大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第12章 气体动理论

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第12章 气体动理论
大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第12章 气体动理论

第十二章 气体动理论

12-1 一容积为10L 的真空系统已被抽成1.0×10-5 mmHg 的真空,初态温度为20℃。为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出所吸附的气体,如果烘烤后压强为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子?

解:由式nkT p =,有

3

2023

52/1068.1573

1038.1760/10013.1100.1m kT p n 个?≈?????==-- 因而器壁原来吸附的气体分子数为

个183201068.110101068.1?=???==?-nV N

12-2 一容器内储有氧气,其压强为1.01?105 Pa ,温度为27℃,求:(l )气体分子的

数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。(设分子间等距排列)

分析:在题中压强和温度的条件下,氧气可视为理想气体。因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解。又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知d n V ,10=即可求出。

解:(l )单位体积分子数

3

25m 1044.2-?==kT p n

(2)氧气的密度

3m kg 30.1-?===RT pM V m ρ

(3)氧气分子的平均平动动能

J 1021.62321k -?==kT ε

(4)氧气分子的平均距离

m

1045.3193-?==n d

12-3 本题图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦分子速率分布曲线。试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。

分析:由M RT v /2p =可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率p v 也就不同。因22O H M M <,故氢气比氧气的p v 要大,由此可判定图中曲线II 所标13p s m 100.2-??=v 应是对应于氢气分子的最概然速率。从而可求出该曲线所对应的温度。又因曲线I 、II 所处的温度相同,故曲线I 中氧气的最概然速率也可按上式求得。

解:(1)由分析知氢气分子的最概然速率为

1

3P s m 100.2/2)(22-??==H H M RT v

利用16/22H O =M M 可得氧气分子最概然速率为

1

2H P O O P s m 100.54)(/2)(222-??===v M RT v

(2)由M RT v /2p =得气体温度

K

1081.42/22

p ?==R M v T

12-4 有N 个质量均为m 的同种气体分子,它们的速率分布如本题图所示。(1)说明曲

线与横坐标所包围面积的含义;(2)由N 和v 0求a 值;(3)求在速率v 0/2到3v 0/2间隔内的分子数;(4)求分子的平均平动动能.

分析:处理与气体分子速率分布曲线有关的问题时,关键要理解分布函数()v f 的物理意义。v N N v f d /d )(=题中纵坐标v N v Nf d /d )(=,即处于速率v 附近单位速率区间内的分子数。同时要掌握)(v f 的归一化条件,即

1d )(0

=?

∞v v f 。在此基础上,根据分布函数并运用数学方

法(如函数求平均值或极值等),即可求解本题。

解:(l )由于分子所允许的速率在0到2v 0的范围内,由归一化条件可知图中曲线下的面积

()N

v v Nf S v ==?

020

d

即曲线下面积表示系统分子总数N 。 (2)从图中可知,在0到v 0区间内,0/)(v av v Nf =;而在v 0到2v 0

区间内,a v Nf =)(。

则利用归一化条件有

??

+=00

020

d d v v v v

a v v av

N

03/2v N a =

(3)速率在v 0/2到3v 0/2间隔内的分子数为

12/7d d 2/32/000

0N v a v v av

N v v v v =+=???

(4)分子速率平方的平均值按定义为

习题12-3图

习题12-4图

??∞

==0

20

2

2

d )(/d v

v f v N N v v

故分子的平均平动动能为

2

0223

00

236

31)(21210

mv dv v N a dv v Nv a m v m v v v

K =+

==?

?ε 12-5 当氢气的温度为300℃时,求速率在区间3000m/s 到3010m/s 之间的分子数ΔN 1

与速率在区间v p 到v p +10m/s 之间的分子数ΔN 2之比。

解:氢气在温度T =273+300=573开时的最可几速率v p 为

/2182002

.0573

31.822秒米××===

M RT v p 麦克斯韦速度分布公式可改写为 x e

x N

N x ?=?-2

2

4

π

则速度在3000米/秒~3010米/秒间的分子数

2182102182300042

218230002

1??

? ?????

? ??=???

? ??-e πN

N 速度在v p ~ v p 10米/秒间的分子数

e πN

N ??? ?????

? ??=???

?

??-2182102182218242

218221822

2 故 78021823000 2

218230002

21 .e

e N N =??

?

??=????

? ??

