材料裂纹的产生及扩展的原因分析

材料裂纹的产生及扩展的原因分析
材料裂纹的产生及扩展的原因分析

材料疲劳裂纹的产生及影响裂纹扩展的因素

摘要:文中通过对疲劳裂纹的研究,全面分析了疲劳裂纹的产生,交变应力,表

面状态,载荷形式,化学成分,夹杂物等对疲劳产生的影响;分析了影响疲劳裂纹扩展的因素,载荷,腐蚀环境,热疲劳,温度对疲劳裂纹扩展的影响机理,论述了其影响效果,对进一步研究分析裂纹的产生,防止裂纹进一步扩展,提高材料的寿命有一定的帮助。

关键词:疲劳裂纹 ; 疲劳裂纹扩展

Abstract: In this paper, through the study of fatigue crack, and making a comprehensive analysis of the fatigue crack produces, alternating stress, the surface, and the load form, chemical composition, inclusion has effect on the fatigue; Analyzing the effect of fatigue crack growth’s factors. and the load, corrosive environment, thermal fatigue, temperature have influence on the fatigue crack propagation, It is a great help to study further the fatigue, prevent crack further expanding, and improve the life of the materials .

Keyword:fatigue crack ; fatigue crack growth

1 引言

机械零件在交变压力作用下,经过一段时间后,在局部高应力区形成微小裂纹,再由微小裂纹逐渐扩展以致断裂。疲劳破坏具有在时间上的突发性,在位置上的局部性及对环境和缺陷的敏感性等特点,故疲劳破坏常不易被及时发现且易于造成事故。由于各种原因导致疲劳裂纹的产生和扩展,最终导致材料的断裂而引发事故,因而有必要对材料裂纹的产生与扩展进行综合分析,下面是对金属疲劳产生的影响因素及裂纹的扩展影响因素进行的研究分析。

2 材料疲劳裂纹的产生

当材料受到小于屈服强度的交变应力时,会产生疲劳问题,即在疲劳源附近,发生裂纹的萌生和扩展,随着裂纹的扩大,结构最后发生断裂。裂纹的产生和扩展是由局部的应力集中产生的。防止方法,对于表面裂纹,可以尽量磨光表面,减少初始疲劳源,也可以采用表面预压的方法,如喷丸。对于内部的,则应该注重材料的性能,减少夹杂、松孔,如把空气中铸造的改成真空铸造,精细铸造,或换成锻造,精锻。也可以利用一些热处理,减小材料内部的残余应力或不均匀力等,或改变局部的硬度。

由于疲劳裂纹经常从零构件的表面开始,所以金属零构件的表面状态对疲劳强度会有显著的影响。这里所指的表面就是表面加工光洁度、表面层的组织结构及应力状态等。大量的试验研究结果表明,表面光洁度对疲劳强度有较大的影响,因为零构件经表面加工后所引起的表面缺陷是应力集中的因素。特别是对高强度材料,表面稍有缺陷,就常成为极危险的尖锐缺口,这是疲劳源的所在地。

载荷形式( 弯曲、轴向或扭转) 对疲劳强度有一定影响。大量的实验结果表明,在应力幅度相同时,弯曲疲劳的寿命大于轴向疲劳寿命;在给定的疲劳寿命时,轴向疲劳应力幅度小于弯曲疲劳的应力幅度,这种现象在高应力低周疲劳中更加明显。出现这种矛盾的原因是存在应变梯度、体积效应、循环应变硬化和软

化,以及表面裂纹萌生后裂纹扩展的不同。由此可推想到旋转弯曲疲劳寿命也应当小于反复弯曲疲劳寿命。旋转弯曲试样表面的所有材料,在不同的时间内,均能受到最大应力作用;而反复弯曲试样只有上部和下部的最外层能承受到最大应力,相比之下,旋弯试样出现裂纹的几率大,寿命短。

在对称循环载荷下,得到的S—N 曲线是基本S—N 曲线,然而在构件设计中,载荷往往并非对称循环,即平均应力不一定等于零。因此,要考虑到平均应力对于材料疲劳性能的影响。一般说来,在应力幅相同的情况下,拉伸平均应力使疲劳强度和寿命降低,而压缩平均应力产生的影响则比较有利。

图1 平均应力对疲劳寿命的影响

化学成分也直接影响材料的疲劳特性,因为原子间的化学结合力的性质及强度决定材料的强度及韧度的可能变动范围。一切金属及合金都受疲劳的支配。对于所有金属,疲劳强度指数及疲劳韧度指数的可能范围大致都是相同的。但是,疲劳强度系数及疲劳韧度系数的可能范围却视金属的不同而有很大变化。化学成分由于变更结构或影响某一硬化程序的有效性,因而也间接地影响疲劳特性。

夹杂物和缺陷对疲劳强度的影响是多年来许多学者悉心研究的重要课题,特别是中、高强钢或高硬度钢,夹杂物和缺陷对疲劳强度的影响更加显著。钢材中总是存在有各种各样的缺陷和夹杂物,它们周围应力分布的不均匀对疲劳裂纹萌生和早期扩展有重要作用,也是引起应力集中的原因之一,对疲劳强度影响很大。

3 影响疲劳裂纹扩展的因素

3.1 载荷对疲劳裂纹扩展的影响

3.1.1 残余应力对疲劳裂纹扩展的影响

残余应力模型中,在加载过程中裂纹张开,裂纹尖端附近形成一个塑性区,载荷峰值越大,则塑性区尺寸就越大:卸载后,由于塑性区周围的弹性区材料要恢复原来的尺寸,为了保持变形协调,已产生了永久变形的塑性区内的材料就要受到周围弹性区的压缩而产生残余压应力。残余应力对结构的实有应力分布有很大的影响,残余压应力使疲劳裂纹的扩展减缓。残余应力对疲劳裂纹扩展的影响:(1)残余压应力使裂纹的两个面压紧,从而使裂纹闭合;(2)降低了裂纹的最大应力强度因子,使裂纹扩展驱动力降低。

