基于动态滑模控制的移动机器人路径跟踪

基于动态滑模控制的移动机器人路径跟踪
基于动态滑模控制的移动机器人路径跟踪

 第32卷第1期 2009年1月

合肥工业大学学报

(自然科学版)

J OU RNAL OF H EFEI UN IV ERSIT Y OF TECHNOLO GY

Vol.32No.1 

J an.2009 

收稿日期:2008204221;修改日期:2008206202

基金项目;先进数控技术江苏省高校重点建设实验室基金资助项目(KX J 07127)作者简介:徐玉华(1985-),男,江西乐平人,合肥工业大学博士生;

张崇巍(1945-),男,安徽巢湖人,合肥工业大学教授,博士生导师.

基于动态滑模控制的移动机器人路径跟踪

徐玉华1, 张崇巍1, 鲍 伟1, 傅 瑶1, 汪木兰2

(1.合肥工业大学电气与自动化工程学院,安徽合肥 230009;2.南京工程学院先进数控技术江苏省高校重点实验室,江苏南京 211167)

摘 要:文章研究了室内环境下基于彩色视觉的移动机器人路径跟踪问题,利用颜色信息提取路径,简化了图像的特征提取;拟合路径参数时引入RANSAC 方法,以提高算法的可靠性;在移动机器人非线性运动学模型的基础上,设计了一阶动态滑模控制器,并通过仿真验证了控制器的有效性。关键词:移动机器人;视觉导航;路径跟踪;动态滑模

中图分类号:TP24 文献标识码:A 文章编号:100325060(2009)0120028204

Mobile robot ’s path following based on dynamic sliding mode control

XU Yu 2hua 1, ZHAN G Chong 2wei 1, BAO Wei 1, FU Yao 1, WAN G Mu 2lan 2

(1.School of Electric Engineering and Automation ,Hefei University of Technology ,Hefei 230009,China ;2.Jiangsu Province College Key Laboratory of Advanced Numerical Control Technology ,Nanjing Institute of Technology ,Nanjing 211167,China )

Abstract :In t his paper ,mobile ro bot ’s pat h following in indoor environment based on color vision is st udied.Firstly ,t he image feat ures are extracted by color information so t hat t he real 2time perform 2ance of t he algorit hm is imp roved.To enhance t he ro bust ness of pat h parameter fitting ,a least square met hod based on RANSAC is adopted.Then ,a first 2order dynamic sliding mode cont roller is designed based on t he nonlinear vision 2guided robot ’s kinematics.The simulation proves t he validity of t he con 2t roller.

K ey w ords :mobile robot ;visual navigation ;pat h following ;dynamic sliding mode

轮式移动机器人亦称自动引导车(A GV ),有着广泛的应用价值[1]。近年来,随着计算机技术和图像处理技术的发展,移动机器人视觉导航技术成为研究的热点[2]。视觉引导的路径跟踪是视觉导航技术之一。文献[3]基于移动机器人线性化的运动学模型,运用线性二次型最优控制理论设计最优控制器。该控制器对于较小角度的转向控制有一定的优越性,但没有讨论在较大偏差情况下的控制问题。文献[4]提出了一种模仿人工预瞄驾驶行为的移动机器人路径跟踪的模糊控制方法。而在实际应用中,模糊规则难以制定。文献[5]针对全局视觉条件下的轮式移动机器人路径跟踪问题,将基于图像的视觉伺服控制方法引

入到运动控制中,提出一种基于消除图像特征误差的跟踪控制方法。但该方法只适用于小规模环境条件下的使用。

针对以上存在的问题,本文采用价格低廉的车载彩色CCD 相机获取预先铺设引导线的路面实时图像,利用颜色信息提取路径。拟合路径参数时引入了RANSAC 方法,提高了参数拟合的鲁棒性。在移动机器人非线性运动学模型基础之上,设计了一阶动态滑模控制器(Dynamic Sliding Mode Cont roller ,简称DSMC ),在存在较大偏差的情况下也能达到良好的跟踪效果。滑模变结构控制对满足匹配条件的外界干扰和参数变化具有不变性,是一种适用于非线性系统的鲁棒控制方

法,采用它无需对非线性系统线性化,就可以实现系统的全局渐进稳定,并给出了相应的仿真和实验结果,与采用普通滑模控制器(Conventio nal Sliding Mode Cont roller ,简称CSMC )的跟踪效

果进行了比较。

1 移动机器人运动学模型

本文采用的是两轮差动驱动的三轮移动机器人,其运动模型如图1所示。假设机器人为刚体且在运动过程中满足纯滚动和无打滑条件,根据其运动学特性有[8]

v =(v R +v L )/2

(1)ω=(v R -v L )/D

(2) θe =ω

(3) x e =v sin θe

(4

)

其中,D 为左右轮间距;v 为轮轴中心点的线速度,也称为前进速度,假设机器人以恒定的速度运

动,即v 为常数;ω为角速度;v L 、v R 为左、右轮线速度;x e 、θe 为机器人位姿与参考路径之间的距离偏差和角度偏差;虚线框内所示区域为机器人视野区。

令x 1=x e ,x 2=θe ,u =ω,则有

x 1=v sin x 2

x 2=u (5)

图1 视觉引导移动机器人运动学模型

2 路径参数提取

211 图像处理

由于彩色图像比灰度图像含有更丰富的信息,所以利用物体的颜色特征能够更有效地从图像中分割出目标。CCD 视觉传感器采集到的原始图像的颜色空间是R G B 空间,它的优点是比较简单、直观。但是对某种特定颜色,很难从其

