WKB近似及在一维势阱量子化条件推导的应用

WKB近似及在一维势阱量子化条件推导的应用
WKB近似及在一维势阱量子化条件推导的应用

WKB 近似推导一维势阱量子化条件

摘要:在量子力学里,WKB 近似是一种半经典计算方法,可以用来解析薛定谔方程。WKB 近似的应用非常广泛,特别是量子力学相关问题中。本文通过介绍了WKB 近似,并用其导出了一维势阱量子化条件为例,进一步深入了解WKB 近似法求解方程的步骤和过程。 关键词:WKB 近似,一维势阱,量子化条件,薛定谔方程

引言:WKB 近似全名为温侧-克喇末-布里渊近似法,是以三位物理学家Gregor Went zel 、Hendrix Anthony Kram ers 和Leon Brillouin 命名的。他们于1926年成功的发展和应用于量子力学。经过近百年的发展和改进,WKB 近似已得到完善和普及,应用广泛,如处理谐振子问题、开普勒问题、一维及三维定态微扰问题、分波相角计算问题等。本文主

要讲解的是在势场()x V 变化缓慢并且E —()x V 特别大的条件(即WKB 近似条件)下,

用WKB 近似方法求解一维定态薛定谔方程可以得到WKB 波函数,结合转折点处波函数的渐进行为以及边条件能过导出一维势阱中三种典型模型下的束缚态例子的量子化条件。

1.WKB 近似法的基本思想

若薛定谔方程可以分解为几个常微分方程,并且问题又与经典问题相差不大是,则可以将波函数按幂级数展开,而且只取前面少数几项就能得到到小号的结果。所谓问题与经典问题相差不大,是指在研究体系中,研究的动量与其运动空间尺度大,普朗克常量 作用不大,使量子力学问题退化为经典问题。

2.WKB 近似法的基本步骤

求解一个量子系统的薛定谔方程的基本步骤,由基本思想可以归结为以下五步: 首先将波函数打造为一个一个指数函数;其次是将这些指数函数代入薛定谔方程;然后将指数函数展开为普朗克常量的幂级数的多项式函数;再匹配约化普朗克常量同次幂的项目, 得到一个方程组;最后解析这些方程,得到WKB 近似波函数。

3.WKB 近似波函数

根据上述的基本思想和基本步骤,以一维自由粒子为例,解其WKB 近似波函数的过程如下。

考虑到量子力学与经典力学之间的过度条件:,

()M C M Q .0.→→

利用准经典近似法(WKB 近似法),对一维自由粒子波函数以 展开,然后求薛定谔方程并取波函数近似解,即可得到WKB 近似波函数。 这一过程的具体步骤为:

对于一维自由粒子波函数??? ??±= i Aex p px ψ可记为()??

?

??= i ex p x f ψ,将其

代入薛定谔方程m

22

-

?()x V ()ψψE x =+V ,可得

()02

2

i =+-

''+'p f f (1)

()()()()+++=

x x x x f f f f 2

2

1

…,并代入式(1)可得到 的多项式,

根据 各幂次系数为零有:

()

()

,;

,;'

'

'''''

+

="

'

==

f f f f f f f p f 02

i 2i 02

2

1

2

1

1

2

2

… 取

()x f 至以及近似,得

()()dt t p x f x

f f

?±=+?0

101 (2) 其中:()()[]x V E m x p -=

2。

将式(2)代入薛定谔方程,得 ()()()()??

?

??+=???

??'

?

??x x a dt t p x p C

dt t p x p C 001sin i exp ψ (3) 其中:a C C ,,'有具体问题的边界条件和归一化条件确定。

式(3)是一维自由粒WKB 近似波函数的解,该解成立的条件 :

()()[]x V E m x p -=2 >0,

即E >()x V ,波函数对应图1的区域Ⅱ(经典允许区)。

当()()x V E x p <<,即0时,只需将式(3)中的()x p 变为()i x p ,即可得到与图1中区域Ⅰ和区域Ⅲ(经典禁区)对应的WKB 近似波函数:

()

()()

()???

??-+???

???

??x x dt t p x p tdt p x p C

C

2

01

i exp i exp ψ (4)

其中:C 1,C 2边界条件及过一滑条件决定。

3. 一维势阱量子化

3.1无垂直壁势阱

式(3)(4)分别给出了E >()x V 和E <()x V 的WKB 近似波函数。但是在转折点x 1

,x 2

处()()x x V V E 2

1

==,临近x 1

,x 2

处不满足WKB 近似条件:()()[]12<<-dx

dV

x V

E x λ,其中: ()()[]

x V E m x -=

2 λ。因此,在临近

x 1

,x 2

处式(3)

、式(4)不在成立。此时转折点处波函数可由连接函数与WKB 波函数对照得出。x x 1

=

两侧WKB 波函数的连接公式为:

()()()()????

??+?????

??-?

?

x x x x dx x p x p dx x p x p 1141sin 2

1exp 1

π (5)

(经典禁区x x

1<) (经典允许区x x 1>)

所以在势阱中的粒子的束缚态的WKB 波函数课表示为: ()()()()

()()()

()??

?

???

?

<

'=???

? ??+'>≈

=????

??+

??x

x

x

x x x x x p C dx x p x p C x x x x p C dx x p x p C x x

x

x

2

2

2

1

1

1

sin 41

sin sin

41sin 21

,,θθ

ππ

由于在同一区域Ⅱ内(阱内)波函数应保持一致,所以

()()()...3,2,12

1

==+n n x x πθθ

()(),...3,2,12

121

==+?n n dx x p x x ππ

,由此得到无垂直阱壁势阱模型(见图1)下的量子化条件为:

(),...)3,2,1(2121

=??

?

?

?-=?n n dx x p

x x

π (6)

3.2 含单垂直阱壁势阱

单垂直阱壁势阱(见图2)是一维势阱的一种重要模型。其势函数满足

()()????

