太阳能光伏发电系统设计报告

太阳能光伏发电系统设计报告
太阳能光伏发电系统设计报告

西安思源学院能源学院

课程设计

题目:西安市发电系统设计

课程:太阳能光伏发电系统设计专业:电力及其自动化

班级:电力0902

姓名:杨欣

指导教师:

完成日期: 2011年3月11日

目录

1光伏软件Meteonorm和PVsyst的介绍--------------------------------------------3

2中国北京市光照辐射气象资料-------------------------------------------------------9

3独立光伏系统设计--------------------------------------------------------------------11

3.1负载计算(功率1kw,2kw,3kw,4kw,5kw)---------------------------------11 3.2蓄电池容量设计(电压:24V,48V)--------------------------------------------11 3.3太阳能电池板容量设计,倾角设计-----------------------------------------------11 3.4太阳能电池板安装间隔计算及作图。--------------------------------------------14 3.5逆变器选型-----------------------------------------------------------------------------15 3.6控制器选型-----------------------------------------------------------------------------15 3.7系统发电量预估------------------------------------------------------------------------17

第一章光伏软件介绍

Meteonorm软件是一款分析各地的气象资料软件,包括当地的经度,维度,海拔高度,以及太阳辐射度等重要资料,要想设计当地的光伏发电系统,当地的气象资料必须准确,且完整,Meteonorm软件比较好的提供了各地的气象资料。

PVsys是一款如何设计光伏发电系统的软件,他的设计流程如下:

1、获得相关信息-从你的客户手中得到或自己去寻找

A、系统安装位置-由此得到经纬度

B、应用类型:离网/并网

C、荷载情况:荷载的功率和使用时间

D、环境条件:持续阴天数/遮阳情况

E、输出类型:交流/直流,电压,频率

2、打开PVSYST软件开始设计

A、打开界面,界面左侧有功能选择,右侧为系统类型选择

B、系统设计过程就是依次完成设计界面上面各项里面的参数的过程

对各项内容进行设置,绿色部分在其他设置完成后会被激活

C、选择project/variant输入相关信息

D、选择系统安装地点的信息(如果软件有该地点信息,不需要进行以下步骤)

如果PVSYST中没有安装地的信息,可采用以下方式:

(一)利用Google earth 找到安装地点的经纬度

(二)利用meteonorm6.0软件计算该地点十年的气象参数,并保存为*.dat文件。(三)将该文件保存到PVSYST子目录的Meteo文件夹里面

(四)点击PVSYST主界面的TOOLS然后按图示步骤导入数据

(五)完成数据导入后,重新从步骤A开始进行设计

E、选择好安装点信息后,对其他数据进行设定

当地的太阳光漫反射数值一般选择0.2

F、选择orientation确定倾斜角

一般采用固定倾斜角度安装(Fixed tilted plane),倾斜角度可以根据设计要求选择或选择能量损失最小来确定倾斜角度

G、需要考虑阴影时,选择near shading 来设定阴影情况

点击Construction/Perspective进行阴影设置,对建立好的模型进行阴影分析(阴影分析图),保存后,点击table得到阴影分析表

H、选择system进入荷载参数设置界面

根据情况和软件建议对各项参数进行设置,并注意界面右下角出现的警报

I、选择module layout 对组件进行布置

J、选择simulation进行模拟计算

进行模拟计算并通过点击report得到模拟计算报告,保存报告

K、设计完成

其他类型设计基本相同,在设计过程中注意软件界面中的提示。

说明:软件不同版本的界面可能有所不同。

第二章中国北京的气象资料

本设计采用Meteonorm收集北京太阳辐射资料,采用PVsyst设计独立光伏发电系统的。设计的地点是中国北京,当地的维度是北纬39.930,经度是东经116.400,海拔高度是30m

地区名字=中国北京

维度(度)=39.930,经度(度)=116.400,海拔高度(m)=30,气候区域=三,7

辐射模式=默认(每小时);温度模式=默认(每小时)

温度选择:老时间段=1961-1990

辐射选择:新时间段=1981-2000

只添加3个站的值

最近的站:gh:北京(10km),ta:北京(10km)

说明

Ta:空气温度

Ff:风速

G-gh:水平线上总的平均幅射度

G-dh:水平线上发散的平均幅射度

第三章独立光伏系统设计

3.1负载计算

家庭每天的用电量,平均=4.8kwh/day

顾客的需要消费者家庭每天的用电量,全年的用电量

平均 4.8kwh/天

3.2蓄电池容量设计

电池的型号为volta6sb100,制造商是volta公司,蓄电池组电压为24v,正常容量900Ah,是由2组串联,9组并联得来的,温度在固定的20℃下,电池门限:充电27.0v/26.2v 放电23.5/25.2

3.3太阳能电池板容量设计,倾角设计

Pv阵列的参数:Pv组件的类型:si-poly 制造商SED

Pv组件数量8组串联,18组并联

Pv组件总数量144 每个单元峰值功率为11wp

总的阵列功率 1.51kwp 实际 1.37kwp(50oC)总的面积56.4m2

Pv阵列损失因数

热损因数uc(常数)20w/m2k uv(风)0w/m2k m/s

线上电阻损失总的阵列阻值9.3mΩ损失部分1.5% at STC

组件质量损失损失部分5.0%

组件错配损失损失部分4.0%(固定的电压)

入射影响,灰的参数1am=1-bo(1/cos i-1)bo parameter 0.05

倾角设计:水平方位:高度角55度,方位角0度

主要仿真结果

系统结果可使用能量1691kwh/year specific prod 1118kwh/year 使用的能量1752kwh/year 额外的(没有使用的)89kwh/year

Performance ratio(pr)71.7% solar fraction(sf)88.3%

Back up energy form generator Back up energy 204kwh/year

燃料消费123/year

标准的发电量:标准功率1.51kwp

新的仿真变换平衡和结果

说明:Globhor 水平总的辐射Globeff

E avail 可用的太阳能 E unused 能量损失

E user 可用的太阳能 E load 负载所需的能量

Solfrac 一部分太阳能

独立系统:损耗图示

项目:独立项目

仿真转换:最新仿真

主要的系统参数系统类型带发电机的独立系统

Pv方向高度角55 方位角0

Pv阵列组件数量144 总功率 1.51kwp

电池类型volta 6sb100 技术密封,tubular

电池包装每个单元数量18 电压/容量24v/900ah 消费者家庭每天的用电量,全年的用电量总的为1752kwh/year

一年的损耗图示

3.4太阳能电池板安装间隔计算及作图

组件间距3m,线性损失19.6%

3.5逆变器选型

Model No. JN700-8A 持续功率: 2000W 峰值功率: 4000W 效率: ≥90%静态电流:≤1A 波形: 修正正弦波输入电压: 12 V or 24V 输出电压: 220-240V 过载保护,过压保护,短路保护,过温保护,低压关断