3.1 .2超载对疲劳裂纹扩展的影响

在裂纹尖端残余应力的基础上,过载使裂纹尖端形成大塑性区,而塑性区阻碍裂纹增长,使裂纹产生停滞效应。施加过载时,裂纹尖端产生较大的残余拉应变,过载后,在随后的恒定△K作用下逐渐卸载过程中,因裂尖已形成残余拉应变,使裂纹尖端过早闭合,会产生裂纹的闭合效应,从而裂纹尖端实际的应力强度因子比实际外加值△K小,所以延缓裂纹扩展速率。有机玻璃中,超载导致裂

纹前缘严重钝化和不规则,裂纹迟滞扩展的过程实际上是从钝化的裂纹前缘重新萌生裂纹并扩展的过程。在一定范围内,拉伸超载可以延长冲击疲劳裂纹起始寿命超载造成的残余应力是引起该钢超载效应的主要机制,而超载造成的材料性能变化对超载效应贡献不大。

3.1.3 加载频率对疲劳裂纹扩展的影响

在研究周期频率对合金裂纹扩展的影响过程中,高温环境下,由于频率的影响,可从试件断口形貌特征将疲劳行为分为周期相关性、时间相关性和周期一时间相关性3种类型。由于材料或环境的因素,加载频率对疲劳裂纹扩展速率将产生很大的影响。加载频率对中温环境下疲劳裂纹扩展的影响。积分范围可以作为纹扩展的参数,能很好地反映加载频率对裂纹的影响。在试验温度为550~C时,频率的改变对直接时效GH4169高温合金疲劳裂纹扩展性能基本没有影响,其裂纹扩展的控制机理是机械疲劳;在试验温度为650oC时,在0.5Hz以上频率时,频率的改变对直接时效GH4169高温合金疲劳裂纹扩展性能基本没有影响,其裂纹扩展的控制机理是机械疲劳;但当频率降低至0.1Hz时,其疲劳裂纹扩展速率明显加快,裂纹扩展的控制机理是高温氧化。大量研究表明,当△K较低时,dN基本不受加载频率的影响;当△K较大时,加载频率有较大影响。加载频率降低,dN 增高;加载频率增高,dN降低。.

3.1.4 平均应力或应力比的影响

当循环载荷的应力幅σa 给定时,应力比R 增大,平均应力σm也增大。σa 与σm有如下关系:σm= (1+R)(1- R)σa故讨论应力比R 的影响就是讨论平均应力的影响。

(1)R>0 情况

以R=0 的da/dN-△K 曲线为基本裂纹扩展速率曲线,应力比R 改变时,

da/dN- △K 曲线的变化一般有下图所示的趋势。R>0 时,应力循环中的σmin >0。应力幅σa 给定时,随R的增大,循环中最大应力σmax 和最小应力σmin 均增大。在裂纹扩展速率的三个区域内da/dN 均增大。图中表现为曲线整体向左移动。因此,随着R 的增大,高速率区的上限(1-R)Kc 降低,裂纹扩展的寿命减小;在低速率区,疲劳裂纹扩展速率的下限(门槛值)△Kth降低,对含一定缺陷的构件,不引起裂纹扩展的允许载荷减小。

图2 应力比的影响

(2)R<0 的情况

应力比R<0,即循环载荷中包括负应力部分。与R=0 的情况相比,负应力的存在使低速率区da/dN 加快;对中速率区的da/dN 影响不大;在高速率区,因为上限(1-R)Kc增大,da/dN还有减缓的趋势。故在不同的裂纹扩展速率区域内,负应力的存在对da/dN 的影响是不同的,情况比R>0 的复杂得多。

总之,应力比R>0 时,在裂纹扩展速率的三个区域内,da/dN 均增大。当R <0 时,负应力的存在使低速率区da/dN 加快;对中速率区的da/dN 影响不大;在高速率区,da/dN 有减缓的趋势。

3.2 腐蚀环境对疲劳裂纹扩展的影响

在腐蚀介质环境中,腐蚀疲劳是介质引起的腐蚀破坏过程和扰动应力引起的疲劳破坏过程的共同作用。这二者的共同作用,比其中任何一种单独作用更为有害。因为扰动应力下的裂纹扩展,使新的裂纹面不断地暴露于腐蚀介质中,加速了腐蚀;不断发生的腐蚀过程也使疲劳裂纹得以更快地形成和扩展。在腐蚀介质环境中,疲劳裂纹扩展速率总是比在惰性介质环境中高,有时甚至高几个数量级。而且,一般来说,液体腐蚀环境对疲劳裂纹扩展的影响比气体腐蚀环境更严重。

3.2.1应力腐蚀开裂

在腐蚀介质中,即使只有静载荷作用,且裂纹尖端的应力强度因子远低于临界断裂韧性值,也可能在一定时间后发生裂纹的扩展。将带裂纹的试件加载到K1i ( K1i<K1c,K1c为1 型裂纹的断裂韧性值)置于腐蚀介质中。若材料对该腐蚀介质敏感,则在一定时间后裂纹将发生扩展。记录在K1i作用下腐蚀介质中裂纹开始发生扩展的时间,可以得到下图所示的关系。

K1i- Tf 的关系

①在腐蚀介质作用下,裂纹可以在应力强度因子K1i 低于K1c 的情况下发生扩展。

②作用的初始应力强度因子K1i越低,到发生裂纹扩展的时间Tf就越长。

③当K1i 趋于某极限值时,到发生裂纹扩展的时间Tf 趋于无限长,这一应力强度因子的极限值为应力腐蚀开裂的应力强度因子门槛值K1c。若满足K1i<K1c,则将不发生应力腐蚀开裂。

3.2.2腐蚀疲劳裂纹扩展速率

在腐蚀性介质中,大量实验研究结果表明,腐蚀疲劳裂纹扩展速率(da/dN) 与应力强度因子△K 的关系如下图所示三类。

腐蚀疲劳裂纹扩展速率曲线分类

A 类:腐蚀疲劳裂纹扩展速率(da/dN) -△K 曲线,大致与非腐蚀环境下的裂纹扩展速率(da/dN)-△K 曲线平行。这种情况表明,腐蚀介质的作用使疲劳裂纹扩展速率普遍加快;腐蚀疲劳裂纹扩展的应力强度因子门槛值(△K)th与无腐蚀时的(△K)th 相比,有较大的降低。铝合金在淡水中的疲劳裂纹扩展即属此类。

