三维坐标转换方法研究

三维坐标转换方法研究
三维坐标转换方法研究

坐标系向国家大地坐标系的转换完整版

坐标系向国家大地坐标 系的转换 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

北京54坐标系向国家2000大地坐标系的转换 摘要:2000国家坐标系统提高了测量的绝对精度,并且可以快速获取精确的三维地心坐标,能够提供高精度、地心、实用、统一的大地坐标系,自此以后的测量成果要求坐标系统采用2000国家大地坐标系,本文就北京54坐标系和2000国家大地坐标系原理和转换方法进行简单的分析。 1引言大地坐标系是地球空间框架的重要基础,是表征地球空间实体位置的三维参考基准,科学地定义和采用国家大地坐标系将会对航空航天、对地观测、导航定位、地震监测、地球物理勘探、地学研究等许多领域产生重大影响。建立大地坐标框架,是测量科技的精华,与空间导航乃至与经济、社会和军事活动均有密切关系,它是适应一定社会、经济和科技发展需要和发展水平的历史产物。过去受科技水平的限制,人们不得不使用经典大地测量技术建立局部大地坐标系,它的基本特点是非地心的、二维使用的。采用地心坐标系,即以地球质量中心为原点的坐标系统,是国际测量界的总趋势,世界上许多发达和中等发达国家和地区多年前就开始采用地心坐标系,如美国、加拿大、欧洲、墨西哥、澳大利亚、新西兰、日本、韩国等。我国也于2008年7月开始启用新的国家大地坐标系—2000国家大地坐标系。 2北京54系我国北京54坐标系是采用前苏联的克拉索夫斯基椭球参数(长轴6378245ra,短轴635686m,扁率1/298.3),并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。其坐标的原点不在北京,而是在前苏联的普尔科沃。

航测成图工作流程

航测成图工作流程 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

航测成图工作流程 近两年来,我国的测绘技术取得了较快的发展,特别是航空摄影测量技术的发展与完善。由于航测成图速度快,工期周期短,有效的提高了测量的水平,使测量工作效率得以大幅度的提升,测量成本得以有效的降低,同时减少了外业测量的工作量,逐渐被广大测绘单位所采纳。 一、空三加密 航测成图的质量控制主要在内业空三加密阶段,空三加密的精度影响整个成图精度。空三加密是在立体摄影测量中,根据少量的野外控制点,在室内进行控制点加密,求得加密点的高程和平面位置的测量方法,其主要目的是减少野外像控点的布设。 目前无人机的影响因素主要有两个方面: 1、无人机比较轻巧,受外界环境干扰比较大,导致无人机 的飞行姿态较差,得到的外方位元素精度较低。 2、无人机主要携带的是微单相机,相机的畸变参数比较 大,影响拍摄影像的质量。 这两个因素是空三加密精度影响的主要因素,使用单一的空三加密处理软件,很难是空三加密的精度保证在误差范围内。所以要使用多个空三软件结合处理的方式进行,才能满足空三的精度要求。 经过短期的培训学习,目前宜采用的空三加密流程是: 1、pix4d初步进行空三加密,得到相机的畸变参数和高精

度的外方位元素。 2、PixelGrid软件对原始影像进行去畸变处理。 3、用得到的高精度外方位元素和去除畸变后的影像,在 inpho 中进行最后的空三加密 空三精度的评定结果达到:sigmanaught值不大于1个像元。二、立体采集 依据空三加密数据成果,导入到全数字摄影测量工作站航天远景中,进行内定向、相对定向、绝对定向、实时核线采样,建立立体模型。空三加密成果精度在立体采集中的体现是使建立的立体模型上下视差为0,如果上下视差过大,需重新进行空三加密。 立体模型所采集的精度主要体现在模型点的采集、模型点位置判读、模型地物要素判读、模型高程点的采集。其采集精度受约与人工作业,对立体模型采集人员的技术能力要求比较高,要使立体采集的平面高程精度满足测图要求,必须对立体采集人员进行培训。 由于初期立体采集熟练度不够,且立体采集对建筑物多的地方,成图速度较慢,不如直接在正射影像上直接进行描绘。所以现阶段预计的工作模式是用正射影像图描绘建筑物、道路等对高程精度要求低的地物;用航天远景软件立体采集高程点、描绘等高线;这样才能在保证精度的前提下,提高工作效率。

坐标转换工具说明书-1208

§10.2坐标转换工具 HGO 数据处理软件包提供了坐标转换程序,可以进行地方坐标与WGS-84坐标的相互转换,同时具备参数求解功能。 下面对这个工具进行介绍: 10.2.1概述 首先,介绍一下常见的三种坐标表示方法:经纬度和椭球高(BLH),空间直角坐标(XYZ),平面坐标和水准高程(xyh/NEU)。注意:椭球高是一个几何量,而水准高是一个物理量。 我们通常说的WGS-84坐标是经纬度和椭球这一种,北京54坐标是平面坐标和水准高程这一种,实质是有平面基准和高程基准组成的。 此外,再注意一下坐标转换的严密性问题,在同一个椭球里的纯几何转换都是严密的(BLH<->XYZ),而在不同的基准之间的转换是不严密的。举个例子,在WGS-84坐标和北京54坐标之间是不存在一套转换参数可以全国通用的,因为前者是一个地心坐标系,后者是一个参心坐标系。高程转换是由几何高向物理高转换。因此在每个地方必须用椭球进行局部拟合,通常用7参数模型来拟合。 那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法(或称布尔莎模型),即X平移,Y平移,Z平移,X旋转,Y旋转,Z旋转,尺度变化K。要求得七参数就需要在一个地区需要3个以上的已知点(7个参数至少7个方程可解,所以需要三个点列出9个方程),如果区域范围不大、最远点间的距离不大于30Km(经验值)的情况可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化K视为0,所以三参数只是七参数的一种特例。 七参数模型的实质是用一个局部椭球去拟合地方坐标系的形态;所以转换后获得的地方椭球高就是水准高。当然我们也可以把平面和高程两个方向分别进行拟合。例如平面用四参数模型拟合,高程方向则用二次曲面等模型来拟合。这样分开处理的模式相对七参数模型自由度更高。但是由于四参数模型参数较少,表达能力较弱,通常只用于小区域坐标转换。 综上所述,从实用的角度出发,坐标转换程序提供了两种转换策略供给客户选择使用: 1.七参数模型,一步得到地方平面和水准数据。 2.四参数加高程拟合模型,分两步得到地方平面和水准数据。 由于各厂家的模型和流程定义可能是不一样的,这里就我们公司的转换流程描述如下:七参数的转换过程是这样的:

空间三位坐标系|三维空间坐标系变换

1.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三向量共面,则实数λ等于( ) A.62 7 B.637 C.647 D.657 2.直三棱柱ABC—A1B1C1中,若CA A.a+b-c ?a,CB?b,CC1?c,则A1B? ( ) B.a-b+c C.-a+b+c D.-a+b-c3.已知a+b+c=0,|a|=2,|b|=3,|c|=,则向量a与b之间的夹角?a,b?为 ( ) A.30°B.45°C.60°D.以上都不对 4.已知△ABC的三个顶点为A(3,3,2),B(4,-3,7),C(0,5,1),则BC边上中线长( ) A.2 B.3 C.4 D.5 5.已知a?3i?2j?k,b?i?j?2k,则5a与3b的数量积等于( ) A.-15 B.-5 C.-3 D.-1 6.已知OA?(1,2,3),OB?(2,1,2),OP?(1,1,2),点Q在直线OP上运动,则当QA?QB 取得最小值时,点Q的坐标为( )

131123448A.(,,) B.(,,) C.(,,) 243234333D.(447,,)333二、填空题7.若向量a?(4,2,?4),b?(6,?3,2),则(2a?3b)?(a?2b)?__________________。 8.已知向量a?(2,?1,3),b?(?4,2,x),若a?b,则x?______;若a//b则x? ______。已知向量a?(3,5,1),b?(2,2,3),c?(4,?1,?3),则向量2a?3b?4c的坐标为 .14.如图正方体ABCD-A1B1C1D1中,E、F、G分别是B1B、AB、BC的中点. (1)证明D1F⊥平面AEG; (2)求cos?AE,D1B? 19.(14分)如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点. (1)求BN的长; (2)求cos的值; (3)求证A1B⊥C1M.

立体测图流程总结

立体测图工作流程 一、准备数据原始照片 Pos数据 像控点坐标 相机检校文件 二、利用pix4d进行空三加密 POS数据一般格式如下图,从左往右依次是 相片号、经度、维度高度航向倾角旁向倾角相片旋角 控制点文件,控制点名字中不能包含特殊字符。控制点文件可以是TXT或者CSV。 1建立工程并导入数据 1.1建立工程 打开pix4dmapper,选项目 -新建项目,在弹出来的对话框中设置工程的属性,如下图所示,选上航拍项目,不勾植被和倾斜项目,然后输入工程名字,设置路径(工程名字以及工程路径不能包含中文)。新建项目选上,然后选择下一步Next。

2.1加入影像 点添加图像,选择加入的影像。影像路径可以不在工程文件夹中,路径中不要包含中文。点Next。 3.1.设置影像属性 图像坐标系 设置POS数据坐标系,默认是WGS84(经纬度)坐标。 地理定位和方向

设置POS数据文件,点从文件选择POS文件。 相机型号 设置相机文件。通常软件能够自动识别影像相机模型。 确认各项设置后,点Next进入下一步。然后点击Finish完成工程的建立。 2快速处理检查 这一步可以不做,只是起到一个检查作用。 快速处理出来的结果精度比较低,所以快速处理的速度会快很多。因此快速处理建议在飞行现场进行,发现问题方便及时处理。如果快速处理失败了,那么后续的操作也可能出现相同结果。 点运行,选择本地处理。设置如下图,初步处理和快速检测选上,其他不选,点开始,等待软件运行完,可以查看快速处理得到的成果(一张的影像拼图),检查快速处理质量报告。

质量报告主要检查两个问题,Dataset以及Camera optimization quality。 Dataset(数据集):在快速处理过程中所有的影像都会进行匹配,这里我们需要确定大部分或者所有的影像都进行了匹配。如果没有就表明飞行时相片间的重叠度不够或者相片质量太差。 Camera optimization quality(相机参数优化质量):最初的相机焦距和计算得到的相机焦距相差不能超过5%,不然就是最初选择的相机模型有误,重新设置。 3加入控制点 控制点必须在测区范围内合理分布,通常在测区四周以及中间都要有控制点。要完成模型的重建至少要有3个控制点。通常100张相片6个控制点左右,更多的控制点对精度也不会有明显的提升(在高程变化大的地方更多的控制点可以提高高程精度)。控制点不要做在太靠近测区边缘的位置,控制点最好能够在5张影像上能同时找到(至少要两张)。

三维坐标变换

第二章三维观察 1.三维观察坐标系 1.1观察坐标系 为了在不同的距离和角度上观察物体,需要在用户坐标系下建立观察坐标系x v,y v,z v(通常是右手坐标系)也称(View Reference Coordinate)。如下图所示,其中,点p0(x o, y o, z0)为观察参考点(View Reference Point),它是观察坐标系的原点。 图1.1 用户坐标系与观察坐标系 依据该坐标系定义垂直于观察坐标系z v轴的观察平面(view palne),有时也称投影平面(projection plane)。 图1.2 沿z v轴的观察平面 1.2观察坐标系的建立 观察坐标系的建立如下图所示:

图1.3 法矢量的定义 观察平面的方向及z v轴可以定义为观察平面(view plane)N 法矢量N: 在用户坐标系中指定一个点为观察参考点,然后在此点指定法矢量N,即z v轴的正向。 法矢量V:确定了矢量N后,再定义观察正向矢量V,该矢量用来建立y v轴的正向。通常的方法是先选择任一不平行于N的矢量V',然后由图形系统使该矢量V'投影到垂直于法矢量N的平面上,定义投影后的矢量为矢量V。 法矢量U:利用矢量N和V,可以计算第三个矢量U,对应于x z轴的正向。 的指定视图投影到显示设备表面上的过程来处理对象的描述。2.世界坐标系 在现实世界中,所有的物体都具有三维特征,但是计算机本身只能处理数字,显示二维的图形,将三维物体和二维数据联系到一起的唯一纽带就是坐标。为了使被显示的物体数字化,要在被显示的物体所在的空间中定义一个坐标系。该坐标系的长度单位和坐标轴的方向要适合被显示物体的描述。该坐标系被称为世界坐标系,世界坐标系是固定不变的。

航测成图工作流程

航测成图工作流程 近两年来,我国的测绘技术取得了较快的发展,特别是航空摄影测量技术的发展与完善。由于航测成图速度快,工期周期短,有效的提高了测量的水平,使测量工作效率得以大幅度的提升,测量成本得以有效的降低,同时减少了外业测量的工作量,逐渐被广大测绘单位所采纳。 一、空三加密 航测成图的质量控制主要在内业空三加密阶段,空三加密的精度影响整个成图精度。空三加密是在立体摄影测量中,根据少量的野外控制点,在室内进行控制点加密,求得加密点的高程和平面位置的测量方法,其主要目的是减少野外像控点的布设。 目前无人机的影响因素主要有两个方面: 1、无人机比较轻巧,受外界环境干扰比较大,导致无人机的 飞行姿态较差,得到的外方位元素精度较低。 2、无人机主要携带的是微单相机,相机的畸变参数比较大, 影响拍摄影像的质量。 这两个因素是空三加密精度影响的主要因素,使用单一的空三加密处理软件,很难是空三加密的精度保证在误差范围内。所以要使用多个空三软件结合处理的方式进行,才能满足空三的精度要求。 经过短期的培训学习,目前宜采用的空三加密流程是: 1、pix4d初步进行空三加密,得到相机的畸变参数和高精 度的外方位元素。 2、PixelGrid软件对原始影像进行去畸变处理。

3、用得到的高精度外方位元素和去除畸变后的影像,在inpho 中进行最后的空三加密 空三精度的评定结果达到:sigma naught值不大于1个像元。二、立体采集 依据空三加密数据成果,导入到全数字摄影测量工作站航天远景中,进行内定向、相对定向、绝对定向、实时核线采样,建立立体模型。空三加密成果精度在立体采集中的体现是使建立的立体模型上下视差为0,如果上下视差过大,需重新进行空三加密。 立体模型所采集的精度主要体现在模型点的采集、模型点位置判读、模型地物要素判读、模型高程点的采集。其采集精度受约与人工作业,对立体模型采集人员的技术能力要求比较高,要使立体采集的平面高程精度满足测图要求,必须对立体采集人员进行培训。 由于初期立体采集熟练度不够,且立体采集对建筑物多的地方,成图速度较慢,不如直接在正射影像上直接进行描绘。所以现阶段预计的工作模式是用正射影像图描绘建筑物、道路等对高程精度要求低的地物;用航天远景软件立体采集高程点、描绘等高线;这样才能在保证精度的前提下,提高工作效率。 立体测图的熟练以后,采集的高程精度能达到20-30公分,最高能满足1:1000的测图要求。预计每人每天工作量在0.5平方公里以上,对比传统的全野外数字测图,大大的提高了成图速度。 三、成图编辑整饰 此项工作利用立体采集的三维数据及外业调绘的资料,对地形图进行编辑整饰工作:包括对各个要素相对关系的处理,对外业调绘

参考系坐标系及转换汇总

1 天球坐标系、地球坐标系和卫星测量中常用的坐标系的建立方法。天球直角坐标系 天球坐标系 天球球面坐标系 坐标系 地球直角坐标系 地球坐标系 地球大地坐标系 常用的天球坐标系:天球赤道坐标系、天球地平坐标系和天文坐标系。在天球坐标系中,天体的空间位置可用天球空间直角坐标系或天球球面坐标系两种方式来描述。 1 天球空间直角坐标系的定义 地球质心O为坐标原点,Z轴指向天球北极,X轴指向春分点,Y轴垂直于XOZ平面,与X轴和Z轴构成右手坐标系。则在此坐标系下,空间点的位置由坐标(X,Y,Z)来描述。 春分点:当太阳在地球的黄道上由天球南半球进入北半球,黄道与赤道的交 点).