?≤∞

>=0

0x x x f x V

在垂直壁0=x

处,显然有()00=ψ。此时()()(),221ππθθθk x m x x =+=+其中:

n m ,均为整数,整理得:

()()()...3,2,12

==-=n n m k x ππθ

即 (),4

12

ππn dx x p x =+? 由此得到的单垂直阱壁势阱模型下的量子化条件为:

()()...3,2,1412

=??

? ?

?-=?n n dx x p x π (7)

3..3 垂直势阱

图3 的一维垂直势阱的势函数可表示

()()??

?

?

???≥∞

<<≤∞=x x x x x f x x V 22

00 在区域Ⅱ中,WKB 近似函数形式与式(3)相同并可以化为 ()()()

()()()x x x p dt t p x p C C C x φφψ

cos sin 1

i ex p 210+=???

??±'?

?

其中:()()dt t p x x

?=0

1

φ

(8)

。 有边界条件可知,当0=x

时,()00=ψ,从而有()000sin 2,==C ,φ;当

x x 2=时,()()0sin ,022==x x φψ,所以()()...3,2,12==n n x πφ,代入式(6)

中,可得:

()()...3,2,12

==?n n dx x p x π (9)

式(9)就是一维垂直势阱内束缚态的量子化条件,相当于原始的Bohr-Sommerfeld 量子化

条件,并且同样适用于平底势阱。 结语

由上述推导过程,可以看出使用WKB 近似方法导出了一维势阱中三种典型势阱模型下束缚态的量子化条件,推导方法简洁、清晰,既有助于了解WKB 近似的今本思想和理论,又有利于对一维势阱下束缚态粒子量子化条件的深刻认识。另外,通过不同模型下的量子化条件,能够很容易计算出相应势阱中粒子的能级分布(如计算一维谢正子的能级分布)。

WKB 近似求解薛定谔方程的本质是求解二阶微分方程的近似解,在量子力学领域的计算过程中,有着重要的作用。但由于WKB 近似法的应用是有条件限制的。它的局域性影响有些研究的近似解的准确度,如非均匀等离子体中的脉冲波形研究中,电磁波传播过程中的向前波和向后波的耦合效应,使得WKB 近似解的准确度不高,而利用差分传输矩阵技术,在再合WKB 近似法,使得原来的WKB 近似解由阶近似提升为二阶近似。由此可见,与传统的WKB 近似相比,改进WKB 近似法对研究的效果更好。因此,改进WKB 近似法是以后WKB 近似在研究中发展的有力前提。对此,研究人员要多加努力。

参看文献

方宁、王宝发,给予改进WKB 的非均匀等离子体中脉冲波形研究,《电子学报》,2010年03期 李海、宇文莉、杜慧秋,基于WKB 近似的一维势阱量子化条件的推导,高师理科学刊,2010年1月,30卷第1期

钱伯初,量子力学,高等教育出版社,2006年1月:43~51

表面等离子体共振原理及其化学应用

表面等离子体共振原理及其应用 李智豪 1.表面等离子体共振的物理学原理 人们对金属介质中等离子体激元的研究, 已经有50多年的历史。1957年Ritchie发现, 高能电子束穿透金属介质时, 能够激发出金属自由电子在正离子背景中的量子化振荡运动, 这就是等离子体激元。后来,人们发现金属薄膜在入射光波照射下, 当满足特定的条件时, 能够激发出表面等离子体激元, 这是一种光和自由电子紧密结合的局域化表面态电磁运动模式。由于金属材料的吸收性质,光波沿金属表面传播时将不断被吸收而逐渐衰减, 入射光波的能量大部分都损耗掉了, 造成反射光的能量为最小值, 这样就把反射光谱的极小值与金属薄膜的表面等离子体共振联系了起来。 1.1 基本原理[1] 光与金属物质的相互作用主要是来自于光波随时间与空间作周期性变化的电场与磁场对金属物质中的电荷所产生的影响,导致电荷密度在空间分布中的变化以及能级跃迁与极化等效应,这些效应所产生的电磁场与外来光波的电磁场耦合在一起后,表达出各种不同光学现象。 等离子体是描述由熔融状态的带电离子所构成的系统,由于金属的自由电子可当作高密度的电子流体被限制于金属块材的体积范围之内,因此亦可类似地将金属视为一种等离子体系统。当电磁波在金属中传播时,自由电子会随着电场的驱动而振荡,在适当条件下,金属中传播之电磁波其电场振荡可分成两种彼此独立的模态,其中包含电场或电子振荡方向凡垂直于电磁波相速度方向的横波模态,以及电场或电子振荡方向凡平行波的传播方向纵波模态。对于纵波模态,自由电子将会沿着电场方向产生纵向振荡的集体运动,造成自由电子密度的空间分布会随时间之变化形成一种纵波形式之振荡,这种集体运动即为金属中自由电子之体积等离子体振荡。 金属复介电常数的实部相对其虚部来说,往往是一个较大的负数,金属的这种光学性质,使金属和介质的界面处可传输表面等离子波,使夹于两介质中间的金属薄膜可传输长程表面等离子波。这两类表面波具有不同于光导波的独特性质,例如,有效折射率的存在范围大、具有场

能量量子化

17.1 能量量子化 高二物理组韦瑜教材分析、学情分析 本节由黑体和黑体辐射、黑体辐射的实验规律和能量子三部分内容组成。对黑体辐射的研究及由此引发的“紫外灾难”是19世纪初物理学天空中的“第三朵乌云”,然而正是在拨开“第二朵乌云”的过程中,物理学终于迎来了量子物理的曙光。本节的重点是对黑体辐射能量在不同温度下与波长关系的研究,难点是如何让学生理解能量量子化假说。对这部分内容,教材是按物理学史的发展展开的,目的是使学生能从前辈大师的工作中体会科学探究的真实过程。 教学目标 (一)知识与技能 1.了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射 2.了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系 3.了解能量子的概念 (二)过程与方法 了解微观世界中的量子化现象。比较宏观物体和微观粒子的能量变化特点。体会量子论的建立深化了人们对于物质世界的认识。 (三)情感、态度与价值观 领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。 教学重点 能量子的概念 教学难点 黑体辐射的实验规律 教学方法 教师启发、引导,学生讨论、交流。 教学用具: 投影片,多媒体辅助教学设备 课时安排 1 课时