3.6控制器选型

产品简介

太阳能发电控制器是专门为太阳能发电系统提供蓄电池充电、放电管理的电力电子装置。

太阳能光伏阵列发出的直流电力和风力发电机发出的交流电力,通过智能控制器对蓄电池充电,在蓄电池未充满前,控制器的作用是最大限度地对蓄电池充电,当蓄电池被充满时,控制器实现分段控制,并使蓄电池处于浮充状态。当蓄电池放电至接近蓄电池过放点电压时,控制器将发出蓄电池电量不足告警并切断蓄电池的放电回路,以保护蓄电池(在与逆变器配合使用时,蓄电池欠压保护也可由逆变器来完成)。该控制器经过多次完善和持续的改进,已经能够安全、可靠地工作,其采用16位微处理器对蓄电池充放电进行有效地管理,主电路的功率器件采用德国IXYS公司的大功率场效应管,具有很高的性价比。

产品特点:

控制电路与主电路完全隔离;

数码显示功能可显示出当前蓄电池电压、光伏阵列输出电流、负载电流、蓄电池充电电流;

多路太阳能光伏阵列可以同时接入;

充放电各参数点可通过编程任意设定,并可适应不同场合的特殊要求,而且可避免各路充电开关同时开启、关断时引起的振荡;

各路充电电压检测具有“回差”控制功能,可防止静态开关进入振荡状态;

具有过充、过放、过载、短路、反接、过热等一系列报警和保护功能;

采用霍尔电流传感器检测电流。

技术指标:

型号指标:KSC24-50

额定电压(V):24

额定充电电流(A):50(分6路输入)

允许单路光伏阵列最大充电电流(A):10

允许光伏阵列最大开路电压(V):50

过充电压点(V):

保护:30.0(为出厂设定值,可设定)

恢复:29.2(为出厂设定值,可设定)

过放电压点(V)

断开:21.6(为出厂设定值,可设定)

恢复:24.8(为出厂设定值,可设定)

蓄电池过压点(V)

切断:35.0(为出厂设定值,可设定)

恢复:30.1(为出厂设定值,可设定)

空载电流(mA):≤200

电压降落(V)

太阳能电池与蓄电池之间:≤0.7

蓄电池与负载之间:≤0.03

使用环境温度:-20℃~+50℃

使用海拔(m):≦5000

尺寸(mm)及重量长×宽×高:720×620×1100;150㎏

太阳能光伏阵列反接保护:太阳能光伏阵列“+”“-”极性接反,不会损坏控制器,纠正后可继续使用

蓄电池反接保护:蓄电池“+”“-”极性接反,纠正后可继续使用

蓄电池开路保护:当蓄电池开路时,若太阳能光伏阵列正常充电,控制器将限制负载两端电压,以保证负载不被损伤

蓄电池过充保护:蓄电池过充后,蜂鸣器报警,15分钟后关断负载

蓄电池过放保护:蓄电池过放后,蜂鸣器报警,15分钟后关断负载

负载过载及短路保护:负载电流超过50A或负载短路时,控制器将切断负载,待故障排除后重新接通负载可继续使用。

3.7系统发电量预估

Pv方向高度角55 方位角0

Pv阵列组件数量144 总功率 1.51kwp

电池类型volta 6sb100 技术密封,tubular

电池包装每个单元数量18 电压/容量24v/900ah

消费者家庭每天的用电量,全年的用电量总的为1752kwh/year

太阳能光伏发电系统(PVsyst运用)

扬州大学能源与动力工程学院本科生课程设计 题目:北京市发电系统设计 课程:太阳能光伏发电系统设计 专业:电气工程及其自动化 班级:电气0703 姓名:严小波 指导教师:夏扬 完成日期: 2011年3月11日

目录 1光伏软件Meteonorm和PVsyst的介绍---------------------------------------------3 1.1 Meteonorm--------------------------------------------------------------------------3 1.2 PVsyst-------------------------------------------------------------------------------4 2中国北京市光照辐射气象资料-------------------------------------------------------11 3独立光伏系统设计----------------------------------------------------------------------13 3.1负载计算(功率1kw,2kw,3kw,4kw,5kw)-----------------------------13 3.2蓄电池容量设计(电压:24V,48V)----------------------------------------13 3.3太阳能电池板容量设计,倾角设计--------------------------------------------13 3.4太阳能电池板安装间隔计算及作图。-----------------------------------------16 3.5逆变器选型--------------------------------------------------------------------------17 3.6控制器选型--------------------------------------------------------------------------17 3.7系统发电量预估--------------------------------------------------------------------18

太阳能光伏设计方案

前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。 1.2光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个2.88kWp的小型系统,平均每天发电5.5kWh,可供一个1kW的负载工作5.5小时。 2.系统方案 2.1现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量1041.6毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度2.5℃;最热月7月份,平均温度27.6℃。

太阳能光伏发电系统毕业设计

(BIPV)光伏发电示范项目系统设计建议书 示范项目名称:XXXXXXXXX示范项目 二〇一〇年十月

目录 第1章项目概况 (1) 1.1 项目地理情况 (1) 1.1.1 地理位置 (1) 1.1.2 供电要求 (1) 1.2 项目建筑类型(BIPV) (2) 第2章一般光伏发电系统的价格构成 .................................................... 错误!未定义书签。第3章光伏并网发电系统设计原则与原理 (2) 3.1 总体设计原则 (3) 3.1.1 视觉美观性 (3) 3.1.2 太阳辐射量 (3) 3.1.3 电缆长度 (4) 3.2 方案设计原理 (4) 第4章光伏系统监控设计 (6) 第5章效益分析 (7) 5.1 发电量计算与节能减排量分析 (8) 5.2 资金投入与效益分析 (10) 第6章某太阳能电源技术有限公司 ........................................................ 错误!未定义书签。 6.1 雄厚的集团背景................................................................................................................................ 错误!未定义书签。 6.2 超强的项目管理能力....................................................................................................................... 错误!未定义书签。 6.3 卓越的设计团队................................................................................................................................ 错误!未定义书签。 6.4 “一揽子交钥匙服务”................................................................................................................... 错误!未定义书签。 6.5 增值服务 ............................................................................................................................................. 错误!未定义书签。第7章在节能方面为万达服务过的项目 .. (20) 第8章附录《政策分析》 (21)

