解绝对值不等式,涵盖高中所有绝对值不等式解法。

解绝对值不等式,涵盖高中所有绝对值不等式解法。
解绝对值不等式,涵盖高中所有绝对值不等式解法。

绝对值不等式||||||

a b a b

+≤+,||||||

a b a b

-≤+

基本的绝对值不等式:||a|-|b||≤|a±b|≤|a|+|b|

=======================

y=|x-3|+|x+2|≥|(x-3)-(x+2)|=|x-3-x-2|=|-5|=5

所以函数的最小值是5,没有最大值

=======================

|y|=||x-3|-|x+2||≤|(x-3)-(x+2)|=|x-3-x-2|=|-5|=5

由|y|≤5得-5≤y≤5

即函数的最小值是-5,最大值是5

=======================

也可以从几何意义上理解,|x-3|+|x+2|表示x到3,-2这两点的距离之和,显然当-2≤x≤3时,距离之和最小,最小值是5;而|x-3|-|x+2|表示x到3,-2这两点的距离之差,当x≤-2时,取最小值-5,当x≥3时,取最大值5 解绝对值不等式题根探讨

题根四解不等式2|55|1

x x

-+<.

[题根4]解不等式2|55|1

x x

-+<.

[思路]利用|f(x)|0) -a

式组2

1551

x x

-<-+<即

2

2

551(1)

551(2)

x x

x x

?-+<

?

?

-+>-

??

求解。

[解题]原不等式等价于2

1551

x x

-<-+<,

2

2

551(1)

551(2) x x

x x

?-+<

?

?

-+>-

??

由(1)得:14

x

<<;由(2)得:2

x<或3

x>,

所以,原不等式的解集为{|12

x x

<<或34}

x

<<.

[收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。

2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551

y x x y

=-+=

与的的图象,解方程2551

x x

-+=,再对照图形写出此不等式的解集。

第1变右边的常数变代数式

[变题1]解下列不等式:(1)|x+1|>2-x;(2)|2x-2x-6|<3x

[思路]利用|f(x)|g(x) f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。

解:(1)原不等式等价于x+1>2-x或x+1<-(2-x)

解得x>1

2

或无解,所以原不等式的解集是{x|x>

1

2

}

?

??

(2)原不等式等价于-3x <2x -2x -6<3x

即2222

26360(3)(2)032(1)(6)016263560

x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????

+-<-<<--<--

所以原不等式的解集是{x |2

[收获]形如|()f x |<()g x ,|()f x |>()g x 型不等式

这类不等式的简捷解法是等价命题法,即: ①|()f x |<()g x ?-()g x <()f x <()g x ②|()f x |>()g x ?()f x >()g x 或()f x <-()g x

[请你试试4—1]

1.解不等式(1)|x-x 2-2|>x 2-3x-4;(2)2

34

x x -≤1

解:(1)分析一 可按解不等式的方法来解.

原不等式等价于: x-x 2-2>x 2-3x-4 ①

或x-x 2-2<-(x 2

-3x-4) ② 解①得:1--3

故原不等式解集为{x |x>-3}

分析二 ∵|x-x 2-2|=|x 2

-x+2| 而x 2-x+2=(x-14

)2+

74

>0

所以|x-x 2-2|中的绝对值符号可直接去掉.

故原不等式等价于x 2-x+2>x 2

-3x-4 解得:x>-3

∴ 原不等式解集为{x>-3} (2)分析 不等式可转化为-1≤2

34

x x -≤1求解,但过程较繁,由于不等式

2

34

x x -≤1两边均为正,所以可

平方后求解.

原不等式等价于2

2

34

x x -≤1

9x 2≤(x 2-4)2 (x ≠±2) x 4-17x 2+16≥0

x 2≤1或x 2≥16

-1≤x ≤1或x ≥4或x ≤-4

注意:在解绝对值不等式时,若|f(x)|中的f(x)的值的范围可确定(包括恒正或恒非负,恒负或恒非正),就可直接去掉绝对值符号,从而简化解题过程.

第2变 含两个绝对值的不等式

22????

[变题2]解不等式(1)|x -1|<|x +a |;(2)|x-2|+|x+3|>5. [思路](1)题由于两边均为非负数,因此可以利用|f(x)|〈|g(x)|f 2

(x)〈g 2(x)两边平方

去掉绝对值符号。

(2)题可采用零点分段法去绝对值求解。 [解题](1)由于|x -1|≥0,|x +a |≥0,所以两边平方后有:

|x -1|2<|x +a |2

即有2x -2x +1<2x +2ax +2a ,整理得(2a +2)x >1-2a 当2a +2>0即a >-1时,不等式的解为x >12

(1-a );

当2a +2=0即a =-1时,不等式无解; 当2a +2<0即a <-1时,不等式的解为x <

1(1)2

a - (2)解不等式|x-2|+|x+3|>5.

解:当x ≤-3时,原不等式化为(2-x)-(x+3)>5-2x>6x<-3. 当-355>5无解. 当x ≥2时,原不等式为(x-2)+(x+3)>52x>4x>2. 综合得:原不等式解集为{x |x>2或x<-3}.

[收获]1)形如|()f x |<|()g x |型不等式

此类不等式的简捷解法是利用平方法,即:

|()f x |<|()g x |?22()()f x g x

2)所谓零点分段法,是指:若数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。零点分段法是解含绝对值符号的不等式的常用解法,这种方法主要体现了化归、分类讨论等数学思想方法,它可以把求解条理化、思路直观化

[请你试试4—2]

1 解关于x 的不等式|log (1)||log (1)|a a x x ->+(a >0且a ≠1) 解析:易知-1

||

|lg lg x x a

a

-+>

∴22

|lg(1)||lg(1)|x x ->+ 于是2

2

lg (1)lg (1)0x x --+>

∴[lg(1)lg(1)][lg(1)lg(1)]0x x x x -++--+>

??????

∴21lg(1)lg 01x x x

-->+

∵-1

∴lg (1-2x )<0 ∴1lg

1x

x -+<0

∴1011x

x

-<<+

解得0

2.不等式|x+3|-|2x-1|<2

x +1的解集为 。

解:

|x+3|-|2x-1|=???

?

?

?

???

-≤-<<-+≥-)3(4)213(24)21(4x x x x x x

∴当2

1≥

x 时12

4+<

-x x ∴x>2 当-3

1时4x+2<2

x +1 ∴7

23-

<<-x

当3-≤x 时12

4+<-x x ∴3-≤x

综上7

2-

2

故填),2()7

2,(+∞?--∞。

3.求不等式1

3

3

1log log 13x x

+≥-的解集.

解:因为对数必须有意义,即解不等式组

01

03x x

>??

?>?