教学过程 (一)引入新课 教师:介绍能量量子化发现的背景:(多媒体投影,见课件。) 19世纪末页,牛顿定律在各个领域里都取得了很大的成功:在机械运动方面不用说,在分子物理方面,成功地解释了温度、压强、气体的内能。在电磁学方面,建立了一个能推断一切电磁现象的Maxwell方程。另外还找到了力、电、光、声----等都遵循的规律---能量转化与守恒定律。当时许多物理学家都沉醉于这些成绩和胜利之中。他们认为物理学已经发展到头了。 1900年,在英国皇家学会的新年庆祝会上,著名物理学家开尔文作了展望新世纪的发言:“科学的大厦已经基本完成,后辈的物理学家只要做一些零碎的修补工作就行了。” 也就是说:物理学已经没有什么新东西了,后一辈只要把做过的实验再做一做,在实验数据的小数点后面在加几位罢了! 但开尔文毕竟是一位重视现实和有眼力的科学家,就在上面提到的文章中他还讲到: “但是,在物理学晴朗天空的远处,还有两朵令人不安的乌云,----” 这两朵乌云是指什么呢? 一朵与黑体辐射有关,另一朵与迈克尔逊实验有关。 然而,事隔不到一年(1900年底),就从第一朵乌云中降生了量子论,紧接着(1905年)从第二朵乌云中降生了相对论。经典物理学的大厦被彻底动摇,物理学发展到了一个更为辽阔的领域。正可谓“山重水复疑无路,柳暗花明又一村”。 点出课题:我们这节课就来体验物理学新纪元的到来――能量量子化的发现(二)进行新课 1.黑体与黑体辐射 教师:在了解什么是黑体与黑体辐射之前,请同学们先阅读教材,了解一下什么是热辐射。 学生:阅读教材关于热辐射的描述。 教师:通过课件展示,加深学生对热辐射的理解。并通过课件展示,使学生进一步了解热辐射的特点,为黑体概念的提出准备知识。 (1)热辐射现象

量子阱原理及应用

光子学原理课程期末论文 ——量子阱原理及其应用 信息科学与技术学院 08电子信息工程 杨晗 23120082203807

题目:量子阱原理及其应用 作者:杨晗 23120082203807 摘要:随着半导体量子阱材料的发展,量子阱器件广泛应用于各种领域.本文主 要介绍量子阱的基本特征,重点从量子阱材料、量子阱激光器、量子阱LED、等方面介绍量子阱理论在光电器件方面的发展及其应用。 关键词:量子阱量子约束激光器 量子阱是指由2种不同的半导体材料相间排列形成的、具有明显量子限制效应的电子或空穴的势阱。量子阱的最基本特征是,由于量子阱宽度(只有当阱宽尺度足够小时才能形成量子阱)的限制,导致载流子波函数在一维方向上的局域化。在由2种不同半导体材料薄层交替生长形成的多层结构中,如果势垒层足够厚,以致相邻势阱之间载流子波函数之间耦合很小,则多层结构将形成许多分离的量子阱,称为多量子阱,简单来说,就是由多个势阱构成的量子阱结构为多量子阱,简称为MQW(Multiple Quantum Well),而由一个势阱构成的量子阱结构为单量子阱,简称为SQW(Single Quantum Well)。 一量子阱最基本特征 由于量子阱宽度(只有当阱宽尺度足够小时才能形成量子阱)的限制,导致载流子波函数在一维方向上的局域化。在由2种不同半导体材料薄层交替生长形成的多层结构中,如果势垒层足够厚,以致相邻势阱之间载流子波函数之间耦合很小,则多层结构将形成许多分离的量子阱,称为多量子阱。如果势垒层很薄,相邻阱之间的耦合很强,原来在各量子阱中分立的能级将扩展成能带(微带),能带的宽度和位置与势阱的深度、宽度及势垒的厚度有关,这样的多层结构称为超晶格。有超晶格特点的结构有时称为耦合的多量子阱。量子肼中的电子态、声子态 和其他元激发过程以及它们之间 的相互作用,与三维体状材料中的 情况有很大差别。在具有二维自由 度的量子阱中,电子和空穴的态密 度与能量的关系为台阶形状。而不 是象三维体材料那样的抛物线形 状[1]。 图1半导体超晶格的层状结构,白圈和灰圈代 表两种材料的原子