B 类:注意到△K=(1-R)Kmax,由图可知,当Kmax<K1scc时,腐蚀介质对疲劳裂纹扩展速率几乎没有什么影响,主要是疲劳过程的作用。若Kmax>K1,腐蚀的作用迅速显示,大大加快了疲劳裂纹的扩展。接着,(da/dN)-△K 曲线出现一个平台,腐蚀的化学、电化学作用成为裂纹扩展的主因。如马氏体镍钢在干氢中的疲劳裂纹扩展即属此类。

C 类:是A、B 二类的混合型。在这种情况下,即使Kmax<K1,腐蚀介质对疲劳裂纹扩展也有不利的影响。如高强钢在盐溶液中的疲劳裂纹扩展即属此类

总之,在腐蚀介质作用下,裂纹可以在应力强度因子K1i 低于K1c 的情况下发生扩展。作用的初始应力强度因子K1i 越低,到发生裂纹扩展的时间Tf 就越长。当K1i 趋于某极限值时,到发生裂纹扩展的时间Tf 趋于无限长。

3.3热疲劳对疲劳裂纹扩展的影响

热疲劳损伤往住被认为是由于材料在变温循环过程中,出现了往复塑性变形

而造成的结果。这种往复的塑性变形量受材料内部交变热应力控制。当温度循环与热胀冷缩不同步时,导致热应力循环,从而导致热疲劳,产生疲劳破坏,从而导致材料的胀裂(龟裂),产生疲劳源,从而产生大截面断裂或者局部断裂。

3.4温度对疲劳裂纹扩展的影响

在40Cr钢在不同温度回火后疲劳裂纹长度与循环周次的关系中表明,低温回火后,40Cr钢在缺口处的起裂抗力高,一旦萌生了一定长度的疲劳裂纹,疲劳裂纹扩展速率明显高于高温回火和中温回火;随着回火温度的升高,40Cr钢在缺口处的起裂抗力减小,但疲劳裂纹扩展速率也减小。疲劳断口微观分析表面,在疲劳裂纹扩展初期,低温回火试样的疲劳断口表现出脆性疲劳纹特征,中温回火和高温回火试样主要是二次裂纹组成的疲劳纹,而且随着回火温度的升高,二次裂纹间距减小。在疲劳裂纹扩展中区和瞬断区,低温回火的疲劳断口主要为解理断裂和沿晶断裂特征,中温和高温回火的疲劳断口是以韧窝为主的韧性断裂特征。疲劳裂纹扩展机理的不同导致了疲劳裂纹扩展规律的变化。

温度升高时,使得σr大幅下降,从而使得应力与寿命曲线的水平线段下降至消失。温度升高时,也会使得疲劳缺口的敏感度下降。

4 结语

本文主要介绍了金属材料疲劳裂纹的产生及裂纹产生后扩展的一些影响因素,对如何防止金属材料在使用过程中产生裂纹以及裂纹产生后如何防止裂纹进一步扩展有一定的帮助作用,但本文只是初步的分析,而对如何真正防止金属材料裂纹的产生和扩展还大有研究的空间和价值!

断裂力学习题

断裂力学习题 一、问答题 1、什么是裂纹? 2、试述线弹性断裂力学的平面问题的解题思路。 3、断裂力学的任务是什么? 4、试述可用于处理线弹性条件下裂纹体的断裂力学问题两种方法: 5、试述I型裂纹双向拉伸问题中的边界条件,如何根据该边界条件确定一复变函数,并由此构成应力函数,最后写出问题的解。b5E2RGbCAP 6、什么是应力场强度因子K1?什么是材料的断裂韧度K1C?对比单向拉伸条件下的应力及断裂强度极限b,,说明K1与K1C的区别与联系?p1EanqFDPw 7、在什么条件下应力强度因子K的计算可以用叠加原理 8、试说明为什么裂纹顶端的塑性区尺寸平面应变状态比平面应力状态小? 9、试说明应力松驰对裂纹顶端塑性区尺寸有何影响。 10、K准则可以解决哪些问题? 11、何谓应力强度因子断裂准则?线弹性断裂力学的断裂准则与材料力学的强度条件有何不同? 12、确定K的常用方法有哪些? 13、什么叫裂纹扩展能量释放率?什么叫裂纹扩展阻力? 14、从裂纹扩展过程中的能量变化关系说明裂纹处于不稳定平衡的条件是什么? 15、什么是格里菲斯裂纹?试述格氏理论。

16、奥罗万是如何对格里菲斯理论进行修正的? 17、裂纹对材料强度有何影响? 18、裂纹按其力学特征可分为哪几类?试分别述其受力特征 19、什么叫塑性功率? 20什么是G准则? 21、线弹性断裂力学的适用范围。 22、“小范围屈服”指的是什么情况?线弹性断裂力学的理论公式能否应用?如何应用? 23、什么是Airry应力函数?什么是韦斯特加德

断口分析

故障件的断口分析 在形形色色的故障分析过程中,人们常会瞧到一些损坏零件的断口,但就是人们缺乏“读懂”它的经验,不能从它的断口处判断其损坏的真正原因而贻误了战机。这里结合整改过程中的一些实例作些介绍,希望能对您有所帮助! 对于汽车常用碳素钢与合金钢而言,其常见断口有: 1.韧性(塑性)断口:发生明显塑性变形的断裂统称为塑性断裂。断口形貌为韧性(塑性)断口,断口呈暗灰色没有金属光泽瞧不到颗粒状形貌,断口上有相当大的延伸边缘。 2.疲劳弯曲断口: 2-1 在抗拉极限范围内的疲劳弯曲断口:出现典型的疲劳裂纹源区、裂纹扩展区与瞬时断裂区特征(下面将详 述)。 2-2 超过抗拉极限范围内的弯曲断口:不具有典型的疲劳断口特征,属于不正常的弯曲断裂。其断口特征:沿弯 曲方向上下呈灰褐色无金属光泽的断层;而内层呈银 灰色白亮条状新断口(见图1)。