-?,解得03x << 又原不等式可化为()33log log 31x x +-≥

(1)当01x <≤时,不等式化为()33log log 31x x -+-≥即()33log 3log 3x x -≥ ∴ 33x x -≥ ∴ 34

x ≤

综合前提得:304

x <≤

(2)当1

∴ 2

330x x -+≤ x ∴∈?。

(1) 当23x <<时,()333log log 3log 3x x --≥ (2) ∴()33x x ≥- ∴94

x ≥

,结合前提得:

934

x ≤<。

综合得原不等式的解集为390,

,344?

???

????

???

第3变 解含参绝对值不等式

[变题3]解关于x 的不等式

3442

2

+>+-m m

mx x

[思路]本题若从表面现象看当含一个根号的无理根式不等式来解,运算理较大。若化简成3|2|+>-m m x ,则解题过程更简单。在解题过程中需根据绝对值定义对3m +的正负进行讨论。 [解题]原不等式等价于 3|2|+>-m m x

当03>+m 即3->m 时, )3(232+-<-+>-m m x m m x 或 ∴333-<+>m x m x 或

当03=+m 即3-=m 时, 0|6|>+x ∴x ≠-6 当03<+m 即3-

[收获]1)一题有多解,方法的选择更重要。 2)形如|()f x |a (a R ∈)型不等式

此类不等式的简捷解法是等价命题法,即: ① 当a >0时,|()f x |a ?()f x >a 或()f x <-a ; ② 当a =0时,|()f x |a ?()f x ≠0 ③

当a <0时,|()f x |a ?()f x 有意义。

[请你试试4—3]

1.解关于x 的不等式:()09

22

>≤

-a a a x x

分析:本例主要复习含绝对值不等式的解法,分类讨论的思想。本题的关键不是对参数a 进行讨论,而是去绝对值时必须对末知数进行讨论,得到两个不等式组,最后对两个不等式组的解集求并集,得出原不等式的解集。 解:当()???≤--≥???≤-≥≥0

299292

22a ax x a

x a a x x a x a x 即时,不等式可转化为

a b

x a 17

3+

≤∴

???≥+-

2992)(2

22a ax x a x a x a ax a x a x 即时不等式可化为

]??

?

?

??+?-∞<≤≤

∴a a a a

x a a x 6173,323

,

(3

23

故不等式的解集为或

2.关于x 的不等式|kx -1|≤5的解集为{x |-3≤x ≤2},求k 的值。

按绝对值定义直接去掉绝对值符号后,由于k 值的不确定,要以k 的不同取值分类处理。

解:原不等式可化为-4≤kx ≤6

当k >0时,进一步化为46x k k -≤≤,依题意有4

43363

2k k k k

?-=-??=

???????==?

??,此时无解。

当k =0时,显然不满足题意。

当k <0时,64x k k ≤≤-,依题意有4

2263

k

k k

?-=???=-??=-??

综上,k =-2。

第4变 含参绝对值不等式有解、解集为空与恒成立问题

[变题4]若不等式|x -4|+|3-x |

[思路]此不等式左边含有两个绝对值符号,可考虑采用零点分段法,即令每一项都等于0,得到的值作为讨

论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集,这是按常规去掉绝对值符号的方法求解,运算量较大。若仔细观察不等式左边的结构,利用绝对值的几何意义用数形结合方法或联想到绝对值不等式|a +b |≤|a |+|b |,便把问题简化。

[解题]解法一 (1)当a ≤0时,不等式的解集是空集。

(2)当a >0时,先求不等式|x -4|+|3-x |

① 当x ≥4时,原不等式化为x -4+x -3

解不等式组474272x a

x x a ≥?+?≤

,∴a >1

② 当31

③ 当x ≤3时,原不等式化为4-x +3-x

2

x a a x x a

≤?--?

<≤?

-1

综合①②③可知,当a >1时,原不等式有解,从而当0

解法二由|x -4|+|3-x |的最小值为1得当a >1时,|x -4|+|3-x |

解法三: ∵a >|x -4|+|3-x |≥|x -4+3-x |=1 ∴当a >1时,|x -4|+|3-x |

从而当a ≤1时,原不等式解集为空集。

[收获]1)一题有多法,解题时需学会寻找最优解法。

2)()f x a ≤有解()min a f x ?≥;()f x a ≤解集为空集()min a f x ?<;这两者互补。()f x a ≤恒

成立()max a f x ?≥。

()f x a <有解()min a f x ?>;()f x a <解集为空集()min a f x ?≤;这两者互补。()f x a <恒成

立()max a f x ?>。

()f x a ≥有解()max a f x ?≤;()f x a ≥解集为空集()max a f x ?>;这两者互补。()f x a ≥恒

成立()min a f x ?≤。

()f x a >有解()max a f x ?<;()f x a >解集为空集()max a f x ?≤;这两者互补。()f x a >恒

成立()min a f x ?≤。

[请你试试4—4]

1.对任意实数x ,若不等式|x +1|-|x -2|>k 恒成立,求k 的取值范围。

思维点拨:要使|x +1|-|x -2|>k 对任意实数x 恒成立,只要|x +1|-|x -2|的最小值大于k 。因|x +1|

的几何意义为数轴上点x 到-1的距离,|x -2|的几何意义为数轴上点x 到2的距离,|x +1|-|x -2|的几何意义为数轴上点x 到-1与2的距离的差,其最小值可求。

此题也可把不等式的左边用零点分段的方法改写成分段函数,通过画出图象,观察k 的取值范围。 解法一 根据绝对值的几何意义,设数x ,-1,2在数轴上对应的点分别为P 、A 、B ,则原不等式即求|PA|-|PB|>

k 成立

∵|AB|=3,即|x +1|-|x -2|≥-3 故当k <-3时,原不等式恒成立

解法二 令y =|x +1|-|x -2|,则3,1

21,123,2x y x x x -≤-??

=--<

要使|x +1|-|x -2|>k 恒成立,从图象中可以看出,只要k <-3即可。 故k <-3满足题意。

2.对任意实数x ,不等式|x+1|+|x-2|>a 恒成立,求实数a 的取值范围。

分析:经过分析转化,实质上就要求|x+1|+|x-2|的最小值,a 应比最小值小。 解: 由绝对值不等式:|x+1|+|x-2|≥|(x+1)-(x-2)|=3,当且仅当(x+1)(x-2)≤0, 即

21≤≤-x 时取等号。故

a<3

说明:转化思想在解中有很重要的作用,比如:恒成立问题、定义域为R 等问题都可转化为求最大、最小值问题。(在这些问题里我们要给自己提问题,怎样把一般性的问题转化到某个特殊的值的问题,常问的问题是:要使……,只要……)

3.已知a>0,不等式|x-4|+|x-3|

当|x-4|+|x-3|1

(二)如图,实数x 、3、4在数轴上的对应点分别为P 、A 、B 则有:

y=|x-4|+|x-3|=|PA|+|PB|

|PA|+|PB|≥1 ∴恒有y ≥1

数按题意只须a>1

(三)令y=f(x)=|x-4|+|x-3|作出其图象 由f(x)1 (四)考虑|z-4|+|z-3|

当a>1时,表示复平面上以3、4为焦点,长轴长为a 的椭圆内部,当z 为实数时,a>1原不等式有解∴a>1即为所求

(五) 可利用零点分段法讨论. 将数轴可分为(-∞,3),[3,4],(4,+∞)三个区间. 当x<3时,得(4-x)+(3-x)72

a -.