激光二极管原理及应用

激光二极管参数与原理及应用 2011-06-19 17:10:29 来源:互联网 一、激光的产生机理 在讲激光产生机理之前,先讲一下受激辐射。在光辐射中存在三种辐射过程, 一时处于高能态的粒子在外来光的激发下向低能态跃迁,称之为自发辐射; 二是处于高能态的粒子在外来光的激发下向低能态跃迁,称之为受激辐射; 三是处于低能态的粒子吸收外来光的能量向高能态跃迁称之为受激吸收。 自发辐射,即使是两个同时从某一高能态向低能态跃迁的粒子,它们发出光的相位、偏振状态、发射方向也可能不同,但受激辐射就不同,当位于高能态的粒子在外来光子的激发下向低能态跃迁,发出在频率、相位、偏振状态等方面与外来光子完全相同的光。在激光器中,发生的辐射就是受激辐射,它发出的激光在频率、相位、偏振状态等方面完全一样。任何的受激发光系统,即有受激辐射,也有受激吸收,只有受激辐射占优势,才能把外来光放大而发出激光。而一般光源中都是受激吸收占优势,只有粒子的平衡态被打破,使高能态的粒子数大于低能态的粒子数(这样情况称为离子数反转),才能发出激光。 产生激光的三个条件是:实现粒子数反转、满足阈值条件和谐振条件。产生光的受激发射的首要条件是粒子数反转,在半导体中就是要把价带内的电子抽运到导带。为了获得离子数反转,通常采用重掺杂的P型和N型材料构成PN结,这样,在外加电压作用下,在结区附近就出现了离子数反转—在高费米能级EFC以下导带中贮存着电子,而在低费米能级EFV以上的价带中贮存着空穴。实现粒子数反转是产生激光的必要条件,但不是充分条件。要产生激光,还要有损耗极小的谐振腔,谐振腔的主要部分是两个互相平行的反射镜,激活物质所发出的受激辐射光在两个反射镜之间来回反射,不断引起新的受激辐射,使其不断被放大。只有受激辐射放大的增益大于激光器内的各种损耗,即满足一定的阈值条件: P1P2exp(2G - 2A) ≥1 (P1、P2是两个反射镜的反射率,G是激活介质的增益系数,A是介质的损耗系数,exp 为常数),才能输出稳定的激光,另一方面,激光在谐振腔内来回反射,只有这些光束两两之间在输出端的相位差Δф=2qπq=1、2、3、4。。。。时,才能在输出端产生加强干涉,输出稳定激光。设谐振腔的长度为L,激活介质的折射率为N,则 Δф=(2π/λ)2NL=4πN(Lf/c)=2qπ, 上式可化为f=qc/2NL该式称为谐振条件,它表明谐振腔长度L和折射率N确定以后,只有某些特定频率的光才能形成光振荡,输出稳定的激光。这说明谐振腔对输出的激光有一定的选频作用。 二、激光二极管本质上是一个半导体二极管,按照PN结材料是否相同,可以把激光二极管分为同质结、单异质结(SH)、双异质结(DH)和量子阱(QW)激光二极管。量子阱激光二极管具有阈值电流低,输出功率高的优点,是目前市场应用的主流产品。同激光器相比,激光二极管具有效率高、体积小、寿命长的优点,但其输出功率小(一般小于2mW),线性差、单色性不太好,使其在有线电视系统中的应用受到很大限制,不能传输多频道,高性能模拟信号。在双向光接收机的回传模块中,上行发射一般都采用量子阱激光二极管作为光源。 半导体激光二极管的基本结构如图所示,垂直于PN结面的一对平行平面构成法布里—

LED原理及应用概述

LED原理及应用概述 纵观人类照明史,先后经历了火光照明、白炽灯照明、荧光灯照明,LED(发光二极管)作为加入照明家族的新成员,目前正处于蓬勃发展阶段。从1962年第一支红色二极管问世,黄色、绿色、橙色、蓝光LED被陆续开发出来。1998年,基于蓝光的LED芯片的成功开发,孕育了新一代的照明革命。随着国家半导体照明工程的启动,半导体照明技术将进一步改变我们的世界。由于白光LED光效的迅速提高,加上其体积小、耐震动、响应速度快、方向性好、寿命长达数万小时、光色接近白炽灯光色、低压驱动、无汞和铅的污染,将发展成为可用来代替白炽灯和荧光灯的主要绿色光源。 1、 LED的结构及发光原理 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由三部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子,中间通常是1至5个周期的量子阱。当电流通过导线作用于这个晶片的时候,电子和空穴就会被推向量子阱,在量子阱内电子跟空穴复合,然后就会以光子的形式发出

能量。而光的波长也就是光的颜色,是由形成P-N结的材料决定的。 因此,只要有理想的半导体材料就可以制成各种光色的LED。 LED结构图如下图所示。发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。随着国家半导体照明工程的启动,半导体照明技术将进一步改变我们的世界。由于白光LED光效的迅速提高,加上其体积小、耐震动、响应速度快、方向性好、寿命长达数万小时、光色接近白炽灯光色、低压驱动、无汞和铅的污染,将发展成为可用来代替白炽灯和荧光灯的主要绿色光源。

第十二章-量子物理学

第十二章 量子物理学 §12.1 实物粒子的波粒二象性 一、 德布罗意物质波假设 νλ h E h P == h E P h = = νλ 二、 德布罗意物质波假设的实验证明 1、 戴维森——革未实验 2、 电子单缝实验 例1、运动速度等于300K 时均方根速率的氢原子的德布罗意波长是 1.45A 0 。质量M=1Kg ,以速率v=1cm/s 运动的小球的德布罗意波长是 6.63×10-14A 0 。(h=6.63×10-34J.s 、K=1.38×10-23J.K 、m H =1.67×10-27kg ) 解:(1) m k T v 32= 045.13A k Tm h mv h p h ==== λ (2)0191063.6A Mv h p h -?=== λ 例2、若电子的动能等于其静止能量,则其德布罗意波长是康谱 顿波长的几倍? 解:电子的康谱顿波长为c m h e c =λ,罗意波长为p h = λ 由题知:c v c m c m E k 2 32)1(2020= ?=?=-=γγ c m h v m h p h e e 2 3 2=== γλ,故 3 1= c λλ 三、 德布罗意物质波假设的意义 四、 电子显微镜 例子、若α粒子(电量为2e)在磁感应强度为B均匀磁场中沿半径为R的圆形轨道运动,则α粒子的德布罗意波长是:[A] (A )h/(2eRB) . (B )h/(eRB) .

(C)1/(2eRBh).(D)1/(eRBh).例2、如图所示,一束动量为p的电子,通过缝宽为a的狭缝,在距离狭缝为R处放置一荧光屏,屏上衍射图样中央最大的宽度d等于:[D] (A)2a2/R.] (B)2ha/p. (C)2ha/(Rp). (D)2Rh/(ap).