12-6 有N 个粒子,其速率分布函数为 C Ndv

dN

v f ==

)( (v 0>v >0) 0)(=v f (v >v 0) (1) 作速率分布曲线;(2)求常数C ;(3)求粒子的平均速率。 解: (2)由归一化式

??===∞

1)(v Cv

Cdv dv v f

得 0

1v C =

(3) 2

)(0

v vCdv dv v vf v v =

==?

?∞ 12-7 根据麦克斯韦速率分布律证明:处于平均速率附近一固定小速率区间内的分子数与T 成反比。

解:由 m

RT

v π8=

则速率分布函数可化为

2432

222

32

232

24)(v e

v v e RT m

v f v v RT

mv ?=

??

?? ??=??

?

??---ππππ

速率在 △v

v v +→ 区间内分子数?N 为 v e

v N

v v Nf N ??=

?=?--π

π4

1

2

32)(

可见: 11)(--∝∝?T v N

12-8 一密封房间的体积为5×3×3m 3,室温为20℃,室内空气分子热运动的平均平

动动能的总和是多少?如果气体温度升高1.0K ,而体积不变,则气体的内能变化多少?气体分子方均根速率增加多少?(已知空气的密度ρ=1.29Kg/m 3,摩尔质量M =29×10-3Kg / mol ,且空气分子可认为是刚性双原子分子。)

解:根据

KT,23

v m 212= ∴ NKT v m N 2

3

212=

()()()J. ×.=ρV M RT RT=M M =m N RTNm v m N mol mol A 6210317 2

3

232321= ()()J ×. =iR △R△T M ρV =iR △R△T M M △E=

mol mol 4101642

1

21 ()

()()

8560312

211212

12

212

s m .=T T

M R =v v v mol -??

? ??-??

? ??=?

12-9 在容积为2.0?10-3 m 3的容器中,有内能为6.75?102 J 的刚性双原子分子理想气体。

(1)求气体的压强;(2)设分子总数为5.4?1022个,求分子的平均平动动能及气体的温度。 解:(1)由RT i M m E 2=

和RT M

m

pV =可得气体压强 Pa

1035.1/25?==iV E p

(2)分子数密度n =N /V 为,则该气体的温度

K

1062.3/2?===)(Nk pV nk p T

气体分子的平均平动动能为

J 1049.72321k -?==kT ε

12-10 质点离开地球引力作用所需的逃逸速率为gR v 2=

,其中R 为地球半径。

(1)若使氢气分子和氧气分子的平均速率分别与逃逸速率相等,它们各自应有多高的温度;(2)

说明大气层中为什么氢气比氧气要少。(取R= 6.40?106 m ) 分析:气体分子热运动的平均速率M RT v π/8=。对于摩尔质量M 不同的气体分子,为使

v 等于逃逸速率

v ,所需的温度是不同的;如果环境温度相同,则摩尔质量M 较小的就容

易达到逃逸速率。

解:(1)由题意逃逸速率gr v 2=,而分子热运动的平均速率M RT v π/8=。当v v =时,有

R

Mrg

v R

M

T 482ππ=

=

由于氢气的摩尔质量

1

3H mol kg 100.22--??=M ,

氧气的摩尔质量

1

2O mol kg 102.32--??=M

则它们达到逃逸速率时所需的温度分别为

K

1089.1,K 1018.15O 4H 22?=?=T T

(2)根据上述分析,当温度相同时,氢气的平均速率比氧气的要大(约为4倍),因此达到逃逸速率的氢气分子比氧气分子多。按大爆炸理论,宇宙在形成过程中经历了一个极高温过程。在地球形成的初期,虽然温度已大大降低,但温度值还是很高。因而,在气体分子产生过程中就开始有分子逃逸地球,其中氢气分子比氧气分子更易逃逸。另外,虽然目前的大气层温度不可能达到上述计算结果中逃逸速率所需的温度,但由麦克斯韦分子速率分布曲线可知,在任一温度下,总有一些气体分子的运动速率大于逃逸速率。从分布曲线也可知道在相同温度下氢气分子能达到逃逸速率的可能性大于氧气分子。

12-11 讨论气体分子的平动动能2

2

1mv =

ε的分布函数,归一化条件,及求任意函数)(εg 的平均值公式。并由麦克斯韦气体分子速率分布函数导出动能分布函数,求出最可几

动能。

解:在动能空间中取一小区间εεεd +-,小区间内分子数dN 占总分子数N 之比为

εεd f N

dN

)(= 其中)(εf 为分子动能分布函数,它满足归一化条件:

1)(0

=?∞

εεd f

任意函数)(εg 的平均值公式:

εεεεd f g g ?∞

=0

)()()(

dv kT

mv v kT m dv v f d f ?-?