有解条件为

72

a -<3 即a>1

当3≤x ≤4时得(4-x)+(x-3)1 当x>4时,得(x-4)+(x-3)

a -

有解条件为

72

a ->4 即a>1

以上三种情况中任一个均可满足题目要求,故求它们的并集,即仍为a>1. 变题:

1、若不等式|x-4|+|x-3|>a 对于一切实数x 恒成立,求a 的取值范围

2、若不等式|x-4|-|x-3|

3、若不等式|x-4|-|x-3|>a 在R 上恒成立,求a 的取值范围 评注:

1、此题运用了绝对值的定义,绝对值不等式的性质,以及绝对值的几何意义等多种方法。 4、构造函数及数形结合的方法,是行之有效的常用方法

设0

5≤

,若满足不等式b a x <-的 一切实数x ,亦满足不等式

2

12

<

-a x 求正实数b 的取值范围。

简析略解:此例看不出明显的恒成立问题,我们可以设法转化:

设集合A =}(){b a b a b a x x +-=<-,|,

??

B=?

??

??

? ??+-=???<

-21,2121|2

22a a a x x 由题设知A ?B ,则: 2

12-≥-a b a

212+≤+a b a 于是得不等式组: 2

12++-≤a a b

2

12

+

-≤a a b

又 =-+-21

2

a a 43212

+??? ?

?

--a ,最小值为163;

,4

12121

2

2+??? ??

-=+-a a a 最小值为41;

∴ 16

3≤

b ,

即 :b 的取值范围是??

?

?

?163,

0 第5变 绝对值三角不等式问题

[变题5]已知函数2()(,,)f x ax bx c a b c R =++∈,当[1,1]x ∈-时|()|1f x ≤,求证:

(1)||1b ≤;

(2)若2

()(,,)g x bx ax c a b c R =++∈,则当[1,1]x ∈-时,求证:|()|2g x ≤。

[思路]本题中所给条件并不足以确定参数b a ,,c 的值,但应该注意到:所要求的结论不是()b g x 或的确定值,而是与条件相对应的“取值范围”,因此,我们可以用()1-f 、(0)f 、()1f 来表示b a ,,c 。因为由已知条件得|(1)|1f -≤,|(0)|1f ≤,|(1)|1f ≤。

[解题]证明:(1)由()()()()11,1[11]2

f a b c f a b c b f f =++-=-+?=

--,从而有

11||[(1)(1)](|(1)||(1)|),|(1)|1,|(1)|1,

2

2

1||(|(1)||(1)|) 1.

2

b f f f f f f b f f =

--≤+-≤-≤∴≤+-≤

(2)由()()()()()()111,1[11],[11],(0),2

2

f a b c f a b c b f f a c f f c f =++-=-+?=

--+=

+-=

从而 ()()1[11](0)2

a f f f =+--

上三式代入2

()

(,,)g x b x a x c a b c R

=++∈,并整理得

2

2

22

2

2

11|()||(0)(1)(1)(1)(1)(1)|

2

2

11|(0)(1)||(1)(1)||(1)(1)|2211|(0)|1||(1)||1||(1)||1|

2

2

1111|1||1||1|1(1)(1)22

2

2

2

2

g x f x f x f x f x f x f x f x f x f x x x x x x x x

=-+++

--≤-+++--=-+++--≤-+++-=-+

++

-=-≤

[收获]1) 二次函数的一般式c bx ax y ++=2)0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数.

2)本题变形技巧性强,同时运用公式||||||a b a b +≤+,||||||a b a b -≤+及已知条件进行适当的放大。要求同

学们做题时要有敏锐的数学观察能力。

[请你试试4—5]

1.已知函数f(x)=21x +,a,b ∈R ,且b a ≠,求证|f(a)-f(b)|<|a-b|。 分析:要证|||11|22b a b a -<+-+,考察左边,是否能产生|a-b|。 证明:|f(a)-f(b)|=|

||||

|||11|||11|2

2

2

22

2

b a b a b a b

a

b a b

a

+-?+<

++

+-=

+-+

|||||

|||||||b a b a b a b a -=-?++≤

(其中||12

2a a

a =>

+,同理|,|12

b b

>+∴

|

|||1111

2

2

b a b

a

+<

+++)

回顾:1、证题时,应注意式子两边代数式的联系,找出它们的共同点是证题成功的第一步。此外,综合运用不等式的性质是证题成功的关键。如在本例中,用到了不等式的传递性,倒数性质,以及“三角形不等式”等等。

2、本题的背景知识与解析几何有关。函数21x y +=是双曲线,

1

2

2

=-x y 的上支,而||

2

121x x y y --(即

|)()(|

b

a b f a f --),则表示该图象上任意两点连线的斜率的绝对值。(学过有关知识后),很显然这一斜率的范围是在

(-1,1)之间。

2.(1)已知不等式|x-3|+|x+1|

分析:“有解”即“解集非空”,可见(1)(2)两小题的答案(集合)互为补集(全集为R )

当然可以用|x-3|+|x+1|=??

?

??-≤-<<-≥-)1(22)31(4)

3(22x x x x x 这种“去绝对值”的方法来解,但我们考虑到“三角形不等式”:

||a|-|b||≤|a ±b|≤|a|+|b|

知|x-3|+|x+1|≥|x-3-x-1|=4 这样|x-3|+|x+1|

|1||3||1||3|??

?≥++-<++-x x a x x

若(*)解集为φ,则a ≤4,若(*)有解,则a>4。 解(略)

回顾:本题是“绝对值不等式性质定理”(即“三角形不等式”)的一个应用。 发展题:(1)已知不等式|x-3|+|x+1|>a 的解集非空,求a 的取值范围。 (2)已知不等式|x-3|+|x+1|≤a 的解集非空,求a 的取值范围。

3.已知f(x)的定义域为[0,1],且f(0)=f(1),如果对于任意不同的x 1,x 2∈[0,1],都有|f(x 1)-f(x 2)|<|x 1-x 2|,求证:|f(x 1)-f(x 2)|<

2

1

分析:题设中没有给出f(x)的解析式,这给我们分析f(x)的结构带来困难,事实上,可用的条件只有f(0)=f(1) ①,与|f(x 1)-f(x 2)|<|x 1-x 2|②两个。

首先,若|x 1-x 2|≤2

1,那么必有|f(x 1)-f(x 2)|<|x 1-x 2|≤

2

1即|f(x 1)-f(x 2)|<

2

1成立。

但若|x 1-x 2|>

2

1呢?考虑到0≤|x 1-x 2|≤1,则1-|x 1-x 2|<2

1,看来要证明的是|f(x 1)-f(x 2)|≤1-|x 1-x 2|<2

1成立!