R G B 中抽取它的特征,即使对同一种颜色,随着

光照条件的不同,其R G B 值也在变化。给在不同光照情况下同种颜色的识别带来了很大的不便。在HSV 颜色空间中,H 、S 、V 分别表示色调(hue )、色彩的饱和度(sat uration )和亮度值(val 2ue )。HSV 模型将色调信息集中在H 分量上,S 值显示了色彩的饱和度,V 值表示原始图的亮度。不同光线强度对图像H 和S 分量几乎没有影响,而只在表示亮度信息的V 分量体现较为明显。这些特点使得HSV 模型适合于图像分割和目标识别。由R G B 空间到HSV 空间的变换为[6]

V =max (R ,G,B )

(6)S =1-min (R ,G,B )/V (7)H =

θ(B ≤G )

360-θ(B >G )

(8)其中,θ=

cos -1

2R -G -B

2

(R -G )2-(R -B )(G -B )

将原始路面图像从R G B 空间转换到HSV

空间后,通过设定不同色调和饱和度的阈值便可识别出特定颜色的目标,如图2所示,分割效果如图2b 所示。为了减小数据的处理量,对分割后的图像进行细化[6]处理,如图2c 所示。

(a ) 原始路面图像 (b ) 分割 (c ) 细化

图2 图像处理

212 坐标转换

由于摄像机与地面存在倾角,使得图像边缘区域存在较大畸变。为了得到机器人与实际参考路径之间的位姿偏差,把经211节处理后的图像的像素点通过射影变换关系从图像坐标转换到机

器人坐标下。移动机器人坐标系与摄像机坐标系的关系如图3所示。坐标转换的公式为[7]

x =

-x ′(f co s α+d z )f co s α-y ′sin α(9)y =-(f d z sin α+y ′d z cos α+y ′f )

f co s α-y ′sin

α+d y

(10)

x ′=(u -O m )/a (11)y ′=(v -O n )/b

(12)

其中,X Y Z 为机器人坐标系,以轮轴中心点为坐

标原点;X ′Y ′Z ′为摄像机坐标系;f 为摄像机焦

9

2 第1期徐玉华,等:基于动态滑模控制的移动机器人路径跟踪

距;α为倾斜角;a 、b 为图像比例因子;(x ,y )为目

标点在机器人坐标系中的坐标;(x ′,y ′

)为地面上的点p 在摄像机坐标系中的坐标;(u ,v )为p 在图像坐标系中的坐标;(O m ,O n )分别为计算机图像中心像素的行数和列数

图3 移动机器人摄像机模型

213 参数拟合

在实际环境中往往会存在噪声的影响,而最

小二乘拟合对噪声又非常敏感。为了提高鲁棒性,引入了RANSAC [8](Random Sample Con 2sensus )方法,通过对经212节处理后的点集合T 的多次随机采样进行最小二乘拟合,从中选择最优直线参数。其算法步骤如下:

(1)假设产生。从点集合T 中均匀随机地抽取n 个点,拟合出一条候选直线L 。

(2)统计所有点对该L 的支持程度,即设定阈值t ,统计所有点到直线L 的距离满足小于阈值t 的个数。

(3)重复步骤(1)和步骤(2)m 次,找到使得误差范围内匹配点个数最多的L ,记录所有误差

范围内的点,得到“内点”(Inliers )集T ′。再对这

些内点利用最小二乘法拟合出一条新的直线L 。步骤(3)中的m 由下式决定:

m =(lg (1-p ))/(lg (1-(1-ε

)n ))(13)其中,p 为m 次采样中至少有一个采样没有外点的概率;ε为外点在T 中占的比例。由于2点即可确定一条直线,本文取n =4,p =0199,ε=012,t =4cm 。用(13)式计算出m =9。

假设通过上述方法得到路径的直线方程为y =kx +b,则距离偏差x e 和角度偏差θe 为

x e =-b/k , θe =arctan1/k

(14)3 控制器设计

由(5)式构成的移动机器人运动学模型是一单

输入非线性系统。滑模控制是一种适用于非线性系统的鲁棒控制方法,采用它无需对非线性系统线性化,就可以实现系统的全局渐进稳定。

滑模控制器的设计包括2个相对独立的部分[9]:①设计切换函数,使它所确定的滑动模态渐近稳定且具有良好的动态品质;②设计滑动模态控制律,使到达条件得到满足,从而在切换面上形成滑动模态区。

(1)普通滑模控制器。定义切换函数为

s =c 1x 1+c 2x 2 (c 1>0,c 2>0)(15)采用指数趋近律[9],有

s =-ks -q sgn (s ) (k >0, q >0)(16)

由(5)式、

(15)式、(16)式得控制律为 u =[(-ks -c 1v sin (x 2)-q sgn (s ))]/c 2(17) (2)动态滑模控制器。普通滑模控制的切换函数只依赖于系统的状态,趋近律中的不连续项会直接转移到控制中,使系统在不同的控制逻辑之间来回切换,从而引起系统抖振。一阶动态滑模变结构控制对普通滑模控制的切换函数进行了修正,修正后的切换函数不仅与系统状态有关,而且与系统控制输入也有关,从而将趋近律中的不连续项转移到控制的一阶导数中去,有效地降低了抖振。定义切换函数[10]为

s =c 1x 1+c 2x 2+Du (c 1>0,c 2>0,D >0)

(18)