?

?

??==)2exp(24)()(2

2

2

/3ππεε

可求出

εεεπεεd kT kT d f ?-?=

)ex p()1(

2

)(2/3

0)

(=ε

εd df 可得最可几动能 2

kT p =

ε 12-12 已知在单位时间内撞击在容器壁单位面积上的分子数为

v n 4

1

。假定一边长为1米的立方箱子,在标准情况下盛有25

103×个氧分子,计算1秒钟内氧分子与箱子碰撞的次数。

解:氧分子在标准状态下算术平均速率v 425032

.014.3273

31.888=???==

M RT v π米/秒 每边长为1米的立方箱的总面积

S =6?1?1=6米2 则

28251091.164251034

1

41?=*???=?=

S v n N 次/秒 12-13 在标准状态下氦气(He )的内摩擦系数η=1.89×10-5帕秒,摩尔质量M 为0.004

千克,平均速率v 为1.20×103

米/秒。试求:(1)在标准状态氦原子的平均自由程。(2)氦原子的半径。

解:(1)由公式λρηv 3

1

=

,则

v

ρηλ3=

因为气体密度

178.010

4.221043

3=??==--v M ρ千克/米3

7

3

51065.21020.1178.01089.133 --?=????==∴v ρηλ米 (2) ρ

πηπλ2

2221 d RT

d ==Θ 由氦原子直径

105

7231079.110013.114.31065.241.1273

1038.12---?=???????==

ρλπRT

d 米 氦原子半径为

101089.02

-?==

d

R 米 12-14 (1)求氮气在标准状态下的平均碰撞次数。(2)若温度不变,气压降到1.33×10- 4帕,平均碰撞次数又为多少?(设分子有效直径为10 - 10米)

解:(1)在标准状态下,氮气分子的算术平均速度 454028

.014.3273

31.888=???==M RT v π米/秒 由公式p =nRT 得

32523

5/1069.22731038.110013.1米个××××===-RT p n 由平均自由程n

d 221

πλ=得

()

米×××××λ725

2

101039.81069.21014.321

--== 平均碰撞次数

/1042.510

39.81055.4Z 87

2

秒次×××λ===-v (2)气压降低之后的平均碰撞次数为Z '

p p Z

Z '

=' ∵

/71.01042.510

013.11033.1Z 8

5

4秒次××××∴=='='-Z p p 12-15 若在标准压强下,氢气分子的平均自由程为6×10 - 8米,问在何种压强下,其

平均自由程为1厘米?(设两种状态的温度一样)

解:按p = nKT 和 21 2

n

d πλ

=,有

21

2

λ

d n π=

,λ22 d KT

p π= 则

λλλλ00

011==p p

()() 0.61= 10611061 66

0帕大气压×××λ

λ--===p p

12-16 如果理想气体的温度保持不变,当压强降为原值的一半时,分子的平均碰撞频

率和平均自由程如何变化?

分析: 在温度不变的条件下,分子的平均碰撞频率p Z ∝,而分子的平均自由程

p /1∝λ,由此可得压强变化时,平均碰撞频率和平均自由程的变化。

解:由分析知p Z ∝,当压强由p 0降至p 0/2时,平均碰撞频率为

2/2

/00

00

Z p p Z Z ==

又因p /1∝λ,故当压强减半时,平均自由程为

00

22/λλλ==p p

大学物理第七章气体动理论

第七章 气体动理论 一.选择题 1[ C ]两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内气体的质量ρ的关系为: (A) n 不同,(E K /V )不同,ρ 不同. (B) n 不同,(E K /V )不同,ρ 相同. (C) n 相同,(E K /V )相同,ρ 不同. (D) n 相同,(E K /V )相同,ρ 相同. 解答:1. ∵nkT p =,由题意,T ,p 相同∴n 相同; 2. ∵kT n V kT N V E k 2 323==,而n ,T 均相同∴V E k 相同 3. 由RT M m pV =得RT pM V M ==ρ,∵不同种类气体M 不同∴ρ不同 2[ C ]设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分 子的平均速率为 (A) ?2 1d )(v v v v v f . (B) 2 1 ()d v v v vf v v ?. (C) ? 2 1 d )(v v v v v f /?2 1 d )(v v v v f . (D) ? 2 1 d )(v v v v v f /0 ()d f v v ∞ ? . 解答:因为速率分布函数f (v )表示速率分布在v 附近单位速率间隔内的分子数占总分子数的百分率,所以 ? 2 1 d )(v v v v v f N 表示速率分布在v 1~v 2区间内的分子的速率总和,而 2 1 ()d v v Nf v v ? 表示速率分布在v 1~v 2区间内的分子数总和,因此 ? 2 1 d )(v v v v v f / ? 2 1 d )(v v v v f 表示速率分布在v 1~v 2区间内的分子的平均速率。 3[ B ]一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是: (A) Z 减小而λ不变. (B)Z 减小而λ增大. (C) Z 增大而λ减小. (D)Z 不变而λ增大. 解答:n d Z 22π= ,n d 2 21πλ= ,在温度不变的条件下,当体积增大时,n 减小,所以 Z 减小而λ增大。 4[ B ]若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了

