梁的划分

从结构分析角度来说,基础梁是受到地基反力作用的梁。作用于建筑结构上的荷载和结构物自重,通过柱和墙传递到基础,基础又将其传递到地基土。基础对地基土产生了作用力,同时地基土对基础产生反作用力,这个反作用力,工程界称其为地基反力。凡是受到地基反力作用的梁,我们称其为基础梁。基础梁受地基反力的作用,在跨中无墙区域,产生向上隆起的变形趋势。与上部结构的腾空梁在受到竖向荷载向下作用后向下弯曲变形恰恰相反,所以在过去没有电脑、没有AutoCAD的年代,习惯上把基础梁视作“倒梁楼盖”体系,就是这么一个原因,与基础梁相反,不受地基反力作用,或者地基反力仅仅是地下梁及其覆土的自重产生,不是由上部荷载的作用说产生,这样的地下梁,就不是结构分析意义上的“基础梁”,是“基础拉梁”、“基础连梁”,或者是地下框架梁。

地下框架梁DKL再看(06G101-6)(独立基础、条形基础、桩基承台)69页DKL和JLL的构造要求,在右上图图名线下方的括号中,有“梁上部纵筋也可以在跨中1/3范围内连接”的告知,这就明明白白告诉我们,这个JLL是随上部梁的要求进行连接和锚固,不是像“基础梁”那样上部纵筋在支座左右l0/4的范围实施连接(见(06G101-6)(独立基础、条形基础、桩基承台)51页“基础梁JL纵向钢筋与箍筋构造”)。此外从(06G101-6)(独立基础、条形基础、桩基承台)68页、69页的DKL和JLL“图形语言”我们可以看到,基础地基持力层的顶面与DKL、JLL的底面之间存在“空档”,没有“紧密接触”,因此,这种地下梁没有承受结构意义上的地基反力一根地下梁,两端锚入基础或桩基承台,其上仅仅只承受底层墙体的荷载,如果这根地下梁的下面有宽度≥700mm的“条形基础”,那么,它就是基础梁和基础拉梁两梁合一;如果这根梁地下未设置宽度≥700mm的“条形基础”,仅仅只有宽出梁两侧各25~50mm的纯混凝土垫层,那么,墙体的荷载还是通过这个地下梁传递到地下梁两端的基础或承台。一个直观的体认,房屋建筑基础与地基之间只能是“面接触”,不能是“线接触”。面接触是地基托起了基础及其上部结构;线接触是像刀片那样在切割地基土,嵌入或切入地基土壤,这是显然不行的。

1)基础梁:是作为上部建筑的基础,将上部荷载传至地基,起到承重和抗弯功能。一般是基础梁的基础结构中,无承台,上部有框架柱,箍筋在基础梁上(即使是柱位置)都是满布。2)基础连梁:指连接独立基础、条形基础或桩基承台的梁,不承担由柱传来的荷载。调节基础的不均匀沉降,可在上面布置砖墙,不做抗震要求。多跨基础连梁以柱为支座,单跨基础连梁(若图纸未注明),以承台(或独立基础)为支座,06G101-6,P70。3)地下框架梁:特点是±0.000以下,基础顶面以上,以框架柱为支座,见06G101-6,P68。4)基础拉梁应该和基础连梁是一个概念。5)地梁个人认为是笼统的叫法,以前砖混结构基础下面的梁叫地梁,现在基础连梁(拉梁)、基础梁、地下框架梁也有叫地梁。

=============================

前一段时间我也研究了一下,基础梁,基础拉梁,地梁之类的,具体的看下面:1、现有观点在基础梁的现有计算方法中,较有代表性的是以下两种:(1) 对墙下基础梁,现有观点认为,可视承台梁以上墙体为半无限平面弹性地基,基础梁与墙体(半无限弹性体)共同变形,视基础梁为桩顶荷载作用下的倒置弹性地基梁,按弹性理论求解基础梁的反力,经简化后作为作用在基础梁上的荷载,然后按普通连续梁计算内力。(2) 对柱下条形基础梁,现有观点认为,可视为弹性地基梁计算,即将桩顶反力作为集中力作用在梁上,柱为梁的支座,按普通连续梁分析其内力,桩顶反力按弹性地基架计算确定。对于以上两种不同情况的基础梁,现有观点在计算过程中,均曾视其为弹性地基梁,所不同者,墙下基础梁视为倒置弹性

地基梁,而柱下基础梁则视为弹性地基梁。但应指出的是,现有观点的以上处理方法,是与弹性地基梁的定义不符合的。2、笔者观点2.1 墙下基础梁现有观点视基础梁上墙体为半无限弹性地基,基础梁为桩顶荷载作用下的倒置弹性地基梁。此处,问题的症结在于,能否视墙下基础梁为倒置弹性地基梁?笔者认为墙下基础梁不能视为倒置弹性地基梁;其原因如下所述。(1)基础梁以上墙体,高度一般在18m(例如8度区)左右,宽度在12m左右,抗弯刚度极大,加之该墙体还承受着相当数量的楼面荷载及墙体自重,故该墙体在桩顶荷载作用下,并不会产生变形,亦谈不到弹性,不符合半无限弹性地基假定条件中关于弹性的假定条件。(2)基础梁以上墙体,因每层均有圈梁,故各层墙体间,被圈梁分隔成独立部分,已不存在连续性,整片墙实为砌体与混凝土梁的组合构件,但砖砌体与混凝土梁的弹性模量相差甚大(约10倍),故在受力中,二者是不协同的。因此,墙下基础梁不符合半无限弹性地基关于连续的假定。(3)基础梁以上墙体,系由砖砌体与混凝土梁两种构件组成,且砖砌体系弹塑性材料,其弹性模量从一开始,应力与应变就不成比例。而在地震发生时,即使在小震作用下,根据震害调查,8度区框架,填充墙亦将产生较多裂缝,而中震和大震下,则裂缝更为普遍,即使是框架梁、柱,亦将产生裂缝。此外,砖砌体与框架梁亦不属各向同性构件,故墙体是不符合半无限弹性地基的假定条件的。由上述可知,基础梁上墙体,并不符合半无限弹性地基的匀质、连续、弹性假定条件,故墙下基础梁不应视为倒置弹性地基梁进行有关计算。2.2 柱下基础梁现有观点认为,柱下基础梁可视为弹性地基梁计算,与该观点相应的计算原则有两种:其一是将桩顶反力作为集中力作用在梁上,柱作为梁的支座,桩顶反力按弹性地基梁计算确定,然后按普通连续梁分析内力;其二是视基础梁为弹性地基梁进行分析计算。按照前者,基础梁受桩顶集中力作用,柱为梁的支座。须知此时,由于桩顶集中力与桩底轴向力平衡,则桩顶集中力并不在基础梁内产生内力,仅底层填充墙在基础梁内产生较小内力。此外填充于框架梁和框架柱之间的填充墙,系彼此隔离的小面积独立墙片,同时填充墙目前多采用大孔洞免烧砖,故基础梁以上之填充墙是不符合半无限弹性地基条件的,且因基础梁底部只与回填土接触,并不与地基土接触,只有桩头才与地基土接触。虽然地基土(例如卵石层)在端阻力作用下将产生一些变形,桩身亦会产生弹性压缩变形,但柱下基础梁并不符合倒置弹性地基梁定义。而对于后者,由于同样的原因,柱下基础梁亦不能视为正置弹性地基梁。综上所述可知,问题的要害是应区分弹性地基梁与普通基础梁的界限,因为这是两种不同的概念。弹性地基梁与普通基础梁在两个主要方面存在不同:(1) 普通基础梁的超静定次数是有限的,弹性地基梁的超静定次数是无限的;(2) 普通基础梁可略去地基的变形,弹性地基梁由于梁与地基共同变形,故必须考虑地基变形,方能满足变形连续条件[2]。

