工频变压器设计简介要点

工频变压器设计简介要点
工频变压器设计简介要点

保密等级

机密★20年Q/DX 青岛鼎信通讯股份有限公司技术文档

工频变压器设计简介

V1.0

2015 -04- 08发布2015- 04 - 09实施

目录

1 概述 (1)

1.1 变压器的基本工作原理 (1)

1.2 变压器空载工作状态 (1)

1.3 变压器负载工作状态 (3)

2 电子变压器的基本结构和材料 (5)

2.1 铁心及材料 (5)

2.2 铁心的加工方法 (7)

2.3 铁心材料 (7)

3 电源变压器的主要技术参数 (8)

3.1 功率容量 (8)

3.2 功率因数 (8)

3.3 效率 (9)

3.4 电压调整率 (9)

3.5 空载电流及其百分比 (9)

3.6 空载损耗 (10)

3.7 温升 (10)

3.8 设计电源电压器所必需的技术参数 (11)

4 电源变压器的基本计算公式 (11)

4.1 空载工作时 (11)

4.2 负载工作时 (13)

4.3 匝数计算 (14)

5 电源变压器铁心选择和电磁参量确定方法 (15)

5.1 电源变压器铁心选择 (15)

5.2 电源变压器电磁参数的确定 (15)

6 电源变压器结构参数计算 (16)

6.1 窗口利用系数 (16)

6.2 散热面积 (17)

7 实例设计 (19)

8 国网单相表(0527)电源设计 (24)

8.1 原理图 (24)

8.2 电气参数: (24)

8.3 变压器参数计算 (24)

9 设计计算时应注意其他问题 (28)

9.1 漏感计算 (28)

9.2 绕组的分布 (28)

9.3 屏蔽 (28)

10 文档使用范围 (28)

1 概述

1.1 变压器的基本工作原理

变换电能以及把电能从一个电路传递到另一个电路的静止电磁装置称为变压器。在交流电路中,

0感应电动势。按电磁感应定律,其有效值为

4m 1Φ110*f 4-=C S B N K E (1)

4

m 2Φ210*f 4-=c S B N K E (2)

式中 1E -----初级自感电动势(V ); 2E -----次级互感电动势(V )

ΦK -----电压的波形因数,对于正弦波,ΦK =1.11;对于方波ΦK =1; f -----交流电源的频率(Hz ); 1N -----初次绕组匝数; 2N -----次级绕组匝数

m B -----磁感应强度振幅值(T ); c S -----铁心的有效截面积(2

c m )

绕组中的感应电动势正比于该绕组的匝数,式(1)除以式(2)得;

2

1

21N N E E = (3) 如果忽略初级绕组和铁心的损耗,并假定所有磁通量都沿着铁心的磁路而闭合,则在初级绕组中的磁通量Φ0所产生的自感电动势E 1,按楞次定律,其数值与所加电压相等,而其符号相反,即

11-E U =

实际上,变压器空载电流,除了为在变压器铁心中建立磁通Φ0所需的磁化分量I Φ之外,还包括由于铁心损耗所引起的有用功分量Ic ,因此,空载电流 C I I I +=Φ0

此外,变压器初级绕组具有直流电阻r 1,因而在初次绕组中产生有功电压降Δu 1 al E r I -==101Δu

式中 E al -----补偿初级绕组电压降而假定的电动势。

流过初级绕组的电流,不仅建立沿铁心磁路闭合的主磁通Φ0,而且建立沿空气闭合的漏磁通Φsl ,这个漏磁通在初级绕组中感应漏电动势,即 101s s X I E -=

式中Xs1----初级绕组的漏感抗

根据电动势相平衡的定律,外施电压U 1应与E 1,E a1和E s1的矢量相平衡,即

101111a 11)-S s X I Ir E E E E U ++-=++=(

空载时,初级绕组的电压降一般是很小的,所以U 1和E 1值相差很小,故变压器空载电压比仍可近似等于其匝数比。即

2

1

2

1N N U U ≈

对于中小功率变压器来说,由于次(初)级漏感较小,故X s1或L s1可忽略不计,此时

1011r I E U +-≈

1.3 变压器负载工作状态

图 1.3变压器负载工作原理图

在变压器初级绕组供给电压U1,次级绕组与负载相连。这时,次级绕组将有电流I 2流过,在铁心中产生磁通Φ2,Φ2的方向应与Φ0方向相反。Φ2穿过初级绕组后,初级绕组便从电源取得电流I 1,而I 1有产生与Φ2相反的磁通Φ1。显然,Φ2=-Φ1,两个磁通相互抵消,结果,磁路中只剩下一个由空载电流所建立的磁通Φ0。

电流I 1的数值可依据能量守恒定律求得。如果忽略铁心和绕组的功率损耗,则初级绕组的功率就等于次级绕组的功率,即

2211I E I E =

所以

1

2

21I I E E = (4) 比较式(3)和式(4)可得

1221I I N N = 或者 1

221N N I I = 上面已经确定,当负载电流的数值不同时,变压器铁心中的磁通是不变的。因此,建立该磁通的磁势也是不变的。由此可得

H aw w =0a

式中aw 0-----空载时的安匝数 aw H -----负载时的安匝数 空载时的安匝数为

100a N I w =

在负载情况下,初、次级绕组安匝数总和为

2211N I N I aw H += 故 221110N I N I N I += (5)

式(5)称为磁势平衡方程式

变压器带负载工作时,除了沿铁心磁路而闭合的主磁通外,还有沿空气闭合的漏磁通Φs1、Φs2,这个磁通在初级和次级绕组中感应出漏电动势

111s S X I E -=

222S S X I E -=

当电源和变压器初级绕组构成闭合回路时,

111111s X I r I E U ++-=

在变压器次级绕组(产生电动势E 2)和负载构成的闭合回路中,可依据电动势平衡定律求得

22222222r 2S r X I I U E E U E S ++=--=

同样,对中小功率变压器,可忽略漏感抗X s1和X s2,此时

1111r I E U +-= 2222r I U E +=

但是,当工作频率升高时,其漏感的影响将逐渐增大,因此,音频变压器、高频变压器、脉冲变压器必须考虑漏感的影响。

在等效电路计算中,往往把次级参数变换(又称反射或归算)到初级,设变压器次级负载电阻为R 2

2

2

2I U R =

反射到初级的电阻为'

2R 其值为

1

1

'2I U R =

由式(3)和式(4)经变换后得

21

1122112212'

2)(..N N I I E E I I U U R R =≈= 或2221'

2

)(R N N R = 若变压器次级阻抗为Z 2,则反射到初级的阻抗'

2Z 为

22

'

2

)(

12N N Z Z =

改变(N1/N2)值,就可以改变'

2Z 值,这就是变压器变换阻抗的原理。 2 电子变压器的基本结构和材料 2.1 铁心及材料

2.1.1 铁心的基本结构型式

铁心构成变压器的磁路,是变压器结构的基础。电子变压器铁心的基本结构型式为:壳式铁心、心式铁心和环型铁心。

(a )壳式铁心 (b )心式铁心 (c )环型铁心

图 2.1 铁心分类

2.1.1.1 壳式铁心

壳式铁心如图所示,壳式铁心变压器只有一个线圈,该线圈在铁心的中心柱上。磁通由中心柱经铁轭、两边柱而闭合。

图 2.2 外磁场对壳式铁心变压器的影响

只有一个线圈的壳式铁心变压器的线圈散热面积小,故一般用作小功率变压器。因铁轭与两边柱的磁屏蔽作用,其磁辐射较小,但外磁场对其影响较大,外磁场穿过铁心和线圈,并在线圈两端产生感应电动势,从而引起干扰。

2.1.1.2 心式铁心

心式铁心变压器有两个线圈,两个线圈分别套在两个铁心柱上。磁通在铁心柱中闭合。

图 2.3 外磁场对心式铁心变压器的影响

有两个线圈的心式铁心变压器的线圈散热面积大,可用于功率较大的变压器中。心式铁心变压器磁辐射较大,对周围电子设备的磁影响较大;但外磁场对其影响较小,外磁场同方向穿过两铁心柱,在两线圈中的感应电动势因方向相反而抵消,故干扰较小。为减少外磁场的干扰,小信号输入变压器经常采用心式铁心。