再由(5)式、

(16)式、(18)式,得到一阶动态滑模控制器

u =(-ks -c 1v sin x 2-q sgn s -c 2u )/D

(19)

4 仿真与实验

(1)仿真结果。对动态滑模控制器进行MAT 2LAB 仿真。取v =1m/s ,[c 1

c 2]=[1

1],q =

015,k =1,D =015。初始位姿误差为(015,-π/6)

时的仿真结果如图4所示。图4a 为偏差收敛曲线,图4b 中实线为控制量,虚线为控制量的一阶导数。从仿真结果可以看出,偏差迅速收敛到零且控制平稳未出现抖振。

(2)实验结果。实验采用上海广茂达公司的AS 2R 移动机器人,AS 2R 携带车载计算机系统(Pentium4310GHz ),前部装有ASR 2VISION 云台摄像机,分辨率设为320×240。其速度闭环精度和位置闭环精度分别为1%和016%。引导路径为黏贴在地面上的红色胶带,宽度约为18mm 。

采用动态滑模控制器跟踪直线路径时,v 设为015m/s ,[c 1

c 2]=[1143

1],q =1,k =118,D =

3 合肥工业大学学报(自然科学版)第32卷 

015,采样周期T =0106s 。图5所示为实验偏差收

敛曲线。初始距离偏差为4616cm ,初始角度偏差为-3618°。控制器调节23次后距离偏差被控制在±2cm 以内,角度偏差被控制在±2°以内,过程平稳无明显抖振,

跟踪效果良好。

图4 动态滑模控制器仿真效果

图6所示为采用普通滑模控制器进行直线跟

踪的实验结果,为偏差曲线。v =015m/s ,

[c 1

c 2]=[3

1],q =013k =1。由图5、图6对比

可知,动态滑模控制器有效地削弱了抖振,使控制

过程更加平滑。

5 结束语

本文研究了室内环境下基于彩色视觉的移动机器人路径跟踪,利用颜色信息提取路径,简化了图像的特征提取。引入RANSAC 方法拟合路径参数,提高了算法的可靠性。

基于移动机器人非线性运动学模型设计了一阶动态滑模控制器。实验结果表明,用本文的方法能够实时、鲁棒地从图像中提取出路径参数。动态滑模控制器能使移动机器人准确地跟踪预先设定的路径且有效地削弱了抖振,具有一定的实用价值。

[参 考 文 献]

[1] 姜 涌,曹 杰,杜亚玲.基于视觉的码头集装箱A GV 导引

系统[J ].南京航空航天大学学报,2006,38(5):628-633.

[2] Huang W H ,Fajen B R ,Fink J R ,et al.Visual navigation and

obstacle avoidance using a steering potential function [J ].Ro 2

botics and Autonomous Systems ,2006,54(4):288-299.[3] 王荣本,储江伟,冯 炎,等.一种视觉导航的实用型A GV 设

计[J ].机械工程学报,2002,38(11):135-138.

[4] 李庆中,顾伟康,叶秀清,等.移动机器人模糊控制方法研究

[J ].仪器仪表学报,2002,23(5):480-503.

[5] 曹 洋,项龙江,徐心和.基于全局视觉的轮式移动机器人轨

迹跟踪控制[J ].机器人,2004,26(1):78-82.

[6] 贾云得.机器视觉[M].北京:科学出版社,2000:4-157.[7] Fang Qiang ,X ie Cunxi.A study on intelligent path following

and control for vision 2based automated guided vehicle[C]//Pro 2ceedings of the 5th World Congress on Intelligent Control and Automation.J une 15-19,

Hangzhou ,

China ,2004:

4811-4815.

[8] Fischler M A ,Bolles R C.Random sample consensus :a para 2

digm for model fitting with applications to image analysis and automated cartography [C]//Graphics and Image Processing ,1981:381-395.

[9] 高为炳.变结构控制的理论及设计方法[M].北京:科学出版

社,1996:26-30.

[10] Pieper J K.First order dynamic sliding mode control [C]//

Proceedings of the 37th IEEE Conference on Decision &C on 2trol.T ampa ,Florida ,USA ,1998:2415-2420.

(责任编辑 张 镅)