3、结论(1) 对于墙下基础梁,梁上墙体不应视为半无限弹性地基,基础梁不应视为桩顶荷载作用下的倒置弹性地基梁。(2) 对于柱下基础梁,不应视为弹性地基梁。(3) 墙下基础梁及柱下基础梁,均应按普通连续梁计算。关于多层框架基础拉梁的几点看法一、框架计算简图无地下室的钢筋混凝土多层框架房屋,独立基础埋埋置较深,在-0.05左右设有基础拉梁时,应拉梁按层1输入。以某学生宿舍为例,该项目为3层钢筋混凝土框架结构,丙类建筑,建筑场地为Ⅱ类;层高3.3m,基础埋深4.0m,基础高度0.8m,室内外高差0.45m。根据《抗震规范》第6.1.2条,在8度地震区该工程框架房屋的抗震等级为二级。设计者按3层框架房屋计算,首层层高取3.35m,即假定框架房屋嵌固在-0.05m处的基础拉梁顶面;基础拉梁的断面和配筋按构造设计;基础按中心受压计算。显然,选取这样的计算生产力简图是不妥当的。因为,第一,按构造设计拉梁的断面和配筋无法平衡柱脚弯矩;第二,《混凝土结构设计规范》(GB50010-2002)(以下简称《混凝土规范》第7.3.11条规定,框架结构底层柱的高度应取

基础顶面至首层楼盖顶面的高度。工程设计经验表明,这样的框架结构宜按4层进行整体分析计算,即将基础拉梁层按层1输入,拉梁上如作用有荷载,应将荷载一并输入。这样,计算简图的首层层高为H1=4-0.8-0.05=3.15m,层2层高为3.35m,层3、4层高为3.3m。根据《抗震规范》第6.2.3条规定,框架柱底层柱脚弯矩设计应行乘以增大系数1.25。当设拉梁层时,一般情况下,要比较底层柱的配筋是由基础顶面处的截面控制还是由基础拉梁处的截面控制。考虑到地基土的约束作用,对这样的计算简图,在电算程序总信息输入中,可填写地下室层数为1,并复算一次,按两次计算结果的包络图进行框架结构底层柱的设计的配筋。二、基础拉梁层的计算模型不符合实际情况基础拉梁层无楼板,用TAT或SATWE等电算程序进行框架整体计算时,楼板厚度应取零,并定义弹性结点,用总刚分板的方法进行分析计算。有时虽然定义楼板厚度为零,也定义弹性结点,但未采用总刚分析,程序分析时仍然会自动按刚性楼面假定进行计算,与实际情况不符。房屋结构的平面不规则时,应特别注意这一点。

关于多层框架基础拉梁的几点看法一、框架计算简图无地下室的钢筋混凝土多层框架房屋,独立基础埋埋置较深,在-0.05左右设有基础拉梁时,应拉梁按层1输入。以某学生宿舍为例,该项目为3层钢筋混凝土框架结构,丙类建筑,建筑场地为Ⅱ类;层高3.3m,基础埋深4.0m,基础高度0.8m,室内外高差0.45m。根据《抗震规范》第6.1.2条,在8度地震区该工程框架房屋的抗震等级为二级。设计者按3层框架房屋计算,首层层高取3.35m,即假定框架房屋嵌固在-0.05m处的基础拉梁顶面;基础拉梁的断面和配筋按构造设计;基础按中心受压计算。显然,选取这样的计算生产力简图是不妥当的。因为,第一,按构造设计拉梁的断面和配筋无法平衡柱脚弯矩;第二,《混凝土结构设计规范》(GB50010-2002)(以下简称《混凝土规范》第7.3.11条规定,框架结构底层柱的高度应取基础顶面至首层楼盖顶面的高度。工程设计经验表明,这样的框架结构宜按4层进行整体分析计算,即将基础拉梁层按层1输入,拉梁上如作用有荷载,应将荷载一并输入。这样,计算简图的首层层高为H1=4-0.8-0.05=3.15m,层2层高为3.35m,层3、4层高为3.3m。根据《抗震规范》第6.2.3条规定,框架柱底层柱脚弯矩设计应行乘以增大系数1.25。当设拉梁层时,一般情况下,要比较底层柱的配筋是由基础顶面处的截面控制还是由基础拉梁处的截面控制。考虑到地基土的约束作用,对这样的计算简图,在电算程序总信息输入中,可填写地下室层数为1,并复算一次,按两次计算结果的包络图进行框架结构底层柱的设计的配筋。二、基础拉梁层的计算模型不符合实际情况基础拉梁层无楼板,用TAT或SATWE等电算程序进行框架整体计算时,楼板厚度应取零,并定义弹性结点,用总刚分板的方法进行分析计算。有时虽然定义楼板厚度为零,也定义弹性结点,但未采用总刚分析,程序分析时仍然会自动按刚性楼面假定进行计算,与实际情况不符。房屋结构的平面不规则时,应特别注意这一点。三、基础拉梁设计不当多层框架房屋基础埋深很大时,为了减小底层柱的计算长度和底层的位移,可在±0.00以下适当位置设置基础拉梁,但不宜按构造要求设置,宜按框架梁进行设计,并按规范规定设置箍筋加密区。但就抗震而言,应采用短柱基础方案。一般来说,当独立基础埋置不深,或者埋置虽深但采用了短柱方案时,由于地基不良或柱子荷载差别较大,或根据抗震要求,可沿两个主轴方向设置构造基础拉梁。基础拉梁截面高度可取柱中心距的1/12~1/18,截面宽度可取1/20~1/30。构造基础拉梁的截面可取上述限值范围内的下限,纵向受力钢筋可取上述所连接柱子的最大轴力设计值的10%作为拉力或压力来计算,当为构造配筋时,除满足最小配筋率外,也不得小于上下各2#14(二级钢),箍筋不得小于Ф8@200。当拉梁上作用有填充墙或楼梯柱等传来荷载时,拉梁截面应适当增加,算出的配筋应和上述构造配筋叠加。构造基础拉梁顶标高通常与基础顶标高或智短柱顶高相同。在这种情况下,基础可按偏心受压构件计

算。当框架结构底层层高不大或埋置不深时,有时要把基础拉梁设计得比较强大,以便用拉梁平衡柱底弯矩。这时,拉梁正弯矩钢筋应全部拉通,负弯矩钢筋至少应在1/2跨拉通。拉梁正负弯矩在框架柱内的锚固、拉梁箍筋的加密及有关抗震构造要求与上部框架梁完全相同。此时拉梁宜设置在基础顶部,不宜设置在基础顶面之上,基础则可按中心受压设计。

拉梁与基础梁的区别以及相应的计算方法[1]