量子阱中的激子效应及其应用

量子阱中的激子效应及其应用 摘要 人们对半导体中的电子空穴对在库仑作用下形成的激子态及其有关的物理性质进行了深入研究。在量子化的低维电子结构中,激子束缚能要大得多,激子效应增强,也更稳定。这对制作利用激子效应的光电子器件非常有利。近年来量子阱、量子点等低维结构研究获得飞速的进展,已大大促进了激子效应在新型半 导体光源和半导体非线性光电子器件领域的应用。 关键词半导体,激子,量子阱,自电光效应 ABSTRACT The excitons in semiconductors formed by electron-hole pairs bound by Coulombic interaction have beenwell investigated. In quantized electronic low-dmi ensional structures the excitons have much larger binding energies than in bulkmaterials, showing strongerexcitonic effects and beingmore stable athigh temper-atures or under high electric field conditions. The progress obtained recently in investigations on quantum wells,quantumdotsand other low-dmi ensionalstructureshave greatlypromoted the ionsofexciton ic effects in many new sem iconductor light sources and non-linear opto-electronic devices. Key words Semiconductor;Exciton;Quantum well;SEED 1.引言 目前,世界各主要发达国家都已纷纷致力于信息高速公路的建设。如今依然在大规模使用的传统的电子器件已经不能很好的满足信息高速传输的要求。 人们迫切需要研制出新的器件,打造未来信息高速公路。本文着重介绍了半导体中的一种特殊的束缚态——激子的形成及其特性,并对利用激子效应制作的各种量子器件在未来光通信中的应用进行了探讨。 2.激子形成及其特性 激子是固体中的一种基本的元激发,是由库仑互作用互相束缚着的电子—空穴对。半导体吸收一个光子后,电子由价带跃迁至导带,但是电子由于库仑作用仍然和价带中的空穴联系再一起,从而形成了一种束缚态——激子。 激子在研究绝缘体和半导体的物理问题和光电性质时具有重要的意义。早在20世纪30年代,科学家就对激子开始了研究。在固体物理的研究发展史中,布洛赫首先用单电作为独立运动的量子来描述解释固体的导电性。1931年,前

一维方势阱

2.4 一维方势阱 本节我们要讨论一维方势阱问题。所谓一维方势阱指的是在一维空间中运动的微观粒子,其势能在一定的区间内,为一负值,而在此区间之外为零,即 00,0,(),0,0,,x U x U x a x a ≤?? =-≤≤??≥? (2.76) 其相应的势能曲线如图2.6所示 图2.6 一维方势阱 下面我们就E 大于与小于零的两种情形分别讨论如下: (1)E>0的情形。 此时,描述粒子运动状态的波函数()x φ所满足的定态薛定谔方程为 22220,l l d m E dx φφ== (2.77) 202 22()0,l m d m E U dx φφ=+= (2.78) 22220,r r d m E dx φφ== (2.79) 式中,l m φφ与r φ分别为粒子位于左方区间、势阱区间与右方区间中的波函数。 为方便起见,令 22 12022 22,()。m m k E k E U = =+ (2.80) 则上述三式可改写为 2212 0,l l d k dx φφ== (2.81) 22 22 0,m m d k dx φφ== (2.82) 2212 0,r r d k dx φφ== (2.83) 其解分别为 1 1 (),ik x ik x l x Ae A c φ-'=+ (2.84) 2 2 (),ik x ik x m x Be B c φ-'=+ (2.85)

1 1 (),ik x ik x r x Ce C c φ-'=+ (2.86) 显然,C 必须为零,利用φ及其导数的连续性条件即可求得、 A C '与A 关系为 2222 1222212122()sin ,()()ik a ik a i k k k a A A k k e k k e --'=--+ (2.87) 122122212124,()()ik a ik a ik a k k e C A k k e k k e --=--+ (2.88) 从而求得其反射系数R 与透射系数T 分别为 222 2122222222 12212()sin ,()sin 4k k k a R k k k a k k -=-+ (2.89) 22 12 222222 12212 4,()sin 4k k T k k k a k k -=-+ (2.90) 由此可见,对于方势阱而言,即使是在E>0的情形下,一般而论,其透射系数T 小于1,而反射系数R 则大于零,二者之和也是等于1。 显然,在2(1,2,)k a n n π== 的特定情形下,其透射系数T 等于1。这种透射亦叫共振透射。此时,有 22 022(),m E U a n π+= (2.91) 与之相应的能量为 222 02 ,2n E U ma π=- (2.92) E n 叫做共振能级。当阱深与阱宽一定时,透射系数T 与人射粒子能量E 的关系如图2.7所示。 图2.7 势阱的透射系数T 与入射能量的关系 当粒子能量E 与阱深一定时,有 0min 2 00 4() ,4()E E U T E E U U += ++ (2.93) 又当入射粒子能量与阱宽一定时,透射系数是阱深U 0的函数,且当满足 222 02 ()2n U n E ma π=- (2.94) 时,T =1。 (2)E<0的情形。 此时,粒子的波函数应满足的定态薛定谔方程为 22220,l l d m E dx φφ-= (2.95)

二次量子化

二次量子化 二次量子化又叫正则量子化,是对量子力学的一种新的数学表述。普通的量子力学方法只能处理粒子数守恒的系统。但在相对论量子力学中,粒子可以产生和湮灭,普通量子力学的数学表述方法不再适用。二次量子化通过引入产生算符和湮灭算符处理粒子的产生和湮灭,是建立相对论量子力学和量子场论的必要数学手段。相比普通量子力学表述方式,二次量子化方法能够自然而简洁的处理全同粒子的对称性和反对称性,所以即使在粒子数守恒的非相对论多体问题中,也被广泛应用。 然而,现在的二次量子化理论反映物质埸的特征是不够全面的。其一:只用作为埸的自由度的广义坐标,是一维的无穷多个指标的广义坐标,也就是说尽管是多个指标,它在空间的自由度却仅有一维。无穷多个指标的广义坐标,只分别对应无穷多个光量子,描写它们一维的状态。为了描写物质埸的矢量性,物质埸 的自由度的广义坐标也应该是多维的广义坐标,必须把推广成,对应物质埸在处的振动的动量,对应物质波的几率密度,即传统的二次量子化理论中的态函数。 在各类物理文献(包括科普)中,我们都能经常看到一个术语,即二次量子化,一般指场量子化或从量子力学到量子场论的这个“提升”过程。然而,所谓的二次量子化其实是一个错误的概念,至少是一个应该被摒弃的不恰当的概念,其产生及仍被使用有着一定的历史根源。但这并不仅仅是历史错误被认识后人们懒得改变的习惯用法,否