证明:不妨设x 1≤x 2,则0≤x 1≤x 2≤1 (1)当|x 1-x 2|≤2

1时,则有|f(x 1)-f(x 2)|<|x 1-x 2|≤

2

1即|f(x 1)-f(x 2)|<

2

1成立。

(2)当|x 1-x 2|>

21时,即x 2-x 1>

21时,∵0≤x 2-x 1≤1 必有1-|x 1-x 2|<2

1即1- x 2+x 1<

2

1

也可写成|1- x 2|+|x 1|<2

1 (*)

另一方面|f(x 1)-f(x 2)|=|f(1)-f(x 2)+f(x 1)-f(0)|≤|f(1)-f(x 2)|+|f(x 1)-f(0)|<|1- x 2|+|x 1-0| 则由(*)式知|f(x 1)-f(x 2)|<

2

1成立

综上所述,当x 1,x 2∈[0,1]时都有|f(x 1)-f(x 2)|<

2

1成立。

已知二次函数f x ax bx c ()=++2

,当-≤≤11x 时,有-≤≤11f x (),求证:当-≤≤22x 时,有-≤≤77f x ().

分析:研究)(x f 的性质,最好能够得出其解析式,从这个意义上说,应该尽量用已知条件来表达参数c b a ,,. 确定三个参数,只需三个独立条件,本题可以考虑)1(f ,)1(-f ,)0(f ,这样做的好处有两个:一是c b a ,,的表达较为简洁,二是由于01和±正好是所给条件的区间端点和中点,这样做能够较好地利用条件来达到控制二次函数范围的目的.

要考虑()x f 在区间[]7,7-上函数值的取值范围,只需考虑其最大值,也即考虑()x f 在区间端点和顶点处的函数值.

证明:由题意知:c b a f c f c b a f ++==+-=-)1(,)0(,)1(, ∴ )0()),

1()1((2

1)),

0(2)1()1((2

1f c f f b f f f a =--=

--+=

∴ f x ax bx c ()=++2

()

2221)0(2)1(2)1(x f x x f x x f -+?

??

?

??--+???? ??+=. 由-≤≤11x 时,有-≤≤11f x (),可得 ,

1)1(≤f (),11≤-f ()10≤f .

∴ ()()()()7)0(3)1(1303113)2(≤+-+≤--+=f f f f f f f , ()()()()7)0(3)1(3103131)2(≤+-+≤--+=-f f f f f f f .

(1)若[]2,22-?-

a

b ,

则()x f 在[]2,2-上单调,故当[]2,2-∈x 时,))2(,)2(max()(max

f f x f -=∴ 此

时问题获证. (2)若[]2,22-∈-

a

b ,则当[]2,2-∈x 时,)2,)2(,)2(max()

(max

??

? ??

--=a b f f f x f

又()72411214)1()1(2022422

<=+?+≤--?+=?+≤-

=??

?

??-f f a b f b a b c a b c a b f , ∴ 此时问题获证. 综上可知:当-≤≤22x 时,有-≤≤77f x (). 评析:因为二次函数()0)(2≠++=a c

bx ax x f 在区间]2,(a

b -

-∞和区间),2[+∞-

a

b 上分别单调,所以函数

()x f 在闭区间上的最大值、最小值必在区间端点或顶点处取得;函数)(x f 在闭区间上的最大值必在区间端点或

顶点处取得.

第6变 绝对值不等式与其它知识的横向联系

[变题6](2003年全国高考试题)已知0>c .设

:P 函数x c y =在R 上单调递减.

:Q 不等式1|2|>-+c x x 的解集为R .

如果P 和Q 有且仅有一个正确,求c 的取值范围.

[思路] 此题虽是一道在老教材之下的高考试题,但揭示了“解不等式”一类高考试题的命题方向.在新教材

中,绝对值不等式的解法和二次不等式的解法与集合运算、命题判断都有一定联系,属于对于学生提出的基本要求内容的范畴,本题将这几部分知识内容有机地结合在一起,在考查学生基础知识、基本方法掌握的同时,考查了学生命题转换,分类讨论等能力,在不同的方法下有不同的运算量,较好地体现出了“多考一点想,少考一点算”的命题原则.

[解题]:函数x

c y =在R 上单调递减10<

不等式1|2|>-+c x x 的解集为R ?函数|2|c x x y -+=在R 上恒大于1,

∵,

,,

,c x c x c c x c x x 22222|2|<≥??

?-=-+

∴函数|2|c x x y -+=在R 上的最小值为c 2, ∴不等式1|2|>-+c x x 的解集为R ?12>c ,即2

1>c ,

若P 正确,且Q 不正确,则2

10≤

若Q 正确,且P 不正确,则1≥c ;

所以c 的取值范围为)1[]2

1

0(∞+,, .

[收获]“解不等式”一类的命题可以有形式上的更新和内容上的变化.结合简易逻辑的概念和集合的语言来命题,借助集合的运算性质和四个命题的关系来作答,是这个命题的基本特征,在求解时则主要以化归思想为解题切入点.复习中对于此类问题要引起足够的重视.

[请你试试4—6]

1.(2004届湖北省黄冈中学综合测试题)已知条件a x p >-|15:|和条件01

321:

2

>+-x x

q ,请选取适当的实

数a 的值,分别利用所给的两个条件作为A 、B 构造命题:“若A 则B ”,并使得构造的原命题为真命题,而其逆命题为假命题.则这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.

[分析] 本题为一开放性命题,由于能得到的答案不唯一,使得本题的求解没有固定的模式,考生既能在一般性的推导中找到一个满足条件的a ,也能先猜后证,所找到的实数a 只需满足

2

15

1≤-a ,且

≥+5

1a 1即可.这种新颖

的命题形式有较强的综合性,同时也是对于四个命题考查的一种新尝试,如此命题可以考查学生探究问题、解决问题的能力,符合当今倡导研究性学习的教学方向.

[解答] 已知条件p 即a x -<-15,或a x >-15,∴5

1a x -<,或5

1a x +>

已知条件q 即01322>+-x x ,∴2

1x ;

令4=a ,则p 即5

3-

x ,此时必有q p ?成立,反之不然.

故可以选取的一个实数是4=a ,A 为p ,B 为q ,对应的命题是若p 则q , 由以上过程可知这一命题的原命题为真命题,但它的逆命题为假命题. 2. 已知)0(012:2|3

11:|2

2

>≤-+-≤--

m m

x x

q x p ,;p 是q 的必要不充分条件,求实数m 的取值范围.