基础地梁一般是承受基础的竖向反力,是受力构件.其尺寸和配筋根据竖向反力值确定. 基础拉梁是调节基础不均匀沉降及承受一层隔墙的荷载,其尺寸按跨度的1/15确定. 在计算模式中,拉梁可以考虑为仅承受自重和底层墙体总量并且将之传给两边基础的两边铰支(或者有时可以考虑是弹性支座)的单跨梁(即在两边基础内钢筋不连续而是达到锚固长度),它的计算同一般的上部结构两边铰支梁;然而,拉梁在实际施工及使用中,由于其基底下层土为老土或者施工中形成的压实土层,而且在协调变形的过程中会承受一定的两边基础的变形差异带来的影响,所以完全没有土反力是不可能的。因此,保守地说,拉梁计算应考虑上下部均配置受力钢筋以应付两种可能性的发生。一般可以使上下部钢筋配置一致。至于实际计算,1/15的长跨比在底层层高以及拉梁埋深总和较大的情况下,可能会小点。拉梁是基础之间的联系梁,其主要作用如下,计算方法依其作用而异1.仅为加强基础的整体性。调节各基础间的不均匀沉降,消除或减轻框架结构对沉降的敏感性。取拉梁拉结的各柱轴力较大者的1/10,按受拉计算配筋,钢筋通长,按受压计算稳定;此时基础按偏心受压基础考虑。基础上土质较好时,建议采用该方法2.用拉梁平衡柱底弯矩。按受弯构件计算,考虑到柱底弯矩的方向的反复性,钢筋通长。此时基础按中心受压基础考虑。3.上两相并兼承托首层墙体或其他竖向荷载。将竖向荷载所产生的拉梁内力与上两种结果之一组合进行计算。 4.构造措施梁宽b=1/25~1/35L,梁高h=1/15~1/20L,配筋上下相同,并满足构造要求001:拉梁的计算方法有两种:1、取拉梁所拉结的柱子中轴力较大者的1/10,作为拉梁轴心受拉的拉力或轴心受压的压力,进行承载力计算。按此法计算时,柱基础按偏心受压考虑。基础土质较好,用此法较节约。2、以拉梁平衡柱底弯矩,柱基础按中心受压考虑。拉梁正弯矩钢筋全部拉通,负弯矩筋有1/2拉通。此时梁的截面高度宜取下面的取值较高者。如拉梁承托隔墙或其他竖向荷载,应将竖向荷载所产生的拉梁内力与上述两种计算方法至一所得之内力组合计算。拉梁截面宽度大于等于1/25L~1/35L,高度大于等于1/15L~1/20L。如按0.1N法计算,配筋应上下相同,且不少于615平方毫米。补充基础梁的有关内容:(1)一般工程无特殊要求时,基础梁顶标高取-0.050(与基础短柱顶平);(2)基础梁地构造在图纸中注明:先素土夯实,再铺炉渣300厚,梁底留100高空隙;(3)基础梁平面定位尺寸必须明确,基础梁支座若没有完全落在基础短柱上,即基础梁端部悬空或局部悬空时,应注明梁下以同标号同浇素砼填充,基础短柱严禁出现外凸现象;(4)基础梁一般采用C20或C25等级的混凝土浇筑;(5)注意基础梁高度一般取1/12跨距。 a.跨距为6m时,梁高一般取500; b.跨距为7.5m时,梁高一般取600或650;梁配筋大小应根据其荷载计算确定,一般可取6Ф16,Ф8@100/200。002:当基础按轴心受力计算,上部结构传来底弯距由基础梁平衡时,基础梁应设置在基础顶面,当基础梁仅起连接作用或作为首层墙体基础时,可设置在-0.05标高处。003:拉梁的设置情况: 1.有抗震设防,基础埋深不一致2.地基土质分布不均匀3.相邻柱荷载相差悬殊 4.基础埋深较大拉梁的主要作用是平衡柱下端弯矩,调节不均匀沉降等. 多层建筑,基础埋深较浅,宜设在基础顶面;高层建筑,宜具体情况而定基础拉梁与基础梁-1 004:1.我想基础埋置很深时,可以在0.00下50或60设基础梁,这样可以降低底层柱的计算高度;2.如果基础埋置不深,明知基础梁拉在靠近0.000处会造成短柱,那就设在基础顶面;如果非得拉在

靠近柱根处,那可以设基础短柱,加大柱截面,箍筋加密; 3.何时设基础梁,楼上说得很清楚,我想补充以上两条,请各位大虾指教;005:Q:请问基础梁配筋是按什么算的?比如开间6m的门式钢架,柱下独立基础,基础梁(我们说的地梁)高为l/12~l/10取,配筋怎么算?A:如果上面没有墙体荷载的话,一般取较大柱底轴力的1/10,按轴心受拉构件计算一下就行了。

曲线桥梁计算

目前解决曲线桥梁计算方法有以下几种: 1、空间梁元模型法 2、空间薄壁箱梁元模型法 3、空间梁格模型法 4、实体、板壳元模型法 第一种方法,是不能考虑桥梁的横向效应的,使用时要求桥梁的宽跨比不易太大。第二种方法,是第一种方法的改进,主要区别是采用了不同的单元模型,考虑了横向作用如翘曲和畸变。 第四种方法,是解决问题最有效的方法,能够考虑各种结构受力问题。 第三种方法,是目前设计及科研中常采用的方法,其特点是容易掌握,且对设计能保证足够的精度,其中采用比较多的方法是剪力-柔性梁格法,能充分考虑弯桥横向的受力特性。 剪力-柔性梁格法的原理 是当梁格节点与结构重合的点承受相同挠度和转角时,由梁格产生的内力局部静力等效与结构的内力。其实质是将传统的一维杆单元计算模式推进到二维计算模型,用一个二维的空间网格来模拟结构的受力特性。 对于梁格法的讨论这里也有不少帖子进行了讨论,实际与梁格之间的等效关系,主要表现在梁格各个构件的刚度计算上,理论上,原型和等效梁格承受相等的外荷载时,必须具有恒等的挠曲和扭转,等效梁格中每一构件的内力也必须等于该构件所代表的原型截面的,事实上这种理想状况是达不到的,模拟也是近似的,但事实是按梁格计算能把握住结构的总体性能,对于设计来说应该是能满足精度的。梁格也是近似的模拟,只要计算者能够和好的模拟了横向纵向的特性,应该是可以作为设计依据的。你在这里说的横向的切分使得预应力产生的次内力问题我不太清楚你指的什么,但是只要横向的刚度业等效了原型,对于计算应该不会出现逆所说的结构内力失真,这条可以通过结果验证。 当然任何结构,只要不怕麻烦都可以用实体单元来分析,只要正确模拟,实体分析也是最精确的,但是对于这种模型要准确模拟可不是一件容易的事,并且预应力的损失计算,施加等等都非常麻烦,还有最后结果的查看也不方便,因此除了结构局部的分析,一般是没有拿实体来进行全桥的整体分析的,至于说单梁我也说了,有些时候精度是可以的,但是对于这种结构相对于梁格来说单梁的精度是不如梁格的。特别是在没有把握的前提下可以做一下梁格的分析,对结果进行对比,能放心一些,其实对于设计,能用单梁算的近量用单梁能用平面的尽量不用空间,这也应该是一个原则,前提是对简化做到心中有数。像这种结构来说如果开始计算就用梁格或者更麻烦的实体来配筋都不是一般的麻烦,配筋计算还是最好用简化的单梁,如果不放心然后用其他方式来验算,这样比较合适 在midas分析中应该注意的问题: 如果你要计算的是普通钢筋混凝土结构,主要看内力结果,可以在划分的时候简单一些,直接“一刀切”,也就是顶底板在同一位置切开,但是在计算其抗弯惯性矩的时候一定要注意纵向梁格的界面惯性矩是相对于整体截面的中性轴的,而不是划分以后的梁格截面本身的惯性矩,对于预应力混凝土的结构你就得注意梁格的划分了,在划分的时候尽量使得划分以后的各个梁格截面要跟原截面的中性轴一致,只有这样计算出来的应力结果才能比较准确,当然,如果是等截面的梁只要划分一个截面就可以了,算起来也不是很费时费力,但是如果是变截

MIDAS梁格法建模算例

北京迈达斯技术有限公司

目录 概要 (3) 设置操作环境........................................................................................................... 错误!未定义书签。定义材料和截面....................................................................................................... 错误!未定义书签。建立结构模型........................................................................................................... 错误!未定义书签。PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。输入荷载 .................................................................................................................. 错误!未定义书签。定义施工阶段. (60) 输入移动荷载数据................................................................................................... 错误!未定义书签。输入支座沉降........................................................................................................... 错误!未定义书签。运行结构分析 .......................................................................................................... 错误!未定义书签。查看分析结果........................................................................................................... 错误!未定义书签。PSC设计................................................................................................................... 错误!未定义书签。