1

3 第1期徐玉华,等:基于动态滑模控制的移动机器人路径跟踪

基于动态滑模控制的移动机器人路径跟踪

第32卷第1期 2009年1月 合肥工业大学学报 (自然科学版) J OU RNAL OF H EFEI UN IV ERSIT Y OF TECHNOLO GY Vol.32No.1  J an.2009  收稿日期:2008204221;修改日期:2008206202 基金项目;先进数控技术江苏省高校重点建设实验室基金资助项目(KX J 07127)作者简介:徐玉华(1985-),男,江西乐平人,合肥工业大学博士生; 张崇巍(1945-),男,安徽巢湖人,合肥工业大学教授,博士生导师. 基于动态滑模控制的移动机器人路径跟踪 徐玉华1, 张崇巍1, 鲍 伟1, 傅 瑶1, 汪木兰2 (1.合肥工业大学电气与自动化工程学院,安徽合肥 230009;2.南京工程学院先进数控技术江苏省高校重点实验室,江苏南京 211167) 摘 要:文章研究了室内环境下基于彩色视觉的移动机器人路径跟踪问题,利用颜色信息提取路径,简化了图像的特征提取;拟合路径参数时引入RANSAC 方法,以提高算法的可靠性;在移动机器人非线性运动学模型的基础上,设计了一阶动态滑模控制器,并通过仿真验证了控制器的有效性。关键词:移动机器人;视觉导航;路径跟踪;动态滑模 中图分类号:TP24 文献标识码:A 文章编号:100325060(2009)0120028204 Mobile robot ’s path following based on dynamic sliding mode control XU Yu 2hua 1, ZHAN G Chong 2wei 1, BAO Wei 1, FU Yao 1, WAN G Mu 2lan 2 (1.School of Electric Engineering and Automation ,Hefei University of Technology ,Hefei 230009,China ;2.Jiangsu Province College Key Laboratory of Advanced Numerical Control Technology ,Nanjing Institute of Technology ,Nanjing 211167,China ) Abstract :In t his paper ,mobile ro bot ’s pat h following in indoor environment based on color vision is st udied.Firstly ,t he image feat ures are extracted by color information so t hat t he real 2time perform 2ance of t he algorit hm is imp roved.To enhance t he ro bust ness of pat h parameter fitting ,a least square met hod based on RANSAC is adopted.Then ,a first 2order dynamic sliding mode cont roller is designed based on t he nonlinear vision 2guided robot ’s kinematics.The simulation proves t he validity of t he con 2t roller. K ey w ords :mobile robot ;visual navigation ;pat h following ;dynamic sliding mode 轮式移动机器人亦称自动引导车(A GV ),有着广泛的应用价值[1]。近年来,随着计算机技术和图像处理技术的发展,移动机器人视觉导航技术成为研究的热点[2]。视觉引导的路径跟踪是视觉导航技术之一。文献[3]基于移动机器人线性化的运动学模型,运用线性二次型最优控制理论设计最优控制器。该控制器对于较小角度的转向控制有一定的优越性,但没有讨论在较大偏差情况下的控制问题。文献[4]提出了一种模仿人工预瞄驾驶行为的移动机器人路径跟踪的模糊控制方法。而在实际应用中,模糊规则难以制定。文献[5]针对全局视觉条件下的轮式移动机器人路径跟踪问题,将基于图像的视觉伺服控制方法引 入到运动控制中,提出一种基于消除图像特征误差的跟踪控制方法。但该方法只适用于小规模环境条件下的使用。 针对以上存在的问题,本文采用价格低廉的车载彩色CCD 相机获取预先铺设引导线的路面实时图像,利用颜色信息提取路径。拟合路径参数时引入了RANSAC 方法,提高了参数拟合的鲁棒性。在移动机器人非线性运动学模型基础之上,设计了一阶动态滑模控制器(Dynamic Sliding Mode Cont roller ,简称DSMC ),在存在较大偏差的情况下也能达到良好的跟踪效果。滑模变结构控制对满足匹配条件的外界干扰和参数变化具有不变性,是一种适用于非线性系统的鲁棒控制方

机器人路径运行操作步骤

3.23机器人路径运动操作步骤 任务:选取多个点构成一条路径,通过示教器完成机器人路径运动操作 相关知识:机器人路径示教器操作分为手动和自动两种模式 操作步骤: 一、手动模式 1、新建程序 (1)点击首页下拉菜单中“程序编辑器”选项,进入程序编辑器 (2)点击右上角“例行程序”选项,进如程序列表 (3)点击左下角“文件”,选择“新建例行程序”,新建例行程序 并命名 2、程序编写 (1)选择新建好的例行程序,进入程序编辑页面,点击左下角“添 加指令”,在右侧弹出菜单中选择轴运动指令“MoveJ” (2)根据需要修改显示的“MoveJ * ,v1000 , z50 , tool0”指令, *代表坐标点名称,v1000代表速度,z50代表路径选择幅度, tool0与工具坐标有关 (3)根据需要添加路径包含的点坐标并修改,完成全部路径点的设 置 3、调试 (1)从第一行“MoveJ”指令开始,利用示教器旋钮调节机器人至路 径点位,点击“修改位置”,程序与点位一一对应 (2)点位修改完成后,进行手动调试。点击“调试”选择“PP移动 至例行程序”,进入要调试的例行程序,光标选择调试的程序 行,再次点击“调试”,选择“PP移动至光标” (3)在右下角设置选项中选择机器人运行的速度

(4)左手按下示教器使能键,右手按下示教器上的“开始”按钮, 进行机器人路径运行操控 注意:机器人运行过程中不能松开示教器使能键 二、自动模式 1、完成手动调试模式调试后,点击“例行程序”菜单进入程序选择列表, 选择“Main”函数,进入函数编辑页面 2、光标选择,点击“添加指令”,在右侧弹出菜单中选择 “ProcCall”指令,将例行程序添加至主程序中 3、将机器人控制柜模式选择开关调到“自动模式” 4、点击示教器上的选项“确认” 5、按下控制柜上使能键,白色指示灯常亮 6、按下示教器上“开始”按钮,开始自动模式调试 7、自动模式下完成轨迹动作以后把控制柜上的“自动”模式旋转调回“手 动”模式

移动机器人轨迹跟踪软件设计(站点设计)(DOC)

燕山大学 课程设计说明书 题目:移动机器人轨迹跟踪软件设计(站点设计)学院(系):电气工程学院 年级专业: 10级过程控制二班 学号: 学生姓名: 指导教师:陈贵林李雅倩

燕山大学课程设计(论文)任务书

2013年11 月25 日

目录 前言……………………………………………………………………………第一章设计思路……………………………………………………………第二章程序…………………………………………………………… 第三章算法…………………………………………………………… 心得体会