2 天球球面坐标系的定义 地球质心O为坐标原点,春分点轴与天轴(天轴:地球自转的轴)所在平面为天球经度(赤经)测量基准——基准子午面,赤道为天球纬度测量基准而建立球面坐标。空间点的位置在天球坐标系下的表述为(r,α,δ)。

表示:2-1天球空间直角坐标系与天球球面坐标系的关系可用图

岁差和章动的影响 岁差:地球实际上不是一个理想的球体,地球自转轴方向不再保持不变,这 使春分点在黄道上产生缓慢的西移,这种现象在天文学中称为岁差。章动:在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极旋转,大致呈椭圆,这种现象称为章动。 极移:地球自转轴相对地球体的位置并不是固定的,因而,地极点在地球表面上的位置,是随时间而变化的,这种现象称为极移。地球的自转轴不仅受日、月引力作用而使其在空间变化,而且还受地球内部质量不均匀影响在地球内部运动。前者导致岁差和章动,后者导致极移。 协议天球坐标系:为了建立一个与惯性坐标系统相接近的坐标系,人们通常选择某一时刻,作为标准历元,并将此刻地球的瞬时自转轴(指向北极)和地心至瞬时春分点的方向,经过瞬时的岁差和章动改正后,分别作为X轴和Z轴的指向,。协议天球坐标系由此建立的坐标系称为 3 地球坐标系

《立体图形的认识与测量》教案与反思

课题

(2) 想一想你是从哪几方面对长方体的特征进行总结的。 (点、线、面) 2.教师总结:我们通过点、线、面三个方面对长方体的特征进行总结。 (二)复习正方体的特征 出示正方体模型。 1.正方体有什么特征? 2.教师完善长方体、正方体的特征 表。 3.长方体、正方体特征对比。 共同讨论: (1)长方体与正方体有什么共同特征呢? (2)长方体与正方体有什么不同之处呢? 学生汇报正方体的特征。 小组讨论后汇报: 相同点:长方体与正方体都有6个面,12条棱和8 个顶点。 不同点: ① “线”上的不同点:长方体的棱分别是相对的4条棱相等, 分别叫做长方体的长、宽、高。而正方体的12条棱全部相等,叫做正 方体的棱长。 ②“面”上的不同点:长方体至少有4个面是长方形,而正方体的6个面都 学生集体梳理,相互交流,帮助后进生进一步记忆这些立体图形的特征。

(3)长方体与正方体有什么关系? (三)复习圆柱体与圆锥体的特征 出示圆柱体模型。(图略) 1.请同学共同讨论圆柱体有什么特征? 教师提问: (1)这两个底面有什么特点? (2)侧面又有什么特点? (3)底面与侧面又有什么联系? 2.出示圆锥体模型。(图略) 请同学共同回忆圆锥体的特点。 教师提问:等底等高的圆锥体与圆柱体有什么关系? (四)立体图形的测量 过渡:刚才我们对于立体图形的特征进行了简单的回顾,对于它们的表面积和体积的计算你们还记得吗?请完成你的研究单上的表格,并和同桌交流(出示表格,带着学生一起补充完成)是正方形。 生:正方体是特殊的长 方体。 (圆柱体的两个底面积 相等) (侧面展开图是一个长 方形或者是一个正方形) (当底面周长=圆柱体 的高的时候,侧面展开图是 一个正方形,当底面周长≠ 圆柱体的高的时候,侧面展 开图是一个长方形) 学生根据自己的思维导 图汇报圆锥体的特征。 指名汇报。 学生独立完成研究单 上的表格,并和同桌交流。 指名汇报 学生自主 探索、独立思 考、合作交流 的学习过程, 从中提高学生 的数学学习能 力。

参考系坐标系及转换

1天球坐标系、地球坐标系和卫星测量中常用的坐标系的建立方法。 L天球直角坐标系 厂天球坐标系 天球球面坐标系 地球直角坐标系地球大地坐标系 常用的天球坐标系:天球赤道坐标系、天球地平坐标系和天文坐标系。 在天球坐标系中,天体的空间位置可用天球空间直角坐标系或天球球面坐标系两种方式来描述。 1天球空间直角坐标系的定义 地球质心0为坐标原点,Z轴指向天球北极,X轴指向春分点,丫轴垂直于XOZ 平面,与X轴和Z轴构成右手坐标系。则在此坐标系下,空间点的位置由坐标(X,丫Z)来描述。 春分点:当太阳在地球的黄道上由天球南半球进入北半球,黄道与赤道的交点)

A <空闵直笥坐瑟厂K V : z 丿的楚辽” 2天球球面坐标系的定义 地球质心0为坐标原点,春分点轴与天轴(天轴:地球自转的轴)所在平面为天 球经度(赤经)测量基准一一基准子午面,赤道为天球纬度测量基准而建立球面 坐标。空间点的位置在天球坐标系下的表述为(r ,a,S )。 天欢申诗与地球质?M 重合T 赤礙刊为舍天黏 和感分点的天球子牛面 与过天体$的天球子牛面 之间的夾角,未纬 S 为 原点Mi 天体£的连規与 天球击道面之间的夹角, 旬題丫为展点Mi 天体S 球球】?坐抚1就,S 1 r )的C 义: 天球空间直角坐标系与天球球面坐标系的关系可用图 2-1表示: 感鼻—地I 球质心M 一孑塾一指向天球北奴Pn 、 ¥菇'一垂直于XMZ 平面, 与X 抽和Z 抽枸成右 手坐 标系统。 Pn A Z y X 1 \y X 奋 My\5 Ps / /

对同一空间点,直角坐标糸与其著效的球面坐标糸参教间有如下转换关务: C X - /cos a cos S < Y= / sin cos -Z = ysin 5 Y V a = arctan —— L Xz d -arctail . 岁差和章动的影响 岁差:地球实际上不是一个理想的球体,地球自转轴方向不再保持不变,这使春分点在黄道上产生缓慢的西移,这种现象在天文学中称为岁差。 章动:在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极旋转,大致呈椭圆,这种现象称为章动。 极移:地球自转轴相对地球体的位置并不是固定的,因而,地极点在地球表面上的位置,是随时间而变化的,这种现象称为极移。地球的自转轴不仅受日、月引力作用而使其在空间变化,而且还受地球内部质量不均匀影响在地球内部运动。 前者导致岁差和章动,后者导致极移。 协议天球坐标系:为了建立一个与惯性坐标系统相接近的坐标系,人们通常选择某一时刻,作为标准历元,并将此刻地球的瞬时自转轴(指向北极)和地心至瞬 时春分点的方向,经过瞬时的岁差和章动改正后,分别作为 X轴和Z轴的指向, 由此建立的坐标系称为协议天球坐标系。天味奋 5 y X X Ps