MIDAS梁格法学习小结及疑问

MIDAS梁格法学习小结及疑问 最近在做一个半径80米,曲线弧长90米,采取3跨30米布置的连续曲梁桥。经过计算我的圆心角为32度,必须得当作曲梁模拟。 首先我采用的是单箱梁模拟,但是经过师兄提醒,感觉到这样考虑十分不妥,因为曲梁桥弯扭藕合作用明显。横桥向扭矩的分析对桥梁最后结果有着很大的影响。即需要做横向分析。 因此特来论坛淘梁格法计算的资料,这一搜索不得了,让我有种醍醐灌顶的感觉。尤其是bridgedlut兄的见解,让我受益颇深。同时还有有很多前辈表述了自己做时曲梁碰到的问题及自己的见解。我老老实实的坐了一个多小时,十分耐心细致的看完了所有相关帖子。自己感觉到本来对梁格法停留在概念程度上的我已经对梁格法有了进一步的了解,并且对我现在正在做的工程有着很大的帮助,再次对各位表示谢谢了。谢谢各位斑竹辛苦的工作。谢谢kaisi论坛给我提供了一个很好的学习平台。 先谈谈自己看后的一些基本认识: 1.符拉索夫的三个方程经典的描述出了弯扭藕合作用对曲梁的重要影响,需进一步复习加深理解。 2.梁格体系涉及到纵向单元的划分:纵向单元划分当然是越细越好,但是原则上每跨分成8段以上比较理想,其中:截面变化处,关键部位等必须划分,并且连续弯梁桥的中间支座附近因内力变化剧烈,因此需加密网格。 3.横向虚梁的截面模拟。总体原则:每个等效划分梁格的纵向中性轴必须与远箱粱截面在同一高度。 4.通常都把箱梁腹板处化做梁肋。这样腹板处就被化做单元,可以直接查看其内力。 几点补充: 1.梁格法模拟的关键是横截面几何参数的等效化,我这方面的知识比较欠缺。请问能否提供一个比较详细的算例,我想bridgedlut 兄是一定有的,哈哈,或者介绍基本相关的书籍,以便查阅。 2.我这座连续曲梁桥,有两个桥墩,三跨布置,中跨布置两道横隔板,边跨设置边横隔板。请问梁格法在横隔梁处的处理是不是也只把这部分当做实心的截面来看就可以,是否横隔梁处也得沿着全跨分为几个梁格?也就是横隔梁处的计算通常是怎么处理的,针对梁格法? 特此对有关梁格法的相关好贴做了一个小小的总结,一来方便大家查阅,二来自己后续学习查看也更加方便些。 梁格法计算问题

浅谈对梁格的几点认识

浅谈对梁格的几点认识 上海浦东建筑设计研究院有限公司杭州分公司黄声涛 【摘要】: 梁格分析法是用计算机分析桥梁上部结构比较实用有效的空间分析方法,它具有基本概念清晰、易于理解和使用等特点,因此在桥梁结构分析中得到了广泛的采用。但是对于抗扭等需要做整体截面来考虑时,单梁模型则较真实得反应了结构整体受力性能。【关键词】梁格法箱梁截面特性空间单梁 一、梁格法基本原理 梁格法的基本思想是用等效梁格代替桥梁上部结构,将分散在板式或箱梁每一区段内的弯曲刚度和抗扭刚度集中于最邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格构件内,横向刚度集中于横向梁格构件内。理想的刚度等效原则应该满足:当原型实际结构和对应的等效梁格承受相同荷载时,两者的挠曲将是恒等的,并且每一梁格内的弯矩、剪力和扭矩等于该梁格所代表的实际结构部分的内力。 二、适用范围 梁格法主要针对的是宽跨比较大的直线桥以及圆心角较大的曲线梁桥。之所以需要用梁格体系来分析结构,就是因为原本当作杆系构件的梁因为承受了不能忽视的扭矩以及横向弯曲作用。如对于直线宽桥,活载的偏心布置所产生的扭矩不能简单的用偏载系数这一概念简化。而对于曲线梁桥更是如此,首先恒载的不对称就会产生一部分扭矩,这种效应更使结构不能再用一根杆来进行分析计算。要么在杆件上添加扭矩,要么就得使用梁格法以增加横向杆件数量了,或者干脆采用实体模型分析。虽然梁格法对原结构进行了面目全非的简化,大量几何参数要预先准备,人为偏差较难避免,但是相对于单梁和实体单元模型,梁格模型既能考虑桥梁横截面的畸变,又能直接输出各主梁的内力,便于利用规范进行强度验算,整体精度满足设计要求。正是由于这个优点使得梁格法成为计算曲线梁桥、宽梁桥的最佳方法。 三、梁格划分 对于有腹板的箱型、T型梁桥,其梁格模型中纵向主梁的个数,应当是腹板的个数。对于实心板梁,纵向主梁的个数可按计算者意愿决定。全桥顺桥向划分M个梁段,共有M+1 个横截面,每个横截面位置,就是横向梁单元的位置。支点应当位于某个横截面下面,也就是在某个横向梁单元下面。每一道横梁都被纵向主梁和支点分割成数目不等的单元。纵、横梁单元用同一种最普通的12自由度空间梁单元,能考虑剪切变形影响即可。对于箱梁而言,一般来说,横向梁格划分一个腹板一个梁格。且假若能尽量满足划分梁格后的各个梁格质心与原箱梁腹板的中心重合将对预应力效应模拟的准确性很有帮助。而纵向梁格每跨8到10 个梁格可以基本满足精度要求。下面结合箱梁实例来谈一谈如何进行梁格截面划分。

梁格法截面特性计算

梁格法截面特性计算 读书报告

目录 第一章梁格法简介 (1) 1.1梁格法基本思想 (1) 1.2梁格网格的划分 (1) 1.2.1纵梁的划分 (2) 1.2.2 虚拟横梁的设置间距 (2) 第二章梁格分析板式上部结构 (3) 2.1 结构类型 (3) 2.2 梁格网格 (3) 2.3 截面特性计算 (4) 2.3.1 惯性矩 (4) 2.3.2 扭转 (4) 第三章梁格法分析梁板式上部结构 (5) 3.1 结构类型 (5) 3.2 梁格网格 (5) 3.3 截面特性计算 (6) 3.3.1 纵向梁格截面特性 (6) 3.3.2 横向梁格截面特性 (7) 第四章梁格法分析分格式上部结构 (8) 4.1 结构形式 (8) 4.2 梁格网格 (8) 4.3 截面特性计算 (9) 4.3.1 纵向梁格截面特性 (9) 4.3.2 横向梁格截面特性 (12) 第五章箱型截面截面特性计算算例 (15)

第一章梁格法简介 1.1梁格法基本思想 梁格法主要思路是将上部结构用一个等效梁格来模拟,如图1.1示,将分散在板式或箱梁每一段内弯曲刚度和抗扭刚度集中于最邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格内,而横向刚度则集中于横向梁格构件内。从理论上讲,梁格必须满足一个等效原则:当原型实际结构和对应的等效梁格承受相同荷载时,两者的挠曲应是恒等的,而且在任一梁格内的弯矩、剪力和扭矩应等于该梁格所代表的实际结构的部分内力。 图1.1 (a)原型上部结构(b)等效梁格 1.2梁格网格的划分 采用梁格法对桥梁结构进行分析时,首先考虑的是如何对梁格单元的合理划分。网格划分的枢密程度是保证比拟梁格与实际结构受力等效的必

MIDAS梁格法建模

MIDAS梁格法建模 2021-4-2612:14MIDAS梁格法建模使用该软件,针对于一般的窄桥可以使用单梁进行模拟,遇到宽度较大的桥梁,尽量使用梁格法,有没有人用梁格法建立过模型\用MIDAS进行局部构件分析的,希望能发一些这样的实例上来,谢谢wentao8401全文结束》》-4-2614:29前段时间我集中时间精力学习了下梁格法,有点不太理解你所谓的局部构件分析指的是什么,因为据我所知,midas只有用它的FX+才能算局部分析,或者用ansys的子结构分析也可以。谈谈我对梁格的几点认识: 1、它是一种将空间分析近似为平面干系分析的方法,精确程度可以满足工程需求。适用范围:梁格法主要针对的是宽跨比较大的直线桥以及圆心角较大的曲线梁桥。我个人的理解,只所以需要用梁格子体系来分析结构,就是因为原本当作干系构件的梁因为承受了不能忽视的扭矩以及横向弯曲作用。如对于直线宽桥,活载的偏心布置所产生的扭矩不能简单的用偏载系数这一概念简化。而对于曲线梁桥更是如此,首先恒载的不对称就会产生一部分扭矩,这种效应更使结构不能再用一根杆来进行分析计算。要么在杆件上添加扭矩,要么就得使用梁格法以增加横向杆件数量了。 3、梁格原理:模拟梁格体系,使其受荷效应与原结构等效(不可能那么精确,只能说接近等效)