(完整版)光伏发电站设计规范GB50797-2012

光伏发电站设计规范(GB 50797-2012)1总则 1.0.1为了进一步贯彻落实国家有关法律、法规和政策,充分利用太阳能资源,优化国家能源结构,建立安全的能源供应体系,推广光伏发电技术的应用,规范光伏发电站设计行为,促进光伏发电站建设健康、有序发展,制定本规范。 1.0.2本规范适用于新建、扩建或改建的并网光伏发电站和l00kWp及以上的独立光伏发电站。 1.0.3并网光伏发电站建设应进行接入电网技术方案的可行性研究。 1.0.4光伏发电站设计除符合本规范外,尚应符合国家现行有关标准的规定。 2术语和符号 2.1术语 2.1.1光伏组件 PV module 具有封装及内部联结的、能单独提供直流电输出的、最小不可分割的太阳电池组合装置。又称太阳电池组件(solar cell module) 2.1.2光伏组件串 photovoltaic modules string 在光伏发电系统中,将若干个光伏组件串联后,形成具有一定直流电输出的电路单元。 2.1.3光伏发电单元 photovoltaic(PV)power unit 光伏发电站中,以一定数量的光伏组件串,通过直流汇流箱汇集,经逆变器逆变与隔离升压变压器升压成符合电网频率和电压要求的电源。又称单元发电模块。 2.1.4光伏方阵 PV array

将若干个光伏组件在机械和电气上按一定方式组装在一起并且有固定的支撑结构而构成的直流发电单元。又称光伏阵列。 2.1.5 光伏发电系统 photovoltaic(PV)power generation system 利用太阳电池的光生伏特效应,将太阳辐射能直接转换成电能的发电系统。 2.1.6 光伏发电站 photovoltaic(PV)power station 以光伏发电系统为主,包含各类建(构)筑物及检修、维护、生活等辅助设施在内的发电站。 2.1.7辐射式连接 radial connection 各个光伏发电单元分别用断路器与发电站母线连接。 2.1.8 “T”接式连接 tapped connection 若干个光伏发电单元并联后通过一台断路器与光伏发电站母线连接。 2.1.9跟踪系统 tracking system 通过支架系统的旋转对太阳入射方向进行实时跟踪,从而使光伏方阵受光面接收尽量多的太阳辐照量,以增加发电量的系统。 2.1.10单轴跟踪系统 single-axis tracking system 绕一维轴旋转,使得光伏组件受光面在一维方向尽可能垂直于太阳光的入射角的跟踪系统。 2.1.11双轴跟踪系统 double-axis tracking system 绕二维轴旋转,使得光伏组件受光面始终垂直于太阳光的入射角的跟踪系统。 2.1.12集电线路 collector line 在分散逆变、集中并网的光伏发电系统中,将各个光伏组件串输出的电能,经汇流箱汇流至逆变器,并通过逆变器输出端汇集到发电母线的直流和交

光热发电的前景和弊端

光热发电的前景和弊端 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能。这种技术的关键元件是太阳能电池,经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。 一、光热发电 光热发电是指将太阳能聚集,通过换热装置提供蒸汽,进而驱动汽轮机发电。 1.原理不同:光伏--高纯硅可以利用太阳光照产生直流电,光伏发电; 光热--收集太阳热加热工质成汽态,推动汽轮机,发电机发交流电,光热发电;原理与传统发电的一样; 2.蓄能方式不同:光伏-蓄电池,使用期限是几年,需更换,更换的电池会造成大量污染; 光热-蓄热罐; 使用热熔盐,不需更换,只需添加; 3.使用方向不同:光伏--适合分散式、小规模、高档城市;小局域供电 光热--适合集中式、大规模、一般性地区;整个地区、省、甚至全国大范围供电,仅仅利用新疆沙漠100平方公里 的太阳热能,就够我们整个中国的用电;新疆沙漠是42.48万平方公里; 4.相关产业链不同:光伏--硅矿生产、提纯、切片、产品,相关产业链专业单一; 光热--钢铁、玻璃、水泥等等,涉及到多个行业,类似房地产,相关产业链长,非常丰富; 5.核心技术设备所有权不同:光伏--核心技术、设备都被德国、俄罗斯、日本、美国等掌握;我们需花大量外汇购买;光热--核心技术、设备全部国产化;所有知识产权完全国有; 二、含义:太阳能光热发电是指利用大规模阵列抛物或碟形镜面收集太阳热能,通过换热装置提供蒸汽,结合传统汽轮发电机的工艺,从而达到发电的目的。采用太阳能光热发电技术,避免了昂贵的硅晶光电转换工艺,可以大大降低太阳能发电的成本。而且,这种形式的太阳能利用还有一个其他形式的太阳能转换所无法比拟的优势,即太阳能所

光伏发电项目申请报告

xxxxxx有限公司 600kWp分布式光伏发电(自发自用、余电上网)项目 申请报告 xxxxxx有限公司 二〇一六年十一月

目录 第一章项目概况1 建设单位简介1 太阳能资源和气象条件1 建设条件2 建设类型2 装机容量3 太阳能光伏系统的选型布置3 电池阵列运行方式和倾角的选择 5 逆变器的选择6 项目总投资6 预计发电量7 方针接线方案设计9 系统防雷接地方案11 第二章发展规划分析和产业政策分析 12发展规划分析. 12 产业政策分析. 13 第三章建设方案15 可利用建筑屋顶面积情况13 发电计量系统配置方案13 运营维护方案15 第四章进度计划21 第五章保障措施21 组织协调措施21 监督管理措施22 运营管理措施25 检修管理设计26 第六章节能减耗分析21 用能标准和节能规范21 能耗状况和能耗指标分析30 本工程节能分析30 第七章技术经济分析32 综合数据表32 估算范围32 估算依据32 建设投资估算33 资金配套方案34 附图: 项目地理位置图 附件: 营业执照