[分析] 本题实为上一命题的姊妹题,将命题的表述重心移至充要条件,使用了学生较为熟悉的语言形式.充要条件是一个十分重要的数学概念,新教材将这一内容的学习放在第一章,从而也可能利用第一章的知识内容来命题考查这一概念.本例是一道揉绝对值不等式、二次不等式的求解与充要条件的运用于一起的较好试题,要求学生能正确运用数学符号,规范数学学习行为,否则连读题审题都感困难.

[解答] 由,2|3

11|≤--

x 得102≤≤-x ,

由)0(01222>≤-+-m m x x ,得)0(11>+≤≤-m m x m ,

∴?p 即2-x ,而?q 即m x -<1,或m x +>1)0(>m ;

由?p 是?q 的必要不充分条件,知?q ??p ,

设A=}102|{>-+>-

则有A B ≠

?

,故??

?

??>≤+-≥-,,,010111m m m 且不等式中的第一、二两个不等式不能同时取等号,

解得30≤

绝对值不等式,高考历年真题

温馨提示: 高考题库为Word 版,请按住Ctrl ,滑动鼠标滚轴,调节合适的观看比例,点击右上角的关闭按钮可返回目录。 【考点35】绝对值不等式 2009年考题 1、(2009全国Ⅰ)不等式 1 1 X X +-<1的解集为( )(A ){x }}01{1x x x ??? (B){ }01x x ??(C ){}10x x -?? (D){ }0x x ? 【解析】选 D.0040)1()1(|1||1|11 1 22

或③12 (21)(2)0 x x x ? ≤? ??--+-解得 又 0,x x <∴不存在; 当1 02 x ≤< 时,原不等式可化为211,0x x x -+<+>解得 又11 0,0;22 x x ≤<∴<< 当1 11 ,211,222 22 x x x x x x ≥-<+<≥∴≤<原不等式可化为解得又 综上,原不等式的解集为|0 2.x x << 7、(2009海南宁夏高考)如图,O 为数轴的原点,A,B,M 为数轴上三点,C 为线段OM 上的动点,设x 表示C 与原点的距离,y 表示C 到A 距离4倍与C 到B 距离的6倍的和. (1)将y 表示成x 的函数; (2)要使y 的值不超过70,x 应该在什么范围内取值

含参不等式的专题练习教学设计 .doc

例2 解不等式135 x <-< 课后练习: 一.选择题(共2小题) 1.(2015春?石城县月考)已知m为整数,则解集可以为﹣1<x<1的不等式组是() A .B . C . D . 2.(2002?徐州)已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p 的取值范围是() A .p>﹣1 B . p<1 C . p<﹣1 D . p>1 二.填空题(共7小题) 3.(2012?谷城县校级模拟)若不等式组恰有两个整数解.则实数a的取值范围 是. 4.(2010?江津区)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1 <<3,则x+y的值是. 5.若不等式组的解集是﹣1<x<1,则(a+b)2009=. 6.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是. 7.不等式组的解是0<x<2,那么a+b的值等于. 8.已知不等式组的解集1≤x<2,则a=. 9.若关于x的不等式的解集为x<2,则k的取值范围是. 三.解答题(共4小题)

10.(1)解方程组: (2)求不等式组的整数解. 11.(2013?乐山)已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值. 12.(2011?铜仁地区)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元. (1)篮球和排球的单价分别是多少元? (2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案? 13.(2011?邵阳)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人. 规则二:合唱队的队员中,九年级学生占合唱团总人数的,八年级学生占合唱团总人数的,余下的为七年 级学生. 请求出该合唱团中七年级学生的人数.

第10课--绝对值不等式(经典例题练习、附答案)

第10课 绝对值不等式 ◇考纲解读 ①理解不等式a b a b a b -≤+≤+ ②掌握解绝对值不等式等不等式的基本思路,会用分类、换元、数形结合的方法解不等式; ◇知识梳理 1.绝对值的意义 ①代数意义:___,(0)___,(0)___,(0)a a a a >??= =?? 时, |()|f x a >?____________; |()|f x a - 例2. 解不等式125x x -++> 变式1:12x x a -++<有解,求a 的取值范围 变式2:212x x a -++<有解,求a 的取值范围 变式3:12x x a -++>恒成立,求a 的取值范围 ◇能力提升 1.(2008湛江二模)若关于x 的不等式||2x a a -<-的解集为{}42|<

高中绝对值不等式(精华版)适合高三复习用可直接打印

高中绝对值不等式(精华版)适合高三复 习用可直接打印 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

绝对值不等式 绝对值不等式||||||a b a b +≤+,||||||a b a b -≤+ 基本的绝对值不等式:||a|-|b||≤|a ±b|≤|a|+|b| ======================= y=|x-3|+|x+2|≥|(x-3)-(x+2)|=|x-3-x-2|=|-5|=5 所以函数的最小值是5,没有最大值 ======================= |y|=||x-3|-|x+2||≤|(x-3)-(x+2)|=|x-3-x-2|=|-5|=5 由|y|≤5得-5≤y ≤5 即函数的最小值是-5,最大值是5 ======================= 也可以从几何意义上理解,|x-3|+|x+2|表示x 到3,-2这两点的距离之和,显然当-2≤x ≤3时,距离之和最小,最小值是5;而|x-3|-|x+2|表示x 到3,-2这两点的距离之差,当x ≤-2时,取最小值-5,当x ≥3时,取最大值5 [变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2 x -2x -6|<3x

[思路]利用|f(x)|g(x) ?f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x ) 解得x >12或无解,所以原不等式的解集是{x |x >1 2 } (2)原不等式等价于-3x <2 x -2x -6<3x 即 222 226360 (3)(2)032(1)(6)0 16263560x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????+-<-<<--<--x 2-3x-4;(2)234x x -≤1 解:(1)分析一 可按解不等式的方法来解. 原不等式等价于: x-x 2-2>x 2 -3x-4 ① 或x-x 2-2<-(x 2 -3x-4) ② 解①得:1-2-3 故原不等式解集为{x |x>-3} 分析二 ∵|x-x 2-2|=|x 2 -x+2|

绝对值不等式(经典题型)

1.若a >0,且|x |>a ,则____________;若a >0,且|x |c (c >0)型不等式的解法: 3.解下列不等式. (1)|2x +5|<7. (2)|2x +5|>7+x . (3)|x 2-3x +1|<5. (4)|2x -1|<2-3x . (5)1<|2-x |≤7. (6)1<|x -2|≤3 4.集合A ={x ||2-x |<5},B ={x ||x +a |≥3},且A ∪B =R ,求a 的取值范围 |x -a |+|x -b |≥c |x -a |+|x -b |≤c 5.解不等式 (1)|x -1|+|x -2|>2. (2)|x +2|-|x -1|<2 |(3)x +2|-|x -1|<2x 6.恒成立问题 (1)对任意x ∈R ,若|x -3|+|x +2|>a 恒成立,则实数a 的取值范围 . (2)关于x 的不等式a >|x -3|+|x +2|的解集非空,则实数a 的取值范围 . (3)关于x 的不等式a >|x -3|+|x +2|在R 上无解,则实数a 的取值范围 . (4)若不等式|x +3|-|x -5|x -2x 的解集是________. 10..已知函数f (x )=|x +2|-|x -1|,则f (x )的值域是________. 11. 对于x ∈R ,不等式||x +10-||x -2≥8的解集为______ 12.设函数f(x)=|3x -1|+x +2. (1)解不等式f(x)≤3; (2)若不等式f(x)>a 的解集为R ,求a 的取值范围.