大学物理A第九章 简谐振动

第九章 简谐振动 填空题(每空3分) 质点作简谐振动,当位移等于振幅一半时,动能与势能的比值为 ,位移等于 时,动能与势能相等。(3:1,2A ) 9-2两个谐振动方程为()120.03cos (),0.04cos 2()x t m x t m ωωπ==+则它们的合振幅为 。(0.05m ) 9-3两个同方向同频率的简谐振动的表达式分别为X 1=×10-2cos(T π2t+4 π ) (SI) , X 2=×10-2cos(T π2t -43π) (SI) ,则其合振动的表达式为______(SI).( X=×10-2cos(T π2t+4 π ) (SI)) 9-4一质点作周期为T 、振幅为A 的简谐振动,质点由平衡位置运动到2 A 处所需要的最短时间为_________。( 12 T ) 9-5 有两个同方向同频率的简谐振动,其表达式分别为 )4 cos(1π ω+ =t A x m 、 )4 3 cos(32πω+=t A x m ,则合振动的振幅为 。(2 A) 9-6 已知一质点作周期为T 、振幅为A 的简谐振动,质点由正向最大位移处运动到2 A 处所需要的最短时间为_________。 ( 6 T ) 9-7有两个同方向同频率的简谐振动,其表达式分别为 )75.010cos(03.01π+=t x m 、)25.010cos(04.02π-=t x m ,则合振动的振幅为 。 (0.01m ) 质量0.10m kg =的物体,以振幅21.010m -?作简谐振动,其最大加速度为2 4.0m s -?,通过平衡 位置时的动能为 ;振动周期是 。(-3 2.010,10s J π?) 9-9一物体作简谐振动,当它处于正向位移一半处,且向平衡位置运动,则在该位置时的相位为 ;在该位置,势能和动能的比值为 。(3π) 9-10质量为0.1kg 的物体,以振幅21.010m -?作谐振动,其最大加速度为14.0m s -?,则通过最大位移处的势能为 。(3210J -?) 9-11一质点做谐振动,其振动方程为6cos(4)x t ππ=+(SI ),则其周期为 。

大学物理答案第3章

第三章 刚体力学 3-1 一通风机的转动部分以初角速度ω0绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转? 解:(1)由题可知:阻力矩ωC M -=, 又因为转动定理 dt d J J M ω β== dt d J C ωω=-∴ dt J C d t ??-=∴00ωωωω t J C -=0ln ωω t J C e -=0ωω 当021ωω= 时,2ln C J t =。 (2)角位移?=t dt 0ωθ? -=2ln 0 0C J t J C dt e ωC J 0 21ω= , 所以,此时间内转过的圈数为C J n πωπθ420== 。 3-2 质量为M ,半径为R 的均匀圆柱体放在粗糙的斜面上,斜面倾角为α ,圆柱体的外面绕有轻绳,绳子跨过一个很轻的滑轮,且圆柱体和滑轮间的绳子与斜面平行,如本题图所示,求被悬挂物体的加速度及绳中张力 解:由牛顿第二定律和转动定律得 ma T mg =- ααJ R Mg TR =-.sin 2 由平行轴定理 223MR J = 联立解得 g m M M m a 83sin 48+-=α mg m M M T 83)sin 43(++=α 3-3 一平板质量M 1,受水平力F 的作用,沿水平面运动, 如本题图所示,板与平面间的摩擦系数为μ,在板上放一质量为M 2的实心圆柱体,此圆柱体在板上只滚动而不滑动,求板的加速度。 解:设平板的加速度为a 。该平板水平方向受到拉力F 、平面施加的摩擦力1f 和圆柱体施加的摩擦力2f ,根据牛顿定律有,a M f f F 121=--。 m g