前言 机器人的应用越来越广泛,几乎渗透到所有领域。移动机器人是机器人学中的一个重要分支。早在60年代,就已经开始了关于移动机器人的研究。关于移动机器人的研究涉及许多方面,首先,要考虑移动方式,可以是轮式的、履带式、腿式的,对于水下机器人,则是推进器。其次,必须考虑驱动器的控制,以使机器人达到期望的行为。第三,必须考虑导航或路径规划,对于后者,有更多的方面要考虑,如传感融合,特征提取,避碰及环境映射。因此,移动机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合系统。对移动机器人的研究,提出了许多新的或挑战性的理论与工程技术课题,引起越来越多的专家学者和工程技术人员的兴趣,更由于它在军事侦察、扫雷排险、防核化污染等危险与恶劣环境以及民用中的物料搬运上具有广阔的应用前景,使得对它的研究在世界各国受到普遍关注 关键字:移动机器人

第一章设计思路 1.1 机器人的介绍 机器人的诞生和机器人控制技术发展作为20世纪自动控制原理最具说服力的成就、人类科学技术进步的重大成果[1],是现代计算机与自动化等技术高速发展的产物,同时也是当代最高意义上的自动化。自1956年第一台工业机器人诞生之日起,机器人的应用越来越普及。20世纪60年代末机器人开始进入商业化和工业领域以来,机器人的应用范围已经遍及到工业、国防、宇宙空间、海洋开发、医疗保健、抢险救灾等人类生活的各个方面。机器人由于具有高度的灵活性、快速的反应能力以及巨大的信息处理能力,使其能够在很多环境替代人进行工作。从重复动作的流水线机械手到智能机器人,从平地到高山海底甚至太空,以至于在比较恶劣危险的工作环境,都是机器人发挥其作用的重要舞台,然而控制系统作为机器人的心脏,其性能的好坏直接决定了机器人的智能化水平。近年来对移动机器人的研究已成为了一大热点,促进了移动机器人在各个领域中的进一步应用,本文也将在这一方面进行一些分析和研究。智能移动机器人,是一个集环境感知、动态决策与规划、行为控制与执行等多功能于一体的综合系统。它集中了传感器技术、信息处理、电子工程、计算机工程、自动化控制工程以及人工智能等多学科的研究成果,代表机电一体化的最高成就,是目前科学技术发展最活跃的领域之一。随着机器人性能不断地完善,移动机器人的应用范围大为扩展,不仅在工业、农业、医疗、服务等行业中得到广泛的应用,而且在城市安全、国防和空间探测领域等有害与危险场合得到很好的应用。因此,移动机器人技术已经得到世界各国的普遍关注。 1.2 实训任务分配 本次的设计任务在老师的帮助下得到了细致地划分,而且也增加了一些项目,总体来说任务分为三大块:1.轨迹的识别与跟踪。2.站的设计。3.自定义轨迹的运行。这三部分的任务既是相互独立的又是相互联系的。 首先来分析第一个任务:轨迹的识别与跟踪,这个任务包含了摄像头的初始化以及图像的采集以及图像的存取,轨迹的识别用到了一个算法。机器人的控制也是这个任务包含的一个总要部分,其中包括了速度控制,方向控制等等。 第二个任务是站的设计,老师提到了“站”这个概念,这是在工厂的生产中的一些重要的机制,也是非常有实用性的一个设计。 第三个任务是自定义轨迹的运行,老师提到了可以设计一个圆形轨迹也可以设计一个方形轨迹,机器人的这种运动在生产生活中的应用也是很广泛的。

机器人路径动态规划

研究背景 近年来,机器人技术飞速发展,机器人的应用领域也在不断扩展。机器人的工作环境存在高度的多变性和复杂性,因此自主导航是实现真正智能化和完全自主移动的关键技术。机器人的导航问题可以归结为对“我在哪”、“我要去哪”以及“我如何到达那里”三个问题的回答。第三个问题就是路径规划,要求机器人在当前位置与目标位置之间寻找一条安全、合理、高效的路径,保证机器人能够安全地到达目标地点。机器人路径规划是机器人领域的一个研究热点。 一、课题应用 机器人的路径规划是机器人学的一个重要研究领域,是人工智能和机器人学的一个结合点。对于移动机器人而言,在其工作时要求按一定的规则,例如时间最优,在工作空间中寻找到一条最优的路径运动。机器人路径规划可以建模成在一定的约束条件下,机器人在工作过程中能够避开障碍物从初始位置行走到目标位置的路径优化过程。遗传算法是一种应用较多的路径规划方法,利用地图中的信息进行路径规划,实际应用中效率比较高。 智能移动机器人[1],是一个集环境感知、动态决策与规划、行为控制与执行等多功能于一体的综合系统。它集中了传感器技术、信息处理、电子工程、计算机工程、自动化控制工程以及人工智能等多学科的研究成果,代表机电一体化的最高成就,是目前科学技术发展最活跃的领域之一。随着机器人性能不断地完善,移动机器人的应用范围大为扩展,不仅在工业、农业、医疗、服务等行业中得到广泛的应用,而且在城市安全、国防和空间探测领域等有害与危险场合得到很好的应用。因此,移动机器人技术已经得到世界各国的普遍关注。 移动机器人的研究始于60 年代末期。斯坦福研究院(SRI)的Nils Nilssen 和Charles Rosen 等人,在1966年至1972 年中研发出了取名Shakey的自主移动机器人[1]。目的是研究应用人工智能技术,在复杂环境下机器人系统的自主推理、规划和控制。 根据移动方式来分,可分为:轮式移动机器人、步行移动机器人(单腿式、双腿式和多腿式)、履带式移动机器人、爬行机器人、蠕动式机器人和游动式机器人等类型;按工作环境来分,可分为:室内移动机器人和室外移动机器人;按控制体系结构来分,可分为:功能式(水平式)结构机器人、行为式(垂直式)结构机器人和混合式机器人;按功能和用途来分,可分为:医疗机器人、军用机器人、助残机器人、清洁机器人等; 一种由传感器、遥控操作器和自动控制的移动载体组成的机器人系统。移动机器人具有移动功能,在代替人从事危险、恶劣(如辐射、有毒等)环境下作业和人所不 及的(如宇宙空间、水下等)环境作业方面,比一般机器人有更大的机动性、灵活性。 移动机器人是一种在复杂环境下工作的,具有自行组织、自主运行、自主规划的智能机器人,融合了计算机技术、信息技术、通信技术、微电子技术和机器人技术等。 三、研究意义 路径规划技术是机器人研究领域中的一个重要分支,是机器人智能化的重要标志,是对