租赁合同

项目概况 建设单位简介 xxxxxx有限公司位于xxxxxx,注册资本500万元。企业经营范围:光伏发电技术研发;光伏发电工程施工及管理;园林绿化工程、亮化工程、市政工程施工;建筑水电暖安装。本项目太阳能电站的安装地点为豪润果蔬市场建筑物屋顶。 太阳能资源和气象条件 全年平均日照总时数小时,日照百分率为57%。最多为小时(1968年),最少为小时(1964年)。xxx区地处中纬度,太阳辐射能比较丰富。历年平均太阳总辐射量为千卡/平方厘米,5、6月份最多,为千卡/平方厘米,12月份最少,为千卡/平方厘米。 建设条件 经过图纸勘测和设计要求,豪润果蔬市场楼屋顶可用于分布式太阳能光伏发电建设,建筑屋顶周围地形无明显的高大障碍物,光照良

太阳能发电系统的设计分析

太阳能发电系统的设计分析 发表时间:2018-06-04T16:55:59.477Z 来源:《基层建设》2018年第10期作者:林刚张少利[导读] 摘要:在太阳能的有效利用中,太阳能发电是最具活力的研究领域,也是最受瞩目的项目之一。 江苏四季沐歌有限公司江苏省连云港市 222000 摘要:在太阳能的有效利用中,太阳能发电是最具活力的研究领域,也是最受瞩目的项目之一。太阳能发电系统采用太阳能电池阵列、太阳能控制器、蓄电池(组)、DC/AC 逆变器(并网/不并网)、低压输配电网及交、直流负载等部分组成。下面就谈谈自己对太阳能发电系统的设计的看法。 关键词:太阳能;发电系统;设计太阳能电池发电是基于“光生伏打效应”的原理,利用充电效应把太阳辐射直接转化为电能。太阳能具有永久性、清洁性和灵活性三大优点,是其他能源无法比拟的。总之,太阳能发电的过程没有机械转动部件也燃料消耗,不排放包括温室气体在内的任何有害物质,无噪音、无环境污染,太阳能资源分布广泛没有地域限制。维修保养简单,维护费用低,运行可靠性、稳定性好。无需架设输电线路即可就地发电供电及建设周期短。 1太阳能的特点 利用太阳能发电有两大类型,一类是太阳光发电(亦称太阳能光发电),另一类是太阳热发电(亦称太阳能热发电)。太阳能光发电是将太阳能直接转变成电能的一种发电方式。它包括光伏发电、光化学发电、光感应发电和光生物发电四种形式,在光化学发电中有电化学光伏电池、光电解电池和光催化电池。太阳能是一种普遍存在的能源,并且无需采集、运输就可以直接开发利用;其次,太阳能作为一种清洁能源,对环境不会造成任何损害,在环保意识逐步提高的今天,值得推广应用;有数据显示,4年地球接受到的太阳能相当于130万亿吨煤产生的能量,应用潜力巨大;此外,太阳能量可持续时间如果用地球的寿命来换算,儿乎是取之不尽用之不竭的。然而,与此同时,太阳能的利用目前还存在一些问题,比如太阳能虽然普遍存在,但是也存在严重的不稳定性,同时总量虽大但是能流密度却相对较低,并且人类对于太阳能的利用率还处于较低的水平,同时应用成本也较高。 2太阳能发电系统 太阳能发电系统分为独立发电系统与并网发电系统:独立发电系统也叫离网发电系统。主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。并网发电系统就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电后直接接入公共电网。并网发电系统有集中式大型并网电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。但这种电站投资大、建设周期长、占地面积大,目前还没有太大发展。而分散式小型并网发电系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是目前并网发电的主流。 太阳能电池板、太阳能控制器、蓄电池组是太阳能发电系统的主要组成部分,此外逆变器也是常见的辅助设备,用于输出合适交流电太阳能电池板的主要功能是转换太阳的辐射能为电能,送往电池组中进行存储,并推动负载作用,是太阳能发电系统中最核心、最有价值的组成部分,它的质量也直接决定了整个太阳能发电系统的质量。太阳能控制器负责对整个太阳能发电系统进行监控,并对蓄电池组起到一个保护的作用,此外,部分控制器可能还兼具有光控和时控功能。值得注意的是,一个合格的控制器在温差较大的地方,还应该配备温差补偿功能。太阳能蓄电池组的功能,就是将太阳能发电系统产生的电能储存起来以备用,铅酸电池、镍氢电池、镍锅电池或铿电池是最常见的蓄电池种类,除铅酸电池外,主要用于小微型的太阳能发电系统中。我们知道,太阳能直接输出的电能为12VDC,24VDC,48VDC,而我们日常使用的电能则为220VAC,110VAC,囚此逆变器的主要作用就是为我们提供合适的电能。 3太阳能发电系统的效率在太阳能发电系统中,系统的总效率ηese由电池组件的PV转换率、控制器效率、蓄电池效率、逆变器效率及负载的效率等组成。但相对于太阳能电池技术来讲,要比控制器、逆变器及照明负载等其它单元的技术及生产水平要成熟得多,而且目前系统的转换率只有17%左右。因此提高电池组件的转换率,降低单位功率造价是太阳能发电产业化的重点和难点。太阳能电池问世以来,晶体硅作为主角材料保持着统治地位。目前对硅电池转换率的研究,主要围绕着加大吸能面,如双面电池,减小反射;运用吸杂技术减小半导体材料的复合;电池超薄型化;改进理论,建立新模型;聚光电池等。 4太阳能发电系统的运行 4.1并网全自动运行方式 设计的太阳能发电系统产生的电能将直接分配到需要太阳能供电的用电负载上,包括楼道间照明以及地下停车场照明,不足的电力将由连接的电网进行补充调节。具体工作起来,就是太阳能发电系统在旱晚分别对太阳能电池板阵列的电压进行监测:旱上达到设定值即执行并网发电,并将产生的直流电经由逆变器转换为可供使用的交流电;晚上低于设定值时,并网发电系统将自动停止运行。 4.2并联运行方式 太阳能发电系统并联运行方式与并网全自动运行方式在电能利用和调节方式上基本一致,是一个相对独立的发电系统。该方式的配电方式与柴油发电机的配电方式基本相同,即增加一路交流市电供电,将经逆变器转换的交流电和市电组成A'1'SE双电源自动切换,这是一种简单、灵活、独立的发电系统,A'1'SE双电源自动切换系统会在太阳能供电中断,或者供电不足的时候自动切换到市电供电,供电的可靠性也随之提高然而,并联运行方式也有一定缺点,那就是A'1'SE双电源自动切换的过程中,将会中断一段时间的供电,这将不利于一些用电设备的正常运行,甚至可能会造成一定的损坏。同时,考虑到太阳能发电的不稳定性,并联运行方式的用电量也很难达到平衡。不过,由于并联运行方式可以尽量更多的发挥太阳能的发电量,从而部分节约备用的蓄电池,进而节约投资。 5太阳能光伏发电需要考虑的因素 5.1地理位置及气象条件 利用太阳能光伏发电必须要综合考虑各种因素,包括地点、纬度、经度、海拔等,太阳能每月的总辐射量。直接辐射量,年平均气温,最长连续阴雨天数,最大风速降雪及冰雹等特殊气象情况。 5.2最大负载及用电特性