(完整word版)大学物理气体动理论热力学基础复习题及答案详解

第12章 气体动理论 一、 填空题: 1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为4.0×510pa .则在温度变为37℃,轮胎内空气的 压强是 。(设内胎容积不变) 2、在湖面下50.0m 深处(温度为4.0℃),有一个体积为531.010m -?的空气泡升到水面上来,若湖面的 温度为17.0℃,则气泡到达湖面的体积是 。(取大气压强为50 1.01310p pa =?) 3、一容器内储有氧气,其压强为50 1.0110p pa =?,温度为27.0℃,则气体分子的数密度 为 ;氧气的密度为 ;分子的平均平动动能为 ;分子间的平均 距离为 。(设分子均匀等距排列) 4、星际空间温度可达 2.7k ,则氢分子的平均速率为 ,方均根速率为 ,最概然速率 为 。 5、在压强为51.0110pa ?下,氮气分子的平均自由程为66.010cm -?,当温度不变时,压强 为 ,则其平均自由程为1.0mm 。 6、若氖气分子的有效直径为82.5910cm -?,则在温度为600k ,压强为21.3310pa ?时,氖分子1s 内的 平均碰撞次数为 。 7、如图12-1所示两条曲线(1)和(2),分别定性的表示一定量的 某种理想气体不同温度下的速率分布曲线,对应温度高的曲线 是 .若图中两条曲线定性的表示相同温 度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的 是 . 8、试说明下列各量的物理物理意义: (1) 12kT , (2)32 kT , (3)2i kT , (4)2 i RT , (5)32RT , (6)2M i RT Mmol 。 参考答案: 1、54.4310pa ? 2、536.1110m -? 3、25332192.4410 1.30 6.2110 3.4510m kg m J m ----???? 4、21 21121.6910 1.8310 1.5010m s m s m s ---?????? 图12-1

第七章气体动理论(答案)

一、选择题 [ C ]1、(基础训练2)两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内气体的质量?的关系为: (A) n 不同,(E K /V )不同,??不同. (B) n 不同,(E K /V )不同,??相同. (C) n 相同,(E K /V )相同, ??不同. (D) n 相同,(E K /V )相同,??相同. 【提示】① ∵nkT p =,由题意,T ,p 相同,∴n 相同; ② ∵kT n V kT N V E k 2 3 23==,而n ,T 均相同,∴V E k 相同; ③ RT M M pV mol =→RT pM V M mol ==ρ,T ,p 相同,而mol M 不同,∴ρ不同。 [ B ]2、(基础训练7)设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令() 2 O p v 和() 2 H p v 分别表示氧气和氢气的 最概然速率,则 (A) 图中a 表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v = 4. (B) 图中a 表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v =1/4. (C) 图中b表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v =1/4. (D) 图中b表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v = 4. 【提示】①最概然速率p v =p v 越小,故图中a 表示氧气分子的速率分布曲线; ②23 ,3210(/)mol O M kg mol -=?, 23 ,210(/)mol H M kg mol -=?, 得 ()() 2 2 O v v p p H 14 = [ C ]3、(基础训练8)设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2

第14章 (DEMO)

第十四章 波动 14-1 如本题图所示,一平面简谐波沿ox 轴正向传播,波速大小为u ,若P 处质点振动方程为)cos(?+ω=t A y P ,求:(1)O 处质点的振动方程;(2)该波的波动方程;(3)与P 处质点振动状态相同质点的位置。 解:(1)O 处质点振动方程: y 0 = A cos [ ω(t + L / u )+φ] (2)波动方程 y 0 = A cos { ω[t - (x - L )/ u +φ} (3)质点位置 x = L ± k 2πu / ω (k = 0 , 1, 2, 3……) 14-2 一简谐波,振动周期T =1/2s ,波长λ=10m ,振幅A =0.1m ,当t =0时刻,波源振动的位移恰好为正方向的最大值,若坐标原点和波源重合,且波沿ox 轴正方向传播,求:(1)此波的表达式;(2)t 1=T/4时刻,x 1=λ/4处质点的位移;(3)t 2 =T/2时刻,x 1=λ/4处质点的振动速度。 解:(1) y = 0.1 cos ( 4πt - 2πx / 10 ) = 0.1 cos 4π(t - x / 20 ) (SI) (2) 当 t 1 = T / 4 = 1 / 8 ( s ) , x 1 = λ/ 4 = 10 / 4 m 处 质点的位移y 1 = 0.1cos 4π(T / 4 - λ/ 80 ) = 0.1 cos 4π(1 / 8 - 1 / 8 ) = 0.1 m (3) 振速 )20/(4sin 4.0x t t y v --=??= ππ t 2 = T / 2 = 1 / 4 (S) ,在x 1 = λ/ 4 = 10 / 4( m ) 处质点的振速 v 2 = -0.4πsin (π-π/ 2 ) = - 1.26 m / s 14-3 一简谐波沿x 轴负方向传播,圆频率为ω,波 速为u 。设4 T t =时刻的波形如本题图所示,求该波的表 达式。 解:由图可看出,在t=0时,原点处质点位移 y 0=-A , 说明原点处质点的振动初相π?=0,因而波动方程为 ])(cos[πω++=u x t A y 14-4 本题图表示一平面余弦波在t =0时刻与t =2s 时刻的波形图,求: (1) 坐标原点处介质质点的振动方程;(2) 该波的波方程。 解:由图可知: 原点处质点的振动初相2 0π ?- =; x 习题14-1图 习题14-3图