图1 3.典型的金属疲劳断口 典型的疲劳断口定会出现疲劳裂纹源区、裂纹扩展区与瞬时断裂区三个特征。断口具有典型的“贝壳状”或称“海滩状”。

3-1 疲劳裂纹源区:就是疲劳裂纹萌生的策源地,它处于机件的表面,形状呈平坦、白亮光滑的半圆或椭圆形,这就是因为疲劳裂纹的扩展过程速度缓慢,裂纹经反复挤压摩擦而形成的。它所占有的面积较其她两个区要小很多。疲劳裂纹大多就是因受交变载荷的机件表面有缺陷;譬如裂纹、脱碳、硬伤痕、焊点等缺陷形成应力集中而引起的。疲劳裂纹点在同一个机件上可能有多处,换句话说可能有多处疲劳裂纹源区,这需要我们去仔细解读疲劳断口。 3-2 疲劳裂纹扩展区:就是形成疲劳裂纹后慢速扩展的区域。它就是判断疲劳断裂的最重要的特征区。它以疲劳源区为中心,与裂纹扩展方向垂直呈半圆形或扇形的弧线,也称疲劳弧线呈“贝纹状”。疲劳

(完整版)断裂力学试题

2007断裂力学考试试题 B 卷答案 一、简答题(本大题共5小题,每小题6分,总计30分) 1、(1)数学分析法:复变函数法、积分变换;(2)近似计算法:边界配置法、有限元法;(3)实验标定法:柔度标定法;(4)实验应力分析法:光弹性法. 2、假定:(1)裂纹初始扩展沿着周向正应力θσ为最大的方向;(2)当这个方向上的周向正应力的最大值max ()θσ达到临界时,裂纹开始扩展. 3、应变能密度:r S W = ,其中S 为应变能密度因子,表示裂纹尖端附近应力场密度切的强弱程度。 4、当应力强度因子幅值小于某值时,裂纹不扩展,该值称为门槛值。 5、表观启裂韧度,条件启裂韧度,启裂韧度。 二、推导题(本大题10分) D-B 模型为弹性化模型,带状塑性区为广大弹性区所包围,满足积分守恒的诸条件。 积分路径:塑性区边界。 AB 上:平行于1x ,有s T dx ds dx σ===212,,0 BD 上:平行于1x ,有s T dx ds dx σ-===212,,0 5分 δ σσσσΓ s D A s D B s B A s BD A B i i v v v v dx x u T dx x u T ds x u T Wdx J =+=+-=??-??-=??-=???)()(1 122112212 5分 三、计算题(本大题共3小题,每小题20分,总计60分) 1、利用叠加原理:微段→集中力qdx →dK = Ⅰ ?0 a K =?Ⅰ 10分 A

令cos cos x a a θθ==,cos dx a d θθ= ?111sin () 10 cos 22(cos a a a a a K d a θθθ--==Ⅰ 当整个表面受均布载荷时,1a a →. ?12()a a K -==Ⅰ 10分 2、边界条件是周期的: a. ,y x z σσσ→∞==. b.在所有裂纹内部应力为零.0,,22y a x a a b x a b =-<<-±<<±在区间内 0,0y xy στ== c.所有裂纹前端y σσ> 单个裂纹时 Z = 又Z 应为2b 的周期函数 ?sin z Z πσ= 10分 采用新坐标:z a ξ=- ?sin ()a Z π σξ+= 当0ξ→时,sin ,cos 1222b b b π π π ξξξ== ?sin ()sin cos cos sin 22222a a a b b b b b π π π π π ξξξ+=+ cos sin 222a a b b b π π π ξ= + 222 2[sin ()]( )cos 2 cos sin (sin )2222222a a a a a b b b b b b b π π π π π π π ξξξ+=++

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含3-5 个关键人物和主要贡献)。 答:1)断裂力学的思想是由Griffith 在1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从1948 年开始的。这一年Irwin 发表了他的第一篇经典文章“Fracture Dynamic(断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于Irwin。他于1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD)的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下COD 法与LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答:1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有xoy 平面内的三个应力分量σ x、σ y、τ xy; ε z ≠ 0, 属三向应变状态。 (2)平面应变:长坝问题,与oz 轴垂直的各横截面相同,载荷垂直于z 轴且沿z 轴方向无 变化; ε z = 0, σ z ≠ 0,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷T2作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为K I(2) = σ 2 π a 如果外载荷T1和T2联合作用,则裂纹前端应力场为 σ1+ σ2,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给r>r0 的区域),使r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念a eff = a + r y对应力强度因子进行修正,在小范围条件下,

断裂力学题

岩石断裂力学复习题 1. 弹性体内的裂纹大致上可以分哪三种,在答题纸上按顺序绘出如图 2 的弹性裂纹薄板,在什么样的边界力作用下,裂纹将是 II 型, I 型,III 型,并分别写出其相应的应力强度因子计算式。 I 型: 边界条件: 当∞→z 时, 0xx =σ,∞=y yy σσ,0xy =τ 在裂纹面(y=0)上, 0y y =σ,0xy =τ 应力强度因子:a y πσ∞ I =K II 型:

边界条件: 当∞→z 时, ∞=ττxy ,0xx ==yy σσ 在裂纹面(z=x ±i0,a

当长度为2a 的裂纹存在时,模型增加的表面能S 为: Γ=a 4S (2) 当裂纹端部扩展一小段长度da (裂纹长度由2a 发展为2a+2da )时,如果弹性势能释放率dW c /da 大于或等于表面能的增加率dS/da 时,裂纹会失稳,并进一步扩展。则裂纹扩展的条件可表达为: da dS da dW c = (3) 将式(1),(2)代入(3),可得远场力σ作用下,使裂纹失稳并扩展的裂纹临界长度a0为: 2/'20a πσΓ=E (4) 3. 什么是裂纹的应力强度因子的?其一般表达式是什么?量纲是什么?应力强度因子与弹性板材料的表面能密度间有何关系。 应力强度因子含义:表征裂纹端部应力场的特征物理量,和裂纹尺寸。几何特征 及荷载有关。 量纲:[应力]×[长度]1/2 应力强度因子与表面能密度的关系: G 表示裂纹扩展单位面积时系统提供的能量,称“能量释放率”,则: Ⅰ型:’E K G 2I I = Ⅱ型:’ E K G 2I I I I = Ⅲ型:E K G 2)1(I I I I I I +=ν(注意是E 不是E ’) 混合型:I I I I I I ++=G G G G R 为裂纹扩展单位面积所需能量,当G ≥R 时,裂纹扩展。对于理想脆性材料(无塑性变形),R=г,则可通过上方G 关于应力强度因子的表达式,建立理想条件下,裂纹处于临界扩展状态时,应力强度因子与表面能密度г的关系 (不过真的很少有这种提法)。