4、梁格需要注意的几个方面:第一、关于梁格的划分,为保证荷载的正确传递,横向杆件的间距不宜超过纵向梁肋的间距。也就是说纵向梁格的划分以横向梁格划分为标尺,而横向的梁格划分又得遵循划分后各个梁格的中性轴与原截面保持在同一水平高度处(这点很关键,主要是保证梁格纵向弯曲与原结构的等效性)。对于箱梁而言,一般来说,横向梁格划分一个腹板一个梁格。且假若能尽量满足划分梁格后的各个梁格质心与原箱梁腹板的中心重合将对预应力效应模拟的准确性很有帮助。而纵向梁格每跨8到10个梁格可以基本满足精度要求。第二、截面几何特性值的修正,(主要针对箱梁截面)因为划分梁格的截面几何特性相对原截面有较大偏差,需要对纵梁格的抗扭惯性矩,剪切面积以及横向梁格的抗弯惯性矩以及剪切面积进行修正,具体公式我参考的是《上部结构性能》一书上第五章的剪力-柔性梁格法的公式。梁格法的不足:由于梁格法依照平截面假定,因此它考虑不了剪力滞后效应。因此对于少横隔梁的结构假如需要计算其剪力滞效应的话可以使用空间有限元分析软件计算,midas是算不了的,ansys可以。而且梁格法最后所得结果的准确性在很大程度上是于人对梁格的理解掌握能力成正比的,建议假若不需要使用梁格的时候,尽量不用。比如圆心角大于30度的曲桥用midas的单梁模拟精度完全可以相信。以上主要是总结一下自己学习的一些体会,难免有不正确的地方,望高手进一步指点。附上自己认为比较好的一些资料跟模型供大家查阅。希望多多交流。lingboms

如何用梁格法计算曲线梁桥桥梁分析

如何用梁格法计算曲线梁桥桥梁分析 一、梁格法既有相当精度又较易实行 对曲线梁桥, 可以把它简化为单根曲梁、 平面梁格计算, 也可以几乎不加简化地用块体 单元、板壳单元计算。 单根曲梁模型的优点是简单, 缺点是: 几乎所有类型的梁单元都有刚性截面假定, 因而 不能考虑桥梁横截面的畸变,总体精度较低。 块体单元、板壳单元模型,优点是:与实际模型最接近,不需要计算横截面的形心、剪 力中心、翼板 有效宽度,截面的畸变、翘曲自动考虑;缺点:输出的是梁横截面上若干点的 应力, 不能直接用于强度计算。 对于位置固定的静力荷载, 当然可以把若干点的应力换算成 横截面上的内力。 对于位置不固定的车辆荷载, 理论上必须采用影响面方法求最大、 最小内 力。板壳单元输出的只能是各点的应力影响面。 把各点的应力影响面重新合成为横截面的内 力影响面,要另外附加大量工作。这个缺点使得它几乎不可能在设计中应用。 梁格法的优点是: 可以直接输出各主梁的内力, 便于利用规范进行强度验算, 整体精度 能满足设计要求。 由于这个优点, 使得该法成为计算曲线梁桥和其它平面形状特殊的梁式桥 的唯一实用方法。 它的缺点在于, 它对原结构进行了面目全非的简化, 大量几何参数要预先 计算准备,如果由计算者手工准备,不仅工作量大,而且人为偏差较难避免。 二、如何建立梁格力学模型 1. 纵梁个数、横梁道数、支点与梁单元 对于有腹板的箱型、 于 实心板梁,纵向主梁的个数可按计算者意愿决定。全桥顺桥向划分 M 个梁段, 个横截面, 每个横截面位置,就是横向梁单元的位置。支点应当位于某个横截面下面, 是在某个横向梁单元下面。 每一道横梁都被纵向主梁和支 点分割成数目不等的单元。 梁单元用同一种最普通的 12 自由度空间梁单元,能考虑剪切变形影响 即可。 2. 纵向主梁的划分、几何常数计算 对于箱型梁桥,从什么地方划开,使其成为若干个纵向主梁?汉勃利提出了一个原则: 应当使划分以 后的各工型的形心大致在同一高度上。 笔者曾经用有限条法进行过考核, 依据这一原则, 依各主梁弯矩、 剪力计算出的正应力、 剪应力, 与有限条的吻合性确实较好。 试算的具体划分步骤如下: T 型梁桥,其梁格模型中纵向主梁的个数,应当是腹板的个数。对 共有 M+1 也就 纵、横 发现

迈达斯梁格法讨论

迈达斯梁格法讨论

1.在用桥博进行梁格法计算时,在单元的截面信息中输入的自定义抗扭惯性矩是整个纵向构件单元截面的抗扭惯性矩,还是如【桥梁上部构造性能】中所提,不包括腹板在内的仅由顶、底板构成的抗扭惯性矩? 答:我曾经对同一座简支弯桥分别用桥博单梁、梁格和MIDAS单梁、梁格建模计算进行比较分析。结果表明:1、仅考虑恒载的情况;对于梁格法,无论是桥博还是MIDAS,内力而言,四种模型计算结果弯矩结果一致(我所说的一致指误差在5%以内),程序无法提供腹板剪力流产生的扭矩,在手动计算并组合后,两种程序梁格法计算的扭矩结果一致,且均较单梁计算的扭矩略偏大,约10%左右(这应该是由于刚度模拟误差产生的),由此可以得出汉勃利对于梁格法力学理论的阐述是正确的,因此,对于梁格法,我个人的观点,其可以考虑弯扭耦合而得出较精确的弯矩并指导整体受力配筋是没有疑问的,问题在于,梁格法扭矩需修正的适用性,我们可以通过手动计入两侧腹板剪力流产生的扭矩来得到较为正确的扭矩并无异议,但对于很多情况这并不利于直接指导我们设计,比如我们需要观察扭矩

包络图来判断弯桥偏心的设置时,会发现我们直接用单梁模型可以更为节省时间和精力(至少无需你去修正组合)而得到可以直接应用的数据,单梁的缺陷在于不能正确考虑各片梁实际受力的差异,但这并不影响整体的设计,比如偏心的设计,整体抗扭性能的评估,而在细节上的处理,我们需要用梁格法的计算去确保安全。 2、关于活载的情况,梁格法而言,出于分析对比,我也用桥博和MIDAS分别计算了活载下的关键截面扭矩对比,在这里就不说弯矩了,因为结果比较吻合(8%的差别)。MIDAS自定义车道比较方便,可以同时考虑多种工况,这比桥博方便许多,但需要注意的是,对于同一工况,如果你用不同的梁来做偏心实现的话,产生的内力差别很大,且用哪片梁直接导致这片梁内力变大,我用的是V6.71,不知道 MIDAS2006是否没有这样的问题,为了解决这一问题,我在活载偏载于哪片梁时,采取该片梁去定义车道偏心,结果表明,两种程序计算结果比较吻合。在用单梁模型计算时,两种程序计算结果完全一致,同上面恒载的情况,单梁结果要比梁格小,这也是因为刚度的模拟误差产生的。综上所述,两点结论:1、在做整体设计时(比如设置预偏心),个人感觉用单梁模型可以较为

分部分项工程划分说明(1)

单位、分部分项工程划分报审表工程名称:长丰县下塘至造甲公路建设工程

长丰县2016年农村道路畅通工程 下塘至造甲路 单位、分部及分项工程划分表 编制: 复核: 安徽华初工程项目管理有限公司 二〇一六年十一月

单位、分部及分项工程划分总体说明 一、划分依据: 1、《公路工程质量检验评定标准》JTG F80/1-2004附录A单位、分部 及分项工程划分 2、长丰县2016年农村道路畅通工程下塘至造甲路施工图 3、《安徽省公路工程竣工文件管理办法》 二、划分原则: 1、为了确保本合同段内公路工程质量,加强对工程整体及各个分部分项工程质量的控制,达到创优目的,根据交通部颁《公路工程质量评定标准》(JTGF80/1-2004)中的附录A对K0+000~K10+983段内合同工程项目进行了分项、分部、单位工程的划分工作。 2、交通工程的单位工程: (1)路基工程:按每标段划分为一个单位工程。 (2)路面工程:按每标段划分为一个单位工程。 (3)环保工程:按每标段划分为一个单位工程。 (4)交通安全设施:按每标段划分为一个单位工程。 3、分部工程: (1)路基工程:3KM路段划分为一个分部工程,不足3KM路段划分为一个分部工程。 (2)排水工程:3KM路段划分为一个分部工程,不足3KM路段划分为一个分部工程。 (4)小桥:以每座小桥划分为一个分部工程。 (5)路面工程:3KM路段划分为一个分部工程,不足3KM路段划分为一个分部工程。 (6)其余未列分部工程均按公路检验评定标准附录A相应条款划分。 4、分项工程: 其余未列工程按公路检验评定标准附录A相应条款划分。