第七章 气体动理论答案

一.选择题 1、(基础训练1)[ C ]温度、压强相同的氦气与氧气,它们分子的平均动能ε与平均平动动能w 有如下关系: (A) ε与w 都相等. (B) ε相等,而w 不相等. (C) w 相等,而ε不相等. (D) ε与w 都不相等. 【解】:分子的平均动能kT i 2 = ε,与分子的自由度及理想气体的温度有关,由于氦气为单原子分子,自由度为3;氧气为双原子分子,其自由度为5,所以温度、压强相同的氦气与氧气,它们分子的平均动能ε不相等;分子的平均平动动能kT w 2 3 = ,仅与温度有关,所以温度、压强相同的氦气与氧气,它们分子的平均平动动能w 相等。 2、(基础训练3)[ C ]三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同, 而方均根速率之比为( )()()2 /122 /122 /12::C B A v v v =1∶2∶4,则其压强之比A p ∶B p ∶ C p 为: (A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1. 【解】:气体分子的方均根速率:M RT v 32 = ,同种理想气体,摩尔质量相同,因方均根速率之比为1∶2∶4,则温度之比应为:1:4:16,又因为理想气体压强nkT p =,分子数密度n 相同, 则其压强之比等于温度之比,即:1:4:16。 3、(基础训练8)[ C ]设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A) ? 2 1d )(v v v v v f . (B) 2 1 ()d v v v vf v v ?. (C) ? 2 1 d )(v v v v v f /?2 1 d )(v v v v f . (D) ? 2 1 d )(v v v v v f /0()d f v v ∞ ? . 【解】:因为速率分布函数f (v )表示速率分布在v 附近单位速率间隔内的分子数占总分子数的百分率,所以 ? 2 1 d )(v v v v v f N 表示速率分布在v 1~v 2区间内的分子的速率总与,而 2 1 ()d v v Nf v v ? 表示速率分布在v 1~v 2区间内的分子数总与,因此?2 1 d )(v v v v v f /?2 1 d )(v v v v f 表 示速率分布在v 1~v 2区间内的分子的平均速率。 4、(基础训练10)[ B ]一固定容器内,储有一定量的理想气体,温度为T ,分子的平均碰撞次数为 1Z ,若温度升高为2T ,则分子的平均碰撞次数2Z 为 (A) 21Z . (B) 12Z . (C) 1Z . (D) 12 1Z . 【解】:分子平均碰撞频率n v d Z 2 2π,因就是固定容器内一定量的理想气体,分子数密 度n 不变,而平均速率: v = 温度升高为2T ,则平均速率变为v 2,所以2Z =12Z 5、(自测提高3)[ B ]若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了:(A)0、500. (B) 400. (C) 900. (D) 2100.