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含 3-5 个关键人物和主要贡献)。 答: 1)断裂力学的思想是由 Griffith 在 1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从 1948 年开始的。这一年 Irwin 发表了他的第一篇经典文章“Fracture Dynamic (断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于 Irwin 。他于 1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD )的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下 COD 法与 LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了 J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答: 1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有 xoy 平面内的三个应力分量σ x 、σ y 、τ xy ; ε z ≠ 0 , 属三向应变状态。 (2)平面应变:长坝问题,与 oz 轴垂直的各横截面相同,载荷垂直于 z 轴且沿 z 轴方向无 变化; ε z = 0 , σ z ≠ 0 ,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷 T 2 作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为 K I(2) = σ 2 π a 如果外载荷 T 1 和 T 2 联合作用,则裂纹前端应力场为 σ1+ σ2 ,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为 r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给 r>r0 的区域),使 r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念 a eff = a + r y 对应力强度因子进行修正,在小范围条件下,

金属断裂机理完整版

金属断裂机理 1 金属的断裂综述 断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。 根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。 多晶体金属断裂时,裂纹扩展的路径可能是不同的。沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。有时沿晶断裂和穿晶断裂可以混合发生。 按断裂机制又可分为解理断裂与剪切断裂两类。解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属、合金处于低温或冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。解理面一般是低指数或表面能最低的晶面。对于面心立方金属来说(比如铝),在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。 通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。 剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。 根据断裂面取向又可将断裂分为正断型或切断型两类。若断裂面取向垂直于最大正应力,即为正断型断裂;断裂面取向与最大切应力方向相一致而与最大正应力方向约成45°角,为切断型断裂。前者如解理断裂或塑性变形受较大约束下的断裂,后者如塑性变形不受约束或约束较小情况下的断裂。

金属断口分析

名词解释 延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。 蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。 准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口 沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。 解理断裂:在正应力作用下沿解理面发生的穿晶脆断。 应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断 疲劳辉纹:显微观察疲劳断口时,断口上细小的,相互平行的具有规则间距的,与裂纹扩展方向垂直的显微条纹。 正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂) 韧性:材料从变形到断裂过程中吸收能量的大小,是材料强度和塑性的综合反映。 冲击韧性:冲击过程中材料吸收的功除以断的面积。 位向腐蚀坑技术:利用材料腐蚀后的几何形状与晶面指数之间的关系研究晶体取向,分析断 裂机理或断裂过程。 河流花样:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。其形状类似地图上的河 流。 断口萃取复型:利用AC 纸将断口上夹杂物或第二相质点萃取下来做电子衍射分析确定这些 质点的晶体结构。 氢脆:金属材料由于受到含氢气氛的作用而引起的低应力脆断。 卵形韧窝:大韧窝在长大过程中与小韧窝交截产生的。 等轴韧窝:拉伸正应力作用下形成的圆形微坑。 均匀分布于断口表面,显微洞孔沿空间三 维方向均匀长大。 第一章 断裂的分类及特点 1.根据宏观现象分:脆性断裂和延伸断裂。 脆性断裂裂纹源:材料表面、内部的缺陷、微裂纹;断口:平齐、与正应力相垂直 ,人字纹或放射花纹。延性断裂裂纹源:孔穴的形成和合并;断口:三区,无光泽的纤维状,剪切面断裂、与拉伸轴线成45o . 2.根据断裂扩展途分:穿晶断裂与沿晶断裂。 穿晶断裂:裂纹穿过晶粒内部、可能为脆性断裂也可 能是延性断裂; 沿晶断裂:裂纹沿着晶界扩展,多属脆断。应力腐蚀断口,氢脆断口。 3根据微观断裂的机制上分:韧窝、解理(及准解理)、沿晶和疲劳断裂 4根据断面的宏观取向与最大正应力的交角分:正断、切断 正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂) 切断:断面取向与最大切应力相一致,与最大应力成45o交角(平面应力条件下的撕裂) 根据裂纹尖端应力分布的不同,主要可分为三类裂纹变形: 裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型) 裂纹尺寸与断裂强度的关系 Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则 相似) a Y K c c πσ?=1

金属断口分析

《金属断口分析》 第一章金属的断裂 第一节断裂分类 失效形式:过大的弹性变形;塑性形变;断裂;材料变化。其中危害最大的是破裂特别是断裂。通过对断口形貌特征进行分析从而获得金属断裂机理。一,宏观脆性断裂与延伸断裂 从宏观上看,断裂分为脆性断裂和延性断裂 脆性断裂指以材料表面、内部的缺陷或是微裂纹为源,在较低的应力水平下(一般不超过材料的屈服强度),在无塑性变形或只有微小塑性变形下裂纹急速扩展。在多晶体中,断裂时沿着各个晶体的内部解理面产生,由于材料的各个晶体及解理面方向是变化的,因此断裂表面在外观上呈现粒状。脆性断裂主要沿着晶界产生,称为晶间断裂。其断口平齐。 延性断裂是在较大的塑性变形产生的断裂。它是由于断裂缓慢扩展而造成的。其断口表面为无光泽的纤维状。延性断裂经过局部的颈缩,颈缩部位产生分散的空穴,小空穴不断增加和扩大聚合成微裂纹。 二,穿晶断裂和沿晶断裂 依据裂纹扩展途径不同,断裂分为穿晶断裂和沿晶断裂,或二者兼有。 穿晶断裂是指裂纹穿过晶体内部的途径发生的;穿晶断裂可能是延性的,也可能是脆性的。若断裂是穿过晶体沿解理面断开,但无明显塑性变形为脆性断裂。若穿晶断裂时出现塑性变形则为延性断裂。 沿晶断裂指以裂纹沿着晶界扩展的方式进行。沿晶断裂多为脆性断裂,,但也有延性的。应力腐蚀断口,氢脆断口都是沿晶断裂的脆性断裂。三,韧窝、解理、准解理、沿晶和疲劳断裂 这主要是根据微观断裂机制上而言 四,正断和切断 根据断面的宏观取向与最大正应力交角,断裂方式分为正断和切断 正断性断裂是指宏观断面的取向与最大正应力相垂直,如解理断裂 切断性断裂指宏观断面的取向与最大切应力方向相一致,而与最大正应力成45度

