平坦的道路上行驶时产生的振动;多变的海浪使船舶产生的振动等等都属于随机性质的振动。因此,随机振动试验才能更真实反映产品的耐振性能。 随机振动和正弦振动相比,随机振动的频率域宽,而且有一个连续的频谱,它能同时在所有频率上对产品进行激励,各种频率的相互作用远比用正弦振动仅对某些频率或连续扫频模拟上述振动的影响更严酷更真实和更有效。另外,用随机振动来研究产品的动态特性和结构的传递函数比用正弦振动的方法更为简单和优越。 随机振动和正弦振动一样能造成导线摩擦、紧固件松动、活动件卡死,从而破坏产品的连接、安装和固定。当随机振动激励造成的应力过大时,会使结构产生裂纹和断裂,特别在严重的共振状态下更为显著。长时间的随机振动,由于交变应力所产生的累积损伤,会使结构产生疲劳破坏。随机振动还会导致触点接触不良、带电元件相互接触或短路、焊点脱开、导线断裂以及产生强电噪声等。从而破坏产品的正常工作,使产品性能下降、失灵甚至失效。 为了能在试验室内模拟产品在现场所经受到的实际随机振动及其影响,工程技术人员为此付出了许多的努力。早在六十年代,国际上对随机振动的研究就十分活跃。不仅在理论上有了重大突破,而且有了较完善的试验方法和试验设备。1962年美国军标810中首先规定了随机振动试验方法。1964年英国国防部标准07-55中也提出了随机振动试验。1973年IEC公布了四个具有不同再现性宽带模拟式随机振动试验方法,到上世纪90年代又公布了数字式随机振动试验方法。目前国内的随机振动试验已很普及,随机振动试验设备,特别是一般用途的随机振动控制仪价格也不高。 13.2 随机振动的描述 在随机振动试验中,由于振动的质点处于不规则的运动状态,永远不会精确的重复,对其进行一系列的测量,各次记录都不一样,所以没有任何固定的周期。在任何确定的时刻,其振幅、频率、相位都不能预先知道,因此就不可能用简单的周期函数和函数的组合来描述。图13-1为典型的宽带随机振动时间历程。

RJ45_RB信赖性测试报告

信赖性测试报告 Reliability Test Report z 产品名称(Name): RJ45 RB 6 & RJ45 RB 7x z 测试周期(Period): 2007-11-10 ~~ 2007-11-15 z 测试环境(Environment Condition): 温度 20℃~25℃ 相对湿度 90% z 样品数量(Q’ty): 10pcs` 测试结果(Adjudgement): ? 合格(PASS) ? 不合格(REJECT) 编号 (Number) FA-0711001

1.目的(PURPOSE) 为了验证某产品是否符合设计要求,特进行此信赖性测试.信赖性测试项目应包括电气,机械,及环境等测试. This test verifys if product meets design requirements and related legal requirements. All test itmes should include electrical, mechanical, and environment tests. 2.参考标准(REFERENCE) 所有的测试项目都应按照EIA-364及MIL-STD-1344相应的测试程序. All test should be compliance with EIA-364 and MIL-STD-1344. z EIA-364电子连接器及插座测试程序(Electrical connector/socket test procedure) z MIL-STD-1344电子连接器及插座测试程序(Electrical connector/socket test procedure) z BS EN-60529密封箱的防护等级(Degrees of protection provided by enclosures (IP CODE)) 3.测试计划流程图(TEST PLAN FLOW DIAGRAM) . 组别(Group) Group 1 Group 2 Group 3Group 4 样品数量 4pcs 2pcs 2pcs 2pcs (Q’ty)