碟式太阳能热发电系统的原理与构造

碟式太阳能热发电系统的原理与构造 芃 摘要:碟式太阳能热发电系统由碟式抛物面聚光镜、接收器、斯特林发动机、发电机组成,本文介绍了碟式抛物面聚光镜的结构,并介绍了碟式太阳能接收器的原理与结构。 关键字:碟式太阳能发电系统,碟式抛物面反射镜,直接加热式太阳能接收器,间接加热式太阳能接收器,池沸腾接收器,相变式太阳能加热器,斯特林发动机 碟式太阳能热发电系统主要由碟式聚光镜、接收器、斯特林发动机、发电机组成,目前峰值转换效率可达30%以上,是一种有前途的太阳能热利用装置。 1. 碟式抛物面反射镜 碟式太阳能热发电系统采用旋转抛物面汇聚太阳光,旋转抛物面是抛物线绕轴线旋转形成的面。与抛物面轴线平行的光线照射到镜面时,光线会聚焦到焦点,在焦点放置的物体会被加热到很高的温度,见图1。 图1 旋转抛物面聚光镜 每个碟式太阳能热发电系统都有一个旋转抛物面反射镜用来汇聚太阳光,圆形的反射镜像碟子一样,故称为碟式反射镜。由于反射镜面积小则几十平方米,大则数百平方米,很难造成整块的镜面,是由多块镜片拼接而成。一般几kW的小型机组用多块扇形镜面拼成园形反射镜,如图2左侧照片;也有用多块园形镜

面组成,如图2右侧照片。大型的一般用许多方形镜片拼成近似园形反射镜,如图3照片所示。 图2 网上的碟式太阳能系统照片 图3 网上的碟式太阳能系统照片 拼接用的镜片都是抛物面的一部分,不是平面,多块镜面固定在镜面框架上,构成整片的旋转抛物面反射镜。整片的旋转抛物面反射镜与斯特林机组支架固定

在一起,通过跟踪转动装置安装在机座的支柱上,斯特林机组安装斯特林机组支架上,机组接收器在旋转抛物面反射镜的聚焦点上,见图4。 跟踪转动装置由跟踪控制系统控制,保证抛物面反射镜对准太阳,把阳光聚集在斯特林机组的接收器上。关于跟踪知识请浏览“鹏芃科艺”网站(https://www.360docs.net/doc/52653030.html,)的“聚光太阳能热利用”栏目“太阳的视运动与跟踪”章节。在该栏目的“碟式太阳能热发电系统”章节有碟式太阳能热发电系统动画,可在线观看或下载。 图4 碟式太阳能发电系统组成 2. 斯特林发电机组 斯特林发动机是一种外燃机,依靠发动机气缸外部热源加热工质进行工作,发动机内部的工质通过反复吸热膨胀、冷却收缩的循环过程推动活塞来回运动实现连续做功。由于热源在气缸外部,方便使用多种热源,特别是利用太阳能作为热源。碟式抛物面聚光镜的聚光比范围可超过1000,能把斯特林发动机内的工质温度加热到650度以上,使斯特林发动机正常运转起来。在机组内安装有发电机与斯特林发动机连接,斯特林发动机带动发电机旋转发电。 斯特林发动机的技术较复杂,就不在这里介绍了,在“鹏芃科艺”网站(https://www.360docs.net/doc/52653030.html,)有“斯特林发动机”栏目专门介绍斯特林发动机的原理与

XX太阳能发电项目可行性分析报告

XXX太阳能发电项目可行性分析报告集团公司领导: XX集团全资子公司XX科技服务有限公司(以下简称XX科服)就集团产股的XX厂太阳能发电站项目进行了实地考察,经仔细论证后对该项目可行性分析如下: 一、项目概况 该项目是通过利用XXX厂房屋的屋顶空地,建设太阳能发电站,供其日常使用,降低排放的同时,获取相应的效益。 由XXX科服精确计算,根据XXX厂变压器容量(厂区内配1台500KVA的变压器)和厂区实际用电情况,在对其屋顶进行实地勘测后,设计可安装光伏电站发电组件面积,基本确定可建设装机量为275.6kwp(太阳能光伏电池的峰值总功率)的光伏电站。该电站共需安装260Wp太阳能电池组件1060块,20块组件一串,总共有53串组件;30kw光伏逆变器9台,设置1个并网点,380V 电压接入电网变压器的低压侧。

二、投资回报 投资: 太阳能发电站建设在XXX厂屋顶空地,不占用现有其他资源,一次性投资可以长期产生效益(最长可达25年); 该太阳能发电站项目设计总装机容量大约为275.6KWp(预计有±10%的调整,投资估值未计算在内),需要投资(预估):¥2,067,000元人民币; 回报: 该发电站建成后预计发电量为下表: 水平日照. Kwh/m2.day 倾斜日照 Kwh/m2.day 日平均发电量. Kwh 月平均发电量 Kwh 一月 2.19 2.98657.0320367.94二月 2.70 3.31729.7920434.09三月 3.15 3.40749.6323238.59

四月 3.92 3.97875.31 26259.17 五月 4.59 4.32 952.47 29526.68六月 4.40 4.00881.9226457.60 七月 4.84 4.44978.9330346.87 八月 4.69 4.631020.8231645.49 九月 3.76 4.02886.3326589.89 十月 3.21 3.85848.8526314.29 十一月 2.52 3.40749.6322488.96 十二月 2.17 3.12687.9021324.83 平均 3.52 3.79834.8825416.20首年发电量304994.39 ** 该栏数据表示一年内平均每月电量。(1、考虑到每月不同的日照强度及温度影响;2、日照量数据来源:NASA) 2036820434 23239 26259 29527 26458 30347 31645 2659026314 22489 21325 0 5000 10000 15000 20000 25000 30000 35000 一月二月三月四月五月六月七月八月九月十月十一月十二月K W H 系统预计首年各月发电量 XXX今年以来用电量达31万kwh,日均用电量在2000kwh以上,因此该太阳能发电站每天所发的电在工作日都可以完全被自身消纳。且大量工作时间(5小时)是在白天高峰电价阶段,其电价甚高,也是太阳能发电站的发电高峰时段,此时的电价高达