则也没有特别说明的必要了,而是依然存在于物理文献中的误解,它还在误导着更多的人。 量子场论的产生是这样一个过程。物理学家们首先建立了基于平直时空点粒子的量子力学,以薛定谔方程来描述,然后为了统一量子力学和狭义相对论,或者说为了找到符合狭义相对性原理的量子力学,他们认为有必要“推广”薛定谔方程,从而找到了克莱恩-戈登方程和狄拉克方程等等并认为他们就是“推广”的薛定谔方程,进一步研究发现这些方程的变量并不是描述点粒子的动力学量,而是所谓的场,一类在时空每一点都有取值的函数,对这类场进行量子化最终促成了量子场论—同时满足狭义相对论和量子力学的新理论的诞生。可是把诸如克莱恩-戈登之类的方程看成薛定谔方程的推广是错误的,正是当年人们这一错误认识导致了二次量子化的提出和使用,并且把量子力学称为经典力学的一次量子化。下面我们简单分析一下。 先从经典点粒子力学说起。经典点粒子力学的研究对象是点粒子,点粒子在空间(即位形空间)中的位置由空间坐标表示,其动力学,即其位置随时间的演化由一个或一组动力学方程所描述,方程的变量是坐标及其时间导数。人们又发现点粒子的动力学也可以等价地通过其位置和动量来描述,一个粒子的位置和动量所构成的空间成为该粒子的相空间,粒子在位形空间中的可能轨迹等价于其相空间中的一条曲线。二十世纪初,一些我们现在已经熟知的原因引发了量子力学革命,物理学家们发现微观世界很大程度上不能为经典相空间所描

量子力学(周世勋)课后答案-第一二章

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量) ; 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 νc =, (2) ||λνρρλd d v =, (3) 有 (),1 18)(| )(| |5 2-?=?===kT hc v v e hc c d c d d dv λνλ λ πλλρλ λλρλ ρρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 01151186=??? ? ? ?? -?+--?=-kT hc kT hc e kT hc e hc d d λλλλλ πλρ

? 0115=-?+ --kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??≈-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

一维势垒问题总结

一维势垒中的透射系数 利用传递矩阵方法研究了粒子在一维势垒中运动时的粒子的透射系数,主要研究的是在一个方势垒两个方势垒中透射系数,对以上的透射系数的总结,推出了对于任意势垒中透射系数, 并讨论了透射系数、反射系数与势垒宽度的关系. 一维方势垒 势垒模型 在方势垒中,遇到的问题和 值得注意的地方。在求方势垒波 函数中,首先要知道这是一个什 么样问题,满足什么样的方程, 方程可以写成什么样的形式,在 求解方程中,波函数的形式应该 怎样需要怎样的分段,分段的过程中,特别要强调的边界条件问题。并且验证了概率流密度。 在量子力学中,粒子在势垒附近发生的现象是不一样的,能量E 大于势垒高度0u 的粒子在势垒中有一部分发生反射,而能量小于0u 的粒子也会有部分穿过势垒,这在经典力学中是不会发生的。 下面讨论的是一维散射(即在非束缚态下问题,在无穷远处波函数不趋于零)。重点讨论的是粒子通过势垒的透射和反射,重点在于求出波函数,这就必须求解薛定谔方程,由于)(x U 是与时间无关的,此处是定态薛定谔方程。 定态薛定谔方程通式: ψψψE U m =+?-2 22h 在量子力学里, 必须知道波函数ψ, 因此必须要解薛定谔方程 t i U x m ??=+??-ψ ψψh h 2222 一维散射问题是一个非束缚态问题(()U x 与时间无关, 而E 是正的).因此令 t E i e x t x h -=)(),(ψψ

由此得到 ψψψ E U dx d m =+- 2 222h 按照势能()U x 的形式, 方程(2)一般需要分成几个部分求解.将上式改写成如下形式 022 2=+ψψ k dx d ?? ?><<<=. ,0,0; 0,)(0a x x a x u x U 先讨论0u E >的情形 粒子满足薛定谔方程分解为三个区域: ?????? ???>=-<<=+-<=-a x x E x dx d m a x x E x u x dx d m x x E x dx d m ),()(20),()()(20),()(2332 2 222022 2 2112 2 2ψψψψψψψh h h (1) ???? ?????>=+<<=-+<=+a x x mE x dx d a x x u E x dx d x x mE x dx d ,0)(2)(0,0)()()(0,0)(2)(3232220222 12 122ψψψψψψh h 特征方程02=++q pr r 的两个根21,r r 方程 0=+'+''qy y p y 的通解 两个不相等的实根21r r ≠ x r x r e C e C y 2121+= 两个相等的实根21r r = x r e x C C y 1)(21+= 一对共轭复根 βαi r ±=2,1 )sin cos (21x C x C e y x ββα+= 注: 0=+''qy y 的通解:特征方程02=+q r ,当0