2.1.1.3 环型铁心

线圈沿铁心圆周方向均匀绕制,磁通在铁心内部沿铁心而闭合。环型铁心变压器的铁心被线圈所包围,铁心散热面积为0,铁心和线圈因损耗产生的热量全部通过线圈表面散发出去。

环型铁心用于从工频到高频的各种频率范围的变压器中。这种结构充分利用铁心材料的磁性能,基本上所有的精密软磁合金都采用环型结构。环型铁心的漏磁最小,对外界的磁影响也最小。由于外磁场方向与环型铁心中工作磁场的方向垂直,线圈不切割外磁场磁力线,外磁场在线圈中不产生感应电动势,因此,外磁场对环型变压器的影响最小。

2.4外磁场对环型铁心变压器的影响

2.2 铁心的加工方法

2.2.1 冲片铁心

冲片铁心适用于钢板(带)厚度在0.1mm以上的材料。由于冲制工艺简单、效率高、基本无废料、成本低,冲片铁心广泛用于小功率电源变压器和音频变压器中。特别是EI型壳式冲片铁心,更是目前大量使用的一种铁心结构

2.2.2 卷绕铁心

卷绕铁心是用一定宽度或宽度可变的钢带在适当形状的心子(一般为矩形或环型)上连续绕制而成。由于钢带的取向方向与磁通方向完全一致,因此,卷绕铁心能使铁心材料的性能得到充分发挥。目前,各种高性能取向硅钢带相继问世,具有优异磁性能的卷绕铁心获得广泛应用。

2.3 铁心材料

2.3.1 金属软磁性材料

2.3.1.1 硅钢

硅钢是一种含硅量在5%以下的铁硅合金。一般含硅量为2.3%---3.6%。目前常用的硅钢材料是冷轧无取向硅钢带和冷轧取向硅钢带。

冷轧无取向硅钢带含硅最低,一般在0.5%---2.5%之间。厚度分为0.35mm、0.5mm和0.65mm三种,以0.5mm使用最多。冷轧无取向硅钢带在其轧制方向与垂直于轧制方向的磁性能差异不大,即采用冲制与采用卷绕工艺的铁心磁性能差异不大。冷轧无取向硅钢带磁感应强度较高、磁导率较高、但铁损大,一般用于小功率工频电源变压器和音频变压器。冷轧无取向硅钢带价格便宜,多数冲制成EI型铁心片使用。

冷轧取向硅钢带含硅量较高,一般在2.5%---3%之间。厚度为0.27mm、0.30mm和0.35mm三种,以0.35mm 使用最多。冷轧取向硅钢带在其轧制方向与垂直于轧制方向的磁性能差别较大,即冲制铁心与卷绕铁心的磁性能差别很大。冷轧取向硅钢带的磁感应强度高,铁损小,是中大功率工频变压器的首选材料。它即可采用冲、剪,也可采用卷绕的方法来制造铁心。提高硅钢带的饱和磁感应强度,降低铁损是当今硅钢带的发展方向。

2.3.1.2 精密软磁合金

精密软磁合金主要包括铁镍系软磁合金、铁铝系软磁合金、铁硅铝系软磁合金和耐蚀系软磁合金等,是一种传统的结晶态材料。精密软磁合金按磁特性可分为高磁导率合金、高矩形比合金和低剩磁(高ΔB )合金三种。

2.3.1.3 非晶和超微晶合金

非晶态合金是一种没有结晶组织和晶界的亚稳态软磁合金材料。通常由处于无序状态的熔融液体,经高于某一临界值的冷却速度快冷(防止结晶)而制成的一种合金材料,超微晶的晶粒很小,一般在100nm 以下,故称纳米晶。纳米晶软磁合金也是用熔融液体快淬法先获得非晶态合金,再经过晶华退火处理后得到超微晶合金。非晶和超微晶合金由于制法简便,成分和结构特殊,物理性能和磁性能优良,是当今新型的、最有发展的一种软磁性材料。 2.3.2 软磁铁氧体材料

软磁铁氧材料属于金属氧化物材料,它是由铁和其他金属元素组成的复合氧化物。采用陶瓷工艺,经高温烧结而制成各种形状的磁心。软磁铁氧体材料的主要特点是初始磁导率高,矫顽力低,磁滞回线呈细长形状。软磁铁氧体材料分为Mn-Zn 系铁氧体材料、Ni-Zn 系铁氧体材料和Mg-Zn 铁氧体材料。 2.3.3 磁性粉末材料

将磁性粉末采用粉末冶金的工艺而制成的磁心称为粉末磁心或金属磁粉心。由于磁性粉末的颗粒很小,加上磁心粉末本身是一种磁性能优异的软磁材料,因此,粉末磁心具有很好的磁特性。粉末磁心的电阻率高,高频涡流损耗小,磁导率低,在较强的磁场下和很宽的频率范围内有良好的恒定性;磁导率温度特性良好,居里温度高,磁导率温度系数小。由于以上特点,粉末磁心作为一种区别于 其他磁心的特殊磁心得到了广泛的应用。

粉末磁心主要用于开关电源中的储能电感、直流滤波电感、高Q 谐振电感、EMI/RFI 滤波电感、调光电感、功率因数校准电感、宽带变压器、逆变与变换器电感等场合。 3 电源变压器的主要技术参数 3.1 功率容量

变压器的功率容量包括输入功率P 1和输出功率P 2。在电源变压器设计中,功率是确定铁心尺寸的主要依据。在纯阻负载下,变压器的输出功率是次级传递给负载的功率。它等于次级负载电压U 2和负载电流I 2的乘积,即

222I U P =

变压器的输入功率P 1为

η

2

1P P =

η---变压器效率 当电压器为非纯阻负载时,次级负载电压U 2与负载电流I 2的乘积称之为输出伏安VA 2,而初级负载电压U 1与负载电流I 1的乘积则称为输入伏安VA 1。 3.2 功率因数

变压器的输入功率P 1与其伏安容量VA 1之比称为功率因数cos ψ,用下式表示

1

Φ1

1

I 11VA P cos ψI +==

cos ψ-----变压器的功率因数 VA 1----初级伏安值(VA ) I Φ----铁心磁化电流(A) I 1-----变压器初级电流(A)

变压器功率因数与磁化电流有关,磁化电流在初级电流中所占的比例越大,功率因数越低。 3.3 效率

变压器输出功率P 2与输入功率P 1之比称为效率,即

c

22

1

P P η2P P P P m ++=

=

Pm-----线圈铜损(W) Pc-----铁心损耗(W ) 3.4 电压调整率

变压器从空载到满载时,由于初、次级铜阻r 1、r 2产生的电压降ΔU 1、ΔU 2,使得其负载电压低于空载电压,其下降程度一般用电压调整率ΔU 来表示。电压调整率按下式计算

%100*U ΔU 20

2

20U U -=

U 20-----空载输出电压(V ) U 2-----负载输出电压(V) ΔU-----电压调整率(%)

变压器在负载时,随着负载时间的增加,其温升逐渐增加,铜阻随之增大,负载电压进一步下降,直至变压器温升趋于稳定为止。因此,严格说来电压调整率应按变压器负载后温升达到稳定时的负载电压来计算。

3.5 空载电流及其百分比

变压器空载电流I 0等于磁化电流I Φ0与铁损电流I c0的矢量和。由于磁化电流与铁损电流相位差90°,故

0Φ00C I I I +=

I 0-----空载电流(A )

I Φ0-----磁化电流(A ) I CD -----铁损电流(A )

也可用空载电流的百分数来表示空载电流的大小,即

%100*%1

0I I I =)

( 式中I 1-----变压器初级负载电流(A )。

由于铁心损耗电流很小,所以,变压器的空载电流主要是磁化电流。

空载电流与变压器铁心的性能密切相关,允许的空载电流值大,铁心的磁感应强度的取值可提高,这可缩小变压器的体积;或采用磁性能一般的铁心材料,以降低变压器成本。但是空载电流增大,变压器功率因数下降,将影响电网或电源的性能。