最新高中数学-含绝对值的不等式的解法教案

收集于网络,如有侵权请联系管理员删除 一.课题:含绝对值的不等式的解法 二.教学目标:掌握一些简单的含绝对值的不等式的解法. 三.教学重点:解含绝对值不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次) 不等式(组),难点是含绝对值不等式与其它内容的综合问题及求解过程中,集合间 的交、并等各种运算. 四.教学过程: (一)主要知识: 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2.当0c >时,||ax b c ax b c +>?+>或ax b c +<-,||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法; (3)平方法:不等式两边都是非负时,两边同时平方. (三)例题分析: 例1.解下列不等式: (1)4|23|7x <-≤;(2)|2||1|x x -<+;(3)|21||2|4x x ++->. 解:(1)原不等式可化为4237x <-≤或7234x -≤-<-,∴原不等式解集为17[2,) (,5]22--. (2)原不等式可化为22(2)(1)x x -<+,即12x > ,∴原不等式解集为1[,)2+∞. (3)当12x ≤- 时,原不等式可化为2124x x --+->,∴1x <-,此时1x <-; 当122 x -<<时,原不等式可化为2124x x ++->,∴1x >,此时12x <<; 当2x ≥时,原不等式可化为2124x x ++->,∴53 x >,此时2x ≥. 综上可得:原不等式的解集为(,1)(1,)-∞-+∞. 例2.(1)对任意实数x ,|1||2|x x a ++->恒成立,则a 的取值范围是(,3)-∞; (2)对任意实数x ,|1||3|x x a --+<恒成立,则a 的取值范围是(4,)+∞. 解:(1)可由绝对值的几何意义或|1||2|y x x =++-的图象或者绝对值不等式的性质|1||2||1||2||12|3x x x x x x ++-=++-≥++-=得|1||2|3x x ++-≥,∴3a <; (2)与(1)同理可得|1||3|4x x --+≤,∴4a >. 例3.(《高考A 计划》考点3“智能训练第13题”)设0,0a b >>,解关于x 的不等式:|2|ax bx -≥. 解:原不等式可化为2ax bx -≥或2ax bx -≤-,即()2a b x -≥①或2()2a b x x a b +≤?≤ +②,

含绝对值的不等式解法练习题及答案

含绝对值的不等式解法练习题及答案 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

例1 不等式|8-3x|>0的解集是 [ ]答选C. 例2 绝对值大于2且不大于5的最小整数是 [ ] A.3 B.2 C.-2 D.-5 分析列出不等式. 解根据题意得2<|x|≤5. 从而-5≤x<-2或2<x≤5,其中最小整数为-5, 答选D. 例3不等式4<|1-3x|≤7的解集为________. 分析利用所学知识对不等式实施同解变形. 解原不等式可化为4<|3x-1|≤7,即4<3x-1≤7或-7例4已知集合A={x|2<|6-2x|<5,x∈N},求A. 分析转化为解绝对值不等式. 解∵2<|6-2x|<5可化为 2<|2x-6|<5 因为x∈N,所以A={0,1,5}. 说明:注意元素的限制条件.

例5 实数a,b满足ab<0,那么 [ ] A.|a-b|<|a|+|b| B.|a+b|>|a-b| C.|a+b|<|a-b| D.|a-b|<||a|+|b|| 分析根据符号法则及绝对值的意义. 解∵a、b异号, ∴ |a+b|<|a-b|. 答选C. 例6 设不等式|x-a|<b的解集为{x|-1<x<2},则a,b 的值为 [ ] A.a=1,b=3 B.a=-1,b=3 C.a=-1,b=-3 分析解不等式后比较区间的端点. 解由题意知,b>0,原不等式的解集为{x|a-b<x<a+b},由于解集又为{x|-1<x<2}所以比较可得. 答选D. 说明:本题实际上是利用端点的位置关系构造新不等式组.例7 解关于x的不等式|2x-1|<2m-1(m∈R)

含有绝对值的不等式·典型例题分析

含有绝对值的不等式·典型例题分析 例1 求下列函数的定义域和值域: 分析利用绝对值的基本概念. 解 (1)x+|x|≠0,即|x|≠-x.∴x>0. ∴定义域为(0,+∞),值域为(0,+∞). (2)|x|≥x,x∈R.|x|-x≥0,∴y∈[0,+∞). (3)x+|x|>0,x∈R+.y∈R. 画出函数图象如图5-17所示.不难看出,x∈R,y∈[-1,1]. 说明本例中前三个易错,第四个要分析写出函数表达式,并画出函数图象,此法在求值域时常用. 例2 解不等式|x+1|>|2x-3|-2.

将不等式中的绝对值符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解.去绝对值符号的关键是找零点(使绝对值等于零的那个数所对应的点),将数轴分成若干段,然后从左向右逐段讨论. (1)当x≤-1时原不等式化为-(x+1)>-(2x-3)-2. ∴x>2与条件矛盾,无解. 综上,原不等式的解为{x|0<x<6}. 注意找零点去绝对值符号最好画数轴,零点分段,然后从左向右逐段讨论,这样做条理分明、不重不漏. 例3 解不等式|x2-4|<x+2. 分析解此题的关键是去绝对值符号,而去绝对值符号有两种方法:

二是根据绝对值的性质:|x|<a?-a<x<a,|x|>a?x>a或x<-a,因此本题有如下两种解法. ∴2≤x<3或1<x<2 故原不等式的解集为{x|1<x<3}. 解法二原不等式等价于-(x+2)<x2-4<x+2 例4 求使不等式|x-4|+|x-3|<a有解的a的取值范围. 分析此题若用讨论法,可以求解,但过程较繁;用绝对值的几何意义去求解十分简便. 解法一将数轴分为(-∞,3],[3,4],(4,+∞)三个区间 当3≤x≤4 时,得(4-x)+(x-3)<a,即a>1;

高考含绝对值不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x ,

所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+

绝对值不等式中的含参问题(原创)