量子阱半导体激光器

量子阱半导体激光器的原理及应用 刘欣卓(06009406) (东南大学电子科学与工程学院南京 210096) 光电调制器偏置控制电路主要补偿了激光调制器的温漂效应,同时兼顾了激光器输出功率的变化。链路采用的激光器带有反馈PD,输出对应的电压信号。该信号经过放大后直接作为控制系统的输入,将两者的电压相减控制稳定后再放大。反馈光信号经过光电转换和滤波放大两个环节。最后一节采用低通滤波器排除射频信号的影响。放大环节有两个作用。其一:补偿采样过程中1%的比例;其二:通过微调放大倍数实现可调的偏置。偏 置控制主要是一个比例积分环节,输出作为调制器的偏置。 关键词:光电调制器;模拟偏置法;误差 High-speed Optical Modulator Bias Control LIU XinZhuo 2) (06009406) (1)Department of Electronic Engineering, Southeast University, Nanjing, 210096 Abstract: The optical modulator bias control circuit compensates for the drift of the laser modulator effect. It also takes into account the changes in the laser output power. Link uses the laser with feedback PD and the output corresponds to voltage signal. The signal after amplification is acted as the input of the control system. After the two voltage signals reduction and stability, the output may be amplified. The feedback optical signal includes photoelectric conversion and filtering amplification. The last part of circuit excludes the influence of the RF signal through a low pass filter. We know that enlarge areas have two roles. First: it can compensate for sampling ratio of 1%of the process; Second: it can realize adjustable bias by fine-tune magnification. The bias control is a proportional integral part of the output of the modulator bias. Abstract: Specific charge of electron; magnetic focusing; magnetic control tube; Zeeman effects; error 作者的个人学术信息: 刘欣卓,1991年,女,南京市。大学本科,电 子科学与工程学院。liuxinzhuo@https://www.360docs.net/doc/524921964.html,. 1.量子阱半导体激光器的发展历程 1.1激光器研制的现状 随着光子技术的发展,光子器件及其集成技术在各领域的应用前景越来越广阔,尤其在一些数据处理速率要求极高的领域,光子器件正逐步取代电子器件。可以预见,不久的将来,光子器件及光子集成线路在各行业所占的比重将不亚于目前集成电路在各领域的地位及作用。而激光器作为光子器件的核心之一,对其新型结构的研制更是早就提上了日程,并取得了一定的进展。 为了研制出阈值电流低、量子效率高、工作于室温环境、短波长、长寿命和光束质量好等要求的半导体激光器, 研究人员致力于寻找新工作原理、新材料、新结构以及各种新的技术。在此,半导体激光器(LD),特别是量子阱半导体激光器(QWLD)正逐步作为光通信和光互连中的重要光源。 1. 2半导体激光器 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,较常规激光器而言,产生激光的具体过程比较特殊。 半导体激光器工作物质的种类有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)

WKB近似及在一维势阱量子化条件推导的应用

WKB 近似推导一维势阱量子化条件 摘要:在量子力学里,WKB 近似是一种半经典计算方法,可以用来解析薛定谔方程。WKB 近似的应用非常广泛,特别是量子力学相关问题中。本文通过介绍了WKB 近似,并用其导出了一维势阱量子化条件为例,进一步深入了解WKB 近似法求解方程的步骤和过程。 关键词:WKB 近似,一维势阱,量子化条件,薛定谔方程 引言:WKB 近似全名为温侧-克喇末-布里渊近似法,是以三位物理学家Gregor Went zel 、Hendrix Anthony Kram ers 和Leon Brillouin 命名的。他们于1926年成功的发展和应用于量子力学。经过近百年的发展和改进,WKB 近似已得到完善和普及,应用广泛,如处理谐振子问题、开普勒问题、一维及三维定态微扰问题、分波相角计算问题等。本文主 要讲解的是在势场()x V 变化缓慢并且E —()x V 特别大的条件(即WKB 近似条件)下, 用WKB 近似方法求解一维定态薛定谔方程可以得到WKB 波函数,结合转折点处波函数的渐进行为以及边条件能过导出一维势阱中三种典型模型下的束缚态例子的量子化条件。 1.WKB 近似法的基本思想 若薛定谔方程可以分解为几个常微分方程,并且问题又与经典问题相差不大是,则可以将波函数按幂级数展开,而且只取前面少数几项就能得到到小号的结果。所谓问题与经典问题相差不大,是指在研究体系中,研究的动量与其运动空间尺度大,普朗克常量 作用不大,使量子力学问题退化为经典问题。 2.WKB 近似法的基本步骤 求解一个量子系统的薛定谔方程的基本步骤,由基本思想可以归结为以下五步: 首先将波函数打造为一个一个指数函数;其次是将这些指数函数代入薛定谔方程;然后将指数函数展开为普朗克常量的幂级数的多项式函数;再匹配约化普朗克常量同次幂的项目, 得到一个方程组;最后解析这些方程,得到WKB 近似波函数。 3.WKB 近似波函数 根据上述的基本思想和基本步骤,以一维自由粒子为例,解其WKB 近似波函数的过程如下。 考虑到量子力学与经典力学之间的过度条件:, ()M C M Q .0.→→ 利用准经典近似法(WKB 近似法),对一维自由粒子波函数以 展开,然后求薛定谔方程并取波函数近似解,即可得到WKB 近似波函数。 这一过程的具体步骤为: 对于一维自由粒子波函数??? ??±= i Aex p px ψ可记为()?? ? ??= i ex p x f ψ,将其

量子阱半导体激光器的的基本原理及其应用

量子阱半导体激光器的的基本原理及其应用 无研01 王增美(025310) 摘要:本文主要阐述了量子阱及应变量子阱材料的能带结构,以及能态密度和载流子有效质量的变化对激光器阈值电流等参数的影响,简要说明了量子阱激光器中对光场的波导限制。最后对量子阱半导体激光器的应用作了简要的介绍,其中重点是GaN 蓝绿光激光器的发展和应用。 引言 半导体激光器自从1962年诞生以来,就以其优越的性能得到了极为广泛的应用,随着新材料新结构的不断涌现和制造工艺水平的不断提高,其各方面的性能也不断得到改善,应用范围也不在再局限于信息传输和信息存储,而是逐渐渗透到材料加工、精密测量、军事、医学和生物等领域,正在迅速占领过去由气体和固体激光器所占据的市场。 20世纪70年代的双异质结激光器、80年代的量子阱激光器和90年代出现的应变量子阱激光器是半导体激光器发展过程中的三个里程碑。制作量子阱结构需要用超薄层的薄膜生长技术,如分子外延术(MBE )、金属有机化合物化学气相淀积(MOCVD )、化学束外延(CBE )和原子束外延等。我国早在1974年就开始设计和制造分子束外延(MBE )设备,而直到1986年才成功的制造出多量子阱激光器,在1992年中科院半导体所(ISCAS )使用国产的MBE 设备制成的GRIN-SCH InGaAs/GaAs 应变多量子阱激光器室温下阈值电流为1.55mA ,连续输出功率大于30mW ,输出波长为1026nm [4]。 量子阱特别是应变量子阱材料的引入减少了载流子的一个自由度,改变了K 空间的能带结构,极大的提高了半导体激光器的性能,使垂直腔表面发射激光器成为现实,使近几年取得突破的GaN 蓝绿光激光器成为新的研究热点和新的经济增长点,并将使半导体激光器成为光子集成(PIC )和光电子集成(OEIC )的核心器件。 减少载流子一个自由度的量子阱已经使半导体激光器受益匪浅,再减少一个自由度的所谓量子线(QL )以及在三维都使电子受限的所谓量子点(QD )将会使半导体激光器的性能发生更大的改善,这已经受到了许多科学家的关注,成为半导体材料的前沿课题。 量子阱和应变量子阱半导体激光器的基本原理 1、半导体超晶格 半导体超晶格是指由交替生长两种半导体材料薄层组成的一维周期性结构,薄层的厚度与半导体中电子的德布罗意波长(约为10nm )或电子平均自由程(约为50nm )有相同量级。这种思想是在1968年Bell 实验室的江崎(Esaki )和朱肇祥首先提出的,并于1970年首次在GaAs 半导体上制成了超晶格结构。江崎等人把超晶格分为两类:成分超晶格和掺杂超晶格。理想超晶格的空间结构及两种材料的能带分布分别如图1和图2: 2、 量子阱及量子阱材料的能带结构 图1