空载电流允许的电流值小,铁心的磁感应强度取值要降低,或必须采用磁性能优良的铁心材料,变压器体积或成本要增加,但变压器功率因数提高了。必须权衡这两方面的因素,以使空载电流在一个合适的数值范围内。

对于大多数中小功率电源变压器来说,由于功率较小,较低的功率因数对电网或电源的影响很小。所以,变压器成本和体积是首选考虑的因素,可允许有较大的空载电流值。 3.6 空载损耗

变压器空载损耗P 0等于空载时的铁心损耗P C0与空载电流I0在初级铜阻r 1上的损耗之和。即

r I P P C 2000+=

式中 P 0-----空载损耗(W ) P C0-----空载时的铁损(W ) I 0-----空载电流(A ) r 1-----初级铜阻(Ω)

变压器的空载损耗取决于铁心的性能;同时它又与空载磁感应强度的大小有关。因此,空载损耗是确定铁心性能的一个重要的指标。 3.7 温升

变压器投入运行时,线圈工作温度高出周围环境温度的部分称为线圈温升Δτm ;铁心工作温度高出周围环境温度的部分称为铁心温升Δτc 。

温升有最热点温升与平均温升两种。一般以线圈的平均温升作为变压器的温升指标。

温升是影响变压器寿命的重要因素。变压器允许温升由其绝缘耐热等级确定。因此,线圈的允许温升Δτm 为

Δτm =线圈绝缘耐热等级所允许的最高工作温度-最高环境温度-(5~10K )

其中,5~10K 为考虑到最热点温升与平均温升之差值及各种因素引起的误差所留的设计余量。功率大的变压器,线圈尺寸大,则留的余量大,反之则相反。

3.8 设计电源电压器所必需的技术参数

1.额定电源频率;

2.相数,单相或三相;

3.负载电压和负载电流;

4.负载或整流电路的性质;

5.电压调整率;

6.线圈平均温升;

7.绕组连接组别;

8.变压器效率;

9.功率因数;

10.空载电流或其百分比; 11.空载损耗;

12.环境条件(环境温度及其他); 13.安全性要求(试验电压标准); 4 电源变压器的基本计算公式

根据变压器的工作原理,对中小功率电源变压器可得以下基本计算公式。 4.1 空载工作时 4.1.1 次级空载电压U 20

由于初、次级绕组空载电压比近似等于其匝数比,所以,次级空载电压U 20为

1

2

1

20N N U U = 4.1.2 初级空载电流I 0

0Φ00C I I I +=其中磁化电流I Φ0由所确定的空载磁感应强度B 0查铁心磁化曲线,得在该B0下的磁

场强度H 值或磁化伏安VA Φ0值后按下式计算

1Φ0.N l H I c =

或 1

Φ0

Φ0U VA I = 式中 I Φ0-----磁化电流(A ); H-----磁场平均强度(A/cm ) lc-----铁心平均磁路长度(cm )

VA Φ0-----磁化伏安

图 4.1 铁心磁化曲线

图4.2 铁心损耗曲线

铁损电流I C0由所确定的空载磁感应强度B 0查铁心损耗曲线,得到在该B 0下的铁心单位损耗值Ps 后按下式计算

1

0U G P I C

S C

式中 Ic 0-----铁损电流(A ) Ps-----铁心单位损耗(W/Kg ) Gc------铁心质量(Kg )

4.2 负载工作时

4.2.1 初级感应电动势E1

当忽略初级漏感时,初级感应电动势E 1按下式计算

1111r I U E -=

E 1-----初级感应电动势(V ) I 1-----初级电流的有功分量(A ) r 1-----初级铜阻(Ω) 4.2.2 次级电动势

1

2

1

2N N E E =` 式中 E 2-----次级感应电动势(V ) 4.2.3 次级负载电压

当忽略次级漏感时,次级负载电压U 2按下式计算

2222r I E U -=

4.2.4 初级总电流I 1

初级总电流I I 包括有用功分量I 1与无功分量I Φ两部分。I 1按下式计算

C I I I +='

21

式中'

2I -----次级反射到初级的有功电流(A ) I 1-----初级电流有功分量(A ) I C -----负载时的铁心损耗电流(A ) 而1

2

2

'

2N N I I = 初级总电流I I 为

()

2Φ2

'

2

2

Φ21I I I

I I I C

I ++=

+=

比较空载和负载时的铁损电流和磁化电流的计算可见,由于空载磁感应强度B 0高于负载磁感应强度

B m ,故空载和负载下的铁损电流和磁化电流值是不同的。对于小功率电源变压器,由于电压调整率取值

较大,空载与负载磁感应强度相差较大,必须分别计算。当电压调整率较低(例如在10%以下)时,为简化计算,可直接由空载磁感应强度算得铁损电流I C0和磁化电流I Φ0来计算初级总电流I I 。 4.3 匝数计算

有两种计算方法

4.3.1 以空载磁感应强度B 0为基准

(1)初级每伏匝数TV 1

C

S fB TV 04

144.410=

式中 TV 1-----初级每伏匝数(匝/V ) f-----电源频率

Sc-----铁心有效截面积(cm 2) B 0-----空载磁感应强度(T ) (2)次级每伏匝数TV 2

()

ΔU 11

2-=

TV TV

式中 ΔU-----电压调整率(%) (3)初级匝数N 1

111TV U N =

(4)次级匝数N 2

222TV U N =

4.3.2 以负载磁感应强度Bm 为基准 (1)每伏感应电动势匝数TV

C

m S fB TV 44.4104

=

Bm------负载磁感应强度(T ) (2)初级感应电动势E 1 ΔU)5.01(11-=U E (3) 初级匝数N 1

TV E N 11=

(4) 次级匝数N 2

ΔU)TV 5.01(22+=U N

5 电源变压器铁心选择和电磁参量确定方法 5.1 电源变压器铁心选择

变压器的换算伏安与铁心几何尺寸有关。当忽略变压器损耗时,换算伏安与变压器输出功率及铁心几何尺寸的关系如下式所示

2m 2210*22.210*22.2--===M C m m C m CP S jS fB K S jS fB P VA

式中 VA CP -----变压器换算伏安(VA ) B m -----铁心中的磁感应强度(T ) j-----电流密度(A/mm 2

S m ------铁心窗口中铜截面积(cm 2

),S m =K m S M

K m -----铜在铁心窗口中的占空系数

S M -----铁心窗口面积(cm 2

由上式可见,变压器功率与ScSm 或ScS M 成正比,即与铁心尺寸有关。 5.2 电源变压器电磁参数的确定

当铁心尺寸确定后,电源变压器的输出功率由电磁参量Bm 和j 所决定,因此,如何确定磁感应强度Bm 和电流密度j 是设计变压器的重要环节。 5.2.1 磁感应强度Bm 的确定方法

由过载、功率因数等确定Bm 值,假设一个工作点B 0,当考虑过压时B 0达Bm ,即 Bm= B 0 (1+电源电压波动率)

在Bm 值下铁心应不饱和,对C 型铁心,磁场强度Hm 值不超过15A/cm ;对插片铁心,磁场强度Hm 值不超过10-12A/cm ;对环型或R 型铁心,磁场强度Hm 值不超过3-5A/cm 。以此来决定Bm 值。并根据功率因数加以修正。

变压器负载磁感应强度为

2

ΔU 1(0m -

=B B 对于冲制铁心空载磁感应强度一般不超过1.6-1.5T 。

5.2.2 电流密度j 的确定方法

由允许电压调整率ΔU 确定j 值 ΔU fB ×

5.2j 0m

C

Zl S = Z----与温度有关的因子,按下式计算

5

.254T

234.5×

96.196.1+==T K Z T-----变压器工作时的温度(℃),该值可用平均工作温度代替。 6 电源变压器结构参数计算 6.1 窗口利用系数

窗口利用系数是指铜导线在铁心窗口中占有面积的多少。影响窗口利用系数有四个方面的因素; (1)导线绝缘层的面积 (2)导线排列间隙

(3)骨架或底筒所占据的面积,对环型变压器来说,指所留下的线梭能自由通过的面积 (4)绕组层间和组间绝缘所占据的面积

对漆包圆线而言,当导线直径变化时,裸线线截面积与带绝缘导线截面积之比一般在0.54-0.9范围内,具体数据取决于线径。导线排列间隙的大小取决于绕线机性能与工艺水平,其绕满系数在0.6-0.8范围内。