立体测图案例

8.3.2分析要点 立体测图的主要内容涉及资料准备、技术路线设定、定向建模、立体测图、接边、质量检查及数据提交等技术环节。 1数学基础 (1)大地基准:该市地方独立坐标系。 (2)投影方式:高斯克吕格投影,按3°分带计算平面直角坐标,中央经线107°。 (3)高程基准:1985网家高程基准。 (4)成图比例尺:1:2000数字线划图。 (5)基本等高距:平地、丘陵地为1m,山地、高山地为2m。 2图幅分幅与编号 1;2000数字线划图,采用50cm×50cm正方形分幅。图幅编号采用图幅西南角坐标公里数取至整公里(如653-493)。图廓间的公里数加注带号和百公里数。 @#3平面精度 图上地物点相对最近野外控制点的平面位置中误差不得大于表8-3-1的规定。 @#4高程精度 图上高程注记点相对于最近野外高程控制点的高程中误差不得大于表8-3-2的规定 @#5像片控制点精度 5像片控制点精度 像片控制点相对于最近基础控制点的平面位置中误差,平地、丘陵地、山地、高山地不超过0.2m;而对高程中误差,平地、丘陵地不超过0.1m,山地、高山地

不超过0.2m 6技术路线及工艺流程 本测区数字线划图采用“先内后外”的成图方法法进行生产。即利用航片和基础控制成果,进行野外像片控制测量,根据外业像控成果进行空三加密,在全数字摄影测量系统中恢复立体模型,采集居民地、道路、水系、地貌等地形要素,以图幅为单位回放纸图,进行野外调绘与补测。内业根据外业调绘成果和立体测图数据,对矢量数据进行编辑,保存分层建库数据,再进行数字地形图(制图数据)编辑,提交1:2000数字地形图成果。立体测图生产流程如图8-3-1所示。 采用全数字摄影测量工作站进行立体测量,原则上采用空三导入的方法建立数字立体模型。空三导入时,应对各种定向数据进行检查,以消除系统和人眼视差产生的误差,发现问题应及时找出原因,否则不能进入下一工序作业。 @#7矢量数据采集基本要求 7矢量数据采集基本要求 1:2000数字线划图数据采集以图幅为单位进行,按《基础地理信息要索分类

北京54坐标系转换工具

北京54坐标系转换工具 利用ARCGIS进行自定义坐标系和投影转换 ARCGIS种通过三参数和其参数进行精确投影转换 注意:投影转换成54坐标系需要下载无偏移卫星图像进行转换,有偏移的转换将导致转换后的卫星图像扭曲,坐标错误,无法配准。 第一步:选择无偏移地图源,下载你所需要的卫星图像。 第二步:选择BIGEMAP软件右边工具栏,选择【投影转换】,如下图所示: 2.1 选择说明: 1. 源文件:选择下载好的卫星图像文件(下载目录中后缀为tiff的文件) 2. 源坐标系:打开的源文件的投影坐标系(自动读取,不需要手动填写) 3. 输出文件:选择转换后你要保持文件的文件路径和文件名 4. 目标坐标系:选择你要转换成的目标坐标系,如下图:

选择上图的更多,如下图所示: 1:选择 -Beijing 1954 2:选择地区3:选择分度带对应的带号(一般默认,也可以手动修改)

选择对应的分度带或者中央子午线(请参看:如何选择分度带?),点击【确定】 5. 重采样算法:投影转换需要将影像的像素重新排列,一次每种算法的效率不一样,一般选择【立方卷积采样】,以达到最好的效果。如下图: 6. 指定变换参数:在不知道的情况下,可以不用填此处信息,如果√上,则如下图:

此参数为【三参数】或者【七参数】,均为国家保密参数,需要到当地的测绘部门或者国土部门,以单位名义签保密协议进行购买,此参数各地都不一样,是严格保密的,请不要随便流通。 第三步:点击【确定】,开始转换,如下图:

第四步:完成后,打开你刚才选择的输出文件夹,里面就是转换后的卫星图像。 第五步:如果你需要套合你手里已经有的矢量文件,请参看:【BIGEMAP无偏移影像叠加配准】

立体测图流程总结

立体测图流程总结

————————————————————————————————作者: ————————————————————————————————日期: ?

立体测图工作流程 一、准备数据原始照片 Pos数据 像控点坐标 相机检校文件 二、利用pix4d进行空三加密 POS数据一般格式如下图,从左往右依次是 相片号、经度、维度高度航向倾角旁向倾角相片旋角 控制点文件,控制点名字中不能包含特殊字符。控制点文件可以是TXT或者CSV。 1建立工程并导入数据 1.1建立工程 打开pix4dmapper,选项目-新建项目,在弹出来的对话框中设置工程的属性,如下图所示,选上航拍项目,不勾植被和倾斜项目,然后输入工程名字,设置路径(工程名字以及工程路径不能包含中文)。新建项目选上,然后选择下一步Next。