绝对值不等式中的含参问题 在高中数学中,绝对值不等式的求解及含参问题是高考中不等式选讲部分重要的考点,面对诸多的含参问题,我们来对这些类型的题目作以梳理。绝对值不等式的核心是去掉绝对值符号,将它转化为一般不等式加以解决。 一、绝对值的最值问题 1、当绝对值中x的系数相同时。 运用三角不等式:a?b≤a±b≤a+b 例1:求函数f x=x?3+x?4的最值 解:x?3+x?4≥x?3?x?4=1,函数f x的最小值为1。 例2:求函数f x=2x?1?2x?3的最值 解:2x?1?2x?3≤2x?1?2x?3=2,即得到?2≤2x?1?2x?3≤2,函数f x的最小值为?2,最大值为2。 2、当绝对值中x的系数不相同时。 ①零点分段,②写出分段函数,③画草图(或直接由直线的上升与下降判断最高或最低处),在分界点处求最值。 例:求函数f x=2x?2+x+2的最值 解:当 x≤?2 ?x+2?(2x?2)即 x≤?2 ?3x, 当 ?2

则有f x= ?3x, x≤?2 ?x+4, ?2f x恒成立,则a>f max(x) 例1:x?3+x?4>a对一切x∈R恒成立,求a的取值范围。 析:先求函数f x=x?3+x?4的最小值,再a f max(x)二次不等式。 解:由于x∈0,1,则f x=2x?1?x?2, 当 0≤x≤1 2 ?2x?1?x?2 即 0≤x≤1 2 ?3x?1 当 1 2

绝对值不等式练习题知识讲解

绝对值不等式练习题

绝对值的不等式 一、选择题(8分×6=48分) 1.不等式243x 的整数解的个数为 ( ) A 0B 1C 2D 大于2 2.函数22x x y 的定义域是 ( ) A ]2,2[B ),2[]2,(C ),1[]1,(D ) ,2[3.设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 ( ) A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 2 3 ,21 .b a D 4.若两实数y x,满足0xy ,那么总有 ( ) A y x y x B y x y x C y x y x D.x y y x 5.已知,b c a 且,0abc 则 ( ) A c b a B b c a C c b a D c b a 6.)(13)(R x x x f ,当b x 1有),,(4)(R b a a x f 则b a,满足 ( ) A 3a b B 3b a C 3a b D 3 b a 二、填空题(8分×2=16分) 7.不等式x x 512的解集是 8.不等式x x x x 11的解集是 三、解答题(18分×2=36分) 9.解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x

10.已知a x x x f |2||1|)(,(1)当5a 时,求)(x f 定义域; (2)若)(x f 的定义域为R ,求a 的取值范围。附加题:(10分×2=20分) 1.若不等式|1|75x x 与不等式022bx ax 同解,而k b x a x ||||的解集为非,求实数k 的取值范围 2.当10x 时,比较)1(log x a 与)1(log x a 的大小.)1,0(a a

解绝对值不等式,涵盖高中所有绝对值不等式解法

绝对值不等式||||||a b a b +≤+,||||||a b a b -≤+ 基本的绝对值不等式:||a|-|b||≤|a±b|≤|a|+|b| ======================= y=|x-3|+|x+2|≥|(x -3)-(x+2)|=|x-3-x-2|=|-5|=5 所以函数的最小值是5,没有最大值 ======================= |y|=||x-3|-|x+2||≤|(x -3)-(x+2)|=|x-3-x-2|=|-5|=5 由|y|≤5得-5≤y≤5 即函数的最小值是-5,最大值是5 ======================= 也可以从几何意义上理解,|x-3|+|x+2|表示x 到3,-2这两点的距离之和,显然当-2≤x≤3时,距离之和最小,最小值是5;而|x-3|-|x+2|表示x 到3,-2这两点的距离之差,当x≤-2时,取最小值-5,当x≥3时,取最大值5 解绝对值不等式题根探讨 题根四 解不等式2|55|1x x -+<. [题根4]解不等式2 |55|1x x -+<. [思路]利用|f(x)|0) -a-??求解。 [解题]原不等式等价于21551x x -<-+<, 即22 551(1)551 (2)x x x x ?-+-?? 由(1)得:14x <<;由(2)得:2x <或3x >, 所以,原不等式的解集为{|12x x <<或34}x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。 2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551y x x y =-+=与的 的图象,解方程2551x x -+=,再对照图形写出此不等式的解集。 第1变 右边的常数变代数式 [变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x ) 解得x > 12或无解,所以原不等式的解集是{x |x >12 } ???

含参数不等式及绝对值不等式的解法

含参数不等式及绝对值不等式的解法 例1解关于x 的不等式:2(1)0x x a a ---> 0)(3 22<++-a x a a x 01)1(2<++-x a ax 02)12(2>++-x a ax 22+≥+ a x ax 11 +>-a x x 11<-x ax ()()02 21>----x a x a 0)2(≥--x x a x 01 2≥--x ax x a x x <- 0)2)(1(1≥----x x k kx 例2: 关于x 的不等式01)1(2 <-+-+a x a ax 对于R x ∈恒成立,求a 的取值范围。

例3:若不等式210x ax ≥++对于一切1(0,)2 x ∈成立,则a 的取值范围. 例4:若对于任意a (]1,1-∈,函数()()a x a x x f 2442-+-+=的值恒大于0,求x 的 取值范围。 例5:已知19≤≤-a ,关于x 的不等式: 0452 <+-x ax 恒成立,求x 的范围。 例 6: 对于∈x (0,3)上的一切实数x,不等式()122-<-x m x 恒成立,求实数m 的 取值范围。 例7:2212<--+x x 1332+<-x x 321+<+x x x x 332≥- 例8、 若不等式a x x >-+-34,对一切实数x 恒成立,求a 的取值范围 若不等式a x x >---34,对一切实数x 恒成立,求a 的取值范围 若不等式a x x <---34有解,求a 的取值范围 若不等式a x x <---34的解集为空集,求a 的取值范围 若不等式a x x <---34解集为R ,求a 的取值范围

绝对值不等式例题解析

典型例题一 例1 解不等式2321-->+x x 分析:解含有绝对值的不等式,通常是利用绝对值概念? ??<-≥=)0()0(a a a a a ,将不等式中的绝对符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解.去绝对值符号的关键是找零点(使绝对值等于零的那个数所对应的点),将数轴分成若干段,然后从左向右逐段讨论. 解:令01=+x ,∴ 1-=x ,令032=-x ,∴2 3=x ,如图所示. (1)当1-≤x 时原不等式化为2)32()1(--->+-x x ∴2>x 与条件矛盾,无解. (2)当2 31≤ <-x 时,原不等式化为2)32(1--->+x x . ∴ 0>x ,故2 30≤x 时,原不等式化为 2321-->+x x .∴6<-+-有解的条件为32 7<-a ,即1>a ; 当43≤≤x 时,得a x x <-+-)3()4(,即1>a ;