窗口利用系数Km 等于铁心窗口导线总截面积Sm 与铁心窗口面积S M 之比,即

ch

S S S K M m m m

==

Sm-----铁心窗口中铜导线总截面积(cm 2

) S M -----铁心窗口面积(cm 2

) c-----铁心窗口宽度(cm ) h-----铁心窗口高度(cm)

铁心窗口中铜导线总截面积Sm 按下式计算

+++=332211m N q N q N q S ····n n N q +

式中n q q q ,...,,,q 321为变压器各绕组的铜导线截面积(cm 2),而n 321,...,,,N N N N 为变压器各绕组的匝数。 6.2 散热面积

变压器散热面积包括铁心散热面积和线圈散热面积两部分,他们是变压器温升计算中所必需参数。 6.2.1 铁心散热面积Fc

铁心散热面积指铁心暴露在空气中的表面积,在计算铁心散热面积,不能将与线圈相接触的表面积计算进去,

(1)壳式插片铁心的散热面积Fc 按下式计算

图 6.1

)(4)21c h L a H L b F +++=(

式中Fc-----铁心散热面积(cm 2

) b-----铁心叠片厚度(cm ) L-----铁心片宽度(cm ) H-----铁心片高度(cm ) h-----铁心窗口高度(cm ) a-----铁心片中柱宽度(cm ) a 1-----铁心片边柱宽度(cm )

(2)铁心截面为矩形的心形插片铁心(双线圈)的散热面积Fc

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 https://www.360docs.net/doc/5310048560.html,提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率 f=38kHz; 变换器输入直流电压 Ui=310V; 变换器输出直流电压 Ub=14.7V; 输出电流 Io=25A; 工作脉冲占空度 D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应

电力变压器继电保护设计

电力变压器继电保护设计 Final revision on November 26, 2020

课程设计报告书 题目:电力变压器继电保护设计 院(系)电气工程学院_______ 专业电气工程及其自动化____ 学生姓名冉金周__________ 学生学号 57_______ 指导教师张祥军蔡琴______ 课程名称电力系统继电保护课程设计 课程学分 2____________ 起始日期

课程设计任务书 一、目的任务 电力系统继电保护课程设计是一个实践教学环节,也是学生接受专业训练的重要环节,是对学生的知识、能力和素质的一次培养训练和检验。通过课程设计,使学生进一步巩固所学理论知识,并利用所学知识解决设计中的一些基本问题,培养和提高学生设计、计算,识图、绘图,以及查阅、使用有关技术

资料的能力。本次课程设计主要以中型企业变电所主变压器为对象,主要完成继电保护概述、主变压器继电保护方案确定、短路电流计算、继电保护装置整定计算、各种继电器选择、绘图等设计和计算任务。为以后深入学习相关专业课、进行毕业设计和从事实际工作奠定基础。 二、设计内容 1、主要内容 (1)熟悉设计任务书,相关设计规程,分析原始资料,借阅参考资料。 (2)继电保护概述,主变压器继电保护方案确定。 (3)各继电保护原理图设计,短路电流计算。 (4)继电保护装置整定计算。 (5)各种继电器选择。 (6)撰写设计报告,绘图等。

2、原始数据 某变电所电气主接线如图1所示,已知两台变压器均为三绕组、油浸式、 强迫风冷、分级绝缘,其参数如下:S N =;电压为110±4×2.5%/ ±2×2.5%/11 kV;接线为Y N /y/d 11 (Y /y/Δ-12-11);短路电压U HM (%) =,U HL (%)=17,U ML (%)=6。两台变压器同时运行,110kV侧的中性点只有一台 接地,若只有一台运行,则运行变压器中性点必须接地,其余参数如图1。 3、设计任务 结合系统主接线图,要考虑两条长的110kV高压线路既可以并联运行也可以单独运行。针对某一主变压器的继电保护进行设计,即变压器主保护按一台变压器单独运行为保护的计算方式。变压器的后备保护(定时限过电流电流)作为线路的远后备保护。 图1 主接线图 注: 学号尾号为1、2、3的同学,用图中S kmax =1010MVA,S kmin =510 MVA进行计 算; 学号尾号为4、5、6的同学,用图中S kmax =1100MVA,S kmin =520 MVA进行计 算; 学号尾号为7、8、9、0的同学,用图中S kmax =1110MVA,S kmin =550 MVA进行 计算。 三、时间、地点安排

工频变压器设计

工频变压器设计 工频变压器是最简单的变压器,基本不用考虑分布电感、分布电容、信号源内阻、等效电路各种指标等复杂因素,直接按标准化步骤操作即可,所以用工频变压器来进行变压器设计入门是最好不过了。简单说就是根据功率选择铁心,然后计算匝数,再看能否绕下。不同的人设计标准不同,可能和下面计算有偏差,但是本质思想都是一样的。有时算到后面需要重新再来,其实相当于一个迭代设计过程,反复设计直至满足要求为止。 理论计算完成后还需要实际测试效果进行验证,因为铁心参数,制作工艺可能和我们假设的不一样,所以设计完成后基本都需要再根据实测结果进行调整。 要求: 高压输出:260V,150ma ; 灯丝1:5V,3A; 灯丝2:6.3v,3A 中心处抽头; 初、次级间应加有屏蔽层。 根据要求铁芯型号采用“GEIB一35”。 计算如下: (1)计算变压器功率容量(输入视在功率): P =(1.4×高压交流电压×电流+灯丝1电压×电流+灯丝2电压×电流)/ 效率 =(1.4×260×0.15+5×3+6.3×3)/ 0.9 =(54.6+15+18.9)/ 0.9 = 98.33VA (2)计算原边电流 I1=1.05×P / 220=0.469A (3)按照选定的电流密度(由计划的连续时间决定),选取漆包线直径。 如按照3A/mm2计算:D=0.65×√I(0.65×电流的开方) 并规整为产品规格里有的线径(可查资料): 选定: 原边直径D1=0.45mm 高压绕组直径D2=0.25mm 灯丝绕组直径D3=D4=1.12mm (4)铁心截面面积 S0=1.25√(P)=1.25×√98=12.5CM2 (5)铁心叠厚:

正激变压器设计要点

首先:正激变压器由于储能装置在后面的BUCK电感上,所以没有Flyback变压器那么复杂,其作用主要是电压、电流变换,电气隔离,能量传递等 所以,我们计算正激变压器的时候,一般都是首先以变压次级后端的BUCK电感为研究对象的,BUCK电感的输入电压就是正激变压器次级输出电压减去整流二极管的正向压降,所以我们又称正激电源是BUCK的隔离版本。 首先说说初次级匝数的选择: 以第三绕组复位正激变压器为例,一旦匝比确定之后,接下来就是计算初次级的匝数,论坛里有个帖子里的工程师认为,正激变压器在满足满负载不饱和的情况下,匝数越小越好。其实这是个误区,匝数的多少决定了初级的电感量(在不开气隙,或开同样的气隙情况下),而电感量的大小就决定了初级的励磁电流大小,这个励磁电流虽不参与能量的传递,但也是需要消耗能量的,所以这个励磁电流越小电源的效率越高;再说了,过少的匝数会导致del tB变大,不加气隙来平衡的话,变压器容易饱和。 无论是单管正激还是双管正激,都存在磁复位的问题。且,都可以看成是被动方式的复位。复位的电流很重要,太小了,复位效果会被变压器自身分布参数(主要是不可控的电容,漏感)的影响。 复位电流是因为电感电流不能突变,初级MOSFET关断之后,初级绕组的反激作用,又复位绕组跟初级绕组的相位相反,所以在复位绕组中有复位电流产生 复位电流关系到磁芯能否可靠的退磁复位,其重要性不言自喻;当变压器不加气隙时,其初级电感量较大,复位电流自然就小。 但在大功率的单管正激和双管正激的实际应用中,往往需要增加一点小小的气隙,否则设计极不可靠, 大功率的电源,一次侧电流很大,漏感引起的磁感应强度变化,B=I*Llik/nAe,就大,加气隙是为了减小漏感Llik. 正激的占空比主要是取决于次级续流电感的输入与输出,次级则就是一个BUCK电路,而CCM的BUCK线路Vo=Vin*D,跟次级的电流无关 Vo=Vin*D Vo:输出电压,Vin:BUCK的输入电压,即正激变压器的输出电压减去整流管的正向压降,D:占空比在此,输出电压是已知的我们只要确定一个合适的占空比,就可以计算出BUCK 电感的Vin,也就是说变压器的输出电压基本就定下来了 在这特别要提醒大家,占空比D的取值跟复位方式有很大的关系,建议D的取值不要超过0.5 正激变压器加少量气隙能将电-磁转换中的剩磁清空,磁芯的实际利用率增加,同时增加的一点空载电流在大功率电流中所占比例较小,效率不会受到太大影响,这样可以让变压器不容 易饱和,电源的可靠性增加,同时可以减少初级匝数,变压器内阻降低,能小体积出大功率.加 气隙也相当于增大了变压器磁芯,但实际好处(特别是抗饱和能力)是胜于加大磁芯的. 加气隙后,减小的电感量会被增加的磁芯利用率补回来,而且有余,是合算的不用担心. 复位绕组的位置问题,是跟初级绕组近好呢,还是夹在初次级之间好? 如果并绕,当然跟初级的耦合是最好的,但对漆包线的耐压是个考验!当然这不至于直接击穿。 无论从EMC角度还是工艺角度来说,复位绕组放在最内层比较好 实际量产中这是这样绕的占多数 单管正激,如果是市电或有PFC输出电压作为输入的话,MOSFET 的最低耐压是2倍直