2.1加入影像 点添加图像,选择加入的影像。影像路径可以不在工程文件夹中,路径中不要包含中文。点Next。 3.1.设置影像属性 ?图像坐标系 设置POS数据坐标系,默认是WGS84(经纬度)坐标。 ?地理定位和方向 设置POS数据文件,点从文件选择POS文件。 ?相机型号 设置相机文件。通常软件能够自动识别影像相机模型。 确认各项设置后,点Next进入下一步。然后点击Finish完成工程的建立。

2快速处理检查 这一步可以不做,只是起到一个检查作用。 快速处理出来的结果精度比较低,所以快速处理的速度会快很多。因此快速处理建议在飞行现场进行,发现问题方便及时处理。如果快速处理失败了,那么后续的操作也可能出现相同结果。 点运行,选择本地处理。设置如下图,初步处理和快速检测选上,其他不选,点开始,等待软件运行完,可以查看快速处理得到的成果(一张的影像拼图),检查快速处理质量报告。 质量报告主要检查两个问题,Dataset以及Camera optimizationquality。 Dataset(数据集):在快速处理过程中所有的影像都会进行匹配,这里我们需要确定大部分或者所有的影像都进行了匹配。如果没有就表明飞行时相片间的重叠度不够或者相片质量太差。

坐标转换器使用说明

大地坐标(BLH) 平面直角坐标(XYZ) 四参数:X 平移、Y 平移、旋转角和比例 七参数:X平移,Y平移,Z 平移,X 轴旋转,Y 轴旋转,Z 轴旋转,缩放比例(尺度比) GPS控制网是由相对定位所求的的基线向量而构成的空间基线基线向量网,在GPS控制网的平差中,是以基线向量及协方差为基本观测量。 图3-1表示为HDS2003数据处理软件进行网平差的基本步骤,从图中可以看到,网平差实际上可以分为三个过程: l、前期的准备工作,这部分是用户进行的。即在网平差之前,需要进行坐标系的设置、并输入已知点的经纬度、平面坐标、高程等。 2、网平差的实际进行,这部分是软件自动完成的; 3、对处理结果的质量分析与控制,这部分也是需要用户分析处理的过程。 图3-1 平差过程 坐标系选择 针对不同的平差,要相应选择不同的坐标系,是否输入相应信息。在笔者接触过的项目中,平差时先通过三维无约束平差后,再进行二维约束平差。由于先进行的时三维无约束平差,是在WGS84坐标系统下进行的。 首先更改项目的坐标系统。在菜单“项目”->“坐标系统”或在工具栏“坐标系统”,则弹出“坐标

系统”对话框,选择WGS-84坐标。 图3-2 坐标系统 这里注意的是,在“投影”下见图,中央子午线是114°。很多情况下这里需要进行修改。 图3-3 WGS84投影 软件中自带的“中国-WGS 84”是允许修改的,我们换种方法:就是新建一个坐标文件,其他参数都和“中国-WGS84”一致,仅仅将中央子午线修改下。 在上图中,点击“新建”,得到“COORD GM”对话框,在“文件”->“新建”,如图

图3-4 新建坐标系统 然后在“设置”->“地图投影”,直接修改中央子午线,这里以81°为例,点击确定后,返回“COORD GM”对话框。 图3-5 投影设置 将输入源坐标和输入目标坐标的椭球,均改为WGS84。在“文件”->“保存”,输入名称和国家(中国),退出操作。

CORS坐标转换软件使用说明

坐标转换软件使用说明  1、功能介绍  在南京进行测量的同行一直受到坐标系统和已知控制点的困扰, 所以往往许多测量成果因坐标系统问题得不到承认,浪费了大量的人 力物力。基于此:本公司集全部精干技术力量,研发本款坐标转换软 件,可以说:它是全体测量工作者的福音。  南京CORS因为其免费,应用十分广泛,但是使用南京CORS在 很多情况下,因为已知控制点原因无法实地取得平面坐标而限制了 CORS优势的发挥。本软件可以实现基于南京CORS测量的WGS84 坐标与92南京地方坐标双向自由转换,转换精度与权威部门转换成 果比较(在南京市6800平方公里范围内,包括高淳、溧水、六合、 浦口):平面残差中误差优于±5mm、高程残差中误差均优于±1cm。精度完全具有保障,免去到处寻找控制点带来的人力、财力和时间浪费。按照最新城市规范规定,这种模式可以实现城市E级GPS控制 点的平面测量。  本软件是一款后处理软件,即:内业处理软件,它不能在实地计 算坐标,通过事后(采集)或事前(放样)数据处理,同样可以让你 在野外无忧无障碍开展工作。  适用平台:Windows 32位所有系统平台。  2、外业采集数据转换操作介绍  外业测量数据从RTK手簿中以WGS84坐标格式导出,导出以后 将文件复制到计算机,假设文件名为0513.dat。在电脑中启动软件,

界面如下:  图一:程序启动界面  首先选择转换方向下拉列表框,此时选择“WGS84—>NJ92”,表示将WGS84坐标转向92南京地方坐标,此时软件会出现一个按钮 键读入数据并转换,点击该按钮,在弹出的文件对话框中选择从手簿 导出的外业坐标文件。如:0513.dat,点击打开按钮即可完成转换。如图二:  图二:选择原始数据文件  记得一定要选择你的原始数据文件格式在点击打开按钮。转换完 成以后又会在对话框中再出现一个按钮导出转换成果,点击它即可将