小半径曲线梁桥计算分析论文

小半径曲线梁桥计算分析 摘要:针对曲线梁桥受力的复杂性采用空间梁单元法和梁格法对某一小半径弯桥进行建模计算,并对结果进行对比分析和总结,得出两种方法在设计计算中各自特点,可供工程技术人员设计时参考借鉴。 关键词:曲线梁桥;耦合扭矩;空间梁单元法;梁格法 abstract: based on the complexity of the curved girder bridges stress by spatial beam element method and a small radius of grillage method a curved bridge model calculation, and the results are analyzed and compared, it summarizes the two methods in the design and calculation of their own characteristics for the engineering and technical personnel design for reference. keywords: curve beam bridge; coupling torque; space beam element method; grillage method 中图分类号:u448文献标识码:a 文章编号: 1 引言 随着我国交通运输事业的迅速发展以及城市化进程的加快,在公路互通和城市立交中运用曲线梁桥是实现交通联结的必要手段。曲线梁桥可改善城市交通的紧张状况,有效解决周围环境的限制(例如地下管线、地下文物及沿街建筑干扰),实现各方向交通道

新版分部分项工程划分

建筑工程分部分项工程划分序 号 分部工程子分部工程分项工程 1 地 基 与 基 础 土方工程土方开挖,土方回填,场地平整 基坑支护 排桩,重力式挡土墙,型钢水泥土搅拌墙,土钉墙与复合土钉墙,地下连续 墙,沉井与沉箱,钢或混凝土支撑,锚杆,降水与排水 地基处理 灰土地基、砂和砂石地基、土工合成材料地基,粉煤灰地基,强夯地基,注 浆地基,预压地基,高压喷射注浆地基,水泥粉煤灰碎石桩地基,夯实水泥 土桩地基,砂桩地基 桩基先张法预应力管桩,钢筋混凝土预制桩,钢桩,混凝土灌注桩 地下防水 防水混凝土,水泥砂浆防水层,卷材防水层,塑料防水板防水层,金属板防 水层,膨润土防水材料防水层;细部构造;喷锚支护,地下连续墙,盾构隧 道,沉井,逆筑结构;渗排水、盲沟排水,隧道排水,坑道排水,塑料排水 板排水;预注浆、后注浆,结构裂缝注浆 混凝土基础模板、钢筋、混凝土,后浇带混凝土,混凝土结构裂缝处理 砌体基础砖砌体,混凝土小型空心砌块砌体,石砌体,配筋砌体型钢、钢管混凝土 基础 型钢、钢管焊接与螺栓连接,型钢、钢管与钢筋连接,浇筑混凝土钢结构基础钢结构制作,钢结构安装,钢结构涂装 2 主 体 结 构 混凝土结构模板,钢筋,混凝土,预应力、现浇结构,装配式结构 砌体结构砖砌体,混凝土小型空心砌块砌体,石砌体,配筋砖砌体,填充墙砌体 钢结构 钢结构焊接,紧固件连接,钢零部件加工,钢构件组装及预拼装,单层钢结 构安装,多层及高层钢结构安装,空间格构钢结构制作,空间格构钢结构安 装,压型金属板,防腐涂料涂装,防火涂料涂装、天沟安装、雨棚安装型钢、钢管混凝土 结构 型钢、钢管现场拼装,柱脚锚固,构件安装,焊接、螺栓连接,钢筋骨架安 装,型钢、钢管与钢筋连接,浇筑混凝土 轻钢结构钢结构制作,钢结构安装,墙面压型板,屋面压型板 索膜结构 膜支撑构件制作,膜支撑构件安装,索安装,膜单元及附件制作,膜单元及 附件安装 铝合金结构 铝合金焊接,紧固件连接,铝合金零部件加工,铝合金构件组装,铝合金构 件预拼装,单层及多层铝合金结构安装,空间格铝合金结构安装,铝合金压 型板,防腐处理,防火隔热 木结构方木和原木结构、胶合木结构、轻型木结构,木构件防护

迈达斯Midascivil梁格法建模实例

目录 概要......................................................... 设置操作环境 ................................................. 定义材料和截面 ............................................... 建立结构模型 ................................................. PSC截面钢筋输入 .............................................. 输入荷载 ..................................................... 定义施工阶段 ................................................. 输入移动荷载数据 ............................................. 输入支座沉降 ................................................. 运行结构分析 ................................................. 查看分析结果 ................................................. PSC设计......................................................

GB50300新规范建筑工程的分部、分项划分工程

建筑工程的分部工程、分项工程划分 分部工程代号分部 工程 子分部工程分项工程 01 地 基 与 基 础 地基(01) 素土、灰土地基(01),砂和砂石地基(02),土工合成材料地基(03), 粉煤灰地基(04),强夯地基(05),注浆地基(06),预压地基(07), 砂石桩复合地基(08),高压旋喷注浆地基(09),水泥土搅拌桩地基 (10),土和灰土挤密桩复合地基(11),水泥粉煤灰碎石桩复合地 基(12),夯实水泥土桩复合地基(13) 基础(02) 无筋扩展基础(01),钢筋混凝土扩展基础(02),筏形与箱形基础 (03)钢结构基础(04),钢管混凝土结构基础(05),型钢混凝土结 构基础(06),钢筋混凝土预制桩基础(07),泥浆护壁成孔灌注桩 基础(08)干作业成孔桩基础(09),长螺旋钻孔压灌桩基础(10), 沉管灌注桩基础(11),钢桩基础(12),锚杆静压桩基础(13),岩石描 杆基础(14),沉井与沉箱基础(15) 基坑支护(03) 灌注桩排桩围护墙(01),板桩围护墙(02),咬合桩围护墙(03),型 钢水泥土搅拌墙(04),土钉墙(05),地下连续墙(06),水泥土重力 式挡墙(07),内支撑(08),错杆(09),与主体结构相结合的基坑支 护(10) 地下水控制(04)降水与排水(01),回灌(02) 土方(05) 土方开挖(01),土方回填(02),场地平整(03) 边坡(06) 喷锚支护(01),挡土墙(02),边坡开挖(03) 地下防水(07) 主体结构防水(01),细部构造防水(02),特殊施工法结构防水(03), 排水(04),注桨(05) 02 主 体 结 构 混凝土结构(01) 模板(01),钢筋(02),混凝土(03),预应力(04),现浇结构(05),装 配式结构(06) 砌体结构(02) 砖砌体(01),混凝土小型空心砌块砌体(02),石砌体(03),配筋砌 体(04),填充墙砌体(05) 钢结构(03) 钢结构焊接(01),紧固件连接(02),钢零部件加工(03),钢构件组 装及预拼装(04),单层钢结构安装(05)、,多层及高层钢结构安装 (06),钢管结构安装(07),预应力钢索和膜结构(08),压型金属板 (09),防腐涂料涂装(10),防火涂料涂装(11) 钢管混凝土结构 (04) 构件现场拼装(01),构件安装(02),钢管焊接(03),构件连接(04), 钢管内钢筋骨架(05),混凝土(06) 型钢混凝土结杓 (05) 型钢焊接(01),紧固件连接(02),型钢与钢筋连接(03),型钢构件 组装及预拼装(04),型钢安装(05),模板(06),混凝土(07) 铝合金结构(06) 铝合金焊接(01),紧固件连接(02),铝合金零部件加工(03),铝合 金构件组装(04),铝合金构件预拼装(05),铝合金框架结构安装 (06),铝合金空间网格结构安装(07),铝合金面板(08),铝合金幕 墙结构安装(09),防腐处理(10) 木结构(07) 方木与原木结构(01),胶合木结构(02),轻型木结构(03),木结构 的防护(04)