太阳能发电系统毕业设计

太阳能发电系统设计 1引言 从“蒸汽机”到“电动机”的一系列动力技术发明,人们逐渐认识到,能 源技术的革新带动人类社会日益进步,对社会发展起着巨大的推动作用。但至今所采用的化石燃料能源带给人类文明与进步的同时,却因能源需求消耗的大幅提高以及随之而来的环境污染,形成了巨大的能源缺口,同时给环境造成巨大灾难。目前,油气资源的供不应求已成为我国经济发展的瓶颈,电力供应不容乐观,天然气用量迅速增长…… 最新的资料表明太阳光的充分利用,是最清洁,环保,取之不尽的可再生能源。 太阳能的利用 我国太阳能资源丰富,陆地每年接受的太阳辐射能,相当于2.431012tce,2/3国土面积的太阳能总辐射量超过0.6MJ/m2。如果将太阳能源充分加以利用,不仅有可能节省大量常规能源,而且有可能在某些区域完全利用太阳能采暖。 目前,太阳能利用主要有两个途径,即光热和光伏。光伏是根据光生伏特效应原理,利用太阳能电池将太阳光能直接转化为电能。光伏发电在太阳能利用上是主流,前景好。 太阳能原理 太阳能电池发电的原理是基于半导体的光电效应,即一些半导体材料受到光照时,载流子数量会剧增,导电能力随之增强,这就是半导体的光敏特性。 在晶体中电子的数目总是与核电荷数相一致,所以P(N)型硅对外部来 说是电中性的。若将P(N)型硅放在阳光下照射,仅是被加热,外部看不出 变化。但内部通过光的能量,电子从化学键中被释放,由此产生电子-空 穴对,但在很短的时间内(在μS范围内)电子又被捕获,即电子和空穴 “复合”。 1 / 20

当 P 型和 N 型半导体结合在一起时,在两种半导体的交界面区域里 会形 成一个特殊的薄 层,界面的 P 型一侧 带负电,N 型一侧带正电 。这是由于 P 型半导体多空穴,N 型半导体多自由电子,出现了浓度差。N 区的电 子会扩 散到 P 区,P 区的空穴会扩散到 N 区,一旦扩散就形成了一 个由 N 指向 P 的 “内 电场”, 从而阻止扩散 进行。达到 平衡后,就形 成了这样一 个特殊的 薄层形成电势差,这就是 P -N 结。 至 今为 止,大多 数太阳能 电池厂家都是 通过扩散工艺, 在 P 型硅片 上形成 N 型区 ,在两个 区交界就 形成了一个 P -N 结(即 N+ /P )。太 阳能电池的基本结构就是一个大面积平面 P -N 结) 如果光线照射在太阳能电池上并且光在界面层被吸收,具有足够能量的 光子能够在 P 型硅和 N 型硅中将电子从共价键中激发,以 致产生 电子-空 穴对。界面层附近的电子和空穴在复合 晶片受光过程中,空穴(电子)往 P(N)区移 之 前,将 通过空 间电荷 的电 场作用 被 相互分离。电子 向带正 电的 N 区 和空 穴向带负电的 P 区运动。通过界 面层 晶片受光后,空穴(电子)从 P(N)区正(负)电极流出 产生 一个向外 的可测试的电 压。通过光 照在界面层 产生的电 子- 空穴对越 多, 电流越大 。界面层吸收 的光能越多 ,界面层即 电池面积 越大,在太 阳 能电池中形成的 电流也 越大。 此即为光生伏特效应。 光伏系统 光伏系统是利用太阳电池组件和其他辅助设 备将太阳能转换成电能的系统。一般分为独立系 统、并网系统和混合系统。 白天,在光照条件下,太阳电池组件产生一 定的电动势,通过组件的串并联形成太阳能电池方阵,使得方阵电压达到系统输 入电压的要求。再通过充放电控制器对蓄电池进行充电,将由光能转换而来的电 能贮存起来。晚上,蓄电池组为逆变器提供输入 电,通过逆变器的作用,将直流电转换成交流电, 2 / 20 的电荷分离,将在 P 区和 N 区之间

太阳能光伏发电系统设计思路

太阳能光伏发电设计思路

摘要:简要介绍太阳能光伏发电系统设计思路和组成光伏系统器件选型方法,分析和研究太阳能光伏发电的热点和核心技术。 前言:当今世界,能源是促进经济发达与社会进步的原动力。目前所使用之主要能源为化石能源,然而其蕴藏量有限,且在开发过程造成空气污染、环境破坏,积极开发低污染及低危险性的新能源乃为迫切需要。 太阳能发电是指太阳能光伏发电,光伏发电是利用半导光生伏特效应将光能直接转变为电能的一种发电技术。太能是一种非常理想的干净、安全且随处可得的清洁能源,因此各国均不断地研发各种相关技术,藉以提高系统发电效率并降低发电成本,推广普及使用太阳能。

第一部分 太阳能电池发电系统原理 太阳能电池发电系统(又称光伏发电系统),从大类上分为 独立(离网)和并网光伏发电系统两大类。 目前应用比较广泛的光伏发电系统,主要是在偏远地区可以 作为独立的电源使用,也可以与风力发电机或柴油机等组成混合发电系统,在城市太阳能光伏建筑集成并网发电得到了快速发展,光伏发电与建筑一体化是太阳能光伏与建筑的完美结合,属于分布式发电的一种。它能够减少电网用电,大大减轻公共电网的压力,就近向电网输送电力。 1.1独立的电源使用(光伏离网发电系统) 太阳能光伏组件组成太阳电池方阵,在充足情况下,一方面给负载供电(直流负载,若交流负载需要逆变器),另一方面给蓄电池组充电,晚上依靠蓄电池组放电供负载使用(如下图示意)。 图1-1直流负载光伏发电示意图 在方阵工作时,阻塞二极管防止向电池方阵反充电,止逆二极管两端有一定的电压降,对硅二极管通常为0.60.8V ;肖特基或锗 太阳电池方阵 控制器 负载 阻塞二极管 蓄电池