变压器的短路电流计算方法

变380V低压侧短路电流计算: https://www.360docs.net/doc/5310048560.html,=6%时Ik=25*Se https://www.360docs.net/doc/5310048560.html,=4%时Ik=37*Se 上式中Uk:变压器的阻抗电压,记得好像是Ucc。 Ik:总出线处短路电流A Se:变压器容量KVA 3。峰值短路电流=Ik*2.55 4.两相短路电流=Ik*0.866 5.多台变压器并列运行 Ik=(S1+S2+。。。。Sn)*1.44/Uk 变压器短路容量-短路电流计算公式-短路冲击电流的计算 一.概述 供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为

110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量(MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动

干式变压器安装要求规范标准

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意! 环氧树脂干式电力变压器安装技术要求2010-06-07 14:54:38来源: (1)前期准备 1)变压器安装施工图手续齐全,并通过供电部门审批资料。 2)应了解设计选用的变压器性能、结构特点及相关技术参 数等。 (2)设备及材料要求 1)变压器规格、型号、容量应符合设计要求,其附件,备 件齐全,并应有设备的相关技术资料文件,以及产品出厂合 格证。设备应装有铭牌,铭牌上应注明制造厂名、额定容量、 一、二次额定电压、电流、阻抗、及接线组别等技术数据。 2)辅助材料:电焊条,防锈漆,调和漆等均应符合设计要 求,并有产品合格证。 (3)作业条件 1)变压器室内、墙面、屋顶、地面工程等应完毕,屋顶防

水无渗漏,门窗及玻璃安装完好,地坪抹光工作结束,室外场地平整,设备基础按工艺配制图施工完毕。受电后无法进行再装饰的工程以及影响运行安全的项目施工完毕。 2)预埋件、预留孔洞等均已清理并调整至符合设计要求。3)保护性网门,栏杆等安全设施齐全,通风、消防设置安装完毕。 4)与电力变压器安装有关的建筑物、构筑物的建筑工程质量应符合现行建筑工程施工及验收规范的规定。当设备及设计有特殊要求时,应符合其他要求。 (4)开箱检查 1)变压器开箱检查人员应由建设单位、监理单位、施工安装单位、供货单位代表组成,共同对设备开箱检查,并做好记录。 2)开箱检查应根据施工图、设备技术资料文件、设备及附件清单,检查变压器及附件的规格型号,数量是否符合设计要求,部件是否齐全,有无损坏丢失。 3)按照随箱清单清点变压器的安装图纸、使用说明书、产品出厂试验报告、出厂合格证书、箱内设备及附件的数量等,与设备相关的技术资料文件均应齐全。同时设备上应设置铭牌,并登记造册。 4)被检验的变压器及设备附件均应符合国家现行有关规范的规定。变压器应无机械损伤,裂纹、变形等缺陷,油漆应

基于工频变压器的独立逆变电源设计

课程设计 年月日

主要内容: 该控制电路采用U3988为控制器,输出PWM波形来控制逆变电路功率管,同时U3988内部具有各种电路保护作用,可使逆变电源数字化,简化电路;与无工频变压器逆变电路相比,该电路设计采用工频变压器起到隔离保护的作用,使电路具有系统可靠性功能。实验结果表明,对于传统逆变器,该设计方案不仅省去额外保护电路使电路结构简单明了,还可以使系统从无法保障稳定性到具有可靠稳定性。 基本要求: 1.经滤波电路输出满足要求的交流电压,一般要求输出220 V/50 Hz交流; 2.工频逆变电源输入一般为低压直流; 3.该电路采用全桥变换电路结构,这种变换器输出不是1根火线和1根零线,而 是2根火线; 4.逆变电路可靠稳定。 主要参考资料: [1] 胡启凡.变压器实验技术,中国电力出版社[J].2010-1-1. [2] 尹克宁. 变压器设计原理[M].中国电力出版社,2002. [3] 徐甫荣,陈辉明. 高压变频调速技术应用现状与发展趋势[J ] .高压变频器,2007. [4] 张秀梅, 周盛荣. 变频器用多脉波整流变压器的移相[ J] .包钢科技,2006. [5]张勇.山东东岳能源公司电解铝厂电网谐波分析与治理的研究,硕士学位论文,山东科技大学,2005.

目录 1 任务和要求 ..................................... 错误!未定义书签。 2 总体方案设计与选择 ............................. 错误!未定义书签。 2.1 逆变电源结构设计.......................... 错误!未定义书签。 2.2工频变压器 ................................. 错误!未定义书签。 2.3工频变压器选材 ............................. 错误!未定义书签。 3 逆变电路电源设计 ................................ 错误!未定义书签。 3.1PWM技术 ................................... 错误!未定义书签。 3.2 工频变压器在逆变电路中的作用............... 错误!未定义书签。 3.3 保护电路................................... 错误!未定义书签。 4 结论 ........................................... 错误!未定义书签。参考文献 .......................................... 错误!未定义书签。

最佳低频变压器设计方法

最佳低频变压器设计方法 热轧硅钢片选铁心型号和叠厚:比如E I型的,中部舌宽,叠厚每伏匝数:N0=4、510^5/BmQ0=4、510^5/(11000Q0) Bm:磁通密度极大值,10000~12000Gs一次匝数:N1=N0U1二次匝数:N2=N0U 21、0 61、06为补偿负载时的电压下降一次导线截面积: S1=I1/δ=P1/U1δ,δ:电流密度,可选2~3A/mm^2二次导线截面积:S2=I2/δ=P2/U2δ舌口32MM,厚34MM,E宽96MM,问功率,初级220,多少匝,线粗多少,次级51V 双组的,最大功率使用要多粗的线,告口是指<EI型变压器铁芯截面积是指E片中间那一横(插入变压器骨架中间方口里的)的宽度即铁芯舌宽与插入变压器骨架方口里所有E片的总厚度即叠厚的乘积最简单的就是指变压器骨架中间方口的面积,变压器铁芯截面积是指线圈所套着的部分:舌宽叠厚=截面积,单位:C㎡>,第一种方法:计算方法:(1)变压器矽钢片截面:3、2CM*3、4CM*0、9=9、792CM^2(2)根据矽钢片截面计算变压器功率:P=S/K^2=(9、79/1、25)^2= 61、34瓦(取60瓦)(3)根据截面计算线圈每伏几匝: W=4、5*10^5/BmS=4、5*10^5/(10000*9、79)=4、6匝/伏(4)初级线圈匝数:220*4、6=1012匝(5)初级线圈电流: 60W/220V=0、273A(6)初级线圈线径:d=0、715根号0、273=0、