量子阱红外探测器(QWIP)调研报告

量子阱红外探测器(QWIP)调研报告 信息战略中心(2007.07.12) 引言 (2) 1、量子阱红外探测器的原理 (3) 1.1量子阱红外探测器基本原理简介 (3) 1.2QWIP的几种跃迁模式 (4) 1.3量子阱结构的选择 (6) 1.4QWIP的材料选择 (7) 1.5入射光的耦合 (9) 1.6QWIP的性能参数 (11) 1.7 量子阱周期数对器件性能的影响[9] (12) 1.8QWIP的抗辐射机理与方法 (13) 参考文献: (17) 2、量子阱红外探测器的制备方法 (19) 2.1直接混杂法制备红外探测器焦平面阵列像元 (19) 3、量子阱红外探测器的国内外主要应用 (22) 3.1红外探测器分类 (22) 3.2红外探测器发展历程 (23) 3.3红外探测器基本性能参数 (23) 3.4各种焦平面阵列(FPA S)的性能比较 (25) 3.5红外成像系统的完整结构 (26) 3.5.1 焦平面结构 (27) 3.5.2 读出电路 (27) 3.6QWIP探测器实例分析 (29) 3.7QWIP的应用领域及前景分析 (31) 参考文献: (33)

引言 半导体量子阱(Qw)、超晶格(SL)材料是当今材料科学研究的前沿课题,被比喻为实验中的建筑学,即以原子为最小砌块的微观建筑学。它所产生的人工晶体,其性质可人为改变控制,它比通常意义上的晶体材料具有巨大的优越性和发展前景。它的一个极有前途、极为重要的应用领域是新型红外探测器,即第三代红外焦平面量子阱探测器。量子阱新材料是发展新型红外探测器的先导。 红外焦平面探测器是从单元和线阵基础上发展起来的第三代红外探测器,它标志着热像技术已从“光机扫描”跃进到“凝视”这个高台阶,从而使热像系统的灵敏度、可靠性、功能容量及实时性等都获得无以伦比的瞩目进步。众所周知,探测器是决定红外系统属性的主要矛盾,基于红外焦平面探测器的问世,它与信号读出处理电路一体化的成功,以及长寿命闭环斯特林致冷器的实用化,使红外焦平面探测器在以下重要领域得到重要应用或正在考虑其应用: ①空间制导武器。如用焦平面探测器导引头拦截卫星; ②红外预警卫星及机载红外预警系统; ③巡航导弹、地地导弹、空地导弹、防空导弹、海防导弹及反舰导弹的红外制导系统的基本组成; ④地基(包括舰艇平台)红外制导站及红外搜索,跟踪系统; ⑤小型导弹制导及夜间瞄准; ④坦克、飞机、舰艇等运载工具的夜间观测、目标瞄准、自动跟踪等。 红外焦平面探测器早期实用的是Pbs,现在的重点是碲镉汞,Si:Pt及半导体量子阱焦平面探测器。其中半导体量子阱焦平面探测器,在五年内接近走完了碲镉汞(MCT)探测器30年的历程,现在虽然在探测度指标上还不如MCT,但经过进一步的攀登,这种完全靠科学家、计算机的,由MBE或MOCND技术制造的新一代焦平面器件可能成为现代国防的复眼。无疑,今后哪个国家能抢占这个高地,这将在各国国防力量的对比方面产生重要的影响。

量子力学第四版卷一习题答案

第一章 量子力学的诞生 设质量为m 的粒子在谐振子势222 1 )(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。 提示:利用 )]([2,,2,1, x V E m p n nh x d p -===?? Λ )(x V 解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:222 1 )(a m x V E a x ω===。 a - 0 a x 由此得 2/2ωm E a = , (2) a x ±=即为粒子运动的转折点。有量子化条件 h n a m a m dx x a m dx x m E m dx p a a a a ==?=-=-=??? ?+-+-222222222)21(22πωπ ωωω 得ω ωπm n m nh a η22 = = (3) 代入(2),解出 Λη,3,2,1, ==n n E n ω (4) 积分公式: c a u a u a u du u a ++-=-? arcsin 2222 22 2 设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 解:除了与箱壁碰撞外,粒子在箱内作自由运动。假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。利用量子化条件,对于x 方向,有 ()?==?Λ,3,2,1, x x x n h n dx p 即 h n a p x x =?2 (a 2:一来一回为一个周期) a h n p x x 2/=∴, 同理可得, b h n p y y 2/=, c h n p z z 2/=, Λ,3,2,1,,=z y x n n n 粒子能量

相关文档
最新文档