滑模变结构控制理论及其算法研究与进展_刘金琨

第24卷第3期2007年6月 控制理论与应用 Control Theory&Applications V ol.24No.3 Jun.2007滑模变结构控制理论及其算法研究与进展 刘金琨1,孙富春2 (1.北京航空航天大学自动化与电气工程学院,北京100083;2.清华大学智能技术与系统国家重点实验室,北京100084) 摘要:针对近年来滑模变结构控制的发展状况,将滑模变结构控制分为18个研究方向,即滑模控制的消除抖振问题、准滑动模态控制、基于趋近律的滑模控制、离散系统滑模控制、自适应滑模控制、非匹配不确定性系统滑模控制、时滞系统滑模控制、非线性系统滑模控制、Terminal滑模控制、全鲁棒滑模控制、滑模观测器、神经网络滑模控制、模糊滑模控制、动态滑模控制、积分滑模控制和随机系统的滑模控制等.对每个方向的研究状况进行了分析和说明.最后对滑模控制的未来发展作了几点展望. 关键词:滑模控制;鲁棒控制;抖振 中图分类号:TP273文献标识码:A Research and development on theory and algorithms of sliding mode control LIU Jin-kun1,SUN Fu-chun2 (1.School of Automation Science&Electrical Engineering,Beijing University of Aeronautics and Astronautics,Beijing100083,China; 2.State Key Laboratory of Intelligent Technology and Systems,Tsinghua University,Beijing100084,China) Abstract:According to the development of sliding mode control(SMC)in recent years,the SMC domain is character-ized by eighteen directions.These directions are chattering free of SMC,quasi SMC,trending law SMC,discrete SMC, adaptive SMC,SMC for mismatched uncertain systems,SMC for nonlinear systems,time-delay SMC,terminal SMC, global robust SMC,sliding mode observer,neural SMC,fuzzy SMC,dynamic SMC,integral SMC and SMC for stochastic systems,etc.The evolution of each direction is introduced and analyzed.Finally,further research directions are discussed in detail. Key words:sliding mode control;robust control;chattering 文章编号:1000?8152(2007)03?0407?12 1引言(Introduction) 滑模变结构控制本质上是一类特殊的非线性控制,其非线性表现为控制的不连续性,这种控制策略与其它控制的不同之处在于系统的“结构”并不固定,而是可以在动态过程中根据系统当前的状态(如偏差及其各阶导数等)有目的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动.由于滑动模态可以进行设计且与对象参数及扰动无关,这就使得变结构控制具有快速响应、对参数变化及扰动不灵敏、无需系统在线辩识,物理实现简单等优点.该方法的缺点在于当状态轨迹到达滑模面后,难于严格地沿着滑模面向着平衡点滑动,而是在滑模面两侧来回穿越,从而产生颤动. 滑模变结构控制出现于20世纪50年代,经历了50余年的发展,已形成了一个相对独立的研究分支,成为自动控制系统的一种一般的设计方法.以滑模为基础的变结构控制系统理论经历了3个发展阶段.第1阶段为以误差及其导数为状态变量研究单输入单输出线性对象的变结构控制;20世纪60年代末开始了变结构控制理论研究的第2阶段,研究的对象扩大到多输入多输出系统和非线性系统;进入80年代以来,随着计算机、大功率电子切换器件、机器人及电机等技术的迅速发展,变结构控制的理论和应用研究开始进入了一个新的阶段,所研究的对象已涉及到离散系统、分布参数系统、滞后系统、非线性大系统及非完整力学系统等众多复杂系统,同时,自适应控制、神经网络、模糊控制及遗传算法等先进方法也被应用于滑模变结构控制系统的设计中. 2滑模变结构控制理论研究进展(Develop-ment for SMC) 2.1消除滑模变结构控制抖振的方法研 究(Research on chattering elimination of SMC) 2.1.1滑模变结构控制的抖振问题(Problems of SMC chattering) 从理论角度,在一定意义上,由于滑动模态可以 收稿日期:2005?10?19;收修改稿日期:2006?02?23. 基金项目:国家自然科学基金资助项目(60474025,90405017).