37(MM)(7)次级线圈匝数:2*(51*4、6*1、03)=2*242(匝)(1、03是降压系素,双级51V=2*242匝)(8)次级线圈电流:60W/(2*51V)=0、59A(9)次级线径:d=0、715根号0、59=0、55(MM)第二种方法:计算方法:E形铁芯以中间舌为计算舌宽的。计算公式:输出功率:P2=UI考虑到变压器的损耗,初级功率:P1=P2/η(其中η=0、7~0、9,一般功率大的取大值)每伏匝数计算公式:N(每伏匝数)=4、510(的5次方)/BS(B=硅钢片导磁率,一般在8000~12000高斯,好的硅钢片选大值,反之取小值。S=铁芯舌的面积,单位是平方CM)如硅钢片质量一般可选取10000高斯,那么可简化为:N=45/S计算次级绕组圈数时,考虑变压器漏感和导线铜损,须增加5% 绕组余量。初级不用加余量。由电流求线径:I=P/U (I=A,P=W,U=V)以线径每平方 MM≈2、5~2、6A选取。第三种方法:计算方法首先要说明的是变压器的截面积是线圈所套住位置的截面积、如果你的铁心面积(线圈所套住位置)为32*34=1088mm2= 10、88cm2 我没有时间给你计算、你自己算、呵呵!给你个参考,希望对你有帮助:小型变压器的简易计算:1,求每伏匝数每伏匝数=55/铁心截面例如,你的铁心截面=3、5╳1、6=5、6平方厘米故,每伏匝数=55/5、6=9、8匝2,求线圈匝数初级线圈 n1=220╳9、8=2156匝次级线圈n2=8╳9、8╳1、05= 82、32 可取为82匝次级线圈匝数计算中的1、05是考虑有负荷时的压降3,求导线直径你未说明你要求输出多少伏的电流是

最新变压器设计及计算要点

变压器设计及计算要 点

变压器设计及计算要点 —蒋守诚— 一概述 1. 变压器发展史 (1) 发明阶段(1831~1885) 变压器是利用电磁感应原理来变换电能的设备,故变压器一定在电磁感应原理发现后出现。 1831年英国人法拉第(M.Farady)在铁环上缠绕两个闭合线圈, 在一个线圈中突然接上或断开电池, 另一个线圈所接仪表指针发生偏转, 从而发现电磁感应原理。 1837年英国人曼生(Masson)用薄铁片做电磁线圈的铁心, 从而减少损耗。 1881年法国人爱维(Jaewin) 发现磁滞现象, 美国人斯坦曼茨(C.P.Steimetz)发现磁滞损耗是磁密的1.6次方成正比例。 1882年英国人格拉特 ( Goulard)和吉普斯(J.D.Jibbs)制成15kVA1.5kV的开路铁心的单相变压器。同年法栾(S.Z.Ferranti)和汤姆生 (A.Tomson) 制成电流互感器。 1884年英国人戈普生兄弟开始采用具有闭合铁心的变压器作照明电源。 1884年9月16日匈牙利人布拉提(O.Blathy)和但利(M.Dery)和齐彼尔斯基K.Zipernovsky)在匈牙利的甘兹(Ganz)工厂制造一台1400 VA 120 / 72 V 40 Hz单相闭合磁路的变压器。至1887年底甘兹(Ganz)工厂就生产24台总容量达3000 kVA。 1885年才把这种电器叫做”变压器”。 (2) 完善阶段(1886~1930) 1887年英国人配莱(Belry)发明了单相多轭的分布式铁心。 1888年俄国人多利沃—多勃罗沃尔斯基 ( M.O.Dolivo-Dobrowolsky ) 提出交流三相制。并于1890年发明了三相变压器。同年布朗(Brown)又制造出第一台油冷、油绝缘变压器。 1890年德国人威士顿(Wenstrom)做成对称三相铁心。 1891年德国西门子(Siemens Sohucrerf) 做成不对称三相铁心。美国人斯汀兰(W.Stanley)在西屋公司(Westing House) 做成单相壳式铁心。瑞士的勃朗—鲍佛利(B.B.C)公司的创始人勃朗(E.F.Brown) 做成三相壳式铁心。 1891年德国生产30kVA的油浸变压器(1878年美国人勃劳克斯(D.Brdoks)开始用油做绝缘。) 1900年德国人夏拉(Schalley)做成三相五柱式铁心。 1900年英国人哈特菲尔德(Hodfeild)发明了硅钢片, 1903年开始用硅钢片制造变压器铁心。 (德国在1904年, 美国在1906年, 俄国在1911年, 日本在1922年分别用硅钢片制造变压器铁心) 1905年德国人洛果夫斯基(W. Rowgowski)研究漏磁场提出漏磁系数。 1915年华纳(K.W.Wagner)研究线圈内部电磁振荡的基本理论,提出了过电压保护一种方式。 1922年美国人维特(J. M. Weed)研究过电压理论时, 提出了过电压保护另一种方式。 1930年前后变压器的基本理论已基本形成。 (3) 提高阶段(1930~至今) 1930年以后变压器进入改进提高阶段, 即采用新材料、改进结构、改进工艺、不断扩大变压器的使用范围。

变压器设计1

干式铁心电抗器 一、基本原理 电抗器是一个电感元件,当电抗器线圈中通以交流电时,产生电抗(X L )和电抗压降(U L =I L X L )。 空心电抗器线圈中无铁心,以非导磁材料空气或变压器油等为介质,其导磁系数很小 (1≈μ) ,磁阻(C r )很大,线圈电感(L )、电抗(X L )及电抗压降(U L )均小; 铁心电抗器的线圈中放有导磁的硅钢片铁心材料,硅钢片导磁系数大,磁阻小,其电感(L )、电抗(X L )及电抗压降(U L )均大。另外,铁心电抗器铁心柱上放有气隙(或油隙),改变气隙长度,会改变磁路磁阻,从而得到所需电感值(L )、电抗(X L )及电抗压降(U L )。 铁心电抗器线圈通过交流电,产生磁通分两部分,如图所示。一部分是通过铁心之外的线圈及空道的漏磁通(q Φ),它产生线圈漏抗(X Lq )及漏抗压降(U Lq = I L X Lq );另一部分是通过铁磁路(铁心及气隙)的主磁通(T Φ),它将在线圈中感应一个电势E ,其E ?可以 视为一个电压降,如忽略电阻电压降,此压降可认为是主电抗压降(U LT ) 。等值电路如图所示。 电抗压降(U L )的通式: C C L C C L C L L L L L l A W fI l A W fI r W I L I X I U 28022 109.72?×==== =μμπωω (V) 式中: L I —通过电抗器线圈的电流(A) L X —电抗器电抗(Ω) L —电抗器电感(H) W —线圈匝数 C r —磁阻(H -1 ),C r =C C A l 0μμ μ—相对导磁系数,如空气或变压器油μ=1 0μ—绝对导磁系数,cm H /104.080?×=πμ C l —磁路长度(cm) C A —磁路面积(cm 2 ) 磁通与磁势图 U LT 等值电路图

电力变压器课程设计

1 前言 随着工农业生产和城市的发展,电能的需要量迅速增加。为了解决热能资源(如煤田)和水能资源丰富的地区远离用电比较集中的城市和工矿区这个矛盾,需要在动力资源丰富的地区建立大型发电站,然后将电能远距离输送给电力用户。同时,为了提高供电可靠性以及资源利用的综合经济性,又把许多分散的各种形式的发电站,通过送电线路和变电所联系起来。这种由发电机、升压和降压变电所,送电线路以及用电设备有机连接起来的整体,即称为电力系统。 电力系统是有各种电力系统元件组成的,它们包括发电、输变电、负荷等机械、电气主设备以及控制、保护等二次辅助设备。WDT-Ⅲ型电力系统综合自动化试验系统是一个完整的电力系统典型模型,它为我们提供了一个自动化程度很高的多功能实验平台,是为了适应现代化电力系统对宽口径“复合型”高级技术人才的需要而研制的电力类专业新型教学试验系统。 本设计所要完成的工作是利用VC语言开发WDT电力系统综合自动化实验台监控软件,主要是完成准同期控制器监控软件的编写,它要求能显示发电机及无穷大系统的相关参数,如电压、频率和相位角,并能发送准同期合闸命令。