球坐标系,三位坐标变换,旋转

球坐标系与直角坐标系的转换关系 球坐标是一种三维坐标。分别有原点、方位角、仰角、距离构成。 设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段与z轴正向所夹的角,φ为从正z轴来看自x轴按逆时针方向转到有向线段的角,这里M为点P在xOy面上的投影。这样的三个数r,φ,θ叫做点P的球面坐标,这里r,φ,θ的变化范围为 r∈[0,+∞), φ∈[0, 2π], θ∈[0, π] . 当r,θ或φ分别为常数时,可以表示如下特殊曲面: r = 常数,即以原点为心的球面; θ= 常数,即以原点为顶点、z轴为轴的圆锥面; φ= 常数,即过z轴的半平面。 与直角坐标系的转换: 1).球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系: x=rsinθcosφ y=rsinθsinφ z=rcosθ 2).反之,直角坐标系(x,y,z)与球坐标系(r,θ,φ)的转换关系为: r= sqrt(x*2 + y*2 + z*2); φ= arctan(y/x); θ= arccos(z/r); 球坐标系下的微分关系: 在球坐标系中,沿基矢方向的三个线段元为: dl(r)=dr, dl(θ)=rdθ, dl(φ)=rsinθdφ 球坐标的面元面积是: dS=dl(θ)* dl(φ)=r^2*sinθdθdφ 体积元的体积为: dV=dl(r)*dl(θ)*dl(φ)=r^2*sinθdrdθdφ 球坐标系在地理学、天文学中有着广泛应用.在测量实践中,球坐标中的θ角称为被测点P(r,θ,φ)的方位角,90°-θ成为高低角。 生成旋转矩阵的一种简单方式是把它作为三个基本旋转的序列复合。关于右手笛卡尔坐标系

参考坐标与动坐标系之间的旋转变换

坐标系之间的坐标变换 取一参考坐标系Z Y X O '''',该坐标系为船舶平衡位置上,不随船舶摇荡。 取一动坐标系OXYZ ,该坐标系与船体固结,随船舶一起做摇荡运动,OX 轴位于纵中剖面内,并指向船首,OY 垂直向上,OZ 轴指向船舶右舷。 再取一坐标系Z Y X O ???,它与参考坐标系平行,原点与动坐标系重合,且仅随船体作振荡运动。这三个坐标系之间的相对位置如图所示: 角位移用欧拉角来定义。我们假设动坐标系OXYZ 的原始位置为Z Y X O ???,经三次转动转到目前的位置。 首先将坐标系Z Y X O ???绕X O ?轴转动α角,使其转到OZ 和X O ?所确定的平面,然后绕Y O ?轴旋转β角使Z O ?与OZ 重合,此时平面Y X O ''??和平面OXY 重合,最后将得到的Z Y X O ''??绕OZ 轴转动γ角,这样,坐标系OXYZ 和坐标系Z Y X O ???就完全重合。 第一次旋转可以写为: ααααcos ?sin ??sin ?cos ????Z Y Z Z Y Y X X '+'='-'== 写为矩阵形式为 ????? ? ??''????? ??-=?????? ??Z Y X Z Y X ???cos sin 0sin cos 000 1???αα αα

同理,第二次旋转得 ?????? ??''????? ??-=?????? ??''Z Y X Z Y X ??cos 0sin 010sin 0cos ???ββ ββ 第三次旋转得, ???? ? ??????? ??-=?????? ??''Z Y X Z Y X 10 0cos sin 0sin cos ??γγγ γ 综合上面三式,得 ???? ? ????? ? ? ??++--+-+-=?????? ??Z Y X Z Y X βαγ αγβαγ αγβαβαγαγβαγαγβαβγ βγβcos cos cos sin sin sin cos sin sin cos sin cos cos sin cos cos sin sin sin sin cos cos sin sin sin sin cos cos cos ???则 [][][]X r X O '+='

业务流程测试总结

业务流程测试总结 近期公司比较强调业务流程的测试,本人就总结一下业务流程的测试经验与大家分享,欢迎大家多提意见。 一、业务流程整理 1、充分掌握业务知识,业务流程以及业务的数据流向。 站在用户的角度思考,而不仅仅考虑在系统中如何操作业务流程;搞清楚每一项业务中的详细流程和各个环节涉及的角色,一项比较复杂的业务其详细流程往往比较多,只有了彻底掌握了这项业务,才能对当前业务环节进行全方位的测试。 2、从需求人员或者客户那里了解到各业务流程的重要程度和使用频率。(这点对把握测试重点很重要) 3、了解业务流程在系统中对应的功能。(建立业务与系统的映射,为编写测试用例做好准备) 二、编写测试用例(在需求文档以及UI原型评审之后) 1、绘制业务流程图(对于较简单的流程,也可以用文字描述的形式,但流程图比较直观,也便于进行路径的分析)。 2、根据业务流程的重要程度、使用频率为各流程设置好优先级。 3、采用场景法、路径法或其他方法(方法其实是不固定的,有时候可以综合使用多种方法)梳理出每个业务流程在系统中对应的操作步骤,形成业务流程的测试用例。 注意: * 这里的操作步骤没有必要像功能点测试用例的步骤那么详细,这个操作步骤可能是一个业务操作集,可以分解成多个步骤,这些业务操作集合,也可以对应具体的功能点测试用例,从而做到测试用例的复用。所以可以说这里的业务流程测试用例就像是将多个功能点的测试用例组合成一个集合,形成一个业务流。 * 在每个步骤中需要标识出执行该操作的用户角色,因为在一个业务流程中,很可能涉及到不同的角色。 * 需要平衡项目的进度、成本,不一定需要覆盖所有的路径。 三、测试数据设计 1、输入数据: 测试业务流程与功能点测试的重点不一样,因此设计测试数据的时候更多需要考虑下面的因素(按重要到次要排列): 1)关键的判断条件 2)符合业务意义的数据