太阳能光伏发电站系统设计及应用

太阳能光伏发电站系统设计及应用 发表时间:2019-08-29T08:53:03.280Z 来源:《防护工程》2019年11期作者:孙厚财[导读] 本文主要介绍了青海油田光资源概况,太阳能光伏发电站的组成、类型及优势,太阳能光伏电站的电池板、蓄电池容量的计算等内容。 中国石油工程建设有限公司青海分公司 摘要:本文主要介绍了青海油田光资源概况,太阳能光伏发电站的组成、类型及优势,太阳能光伏电站的电池板、蓄电池容量的计算等内容。 关键词:太阳能资源;太阳能光伏发电站;太阳能电池板计算;蓄电池计算;计算示例引言 青海油田位于大西北柴达木盆地,属于高原油田,光能资源丰富;近些年青海油田大力推广小型化、橇装化设计,在一些边远地区无电网依托条件下,可采用小型太阳能光伏发电站为小型橇装站供电,比架设供电线路投资省,绿色无污染等诸多优点,小型太阳能光伏发电站在石油化工行业得到较好的应用。 1、青海油田光资源简介 青海油田位于青海省海西州柴达木盆地,地理坐标为东经90°55′,北纬38°17′。盆地内海拔2800m-3400m,日照充足,太阳辐射强,光质好,光能资源丰富,年日照时数3173.2小时,日照率72%,无霜期为90天。 青海油田处在我国的四个太阳辐射资源带最丰富的Ⅰ区,太阳年总辐射量690—750千焦/平方厘米,仅次于西藏拉萨,光能资源异常丰富,具有利用太阳能良好的自然条件。 2、太阳能光伏发电站简介 太阳能光伏电站是通过太阳能电池方阵将太阳能辐射能转换为电能的发电站称为太阳能光伏电站。太阳能光伏电站按照运行方式可分为独立太阳能光伏电站和并网太阳能光伏电站。 未与公共电网相联接独立供电的太阳能光伏电站称为离网光伏电站。主要应用于远离公共电网的无电地区和一些特殊场所。独立系统由太阳电池方阵、系统控制器、蓄电池组、直流/交流逆变器等组成。 与公共电网相联接且共同承担供电任务的太阳能光伏电站称为并网光伏电站,是当今世界太阳能光伏发电技术发展的主流趋势。 太阳能光伏发电主要优点有以下几点。 1)太阳能资源取之不尽,用之不竭,不受地区、海拔等要素的限制。 2)太阳能资源到处可得,可就近供电。不用长间隔保送,防止了长间隔输电线路所形成的电能损掉,还也节流了输电成本。 3)太阳能光伏发电的能量转换进程简略,是直接从光子到电子的转换,没有中心进程,光伏发电具有很高的理论发电效率,可达80%以上,技术开拓潜力大。 4)太阳能光伏发电自身不运用燃料,不排放包括温室气体和其他废气在内的任何物质,不污染空气,不发生噪声,不会蒙受能源危机或燃料市场不不变而形成的冲击,是真正绿色环保的新型可再生能源。 5)太阳能光伏发电进程无需冷却水,可以装置在没有水的荒凉沙漠上。 6)太阳能光伏发电无机械传动部件,操作、维护简略。根本上可完成无人值守,维护成本低。 7)太阳能光伏发电运用寿命长,晶体硅太阳能电池寿命可达20~35年。在光伏发电系统中,只需设计合理、造型恰当,蓄电池的寿命也可长达10~15年。 8)太阳能电池组件构造简略,体积小,分量轻,便于运输和装置。光伏发电系统建立周期短,而用依据用电负荷容量可大可小,便利灵敏,极易组合、扩容。对于用电负荷小的橇装型场站,其投资往往比架设供电线路投资省的多,具有明显优势。 3、太阳能光伏发电站系统计算 3.1太阳能电池板计算 一般采用负载用电量指标来计算所需要的太阳能电池板. 公式计算:太阳能电池发电量(kW.h) =负载日用电量(kW.h)/(电池板综合损失系数×蓄电池充电效率) 太阳能电池功率(kWp)= 太阳能电池发电量(kW.h)/太阳能峰值小时系数(h)注:太阳能电池板综合损失系数:80%;独立发电蓄电池效率80%;太阳能峰值小时系数可以查当地的气象资料:青海油田格尔木、花土沟地区约为5h。 太阳能电池板单板标称一般为DC17V或DC35V,对应12V\24V蓄电池的充电,电池板单板功率一般为10~200Wp。 根据以上计算的太阳能电池功率,通过并联方式来确定太阳能电池的个数。 如需要太阳能电池功率5kWp/220V时,采用DC17V,电池板额定输出功率为120Wp,需要16(串)×3(并)×120 Wp,额定输出为5.76kWp.电池板个数为48块。 太阳能电池方阵设计 1)太阳能电池组件串联数Ns 太阳能电池组件按一定数目串联起来,就可获得所需要的工作电压,但是,太阳能电池组件的串联数必须适当。串联数太少,串联电压低于蓄电池浮充电压,方阵就不能对蓄电池充电。如果串联数太多使输出电压远高于浮充电压时,充电电流也不会有明显的增加。因此,只有当太阳能电池组件的串联电压等于合适的浮充电压时,才能达到最佳的充电状态。

塔式太阳能热发电技术

塔式太阳能热发电技术浅析 14121330 彭启 1. 前言 太阳能热发电是利用聚光器将太阳辐射能汇聚,生成高密度的能量,通过热功循环来发 电的技术[1]。我国太阳能热发电技术的研究开发工作始于70年代末,一些高等院校和科研 所等单位和机构,对太阳能热发电技术做了不少应用性基础实验研究,并在天津建造了一套 功率为IkW的塔式太阳能热发电模拟实验装置,在上海建造了一套功率为IKW的平板式低 沸点工质太阳能热发电模拟实验装置[2~3]。 目前主流的太阳能热发电技术主要有4种方式:塔式、槽式、碟式和线性菲涅尔式[4], 这4种太阳能光热发电技术各有优缺点。 塔式太阳能聚光比高、运行温度高、热转换效率高,但其跟踪系统复杂、一次性投入大,随着技术的改进,可能会大幅度降低成本,并且能够实现大规模地应用,所以是今后的发展 方向。槽式技术较为成熟,系统相对简单,是第一个进入商业化生产的热发电方式,但其工作温度较低,光热转换效率低,参数受到限制。碟式光热转换效率高,单机可标准化生产、既可作分布式系统单独供电,也可并网发电,但发电成本较高、单机规模很难做大。线性菲 涅尔式结构简单、发电成本低、具有较好的抗风性能,但工作效率偏低、且由于发展历史较 短,技术尚未完全成熟,目前处于示范工程研究阶段。 2. 发电原理与系统 塔式太阳能热发电系统的基本形式是利用独立跟踪太阳的定日镜群,将阳光聚集到固定 在塔顶部的接收器上产生高温,加热工质产生过热蒸汽或高温气体,驱动汽轮机发电机组或燃气轮机发电机组发电,从而将太阳能转换为电能[5]。 塔式太阳能热发电系统,也称集中型太阳能热发电系统,主要由定日镜阵列、高塔、吸 热器、传热介质、换热器、蓄热系统、控制系统及汽轮发电机组等部分组成,基本原理是利用太阳能集热装置将太阳热能转换并储存在传热介质中,再利用高温介质加热水产生蒸汽,驱动汽轮发电机组发电。 塔式太阳能热发电系统中,吸热器位于高塔上,定日镜群以高塔为中心,呈圆周状分布,将太阳光聚焦到吸热器上,集中加热吸热器中的传热介质,介质温度上升,存入高温蓄热罐,然后用泵送入蒸汽发生器加热水产生蒸汽,利用蒸汽驱动汽轮机组发电,汽轮机乏汽经冷凝 器冷凝后送入蒸汽发生器循环使用。在蒸汽发生器中放出热量的传热介质重新回到低温蓄热 罐中,再送回吸热器加热。塔式太阳能热发电系统概念设计原理系统如图1所示。 上电机 冷抽董 图1塔式太阳能电站系统流程示意图