金属材料断口分析的步骤与方法

金属材料断口分析的步骤与方法 断口分析通常是一个从宏观到微观,从定性到定量的分析过程,并且是应用多种仪器联合测试检验的结果,是综合性很强的技术分析工作。因此需要严格的科学态度,精心地、有步骤地进行研究分析。 断口分析步骤: (1)所有试样的选择、鉴定、保存以及清洗; (2)宏观检验和分析(断裂表面、二次裂纹以及其他的表面现象); (3)微观检验和分析; (4)金相剖面的检验和分析以及化学分析; (5)断口定量分析(断裂力学方法); (6)模拟试验。 1 断裂构件的处理及断口的保存 在确定了断裂的金属构件后,就要采取措施把断口保存好,尽快制定分析计划。通常金属构件的断裂不止一个断口,有时要立即判断主断口有困难,此时应该把所有断件收集好,在收集过程中切勿把断口碰伤或对接,也不要在断口上使用防蚀涂层。保护和清理断口是断口分析的一个重要前提。对断口和裂纹轨迹进行充分检查后方可进行清洗。 对于不同情况下的断口应该用不同方法处理: (1)大气中的新鲜断口,应立即放入干燥器内或真空干燥器内而不必清洗。 (2)对于带有油污的断口,首先用汽油,然后用丙酮、三氯甲烷、石油醚及苯等有机溶剂溶去油污,最后用无水乙醇清洗吹干。当浸没处理还不能去除油污时,可使用蒸汽或超声波方法进一步去除。 (3)在腐蚀环境下发生断裂的断口,通常在断口上覆盖一层腐蚀产物,这层产物对于分析断裂原因是非常有用的,但对断口形貌观察常常带来很大的麻烦。在这种情况下,需要用综合分析的方法来考虑。因为有许多腐蚀产物容易水解或分解,因此进行产物分析要抓紧时间,同时不要进行任何清洗和处理。通常把带

有腐蚀产物的断口试样,先用X射线、电子探针、电子扫描显微镜或俄歇能谱仪进行产物分析,得出结论后去掉产物再观察断口形貌。 去掉腐蚀产物有时可采用干剥法。用醋酸纤维纸(称AC纸,由7%的醋酸纤维素、丙酮溶液制成厚度0.1~1mm的均匀薄膜)复型进行清理是最有效的方法之一,尤其是断口表面已经受到腐蚀的时候。将一条厚约1mm合适的AC纸,放在丙酮中泡软,然后拿起来放在断口表面上,在第一张条带的背后衬上一块未软化的AC纸,然后用夹子将复型牢牢地压在断口表面上,干燥后用小镊子把干复型从断口上揭下来。如果断口玷污得很厉害,可将复型操作重复进行,直到获得一个洁净无污染的复型为止。这种方法的一个优点,就是能将从断口上除去的碎屑保存下来,供以后鉴定碎屑使用。还可以用复型法达到长期保存断口的目的。 (4)断口表面不能用酸溶液清洗,以免影响断口分析的准确性。 (5)在潮湿空气中暴露时间比较长、锈蚀比较严重的断口,以及高温下使用的有高温氧化的断口,一定要去除氧化膜后才能观察,以避免假象。若用一般有机溶液、超声波洗涤和复型都不能洁净断口表面时,可采用化学清洗。根据不同的金属材料及氧化层情况可采用不同的化学清洗液。 2 断口的宏观分析 用肉眼、放大镜和实体显微镜对断裂零件进行直接观察与分析的方法,称为宏观分析,其放大倍数通常为100倍以下。 宏观分析的优点是:(1)简便、迅速,试样尺寸不十分受限制,不必破坏断裂零件;(2)观察范围大,能够观察与分析断裂全貌,即裂缝和零件形状的关系、断口与变形方向的关系、断口与受力状态(主应力或切应力)的关系;(3)能够初步判断裂起源位置、断裂性质与原因,缩小进一步分析研究的范围,可为确定进一步分析的取样部位和数量提供线索和依据。因此宏观分析是断裂故障分析中最方便、最常用、最主要的不可缺少的步骤和方法,是整个断裂故障分析的基础。 断裂分析的一个主要内容,就是要确定断裂源的位置及裂纹的扩展方向。金属零件若已断裂成多块,则应把所有断块按原来形状拼起来,但要特别小心不能碰合,然后看其密合程度,密合得最差的为最早断裂,即主断口。分析断裂原因时,只需对主断口进行分析。