多机器人路径规划研究方法(一)

多机器人路径规划研究方法(一) 张亚鸣雷小宇杨胜跃樊晓平瞿志华贾占朝摘要:在查阅大量文献的基础上对多机器人路径规划的主要研究内容和研究现状进行了分析和总结,讨论了多机器人路径规划方法的评判标准,并阐述了研究遇到的瓶颈问题,展望了多机器人路径规划方法的发展趋势。 关键词:多机器人;路径规划;强化学习;评判准则 e,itexpoundedthebottleneckofthepathplanningresearchfor , ; 近年来,分布式人工智能(DAI)成为人工智能研究的一个重要分支。DAI 研究大致可以分为DPS (distributedproblemsolving )和MAS ()两个方面。一些从事机器人学的研究人员受多智能体系统研究的启发,将智能体概念应用于多机器人系统的研究中,将单个机器人视做一个能独立执行特定任务的智能体,并把这种多机器人系统称为多智能体机器人系统(MARS)。因此,本文中多机器人系统等同于多智能体机器人系统。目前,多机器人系统已经成为学术界研究的热点,而路径规划研究又是其核心部分。

机器人路径规划问题可以建模为一个带约束的优化问题,其包括地理环境信息建模、路径规划、定位和避障等任务,它是移动机器人导航与控制的基础。单个移动机器人路径规划研究一直是机器人研究的重点,且已经有许多成果 1~3],例如在静态环境中常见的有连接图法、可视图法、切线图法、Voronoi 图法、自由空间法、栅格法、拓扑法、链接图法、证据理论建图等;动态环境中常见的有粒子群算法、免疫算法、遗传算法、神经网络、蚁群算法、模拟退火算法、人工势场法等。然而,多机器人路径规划研究比单个机器人路径规划要复杂得多,必须考虑多机器人系统中机器人之间的避碰机制、机器人之间的相互协作机制、通信机制等问题。 1 多机器人路径规划方法单个机器人的路径规划是找出从起始点至终点的一条最短无碰路径。多个机器人的路径规划侧重考虑整个系统的最优路径,如系统的总耗时间最少路径或是系统总路径最短等。从目前国内外的研究来看,在规划多机器人路径时,更多考虑的是多机器人之间的协调和合作式的路径规划。 目前国内外多机器人路径规划研究方法分为传统方法、智能优化方法和其他方法三大类。其中传统方法主要有基于图论的方法(如可视图法、自由空间法、栅格法、Voronoi 图法以及人工势场方法等);智能优化方法主要有遗传算法、蚁群算法、免疫算法、神经网络、强化学 习等;其他方法主要有动态规划、最优控制算法、模糊控制等。它们中的大部分都是从单个机器人路径规划方法扩展而来的。 1)传统方法多机器人路径规划传统方法的特点主要体现在基于图论的基础

多机器人路径规划研究方法(一)

多机器人路径规划研究方法(一) 张亚鸣雷小宇杨胜跃樊晓平瞿志华贾占朝 摘要:在查阅大量文献的基础上对多机器人路径规划的主要研究内容和研究现状进行了分析和总结,讨论了多机器人路径规划方法的评判标准,并阐述了研究遇到的瓶颈问题,展望了多机器人路径规划方法的发展趋势。 关键词:多机器人;路径规划;强化学习;评判准则 e,itexpoundedthebottleneckofthepathplanningresearchfor, ; 近年来,分布式人工智能(DAI)成为人工智能研究的一个重要分支。DAI 研究大致可以分为DPS(distributedproblemsolving)和MAS ()两个方面。一些从事机器人学的研究人员受多智能体系统研究的启发,将智能体概念应用于多机器人系统的研究中,将单个机器人视做一个能独立执行特定任务的智能体,并把这种多机器人系统称为多智能体机器人系统(MARS)。因此,本文中多机器人系统等同于多智能体机器人系统。目前,多机器人系统已经成为学术

界研究的热点,而路径规划研究又是其核心部分。 机器人路径规划问题可以建模为一个带约束的优化问题,其包括地理环境信息建模、路径规划、定位和避障等任务,它是移动机器人导航与控制的基础。单个移动机器人路径规划研究一直是机器人研究的重点,且已经有许多成果1~3],例如在静态环境中常见的有连接图法、可视图法、切线图法、Voronoi图法、自由空间法、栅格法、拓扑法、链接图法、证据理论建图等;动态环境中常见的有粒子群算法、免疫算法、遗传算法、神经网络、蚁群算法、模拟退火算法、人工势场法等。然而,多机器人路径规划研究比单个机器人路径规划要复杂得多,必须考虑多机器人系统中机器人之间的避碰机制、机器人之间的相互协作机制、通信机制等问题。 1多机器人路径规划方法 单个机器人的路径规划是找出从起始点至终点的一条最短无碰路径。多个机器人的路径规划侧重考虑整个系统的最优路径,如系统的总耗时间最少路径或是系统总路径最短等。从目前国内外的研究来看,在规划多机器人路径时,更多考虑的是多机器人之间的协调和合作式的路径规划。 目前国内外多机器人路径规划研究方法分为传统方法、智能优化方法和其他方法三大类。其中传统方法主要有基于图论的方法(如可视图法、自由空间法、栅格法、Voronoi图法以及人工势场方法等);智能优化方法主要有遗传算法、蚁群算法、免疫算法、神经网络、强化学