太阳能光伏发电项目可行性报告

×××新厂房 4MWp太阳能光电建筑应用一体化 示范工程项目申请报告 一、工程概况 项目名称:新厂房4MWp太阳能光电建筑应用一体化示范工程项目 项目单位:××× 地理位置:本项目实施地××市××县工业园区。 ××县位于××省东南部,大运河西岸,界于东经×°×′~×°×', 北纬×°×′-×°×′之间。全县辖×镇×乡,××个行政村,总面积× ×平方公里,全县呈簸萁形,由西南向东北逐渐倾斜坦,最高点海拔××米,最低点××米。项目区地理位置见图2.1:××县地理位置图。 图2.1 ××县地理位置 ××市××县地处中纬度欧亚大陆东缘,属于暖温带大陆性季风气候。太阳辐射的季节性变化显著,地面的高低气压活动频繁,四季分明,光照充足,年平均气温12.5 ℃ ,年平均降水量554毫米。寒暑悬殊,雨量集中,干湿期明显,夏冬季长,春秋季短。衡水市属于太阳能辐射三类地区,太阳能辐射量在5020~5860MJ/cm2.a,年总日照时数为2200~3000h,属太阳能资源较丰富地区。××县工业园区正处于我国日照资源丰富的地区,本地区太阳能资源见图2.2:中国太阳能资源分布图;日照情况见表2.1:××县日照峰值及日

照时数各月情况表。 图2.2 中国太阳能资源分布图

表2.1 ××县日照峰值及日照时数各月情况表 月份空气温度相对湿度日平均峰值日照时数 (水平面) 风速 °C % kWh/m2/d 米/秒 1月-5.1 39.5% 2.81 2.8 2月-1.4 40.3% 3.71 2.9 3月 5.5 38.2% 4.75 3.2 4月14.9 33.7% 5.78 3.5 5月21.2 38.1% 6.26 3.0 6月24.7 52.8% 5.76 2.6 7月25.5 69.0% 5.12 2.0 8月24.5 69.1% 4.76 1.7 9月21.1 53.3% 4.43 2.0 10月14.3 43.4% 3.72 2.2 11月 4.6 43.8% 2.82 2.7 12月-2.4 41.9% 2.47 2.7 平均12.3 46.9% 4.37 2.6 建设规模:利用××有限公司新建厂房的楼顶。采取太阳能电池板与楼顶表面、相结合的形式,建设4MWp太阳能光电建筑,太阳电池组件方阵由21052块190Wp组件组成,总面积约61348平方米。电站主要满足厂房内所以生产设备、办公区域、厂区内照明等电器设备用电,并与电网相连结,采用用户侧并网方式,太阳能供电不足时有电网补充,与电网形成互补,缓解高峰用电压力,具有调峰作用。(总平面图见图一:××厂区规划图) 投资估算:该项目总投资11801.50万元。企业自筹资金5901.05余万

太阳能光伏照明控制系统的硬件电路项目设计方案

太阳能光伏照明控制系统的硬件电路项 目设计方案 1.1概述 传统的化石能源资源日益枯竭,严重的环境污染制约了世界经济的可持续发展。能 源的需求有增无减,能源资源已成为重要的战略物资,化石能源储量的有限性是发展可 再生能源的主要因素之一。根据世界能源权威机构的分析,按照目前已经探明的化石能 源储量以及开采速度来计算,全球石油剩余可采年限仅有 41年,其年占世界能源总消 耗量的40.5%,国内剩余可开采年限为15年;天然气剩余可采年限61.9年,其年占世 界能源总消耗量的24.1%,国内剩余可开采年限30年;煤炭剩余可采年限230年,其 年占世界能源总消耗量的25.2%,国内剩余可开采年限81年;铀剩余可采年限71年, 其年占世界能源总消耗量的 7.6%,国内剩余可开采年限为50年。 太阳能利用和光伏发电是最有发展前景的可再生能源,因此,世界各国都把太阳能 光伏发电的商业化开发和利用作为重要的发展方向,制定了相应的导向政策。在光伏发 电的历史上,最早规模化推广的是日本,而后是德国,再发展到现在大力推广的包括美 国、西班牙、意大利、挪威、澳大利亚、韩国、印度等超过 40个国家与地区,如日本 “新阳光计划”、欧盟“可再生能源白皮书”,以及美国国家光伏发展计划、百万太阳能 屋顶计划、光伏先锋计划等的相继推出,成为近年来推动太阳能光伏发电产业的主要动 力。根据欧盟的预测:到2030年太阳能发电将占总能耗10%以上,到2050年太阳能发 电将占总能耗20% 1.2光伏照明系统的结构 光伏照明系统主要由五大部分组成,即太阳能电池、蓄电池、控制器、照明电路、 负载,如下图1-1所示。 在系统中,控制器是整个系统的核心。它控制蓄电池的充电及蓄电池对负载的供电, 对蓄电池性能、使用寿命有非常大的影响。目前,光伏系统主要由于控制器控制蓄电池 充电方式不合理,降低了蓄电池寿命而导致整个系统可靠性不高,因此,在控制器的设 计中采用什么样的充电 图1- 1光伏系统组成框图

相关文档
最新文档