材料断裂力学简述

材料断裂力学简述 断裂力学是研究含裂纹物体的强度和裂纹扩展规律的科学。它是固体力学的一个分支,又称裂纹力学,萌芽于20世纪20年代A.A.格里菲斯对玻璃低应力脆断的研究。其后,国际上发生了一系列重大的低应力脆断灾难性事故,如第二次世界大战期间, 美国建造了2000多艘全焊接的货轮和油轮,据统计在1943~1965年期间断为两截的有20艘。50年代,北极星导弹固体燃料发动机壳体的实验发射和耐压试验时多次因破裂而爆炸。压力容器、大电机转子、桥梁等也发生过很多脆断事故。这些都促进了断裂研究工作和线弹性断裂力学的形成。通过断裂力学分析,可以确定裂纹的容许尺寸、评定零件和构件的承载能力,估算其使用寿命,从而提出零件和构件的损伤容限设计方法。传统的材料力学和结构力学都假设材料为不包含裂纹的连续体,并比较工作应力和许用应力来判断强度。然而机械零件和构件,特别是大型铸件和锻件,难免有裂纹或类裂纹缺陷的存在。断裂力学在零件和裂纹的尺寸、载荷与材料力学性能三者之间建立了定量的关系,从而可以根据试样的断裂力学试验数据,推测带裂纹机械零件和构件的抗断裂能力。 由于断裂力学兴起的年代较晚,所涉及的学科较多,现在仍处于发展阶段,因此无论其研究的对象、方法或其分类都尚未完全定型,人们认为它不仅仅是固体力学的一个分支,而且也是工程技术科学或材料科学的一个分支。但目前断裂力学总的研究趋势是:从线弹性到弹塑性;从静态断裂到动态断裂;从宏观微观分离到宏观与微观结合;从确定性方法到概率统计性方法。所以就断裂力学本身而言,根据研究的具体内容和范围,它又被分为宏观断裂力学(工程断裂力学)和微观断裂力学(属金属物理范畴)。根据所研究的裂纹尖端附近材料塑性区的大小,可将断裂力学分为线弹性断裂力学和弹塑性断裂力学;根据所研究的引起材料断裂的载荷性质,可将断裂力学分为断裂静力学和断裂动力学。断裂力学的主要任务是求得各类材料的断裂韧度;确定物体在给定外力作用下是否发生断裂,即建立断裂准则;研究载荷作用过程中裂纹扩展规律;研究在腐蚀环境和应力同时作用下物体的断裂(即应力腐蚀)问题。到目前为止断裂力学已在航空、航天、交通运输、化工、机械、材料、能源等工程领域得到广泛应用。如今在断裂力学研究方法中,又引入可靠性理论,称为概率断裂力学,使断裂力学的研究内容更加丰富,也使断裂力学的理论得到进一步的发展和完善,并在工程实际中发挥出越来越大的指导作用。 断裂力学不仅能解释各类工程构件发生脆断的原因,更重要的是它为防止脆断提出了一个定量的计算方法,建立了裂纹尺寸、应力(应变)及材料断裂韧性三者之间的定量关系。随着现代工业的飞速发展,高强度合金材料,例如高强度的钢、铝和钛等合金使用量越来越大。高强度合金的最大优点是比强度相当高,即强度与质量密度的比值较一般中低强度合金高得多。用高强度合金制成的构件通常体积小和重量轻,这个优点对宇航飞行器如火箭、太空船、航天飞机和人造卫星等特别重要。但是绝大多数高强度合金都比较脆。易发生脆断;在腐蚀性环境中,甚至在相对湿度较高的环境中就有可能萌生裂纹。因此,从设计、制造、安装和使用的角度来说,建立评定带裂纹运行构件的安全性标准,以及如何防止构件断裂事故发生,一直是科学工作者所关心的事情。目前,断裂力学在航空航天、造船、机械、石油化工、地质等部门得到越来越广泛的应用,它的研究方法也列入上述各部门的设计、制造、验收及使用规范中。 材料断裂力学在焊接工程中也有着十分重要的地位,众所周知,在锅炉、压力容器、压力管道制造和安装过程中,焊接质量是非常重要的。在焊接部位很容易产生焊裂、未熔合、未焊透、咬边、夹杂物和晶界开裂等缺陷,这些缺陷又极有可能成为裂纹源。因此正确地做好焊接缺陷等级评定工作不仅能保证产品质量,而且能保证产品的安全经济运行。但目前焊接缺陷等级评定情况却不尽人意,存在着这样那样的问题。观念的陈旧,规范的严格,安全

断裂力学裂纹扩展

断裂力学裂纹扩展 做裂纹扩展仿真确实比较难,目前一般都是以弹性断裂力学为基础,二维裂纹扩展容易一些,三维裂纹比较复杂,如果仅是要获得扩展寿命,裂纹长度,可以自己编程做,我是这样做的。如果要想获得不同裂纹前沿的应力应变场和K,模拟结构裂纹随载荷的动态真实变化,可能要借助软件: (1) Beasy,边界元软件,将三维问题解化为二维问题,比较方便。 (2) Fatigue软件,也还可以,但对复杂结构很难胜任。 (3) FE-fatigue 也不错 (4) FRANC3D。 至于计算,常用的方法有: (1)Prescribed Method 特点:裂纹只能沿单元边界扩展。 (2)Analytical Geometry Method 特点:将几何和载荷、约束分解为简单的解析形式。 (3)Known Solution Method 特点:查表求已知解。两个重要软件:NASGRO and AFGROW (4)Meshfree method 美国西北大学做的最好。优点是不需重新划分网格。 (5)Adaptive BEM/FEM 自适应网格边界元/有限元,用的较广。 (6)Lattice method 格子方法 (7)Atomic method 一般使用分子动力学方法。 (8)Constitutive method 在本构方程里引入破坏准则,无需预先引入裂纹。如本人上篇帖子。 (9)Cohesive element 使用cohesive element。 断裂学科研究的新趋向 第十届国际断裂大会(ICF10)的情况介绍

四年一届的国际断裂大会(Int. Conference of Frature, ICF-10)于2001年12月3日~12月6日在美国夏威夷召开。与会的有来自44个国家的代表约610人。中国参加会议的代表并有论文在论文集上发表的计34人(含中国香港10人),其中部分代表因故未能到会。此次会议的举办是成功的,现将会议的简要情况与参加会议的体会及有关建议分别作简单汇报于下。 一、ICF 10大会于2001年12月3日开幕,由ICF 10主席Ritchie教授主持,由ICF 名誉主席Yokobori教授(日)和Evans教授(美)作荣誉报告。他们的报告题目分别为:“用复杂系统科学与工程解决强度与断裂问思路的新尝试”,“力学和材料学的新技术挑战和研究的机遇”。Yokobori教授从复杂系统的角度,用系统学的观点阐释了断裂与强度问题的发展历史,从系统综合的新思路,展望断裂学科的发展。Evans教授回顾了以往由于航天与能源系统的需求,推进了断裂学科的进展。时至今日,生物医学、光电子、半导体等领域的产品对断裂学科的研究与发展提出了新的要求各种工程技术对材料和持久性与可靠性提出了新的课题,与破坏相关现象的研究必须从确定系统的临界状态推进到系统的生存状态,它要求人们研究新的破坏机制并集中注意力于维护系统的持久性。报告列举了两类例子来说明上述的趋向:其一是高承压的薄膜,在热学与力学的循环作用下,发生失稳导致破坏;另一是超轻的多功能结构,它在航天与汽车系统中有强列的需求,它除了应用通常的塑性屈曲分析外,还引入新颖的拓扑和优化的方法,体现了材料与结构设计的一体化及其与力学结合,反映了系统综合发展的新的趋向,迎来了力学与材料科学结合的新机遇。 大会还组织了27个专题分组的邀请报告和29个重点邀请报告。这些报告涉及动态断裂;脆性材料疲劳与高温疲劳;压缩断裂;细观断裂;结构诊断和无损检测与断裂;裂尖区非常规畴变带;环境断裂;纳观尺度效应与断裂;压电材料和聚合物的变形与断裂等。 大会组织的33个分组口头报告。涉及高温断裂、断裂物理、非线性断裂、脆