2 电力系统实验台 WDT-Ⅲ型电力系统综合自动化实验教学系统主要由发电机组、试验操作台、无穷大系统等三大部分组成(如图2.1所示)。 图 2.1 WDT-Ⅲ型电力系统综合自动化试验系统 2.1 发电机组 该系统的发电机组主要由原动机和发电机两部分构成,另外,它还包括了测速装置和功率角指示器(用于测量发电机电势与系统电压之间的相角 ,即发电机转子相对位置角),测得的发电机的相关数据传输回实验操作台,与无穷大系统的相关参数进行比较,从而确定系统是否满足了发电机并网条件。 2.1.1 原动机 在实际的发电厂中,原动机一般用的是水轮机、气轮机、柴油机或者其他形式的动力机械,将水流,气流,燃料燃烧或原子核裂变产生的能量转换为带动发电机轴旋转的机械能,从而带动发电机转子的旋转。 在WDT-Ⅲ型电力系统综合自动化试验台的发电机组中,原动机是由直流发电机(P N=2.2kW,U N=220V)模拟实现其功能的。直流电动机(模拟原动机)与发电机的结

工频变压器设计计算

工频变压器的设计计算 赵一强2010-9-15 ,这个 U2), 从上可知,变压器是通过铁芯的磁场来传递电功率的。借助于磁场实现了初级电路和次级电路的电隔离;又通过改变绕组匝比,来改变次级的输出电压。 二、变压器特性参数和设计要求 1、磁通密度B和电流密度J 磁通密度(又叫磁感应强度)B和电流密度J是变压器设计的关键参数,直接关系着变压器的体积和重量,B 、J值越高,变压器越轻,但是B 、J的取值受到一定条件的限制,因此,变压器的体积和重量也受到这些条件的限制。 4Gs 。 H的关系曲线,在

图3中,Bs —饱和磁感应强度; Bs —过压保护磁感应强度 Bm —最大磁感应强度(计算值) 导磁率: H B ΔΔ= μ 饱和磁通密度为Bs 和导磁率μ是曲线的两个重要参数。 对于磁性材料,要求Bs 、μ 越高越好。Bs 高,变压器体积可减小;μ高,变压器空载电流小。 另外,还要求电阻率ρ高,这样损耗小、发热小。 ⑵ 电流密度J 电流密度J : 电路单位截面积的电流量,单位 :安/厘米2(A/cm 2)。 变压器绕组导线的电阻:q l R cu ρ= 电流导线中所产生的损耗(铜损): l IJ R I P cu cu cu ρ2 == 可以看出,铜损与电流和电流密度的乘积成正比,就是说,随着电流增加,要保持同样的绕组损耗和温升,必须相应地降低电流密度。 2、铁心、导线和绝缘材料 ⑴ 铁心形状和材料 铁心形状:卷绕的有O 型、CD/XCD 型、ED/XED 型、R 型、HSD 型(三相), 冲片的有EI 、CI 型;这是我们常用两种冲片。 铁心材料牌号:硅钢(含硅量在2.3~3.6%) 冷轧无取向硅钢带:含硅量低(在0.5~2.5%);厚0.35、0.5、0.65mm,我们常用0.5mm ; B 高、μ高,铁损大,价格较低,多用于小功率工频变压器。 冷轧取向硅钢带:含硅量较高(在2.5~3%),厚0.27、0.3、0.35mm, 我们常用0.35mm ;B 高、μ高,铁损小,价格较高,多用于中大功率工频变压器。 ⑵ 线圈导线材料 油性漆包线Q 0.05~2.5 耐温等级 A 105℃ 塑醛漆包线QQ 0.06~2.5 耐温等级 E 120℃ 聚酯漆包线QZ 0.06~2.5 耐温等级 B 130℃ 耐压均在600V 以上。最常用的是QZ 漆包线。 线圈允许的平均温升⊿τm =线圈绝缘所允许的最高工作温度-最高环境温度-(5—10K ), 通常不超过60℃。5—10K 是考虑线圈最高温度与平均温度之差,功率大取大值。 ⑶ 层间绝缘材料 500V 以下不需要层间绝缘。各绕组间应垫绝缘0.03 聚酯薄膜2~3层。 3、 电源变压器的主要技术参数 ⑴ 输出功率(视在功率、容量、V A 数) ⑵ 输出电压及电压调整率和要求 ⑶ 电源电压、频率及变化范围 ⑷ 效率 ⑸ 空载电流及空载损耗 ⑹ 绕组平均温升 ⑺ 输入功率因数

变压器的温升计算

变压器的温升计算方法探讨 1 引言 我们提出工频变压器温升计算的问题,对高频变压器的温升计算也可以用来借鉴。工频变压器的计算方法很多人认为已趋成熟没有什么可讨论的,其实麻雀虽小五脏俱全,再成熟的东西也需要不断创新才有生命力。对于一个单位的工程技术人员来讲温升计算问题可能并不存在,温升本身来源于试验数据,企业本身有大量试验数据,温升问题垂手可得,拿来主义就可以了,在本企业来说绝对有效,离开了本企业也带不走那么多数据。但冷静的考虑一下,任何一个企业不可能生产全系列变压器,总会有相当多的系列不在你生产的范围内,遇到一些新问题,只能用打样与试验的方法去解决,小铁心不在话下,耗费的工时与材料都不多,大铁心耗费的铁心与线材就要考虑考虑了。老企业可以用这样简单的办法去解决,只不过多花费一些时间罢了,一个新企业或规模不大的企业,遇到这些问题要用打样与试验的方法去解决,就耗时比较多了,有时候会损失商机。进入软件时代,软件的编写者如不能掌握这一问题,软件的用户将会大大减少。下面就温升的计算公式进行探讨,本文仅提出一个轮廓,供大家参考。 2 热阻法 热阻法基于温升与损耗成正比,不同磁心型号热阻不同,热阻法计算温升比较准确,因其本身由试验得来,磁心又是固定不变的,热阻数据由大型磁心生产厂商提供。有了厂家提供的热阻数据,简单、实用何乐而不为。高频变压器可采用这一方法。而铁心片供应商不能提供热阻这一类数据,因此低频变压器设计者很难采用。热阻法的具体计算公式如下: 式中, 温升ΔT(℃) 变压器热阻Rth(℃/w) 变压器铜损PW(w) 变压器铁损PC(w) 3 热容量法 源于早期的灌封变压器,由于开放式变压器的出现这种计算方法已被人遗忘,可以说是在考古中发现。这种计算方法的特点是把变压器看成是一个密封的元件,既无热的传导,也无热的辐射,更无热的对流,热量全部靠变压器的铁心、导线、

电力变压器设计原则

电力变压器设计原则 1.铁心设计 1.1铁心空载损耗计算:P 0=k p ?p 0?G W 其中:k p ——铁心损耗工艺系数,见表2; p 0——电工钢带单位损耗(查材料曲线),W/kg ; G ——铁心重量,kg 。 1.2铁心空载电流计算 空载电流计算中一般忽略有功部分。 (1)三相容量≤6300 kV A 时: 1230()10t f N G G G k q S n q I S ++??+??= ? % 其中:G 1、G 2、G 3——分别为心柱重量、铁轭重量、角重,kg ; k ——铁心转角部分励磁电流增加系数,全斜接缝k=4; q f ——铁心单位磁化容量(查材料曲线),V A/ kg ; S ——心柱净截面积,cm 2; S N ——变压器额定容量,k V A ; n ——铁心接缝总数,三相三柱结构n=8; q j ——接缝磁化容量,V A/ cm 2,根据B m 按表1进行计算。

(2)三相容量>6300 kV A :010i t N k G q I S ??= ? % k i ——空载电流工艺系数,见表2; G ——铁心重量,kg ; q t ——铁心单位磁化容量(查材料曲线),V A/ kg ; S N ——变压器额定容量,k V A 。 表2 铁心性能计算系数(全斜接缝) 注(1)等轭表示铁心主轭与旁轭的截面相等。 1.3铁心圆与纸筒之间的间隙见表3 表3 铁心圆与纸筒间隙 1.4铁心直径与撑条数量关系见表4 表4 铁心直径与撑条数量关系 续表4 铁心直径与撑条数量关系