MIDAS梁格法建模

查看完整版本: MIDAS梁格法建模 tomatogarden 2007-4-26 12:14 MIDAS梁格法建模 使用该软件十,针对于一般的窄桥可以使用单梁进行模拟,遇到宽度较大的桥梁,尽量使用梁格法,有没有人用梁格法建立过模型\用MIDAS进行局部构件分析的,希望能发一些这样的实例上来,谢谢 wentao8401 2007-4-26 14:29 前段时间我集中时间精力学习了下梁格法,有点不太理解你所谓的局部构件分析指的是什么,因为据我所知,midas只有用它的FX+才能算局部分析,或者用ansys 的子结构分析也可以。 谈谈我对梁格的几点认识: 1.它是一种将空间分析近似为平面干系分析的方法,精确程度可以满足工程需求。 适用范围:梁格法主要针对的是宽跨比较大的直线桥以及圆心角较大的曲线梁桥。我个人的理解,只所以需要用梁格子体系来分析结构,就是因为原本当作干系构件的梁因为承受了不能忽视的扭矩以及横向弯曲作用。如对于直线宽桥,活载的偏心布置所产生的扭矩不能简单的用偏载系数这一概念简化。而对于曲线梁桥更是如此,首先恒载的不对称就会产生一部分扭矩,这种效应更使结构不能再用一根杆来进行分析计算。要么在杆件上添加扭矩,要么就得使用梁格法以增加横向杆件数量了。 3.梁格原理:模拟梁格体系,使其受荷效应与原结构等效(不可能那么精确,只能说接近等效) 4.梁格需要注意的几个方面: 第一.关于梁格的划分,为保证荷载的正确传递,横向杆件的间距不宜超过纵向梁肋的间距。也就是说纵向梁格的划分以横向梁格划分为标尺,而横向的梁格划分又得遵循划分后各个梁格的中性轴与原截面保持在同一水平高度处(这点很

如何用梁格法计算曲线梁

一、梁格法既有相当精度又较易实行 对曲线梁桥,可以把它简化为单根曲梁、平面梁格计算,也可以几乎不加简化地用块体单元、板壳单元计算。 单根曲梁模型的优点是简单,缺点是:几乎所有类型的梁单元都有刚性截面假定,因而不能考虑桥梁横截面的畸变,总体精度较低。 块体单元、板壳单元模型,优点是:与实际模型最接近,不需要计算横截面的形心、剪力中心、翼板有效宽度,截面的畸变、翘曲自动考虑;缺点:输出的是梁横截面上若干点的应力,不能直接用于强度计算。对于位置固定的静力荷载,当然可以把若干点的应力换算成横截面上的内力。对于位置不固定的车辆荷载,理论上必须采用影响面方法求最大、最小内力。板壳单元输出的只能是各点的应力影响面。把各点的应力影响面重新合成为横截面的内力影响面,要另外附加大量工作。这个缺点使得它几乎不可能在设计中应用。 梁格法的优点是:可以直接输出各主梁的内力,便于利用规范进行强度验算,整体精度能满足设计要求。由于这个优点,使得该法成为计算曲线梁桥和其它平面形状特殊的梁式桥的唯一实用方法。它的缺点在于,它对原结构进行了面目全非的简化,大量几何参数要预先计算准备,如果由计算者手工准备,不仅工作量大,而且人为偏差较难避免。 二、如何建立梁格力学模型 1.纵梁个数、横梁道数、支点与梁单元 对于有腹板的箱型、T型梁桥,其梁格模型中纵向主梁的个数,应当是腹板的个数。对于实心板梁,纵向主梁的个数可按计算者意愿决定。全桥顺桥向划分M个梁段,共有M+1个横截面,每个横截面位置,就是横向梁单元的位置。支点应当位于某个横截面下面,也就是在某个横向梁单元下面。每一道横梁都被纵向主梁和支点分割成数目不等的单元。纵、横梁单元用同一种最普通的12自由度空间梁单元,能考虑剪切变形影响即可。 2.纵向主梁的划分、几何常数计算 对于箱型梁桥,从什么地方划开,使其成为若干个纵向主梁?汉勃利提出了一个原则:应当使划分以后的各工型的形心大致在同一高度上。笔者曾经用有限条法进行过考核,发现依据这一原则,依各主梁弯矩、剪力计算出的正应力、剪应力,与有限条的吻合性确实较好。试算的具体划分步骤如下: (1)在箱型各室的顶板、底板各选择一划分点,成为若干个工型 (2)对各工型的翼板计算有效宽度 (3)按有效宽度计算各工型的形心 (4)比较各工型的形心高度,若不在一条直线上且偏离较大,返回(1)重新来看。完全满足汉勃利的原则,是相当难的。 需要计算的纵向主梁几何常数:工型的全面积、抗剪面积,考虑有效宽度的形心位置、两个弯曲惯矩,绕水平纵轴的自由扭转惯矩。在自由扭转惯矩计算上存在错误较多。汉勃利的自由扭转惯矩计算公式是: C=2*h2*t1*t2/(t1+t2) 其中C—单位宽度顶、底板联合自由扭转惯矩,h—顶、底板中面间距;t1、t2—顶、底板平均厚度。C值乘以顶、底板平均宽度,得工型一侧的扭转惯矩。工型另一侧的扭转惯矩同法计算再相加。如果只有顶板或是实心板,则 C=t3/6 应该注意的是,按上面方法算得的各主梁扭转惯矩之和,只等于整体横截面自由扭转惯矩的1/2。另外1/2的扭转惯矩是由各主梁腹扳的竖向抗剪效应提供的。抗剪面积,对于箱形、T形截面,就是腹板的截面积,因为按照桥梁设计理论中,顶、底板是不承受竖剪力的。还要指出:工型的形心的横向位置,就取在腹板的厚度中线上,不需要计算,其竖向位置,则应按计算值。 3.横梁几何常数计算 横梁代表的是指定横截面两侧各1/2纵向梁单元长度范围内的顶、底板和横隔板。对顶、底板,需要计算单位宽度的抗弯惯矩、等效抗剪面积、抗扭惯矩,再乘以横梁代表的宽度,再迭加横隔板(如果该位置有的话)的相应常数。抗扭惯矩与前面的公式相同。 汉勃利[1]的单位宽度等效抗剪面积公式是 对于箱型梁的顶、底板 As=E/G * (t13+ t23) * tw3 / (B2tw3 + (t13+ t23)*B*h) 其中E、G—混凝土的弹性模量、剪切模量,其它变量见下图。 汉勃利根据闭合框架推导出箱形截面的横向等效抗剪面积As

梁格法截面特性计算知识讲解

梁格法截面特性计算

梁格法截面特性计算 读书报告

目录 第一章梁格法简介 (1) 1.1梁格法基本思想 (1) 1.2梁格网格的划分 (1) 1.2.1 纵梁的划分 (2) 1.2.2 虚拟横梁的设置间距 (2) 第二章梁格分析板式上部结构 (3) 2.1 结构类型 (3) 2.2 梁格网格 (3) 2.3 截面特性计算 (4) 2.3.1 惯性矩 (4) 2.3.2 扭转 (4) 第三章梁格法分析梁板式上部结构 (5) 3.1 结构类型 (5) 3.2 梁格网格 (5) 3.3 截面特性计算 (6) 3.3.1 纵向梁格截面特性 (6) 3.3.2 横向梁格截面特性 (7) 第四章梁格法分析分格式上部结构 (8) 4.1 结构形式 (8) 4.2 梁格网格 (8) 4.3 截面特性计算 (9) 4.3.1 纵向梁格截面特性 (9) 4.3.2 横向梁格截面特性 (12) 第五章箱型截面截面特性计算算例 (15)