大地坐标与大地空间坐标转换工具

#include "stdafx.h" #include #include #include "resource.h" #include "MainDlg.h" #include #include BOOL WINAPI Main_Proc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { switch(uMsg) { HANDLE_MSG(hWnd, WM_INITDIALOG, Main_OnInitDialog); HANDLE_MSG(hWnd, WM_COMMAND, Main_OnCommand); HANDLE_MSG(hWnd,WM_CLOSE, Main_OnClose); } return FALSE; } BOOL Main_OnInitDialog(HWND hwnd, HWND hwndFocus, LPARAM lParam) { return TRUE; } void Main_OnCommand(HWND hwnd, int id, HWND hwndCtl, UINT codeNotify) { double a=0; double e2=0; switch(id) { case IDC_B1: { a=6378245.0000; e2=0.00669342162297; if(a==0) { MessageBox(hwnd,TEXT("请选择坐标系"),TEXT("警告"),MB_OK); } else{

关于三维坐标转换参数的讨论

关于三维坐标转换参数的讨论

关于三维坐标转换参数的讨论 摘要:首先对坐标转换的物理意义进行解释,又把传统3个旋转角参数用反对称矩阵的3个元素代替,推出用3个和4个公共点直接计算转换参数的严密公式,在此基础上推导出严密的线性化公式。由于不用进行三角函数计算,只用简单加减乘除,也不用迭代计算,所以该模型计算速度快。 关键词:三维坐标转换;转换参数;转换矩阵;反对称矩阵;罗德里格矩阵 一、引言 三维直角坐标转换中,采用7参数Bursa2Wolf 模型、Molodensky 模型和武测模型[1 ] ,当在两坐标系统下有3 个公共点,就可惟一解算出7个转换参数;多余3个公共点时,就要进行平差计算,转换参数的初值(特别是旋转角) 的大小,直接影响平差系统稳定性和计算速度,有时使得解算的参数均严重偏离其值[2 ] 。随着移动测图系统(Mobile Mapping System ,简称MMS) 技术的成熟和应用,对运动载体(飞机、轮船、汽车等) 姿态的测量( GPS + INS) 也越来越多[3~5 ] ,任意角度的3 维坐标转换计算也越来越多。在平台上安装3 台或4 台GPS 接收机,来确定运动载体的位置和空间姿态,这时的旋转角可以说是任意的,取值范围是- 180°至180°,就需要准确计算转换参数模型,适应于任意旋转角的坐标转换。 本文在解释坐标转换的物理意义的基础上,导出3 维坐标转换7

参数直接计算的模型,以旋转矩阵的确定为核心,导出了3 点法和4 点法(两坐标系统下公共点数) ,用反对称矩阵和罗德里格矩阵性质推出的公式严密,该模型计算速度快。 二、三维坐标转换的物理意义和数学模型 1. 物理意义 如图1 所示,在两坐标系统下有4个公共点,在不同坐标系统内, 看成四面的刚体, 如图1(a) , (b)坐标转换的物理意义就是通过平移、旋转和缩放,使两个刚体大小和形状完全相同。具体过程是,设公共点1 为参考点,将图1 (b) 坐标轴和刚体平移,与对应的图1 (a) 刚体的点1 重合,如图1 (c) , 平移量为[ u v w ]T;然后以点1 为顶点,绕3 轴旋转,使两坐标系统的坐标轴平行, 以参考点为顶点的边重合,其他各边平行,两刚体是相似体,只是大小不同,如图1 ( d) ; 最后进行缩放, 使两刚体大小也相同。这样两坐标系统和3 个轴重合,原点统一,从而形成坐标系统转换。

坐标系、坐标参照系、坐标变换、投影变换

坐标系、坐标参照系、坐标变换、投影变换 在《地图投影为什么》一文,我大略说了下为什么需要地图投影,投影坐标系需要哪些参数,这些参数(如椭球体、基准等)是做什么的。这篇就深入的谈些地图投影相关的一些概念,各种定义参考OGC标准《Spatial Reference by Coordinates》。进一步的话会介绍下开源投影库和商业软件投影相关的知识。 坐标系(coordinate system、CS):由两个、三个甚至更多个坐标轴,单位标度等组成,使得可利用数学法则计算距离、角度或其他几何元素。如坐标轴相互垂直的笛卡尔(Cartesian)坐标系;坐标轴不必相互垂直的仿射(affine)坐标系;用经纬度、高程来确定点位置的椭球面(ellipsoidal)坐标系等。 坐标参照系(coordinate reference system、CRS):通过基准面(datum)与真实世界或者说地球相关联的坐标系即坐标参照系。基准面是椭球体用来逼近某地区用的,因此各个国家都有各自的基准面。我们常用的基准面有:BEIJING1954,XIAN1980,WGS1984等。尽管两者有所不同,但由于人懒,在GIS中提及坐标系一般也指坐标参照系。坐标参照系有许多主要子类和辅助类,例如地理坐标系、投影坐标系、地心坐标系、时间坐标系等。 地心坐标系(geocentric cs、GEOCCS):以地球中心为原点,直接用X、Y、Z 来进行位置的描述,无需模拟地球球面,常用在GPS中。 地理坐标系(geographic cs、GEOGCS):带Datum的椭球面坐标系,单位经度、纬度,高程用作第三维。参数:椭球体、基准面。 投影坐标系(projected cs、PROJCS):平面坐标系,单位米、英尺等,它用 X(Easting)、Y(Northing)来描述地球上某个点的位置。它对应于某个地理坐标系,在UML中表示属于1对多的关系,1个地理坐标系经过不同的投影方式可产生多个投影坐标系。参数:地理坐标系、投影方式。 坐标操作(coordinate operation):从一个坐标参照系到另一个一对一的坐标改变(change)。包含坐标转换(coordinate conversion)和坐标变换(coordinate

相关文档
最新文档