金属材料的断裂

金属材料的断裂 金属在外加载荷的作用下,当应力达到材料的断裂强度时,发生断裂。断裂是裂纹发生和发展的过程。 1. 断裂的类型 根据断裂前金属材料产生塑性变形量的大小,可分为韧性断裂和脆性断裂。韧性断裂:断裂前产生较大的塑性变形,断口呈暗灰色的纤维状。脆性断裂:断裂前没有明显的塑性变形,断口平齐,呈光亮的结晶状。韧性断裂与脆性断裂过程的显著区别是裂纹扩散的情况不同。 韧性断裂和脆性断裂只是相对的概念,在实际载荷下,不同的材料都有可能发生脆性断裂;同一种材料又由于温度、应力、环境等条件的不同,会出现不同的断裂。 2. 断裂的方式 根据断裂面的取向可分为正断和切断。正断:断口的宏观断裂面与最大正应力方向垂直,一般为脆断,也可能韧断。切断:断口的宏观断裂面与最大正应力方向呈45°,为韧断。 3. 断裂的形式 裂纹扩散的途径可分为穿晶断裂和晶间断裂。穿晶断裂:裂纹穿过晶粒内部,韧断也可为脆断。晶间断裂:裂纹穿越晶粒本身,脆断。 4. 断口分析 断口分析是金属材料断裂失效分析的重要方法。记录了断裂产生原因,扩散的途径,扩散过程及影响裂纹扩散的各内外因素。所以通过断口分析可以找出断裂的原因及其影响因素,为改进构件设计、提高材料性能、改善制作工艺提供依据。断口分析可分为宏观断口分析和微观断口分析。 (1)宏观断口分析 断口三要素:纤维区,放射区,剪切唇。纤维区:呈暗灰色,无金属光泽,表面粗糙,呈纤维状,位于断口中心,是裂纹源。放射区:宏观特征是表面呈结晶状,有金属光泽,并具有放射状纹路,纹路的放射方向与裂纹扩散方向平行,而且这些纹路逆指向裂源。剪切唇:宏观特征是表面光滑,断面与外力呈45°,位于试样断口的边缘部位。 (2)微观断口分析(需要深入研究) 5. 脆性破坏事故分析

断口分析资料讲解

1.弹性不匹配的裂纹形核:晶粒间由于取向,化学成分不同,弹性模量是不一样的,外部施加的应力或内部产生的应力在两个经理内产生不同的弹性应变,从而可能导致局部的高应力,并通过形成裂纹加以释放。 2.结晶固体中的塑性形变引起的裂纹形核:低温下的结晶材料,如金属和陶瓷,会发生剪切形变。从微观结构的层次来看,这是由单个位错的滑动(滑移)或大批的位错协调移动(局部形变孪生)引起的晶体内或晶粒内的剪切形变。由此产生的剪切应力可能局限在一个窄带内。当剪切带遇到障碍,例如晶界或者第二相粒子,在剪切带尖上会产生很大的局部应力,这就引起了裂纹形核。材料的晶体结构及外加应力的方向决定了滑移面或孪生面的方向以及剪切发生的方向。裂纹形核的平面与材料的晶体结构和“障碍”界面的强度密切相关。由于结晶解理,裂纹产生在同一晶粒的剪切带中。当然裂纹也可能会产生在“障碍”处,或者在材料中弱界面处,沿界面形成。高应力集中也可能会通过普通的塑性形变而不是裂纹形核释放出来。裂纹是否产生取决于多个不同变量,包括剪切应力大小、障碍的强度、形变动力学以及滑移系的几何性质等。有些材料比较易碎,容易产生裂纹,是因为无法释放由于塑性形变所产生的高的应力集中。 3.塑性孔洞聚合引起的裂纹形核:这种机制多发生于很多含有刚性颗粒的延性固体中,具体细节取决于固体的微观结构。当受力变形时,延性基体通过两种方式产生形变:晶体材料的滑移,或者在非晶和半结晶体材料中更为普遍的剪切过程,但其中的坚硬颗粒不会发生形变。

因此,随着颗粒周围产生的许多塑性孔洞,颗粒和基体开始分离。而一旦形核,由于基体的进一步剪切或高温下的扩散过程,塑性孔洞会不断扩大。最终,不断变大的塑性孔洞的应力场会彼此交互作用,基体剪切应力逐渐集中到颗粒之间的区域,导致其与基体的分离而形成裂纹。裂纹是由不规则排列的多个聚集的塑性孔洞构成的。这说明,裂纹可能是由许多较小的裂纹形成的,在本例中指的就是刚性颗粒与基体界面间的小裂纹。 4.界面滑移产生的裂纹形核:在足够高的温度下,多晶材料,或者更准确地说,球状半结晶聚合物的形变原因是这些相对来说呈刚性的晶体之间的滑移。由于热活化过程的作用,材料在发生形变前,晶粒或者球晶会发生晶界弛豫,所以整个滑移过程就成为形变的主要模式。当三相点的晶粒棱角导致滑移过程中断时,材料上就会出现楔形裂纹。在滑移过程中,位于晶界上的刚性颗粒可能会导致塑性孔洞的形核。这些塑性孔洞不断扩展和聚集,在晶界上形成裂纹,这个原理和的塑性孔洞的道理类似。 5.交变应力(机械疲劳)产生的裂纹形核:以上所述的裂纹形核的示例都是由单调加载引起的。在单调加载条件下,当施加循环应力时,尽管应力尚未达到裂纹产生和扩展的临界水平,也会导致机械疲劳。循环应力导致较小的形变,逐渐累积并最终产生裂纹。一般来说,滑动或滑移是在一个主滑移面上进行的,而循环应力则会导致其在几个相互紧邻的平行平面的狭窄区域或窄带内来回滑动,该区域被称为永久滑移带。这时,由于晶体的滑动,表面上就会出现锯齿和像裂纹一样

相关文档
最新文档