第一章梁格法简介 1.1梁格法基本思想 梁格法主要思路是将上部结构用一个等效梁格来模拟,如图1.1示,将分散在板式或箱梁每一段内弯曲刚度和抗扭刚度集中于最邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格内,而横向刚度则集中于横向梁格构件内。从理论上讲,梁格必须满足一个等效原则:当原型实际结构和对应的等效梁格承受相同荷载时,两者的挠曲应是恒等的,而且在任一梁格内的弯矩、剪力和扭矩应等于该梁格所代表的实际结构的部分内力。 图1.1 (a)原型上部结构(b)等效梁格 1.2梁格网格的划分 采用梁格法对桥梁结构进行分析时,首先考虑的是如何对梁格单元的合理划分。网格划分的枢密程度是保证比拟梁格与实际结构受力等效的必要条件之一。合理的网格划分,不仅能准确反映结构的受力特征,还能提高工作效率。

梁格法

梁格的几点认识: 1.它是一种将空间分析近似为平面干系分析的方法,精确程度可以满足工程需求。 2.适用范围:梁格法主要针对的是宽跨比较大的直线桥以及圆心角较大的曲线梁桥。我个人的理解,只所以需要用梁格子体系来分析结构,就是因为原本当作干系构件的梁因为承受了不能忽视的扭矩以及横向弯曲作用。如对于直线宽桥,活载的偏心布置所产生的扭矩不能简单的用偏载系数这一概念简化。而对于曲线梁桥更是如此,首先恒载的不对称就会产生一部分扭矩,这种效应更使结构不能再用一根杆来进行分析计算。要么在杆件上添加扭矩,要么就得使用梁格法以增加横向杆件数量了。 3.梁格原理:模拟梁格体系,使其受荷效应与原结构等效(不可能那么精确,只能说接近等效) 4.梁格需要注意的几个方面: 第一.关于梁格的划分,为保证荷载的正确传递,横向杆件的间距不宜超过纵向梁肋的间距。也就是说纵向梁格的划分以横向梁格划分为标尺,而横向的梁格划分又得遵循划分后各个梁格的中性轴与原截面保持在同一水平高度处(这点很关键,主要是保证梁格纵向弯曲与原结构的等效性)。对于箱梁而言,一般来说,横向梁格划分一个腹板一个梁格。且假若能尽量满足划分梁格后的各个梁格质心与原箱梁腹板的中心重合将对预应力效应模拟的准确性很有帮助。而纵向梁格每跨8到10个梁格可以基本满足精度要求。 第二.截面几何特性值的修正,(主要针对箱梁截面)因为划分梁格的截面几何特性相对原截面有较大偏差,需要对纵梁格的抗扭惯性矩,剪切面积以及横向梁格的抗弯惯性矩以及剪切面积进行修正,具体公式我参考的是《上部结构性能》一书上第五章的剪力-柔性梁格法的公式。 5.梁格法的不足:由于梁格法依照平截面假定,因此它考虑不了剪力滞后效应。因此对于少横隔梁的结构假如需要计算其剪力滞效应的话可以使用空间有限元分析软件计算,midas是算不了的,ansys可以。而且梁格法最后所得结果的准确性在很大程度上是于人对梁格的理解掌握能力成正比的,建议假若不需要使用梁格的时候,尽量不用。比如圆心角大于30度的曲桥用midas的单梁模拟精度完全可以相信。 用梁格要分割箱梁,箱梁纵截面应该是可以用midas里面提供的PSC截面的,但是要选择分割后对应的形状,比如单箱双室箱梁按三个腹板分成三条纵梁,那么两边梁是τ(希腊字母tao),中间是工字形,划分时要通过试算使三个截面的形心轴高度与未划分前整个截面基本一致,为了加载在箱梁两边还可建两个虚纵梁(截面输很小使刚度小于实纵梁的千分一) 有横隔板处设置横向梁格,截面可按<桥梁工程>中比拟正交异性板中介绍的横隔板输入断面,在横隔板之间可多设几道横向梁,截面输成工字形但该工字中间的腹板可输个很小值(这是使截面的主要惯矩是顶底板绕它们的共同重心轴的惯矩)

2017年分部分项工程划分最新版

附录B建筑工程分部(子分部)工程、分项工程划分B.0.1 建筑工程的分部(子分部)工程、分项工程可按表 B.0.1划分。 表B.0.1 建筑工程分部工程、分项工程划分

通风与空调 管绝热,系统调试 舒适性空调系 统 风管与配件制作,部件制作,风管系统安装,风机与空气处理设备安装,风 管与设备防腐,系统调试,组合式空调机组安装,消声器、静电除尘器、换 热器、紫外线灭菌器等设备安装,风机盘管、变风量与定风量送风装置、射 流喷口等末端设备安装,风管与设备绝热 恒温恒湿空调系 统 风管与配件制作,部件制作,风管系统安装,风机与空气处理设备安装,风 管与设备防腐,系统调试,组合式空调机组安装,电加热器、加湿器等设备 安装,精密空调机组安装,风管与设备绝热 净化空调系统 风管与配件制作,部件制作,风管系统安装,风机与空气处理设备安装,风 管与设备防腐,系统调试,净化空调机组安装,消声器、静电除尘器、换热 器、紫外线灭菌器等设备安装,中、高效过滤器及风机过滤器单元等末端设 备清洗与安装,洁净度测试,风管与设备绝热 地下人防通风系 统 风管与配件制作,部件制作,风管系统安装,风机与空气处理设备安装,风 管与设备防腐,系统调试,风机与空气处理设备安装,过滤吸收器、防爆波 活门、防爆超压排气活门等专用设备安装 真空吸尘系统 风管与配件制作,部件制作,风管系统安装,风机与空气处理设备安装,风 管与设备防腐,管道安装,快速接口安装,风机与滤尘设备安装,系统压力 试验及调试 冷凝水系统 管道系统及部件安装,水泵及附属设备安装,管道、设备防腐与绝热,管 道冲洗,系统压力试验及调试,板式热交换器,辐射板及辐射供热、供冷 地埋管,热泵机组设备安装 空调(冷、热) 水系统 管道系统及部件安装,水泵及附属设备安装,管道冲洗,管道、设备防腐与 绝热,冷却塔与水处理设备安装,防冻伴热设备安装,系统压 力试验及调试, 冷却水系统管道系统及部件安装,水泵及附属设备安装,管道、设备防腐与绝热,管道冲洗,系统灌水渗漏及排放试验 土壤源热泵换热 系统 管道系统及部件安装,水泵及附属设备安装,管道、设备防腐与绝热,管道 冲洗,系统压力试验及调试,埋地换热系统与管网安装 水源热泵换热系 统 管道系统及部件安装,水泵及附属设备安装,管道、设备防腐与绝热,官 道冲洗,地表水源换热官及官网安装,除垢设备安装,系统压力试验及调 试 蓄能系统 管道系统及部件安装,水泵及附属设备安装,管道、设备防腐与绝热,管 道冲洗,蓄水罐与蓄冰槽、罐安装,系统压力试验及调试压缩式制冷 (热)设备系统 制冷机组及附属设备安装,管道、设备防腐与绝热,系统压力试验及 调试,制冷剂管道及部件安装,制冷剂灌注 吸收式制冷设备 系统 制冷机组及附属设备安装,管道、设备防腐与绝热,试验及调试,系统真空 试验,溴化锂溶液加灌,蒸汽管道系统安装,燃气或燃油设备安装 多联机(热泵) 空调系统 室外机组安装,室内机组安装,制冷剂管路连接及控制开关安装,风 管安装,冷凝水管道安装,制冷剂灌注,系统压力试验及调试 太阳能供暖空调 系统 太阳能集热器安装,其他辅助能源、换热设备安装,蓄能水箱、管道及配件 安装,系统压力试验及调试,防腐,绝热,低温热水地板辐射采暖系统安装设备自控系统 温度、压力与流量传感器安装,执行机构安装调试,防排烟系统功能测 试,自动控制及系统智能控制软件调试 室外电气 变压器、箱式变电所安装,成套配电柜、控制柜(屏、台)和动力、 照明配电箱(盘)及控制柜安装,梯架、托盘和槽盒安装,导管敷设,电缆 敷设,管内穿线和槽盒内敷线,电缆头制作,导线连接,线路绝缘测试,普 通灯具安装,专用灯具安装,建筑照明通电试运行,接地装置安装 建筑电气

相关文档
最新文档