1.5铁心直径与夹件绝缘厚度关系见表5 2.绝缘结构 2.1 10kV级变压器 2.1.1纵绝缘结构 (1)高压绕组(LI75 AC35) 1)饼式结构 导线匝绝缘0.45,绕组不直接绕在纸筒上,所有线段均垫内径垫条1.0mm;各线饼轴向油道宽度见表15;分接段位于绕组中部。 中断点油道 4.0mm,分接段之间(包括分接段与正常段之间)油道2.0mm,正常段之间0.5mm纸圈。整个绕组增加9.0mm调整油道。 2)层式结构 层式绝缘:首层加强0.08×2,第2层与末层加强0.08×1。当绕组不直接绕在纸筒上时,所有线段均垫内径垫条1.0mm。 (2)低压绕组(AC5) 当绕组不直接绕在纸筒上时,所有线段垫内径垫条 1.0mm,所有线段之间垫0.5mm纸圈。。 当高压绕组为饼式结构时,对应高压分接段处应注意安匝平衡。 2.1.2主绝缘结构 (1)铁心圆与纸筒之间的间隙见表3;低压绕组内纸筒厚2.0mm。当

(工频)变压器的工作原理及设计(新)

变压器的工作原理及设计 在电路和磁路中,变压器不但作为电磁能量的传送工具,而且可以改变电路中的电压和电流的大小和相位,在某种情况下可以起电的隔离作用,在各种电力、电子等电路中被广泛应用。 电磁感应是变压器工作原理的基础,因此要想了解变压器的工作原理及性能,进而应用、设计变压器,就必须具备电、磁方面的基础理论知识。电路方面的知识大家比较了解,下面对磁路方面的知识进行必要的补充。 一、电磁感应和磁路中的概念及一些定律 1、电磁感应 磁场变化时,将在它所能影响到的区域内的的电回路中产生电压以至电流。用数学式子来描述: dt d N dt d e Φ-=ψ-= 实际上这种过程是可逆的,即变化的电场产生变化的磁场,变化的磁场产生变化的电电场。从能量的观点来看,在变压器的工作过程中,电路的电能转换为变压器铁芯内的磁能,然后再转换为二次侧的电能,完成能量的传送。 2、磁路中的概念 磁路——磁通通过的区域 磁感应强度B ——表示磁场强弱的一个物理量 磁通Φ——BA =Φ,A 为与磁场方向垂直的片面的面积 磁导率μ——表示物质磁性质的物理量,0μμμr =,70104-?=πμ 磁场强度H ——μ B H = 磁势∑=NI F 磁压降Hl U m = 3、磁路的基本定律 (1) 安培环路定律(全电流定律) ?∑=l I dl H . (2) 磁路的基尔霍夫第一定律 ∑=Φ0 (3) 磁路的基尔霍夫第二定律 ∑∑∑==Ni I Hl 图1 安培环路定律

图2 磁路基尔霍夫第一定律 图3 磁路基尔霍夫第二定律 (4) 磁路的欧姆定律 φφμμm m R A l l B Hl U ==== 4、铁磁物质的磁化曲线 (1) 原始磁化曲线:将一块尚未磁化的铁磁物质进行磁化,在磁场强度H 由0开始逐渐增加时,磁感应强度也逐渐增加,这种曲线称为原始磁 化曲线。 图4 磁畴 图5 原始磁化曲线 (2) 磁滞回线:当铁磁物质在-H m 到+H m 之间反复磁化若干次最后得到对 原点对称的封闭曲线。从磁化过程可以看出,B 的变化总是落后于H 的变化,所以这种现象称为磁滞。 图6 磁滞回线

变压器功率计算方法

0.65和0.8的系数来自实用电工速算口诀 已知变压器容量,求其各电压等级侧额定电流 口诀 a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀 b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。 (5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推

电力变压器安装工艺【工程施工】

电力变压器安装 1 范围 本工艺标准适用于一般工业与民用建筑电气安装工程10kV及以下室内变压器安装。 2 施工准备 2.1 设备及材料要求: 2.1.1 变压器应装有铭牌。铭牌上应注明制造厂名、额定容量,一二次额定电压,电流,阻抗电压%及接线组别等技术数据。 2.1.2 变压器的容量,规格及型号必须符合设计要求。附件、备件齐全,并有出厂合格证及技术文件。 2.1.3 干式变压器的局放试验PC值及噪音测试器dB(A)值应符合设计及标准要求。 2.1.4 带有防护罩的干式变压器,防护罩与变压器的距离应符合标准的规定,不小于表2-23的尺寸。 2.1.5 型钢:各种规格型钢应符合设计要求,并无明显锈蚀。 2.1.6 螺栓:除地脚螺栓及防震装置螺栓外,均应采用镀锌螺栓,并配相应的平垫圈和弹簧垫。 2.1.7 其它材料:蛇皮管,耐油塑料管,电焊条,防锈漆,调和漆及变压器油,均应符合设计要求,并有产品合格证。 2.2 主要机具: 2.2.1 搬运吊装机具:汽车吊,汽车,卷扬机,吊镇,三步搭,道木,钢丝绳,带子绳,滚杠。 2.2.2 安装机具:台钻,砂轮,电焊机,气焊工具,电锤,台虎钳,活扳子、榔头,套丝板。 2.2.3 测试器具:钢卷尺,钢板尺,水平,线坠,摇表,万用表,电桥及试验仪器。 2.3 作业条件: 2.3.1 施工图及技术资料齐全无误。 2.3.2 土建工程基本施工完毕,标高、尺寸、结构及预埋件焊件强度均符合设计要求。 2.3.3 变压器轨道安装完毕,并符合设计要求(注:此项工作应由上建作,安装单位配合)。 2.3.4 墙面、屋顶喷浆完毕,屋顶无漏水,门窗及玻璃安装完好。 2.3.5 室内地面工程结束,场地清理干净,道路畅通。 2.3.6 安装干式变压器室内应无灰尘,相对湿度宜保持在70%以下。 3 操作工艺 3.1 工艺流程: →→→→ →→ 3.2设备点件检查: 3.2.1设备点件检查应由安装单位、供货单位、会同建设单位代表共同进行,并作好记录。 3.2.2 按照设备清单,施工图纸及设备技术文件核对变压器本体及附件备件的规格型号是否符合设计图纸要求。是否齐全,有无丢失及损坏。

设计变压器的基本公式精编版

设计变压器的基本公式 为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T) Bm=(Up×104)/KfNpSc 式中:Up——变压器一次绕组上所加电压(V) f——脉冲变压器工作频率(Hz) Np——变压器一次绕组匝数(匝) Sc——磁心有效截面积(cm2) K——系数,对正弦波为4.44,对矩形波为4.0 一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。 变压器输出功率可由下式计算(单位:W) Po=1.16BmfjScSo×10-5 式中:j——导线电流密度(A/mm2) Sc——磁心的有效截面积(cm2) So——磁心的窗口面积(cm2) 3对功率变压器的要求 (1)漏感要小 图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。 图9双极性功率变换器波形 功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。 (2)避免瞬态饱和

一般工频电源变压器的工作磁通密度设计在B-H曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。它衰减得很快,持续时间一般只有几个周期。对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。所以一般在控制电路中都有软启动电路来解决这个问题。 (3)要考虑温度影响 开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特性。一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40℃考虑,磁心温度可达60~80℃,一般选择Bm=0.2~0.4T,即2000~4000GS。 (4)合理进行结构设计 从结构上看,有下列几个因素应当给予考虑: 漏磁要小,减小绕组的漏感; 便于绕制,引出线及变压器安装要方便,以利于生产和维护; 便于散热。 4磁心材料的选择 软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点,而被广泛应用于开关电源中。 软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列,锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体的组成部分是Fe2O3,NiO,ZnO 等,主要用于1MHz以上的各种调感绕组、抗干扰磁珠、共用天线匹配器等。 在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为高导磁率磁心,其材料牌号多为R4K~R10K,即相对磁导率为4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。 开关电源用铁氧体磁性材应满足以下要求:

相关文档
最新文档