第七章气体动理论习题

1.两瓶装有不同种类的理想气体,若气体的平动动能相等,两种气体的分子数密度不同,则两瓶气体的( ) (A)压强相等,温度相等; (B)压强相等,温度不等; (C)压强不等,温度相等; (D)压强不等,温度不等; 2.在一封闭容器中,理想气体分子的平均速率提高为原来的2倍,则( ) (A)温度和压强都提高为原来的2倍; (B)温度为原来的2倍,压强为原来的4倍; (C)温度为原来的4倍,压强为原来的2倍; (D)温度和压强都提高为原来的4倍。

3.一打足气的自行车内胎,当温度为7.0℃时,轮胎中空气的压强为 4.0×105Pa,温度变为37.0℃时,轮胎内的压强为。(设胎内容积不变) 4.已知n为气体的分子数密度f(v)为麦克斯韦速率分布函数,则nf(v)dv的物理意义 。 。

5.一容器内贮有氧气,压强为1.0×105Pa ,温度为27℃,求(1)气体分子数密度; (2)氧气的密度; (3)分子的平均平动动能; (4)分子间的平均距离。 6.氧气瓶的容积为3.2×10-2m3,其中氧气的压强为1.30×107Pa,氧气厂规定压强降低到 1.00×106Pa时,就应重新充气,以免经常洗瓶。若平均每天用去0.40m3,压强为1.01×105Pa的氧气,问一瓶氧气能用几天?(设温度不变)

1.1mol刚性双原子分子理想气体,当温度为T时,其内能为( )

3.2g氢气(刚性双原子)与2g氦气分别装在两个容积相等的封闭容器中内,温度相同,则氢气分子与氦气分子的平均平动动能之比压强之比;内能之比。 4.现有两条气体分子速率分布曲线(1)和(2),如图所示。若两条曲线分别表示同一种气体处于不同温度下的速率分布,则曲线表示气体的温度较高。若两条曲线分别表示同一温度下的氢气和氧气的速率分布,则曲线表示的是氧气。

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第10章 流体力学

第十章 流体力学 10-1如本题图,试由多管压力计中水银面高度的读数确定压力水箱中A 点的相对压强(P -P 0)。(所有读数均自地面算起,其单位为米) 解:根据gh P ρ=得 )-(汞7.08.103g P P ρ=- )-(水7.0232g P P ρ-=- )-(汞9.0221g P P ρ=- )-(-水9.05.21g P P ρ=- m g m g P P 9.22.20??=-∴水汞-ρρ 10-2如本题图,将一充满水银的气压计下端浸在一个广阔的盛水银的 容器中,其读数为 -25 m N 10 950.0??=p 。(1)求水银柱的高度h 。(2) 考虑到毛细现象后,真正的大气压强0p 多大? 已知毛细管的直径 m 100.23-?=d ,接触角π=θ,水银的表面张力系数-1m N 49.0?=σ。 解:(1)gh p ρ=Θ cm g p h 3.716 .138.910950.05 ≈??==∴ρ (2)Pa d p p 4 3 500106.9100.1cos 49.021095.02 cos 2'?=??+?=+ =-πθσ 10-3灭火筒每分钟喷出60m 3的水,假定喷口处水柱的截面积为1.5cm 2,问水柱喷到2m 高时其截面积有多大? 解:流量2211S v S v Q == 且 gh v v 22 12 2-=- s m m s m S Q v /107.6105.1606032 43 11?≈?= =∴- 2212235.42cm gh v Q v Q S =-== 10-4油箱内盛有水和石油,石油的密度为0.9g /cm3,水的厚度为1m ,油的厚度为 4m 。求水自箱底小孔流出的速度。 解:如图,流线上1、2点分别是油面和小孔处的两点。根据伯努利方程 水 习题10-1图 习题10-2

第七章 气体分子动理论

第七章气体动理论 研究对象:由大量分子(原子)组成的系统。分子视为刚性小球,分子间作弹性碰撞。 研究方法:由于分子的数量极其庞大,彼此之间的相互作用又非常频繁,而且还具有偶然性,所以只能用统计的方法进行处理。研究微观量(m,v,p,f)集体表现出来的宏观特征。 §7-1 物质的微观模型统计规律性 1. 分子的数密度和线度:单位体积内的分子数叫分子数密度。气体(n氮=2.47*1019/cm3)、液体(n水=3.3*1022/cm3)、固体(n =7.3*1022/cm3)。不同种类的分子大小不等,小分子约为10-铜 10m的数量级。实验表明:标准状态下,气体分子间距为分子直 径的10倍。 2.分子力:当rr0时,分子力主要表现为吸引力,并 且随r的增加而逐渐减小(当r约为10-9m)时,可以忽略)。 3.分子热运动的无序性及统计规律性 (1)系统由大量分子(原子)组成的。由于分子的数量极其庞大,彼此之间的相互作用又非常频繁(标准状态下, 气体分子平均每秒钟要经历109次碰撞),在总体上表现 为热运动中所具有的无序性。 (2)物质内的分子在分子力的作用下欲使分子聚集在一起,形成有序的排列;而分子的热运动则要使分子尽量分 开;这样一来,分子的聚合将决定于环境的温度和压 强,从而导至物质形成气、液、固、等离子态等不同的 集合体。 (3)个别分子的运动具有偶然性,大量分子的整体表现具有规律性。称其为统计规律性。 §7-2 理想气体的压强公式 1.理想气体的微观模型 (1)气体分子看成是质点 (2)除碰撞外,分子间作用力可以忽略不计 (3)分子间以及分子与器壁间的碰撞可以看成是完全弹性碰撞 2.理想气体的压强公式 (1)定义:压强为单位面积上,大量气体分子无规则运动撞