滑模变结构控制

滑模变结构控制 【原理,优点,意义,步骤,特点】 变结构控制系统的特征是具有一套反馈控制律和一个决策规则,该决策规则就是所谓的切换函数,将其作为输入来衡量当前系统的运动状态,并决定在该瞬间系统所应采取的反馈控制律,结果形成了变结构控制系统。该变结构系统由若干个子系统连接而成,每个子系统有其固定的控制结构且仅在特定的区域内起作用。引进这种变结构特性的优势之一是系统具有每一个结构有用的特性,并可进一步使系统具有单独每个结构都没有的新的特性,这种新的特性即是变结构系统的滑动模态。滑动模态的存在,使得系统在滑动模态下不仅保持对系统结构不确定性、参数不确定性以及外界干扰等不确定性因素的鲁棒性,而且可以获得较为满意的动态性能。迄今为止,变结构控制理论已经历了50年的发展历程,形成了自己的体系,成为自动控制系统中一种一般的设计方法。它适用的控制任务有镇定与运动跟踪等。滑模控制(sliding mode control, SMC)也叫变结构控制,本质上是一类特殊的非线性控制,且非线性表现为控制的不连续性。这种控制策略与其他控制的不同之处在于系统的“结构”并不固定,而是可以在动态过程中,根据系统当前的状态(如偏差及其各阶导数等)有目的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动。由于滑动模态可以进行设计且与对象参数及扰动无关,这就使

得滑模控制具有快速响应、对应参数变化及扰动不灵敏、无需系统在线辨识、物理实现简单等优点。原理:滑模变结构控制的原理,是根据系统所期望的动态特性来设计系统的切换超平面,通过滑动模态控制器使系统状态从超平面之外向切换超平面收束。系统一旦到达切换超平面,控制作用将保证系统沿切换超平面到达系统原点,这一沿切换超平面向原点滑动的过程称为滑模控制。由于系统的特性和参数只取决于设计的切换超平面而与外界干扰没有关系,所以滑模变结构控制具有很强的鲁棒性。所设计的切换超平面需满足达到条件,即系统在滑模平面后将保持在该平面的条件。现在以N维状态空间模型为例,采用极点配置方法得到M(N

滑模控制

滑模变结构理论 一、引言 滑模变结构控制本质上是一类特殊的非线性控制,其非线性表现为控制的不连续性,这种控制策略与其它控制的不同之处在于系统的“结 构”并不固定,而是可以在动态过程中根据系统当前的状态(如偏差及其 各阶导数等)有目的地不断变化,迫使系统按照预定“滑动模态”的状态 轨迹运动。由于滑动模态可以进行设计且与对象参数及扰动无关,这就使 得变结构控制具有快速响应、对参数变化及扰动不灵敏、无需系统在线 辩识,物理实现简单等优点。该方法的缺点在于当状态轨迹到达滑模面后,难于严格地沿着滑模面向着平衡点滑动,而是在滑模面两侧来回穿越, 从而产生颤动。滑模变结构控制出现于20世纪50年代,经历了 50余年 的发展,已形成了一个相对独立的研究分支,成为自动控制系统的一种一 般的设计方法。以滑模为基础的变结构控制系统理论经历了 3个发展阶 段.第1阶段为以误差及其导数为状态变量研究单输入单输出线性对象的 变结构控制; 20世纪60年代末开始了变结构控制理论研究的第2阶段, 研究的对象扩大到多输入多输出系统和非线性系统;进入80年代以来, 随着计算机、大功率电子切换器件、机器人及电机等技术的迅速发展, 变 结构控制的理论和应用研究开始进入了一个新的阶段, 所研究的对象已 涉及到离散系统、分布参数系统、滞后系统、非线性大系统及非完整力 学系统等众多复杂系统, 同时,自适应控制、神经网络、模糊控制及遗传 算法等先进方法也被应用于滑模变结构控制系统的设计中。 二、基本原理 带有滑动模态的变结构控制叫做滑模变结构控制(滑模控制)。所谓滑动模态是指系统的状态被限制在某一子流形上运动。通常情况下,系统 的初始状态未必在该子流形上,变结构控制器的作用在于将系统的状态 轨迹于有限时间内趋使到并维持在该子流形上,这个过程称为可达性。系 统的状态轨迹在滑动模态上运动并最终趋于原点,这个过程称为滑模运 动。滑模运动的优点在于,系统对不确定参数和匹配干扰完全不敏感。下 图简要地描述了滑模变结构控制系统的运动过程,其中S(t)为构造的切 换函数(滑模函数), S(t)=0为滑模面。 图1

滑模控制

滑模控制(sliding mode control, SMC)也叫变结构控制, 其本质上是一类特殊的非线性控制,且非线性表现为控制的不连续性. 这种控制策略与其他控制的不同之处在于系统的“结构”并不固定,而是可以在动态过程中,根据系统当前的状态(如偏差及其各阶导数等)有目的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动. 由于滑动模态可以进行设计且与对象 参数及扰动无关,这就使得滑模控制具有快速响应、对应参数变化及扰动不灵敏、无需系统在线辨识、物理实现简单等优点. 滑模变结构控制是根据系统所期望的动态特性来设计系统的切换超平面,通过滑动模态控制器使系统状态从超平面之外向切换超平面收束。系统一旦到达切换超平面,控制作用将保证系统沿切换超平面到达系统原点,这一沿切换超平面向原点滑动的过程称为滑模控制。由于系统的特性和参数只取决于设计的切换超平面而与外界干扰没有关系,所以滑模变结构控制具有很强的鲁棒性。超平面的设计方法有极点配置,特征向量配置设计法,最优化设计方法等,所设计的切换超平面需满足达到条件,即系统在滑模平面后将保持在该平面的条件。控制器的设计有固定顺序控制器设计、自由顺序控制器设计和最终滑动控制器设计等设计方法[1]。现在以N维状态空间模型为例,采用极点配置方法得到M(N

相关文档
最新文档