当4>x 时,得a x x <-+-)3()4(,即27+< a x ,有解的条件为42 7>+a ∴1>a . 以上三种情况中任一个均可满足题目要求,故求它们的并集,即仍为1>a . 解法二:设数x ,3,4在数轴上对应的点分别为P ,A ,B ,如图,由绝对值的几何定义,原不等式a PB PA <+的意义是P 到A 、B 的距离之和小于a . 因为1=AB ,故数轴上任一点到A 、B 距离之和大于(等于1),即134≥-+-x x ,故当1>a 时,a x x <-+-34有解. 典型例题三 例3 已知),0(,20,2M y a b y M a x ∈ε<-<ε<-,求证ε<-ab xy . 分析:根据条件凑b y a x --,. 证明:ab ya ya xy ab xy -+-=- ε=ε?+ε?<-?+-≤-+-=a a M M b y a a x y b y a a x y 22)()(. 说明:这是为学习极限证明作的准备,要习惯用凑的方法. 典型例题四 例4 求证 b a a b a -≥-22 分析:使用分析法 证明 ∵0>a ,∴只需证明b a a b a -≥-222,两边同除2 b ,即只需证明 b a b a b b a -≥-2222 2,即 b a b a b a -≥-22)(1)( 当1≥b a 时,b a b a b a b a -≥-=-222)(1)(1)(;当1

高中数学解题思路大全—绝对值不等式解法指导

高中数学解题思路大全—绝对值不等式解法指 导 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

绝对值不等式解法指导 带绝对值符号的不等式叫绝对值不等式。解绝对值不等式的关键是去绝对值符 号,等价转化为不含绝对值符号的不等式,用已有方法求解。去绝对值符号的方法就是解不等式的方法,有下列四种。 一. 注意绝对值的定义,用公式法 即若a x a ><0,||,则-<>0,||,则x a >或x a <-。 例1. 解不等式||2331x x -<+ 解:由题意知310x +>,原不等式转化为-+<-<+()312331x x x 二. 注意绝对值的非负性,用平方法 题目中两边都是非负值才能用平方法,否则不能用平方法,在操作过程中用到 ||x x 22=。 例2. 解不等式||||x x +<+123 两边都含绝对值符号,所以都是非负,故可用平方法。 解:原不等式?+<+?+<+?+-+>||||()()()()x x x x x x 1231232310222222 解得x x <->-243 或 故原不等式的解集为{|}x x x <->-243 或 三. 注意分类讨论,用零点分段法 不等式的一侧是两个或两个以上的绝对值符号,常用零点法去绝对值并求解。 例3. 解不等式||||x x ++->213 解:利用绝对值的定义,分段讨论去绝对值符号,令x -=10和x +=20得分界点x x ==-12、

于是,可分区间(),[][,)-∞--+∞,,,2211讨论原不等式? 解得x x ><-12或 综上不等式的解为x ∈-∞-?+∞()(),,21 四. 平方法+定义法 有些题目平方之后仍有一个绝对值号,需要用定义去绝对值符号求解,这种方法叫“平方法+定义法”。 例4. 解关于x 的不等式|log ||log |a a ax x 22<+ 解:化为|log ||log |122+<+a a x x 后,通常分log log a a x x <--≤<1212 0,,log a x ≥0三种情况去绝对值符号,再分a a ><<101或进行讨论,这样做过程冗长,极易出错。改变一下操作程序,思路将十分清晰,过程也简洁得多,即原不等式两边平方得4414422(log )log (log )|log |a a a a x x x x ++<++。 再由定义去绝对值号,有: (1)log ,(log )log a a a x x x ≥1时,解为a x a -<<3;当01<0,且a ≠1,解不等式|log ()||log ()|a a x x 11->+。 2. 解不等式||||||x x x +--<+112 1 3. 解不等式||||31932x x -+-> 答案:1. 01<

含绝对值的不等式解法·典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 }...≠.? 83 分析∵->,∴-≠,即≠. |83x|083x 0x 83 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-, 52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 211212 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=1232 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.???1232 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12 x <m .

含绝对值的不等式解法(北师版)

1.4 含绝对值的不等式解法 1.不等式|x-2|>1的解集是(D ) A .}31|{<--x ,∴1x . 2.不等式1|31|<-x 的解集为(C ) A .,0|{x B .,3 2 |{-x C .}3 20|{<3 |1|11 ||x x B .? ??-<>-3212x x C .?? ?≤->3 1 x x D .? ? ?≤->3|1|1 ||x x 提示:逐一求解不等式组,或直接判断可知A 中不等式组是恒成立的不等式组. 4.已知集合M={x||x-1|<2}与集合P={x||x-1|>1},则M ∩P=(C ) A .{x|-13} 提示:M=}31|{<<-x x ,P=0|{x . 5.已知不等式|x-a|

C .3、9 D .-3、6 提示:必有0>b ,∴b a x b <-<-,即不等式的解为b a x b a +<<-,令3-=-b a ,9=+b a 解得. 6.已知不等式|x+3|≥|x-5|成立,则实数x 的取值范围是(B ) A .{x|x>1} B .{x|x ≥1} C .{x|x<1} D .{x|x ≤1} 提示:即0)5()3(22≥--+x x ,∴0)53)(53(≥+-+-++x x x x . 7.已知a 2=9,则不等式x 2-|a|≥0的解集是(B ) A .{x|x ≤3-,或x ≥3} B .{x|x ≤3-,或x ≥3} C .{x|3-≤x ≤3} D .{x|3-≤x ≤3} 提示:即32 ≥x . 8.不等式|21||3|x x ->+的解集是(A ) A .2 {|3 x x <- ,或4}x > B .{|3x x <-,或4}x > C .{|34}x x -<< D .2 {|4}3 x x - << 提示:原不等式即22(21)(3)x x ->+,∴(213)(213)0x x x x -++--->,即(32)(4)0x x +->,∴2 3 x <-,或4x >,故选A . 9.设集合M={2|||<-a x x },P={x | 12 1 2<+-x x },若M ?P ,则实数a 的取值范围是(A ) A .{a |0≤≤a 1} B .{a |0<>的解集是)2()2(∞+--∞,, ,则不等式3|3 |-≤-a a x 的解集是(C ) A .)1[]1(∞+--∞,, B .R C .Ф D .]11[, - 提示:由已知得a=2,则不等式3|3 | -≤-a a x 即为1||-

绝对值不等式练习题

一、选择题(8分X 6=48分) 1.不等式3x -4 v2的整数解的个数为() A0 B1 C 2 D 大于2 2.函数y = Jx2 _|x| _2的定义域是() A[-2,2] B(-::,-2] [2, ::) C(-::,-1] [1, ::) D[2,::) 3.设不等式|x —a| v b的解集为{x| —1< x v 2},贝U a, b的值为() A. a = 1, b= 3 B . a=—1, b= 3 1 3 C . a = —1, b= —3 D .a , b — 2 2 4.若两实数x, y满足xy ::: 0 ,那么总有() Cx — yvx—y D. Ax + y2 —x ; (2)| x2—2x —6|<3 x 10.已知f(x) = ,;|x 1| |x -2| a , (1) 当a—5时,求f (x)定义域; (2)若f (x)的定义域为R,求a的取值范围。

相关文档
最新文档