振动台试验终极版

一、前言 模拟地震振动台可以很好地再现地震过程和进行人工地震波的试验,它是在试验室中研究结构地震反应和破坏机理的最直接方法,这种设备还可用于研究结构动力特性、设备抗震性能以及检验结构抗震措施等内容。另外它在原子能反应堆、海洋结构工程、水工结构、桥梁工程等方面也都发挥了重要的作用,而且其应用的领域仍在不断地扩大。模拟地震振动台试验方法是目前抗震研究中的重要手段之一。 20世纪70年代以来,为进行结构的地震模拟试验,国内外先后建立起了一些大型的模拟地震振动台。模拟地震振动台与先进的测试仪器及数据采集分析系统配合,使结构动力试验的水平得到了很大的发展与提高,并极大地促进了结构抗震研究的发展。 二、常用振动台及特点 振动台可产生交变的位移,其频率与振幅均可在一定范围内调节。振动台是传递运动的激振设备。振动台一般包括振动台台体、监控系统和辅助设备等。常见的振动台分为三类,每类特点如下: 1、机械式振动台。所使用的频率范围为1~100Hz,最大振幅±20mm,最大推力100kN,价格比较便宜,振动波形为正弦,操作程序简单。 2、电磁式振动台。使用的频率范围较宽,从直流到近10000Hz,最大振幅±50mm,最大 推力200kN,几乎能对全部功能进行高精度控制,振动波形为正弦、三角、矩形、随机,只有极低的失真和噪声,尺寸相对较大。 3、电液式振动台。使用的频率范围为直流到近2000Hz,最大振幅±500mm,最大推力 6000kN,振动波形为正弦、三角、矩形、随机,可做大冲程试验,与输出力(功率)相比,尺寸相对较小。 4、电动式振动台。是目前使用最广泛的一种振动设备。它的频率范围宽,小型振动台频率 范围为0~10kHz,大型振动台频率范围为0~2kHz,动态范围宽,易于实现自动或手动控制;加速度波形良好,适合产生随机波;可得到很大的加速度。原理:是根据电磁感应原理设置的,当通电导体处的恒定磁场中将受到力的作用,半导体中通以交变电流时将产生振动。振动台的驱动线圈正式处在一个高磁感应强度的空隙中,当需要的振动信号从信号发生器或振动控制仪产生并经功率放大器放大后通到驱动线圈上,这时振动台就会产生需要的振动波形。组成部分:基本上由驱动线圈及运动部件、运动部件悬挂及导向装置、励磁及消磁单元、台体及支承装置。 三、组成及工作原理 地震模拟振动台的组成和工作原理 1.振动台台体结构 振动台台面是有一定尺寸的平板结构,其尺寸的规模由结构模型的最大尺寸来决定。台体自重和台身结构是与承载试件的重量及使用频率范围有关。一般振动台都采用钢结构,控制方便、经济而又能满足频率范围要求,模型重量和台身重量之比以不大于2为宜。振动台必须安装在质量很大的基础上,基础的重量一般为可动部分重量或激振力的10~20倍以上,这样可以改善系统的高频特性,并可以减小对周围建筑和其他设备的影响。 2.液压驱动和动力系统

悬臂梁实验报告

实验报告悬臂梁的模态实验 姓名:xxx 学号:xxx 专业:xxx 系别:xxx

一、试验装置 二、实验原理 本实验采用锤击法测定悬臂梁的频响函数,将第S 点沿坐标X S 方向作用的锤击力和第r 点沿X r 方向的响应分别由相应的传感器转换为电信号,在由动态分析仪,按照随机振动理论,运算得出r,s 两点间的频响函数rs H ~ , ∑=+-==n i i i i k i s i r s r rs i k F X H 12 ) ()()(0) 21(~~ λζλ?? (1) 又由于响应信号是加速度,同时圆频率为ω,位移函数,sin t X x ω=其加速度为 ,sin 22x t X a ωωω-=-=用复数表示后,参照(1)可得到加速度频响函数为: ∑=+--=-=n i i i i k i s i r s r a rs i k F X H 12 ) ()()(2 02)21(~~λζλ??ωω (2) 由公式(2)可知,当k ωω=时,1=k λ,此时式(2)可近似写为: ,22)(~) ()()()() ()(2k k k s k r k k k s k r k k a rs m i k i H ζ??ζ??ωωω-=-== (3) 它对应频响函数a rs H ~的幅频曲线的第k 个峰值,其中在上面(3),k m k k k 2() (ω)式中= 为各阶主质量...n k ,3,2,1=。改变s 点的位置,在不同点激振,可以得到不同点与点r 之间的频响函数,当s=r 时,就可得到点r 处的原点频响函数,表示为: ∑ =+--=n i i i i i i r i r a rr i k H 1 2 )() ()(2 ) 21(~λζλ??ω (4) 它的第k 个峰值为:

相关文档
最新文档