2013第七章气体动理论答案(同名8777)

1 一.选择题 1. (基础训练2)[ C ]两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内气体的质量ρ的关系为: (A) n 不同,(E K /V )不同,ρ 不同. (B) n 不同,(E K /V )不同,ρ 相同. (C) n 相同,(E K /V )相同,ρ 不同. (D) n 相同,(E K /V )相同,ρ 相同. 【解】: ∵nkT p =,由题意,T ,p 相同∴n 相同; ∵kT n V kT N V E k 2 3 23 ==,而n ,T 均相同∴V E k 相同 由RT M m pV =得m pM V RT ρ== ,∵不同种类气体M 不同∴ρ不同 2. (基础训练6)[ C ]设v 代表气体分子运动的平均速率,p v 代表气体分子运动的最概然速率,2/12)(v 代表气体分子运动的方均根速率.处于平衡状态下理想气体,三种速 率关系为 (A) p v v v ==2 /12) ( (B) 2 /12)(v v v <=p (C) 2 /12) (v v v <

>p 【解】:最概然速率:p v = = 算术平均速率: 0 ()v vf v dv ∞ ==? 20 ()v f v dv ∞ = =? 3. (基础训练7)[ B ]设图7-3所示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令() 2 O p v 和() 2 H p v 分别表示氧气和氢气 的最概然速率,则 (A) 图中a表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v =4. (B) 图中a表示氧气分子的速率分布曲线;

大学物理4

9. 气体分子动理论 姓名 孟凡笛 学号 102520011 专业 机电一体化 教学点 同济本部 一、选择题 1.一定量的理想气体可以: (A) 保持压强和温度不变同时减小体积; (B) 保持体积和温度不变同时增大压强; (C) 保持体积不变同时增大压强降低温度; (D) 保持温度不变同时增大体积降低压强。 ( C ) 2.设某理想气体体积为V ,压强为P ,温度为T ,每个分子的质量为μ,玻尔兹曼常数为k ,则该气体的分子总数可以表示为: (A) μ k PV (B) V PT μ (C) kT PV (D) kV PT ( B ) 3.关于温度的意义,有下列几种说法: (1)气体的温度是分子平均平动动能的量度; (2)气体的温度是大量气体分子热运动的集体表现,具有统计意义; (3)温度的高低反映物质内部分子运动剧烈程度的不同; (4)从微观上看,气体的温度表示每个气体分子的冷热程度; 上述说法中正确的是: (A ) (1) 、(2)、(4). (B ) (1) 、(2)、(3). (C ) (2) 、(3)、(4). (D ) (1) 、(3)、(4). ( B ) 4.设某种气体的分子速率分布函数为)(v f ,则速率在1v ~2v 区间内的分子平均速率为: (A ) ? 2 1 d v v v )v (vf (B )?2 1 d v v v )v (vf v (C )? ?21 2 1d d v v v v v )v (f v )v (vf (D ) ? ?∞0 d d 2 1 v )v (f v )v (vf v v ( A )

5.两容积不等的容器内分别盛有可视为理想气体的氦气和氮气,如果它们的温度和压强相同,则两气体 (A) 单位体积内的分子数必相同; (B) 单位体积内的质量必相同; (C) 单位体积内分子的平均动能必相同; (D) 单位体积内气体的内能必相同。 ( A ) 6.摩尔数相同的氢气和氦气,如果它们的温度相同,则两气体: (A) 内能必相等; (B) 分子的平均动能必相同; (C) 分子的平均平动动能必相同; (D) 分子的平均转动动能必相同。 ( C ) 7.在标准状态下,体积比为1:2的氧气和氦气(均视为理想气体)相混合,混合气体中氧气和氦气的内能之比为: (A) 1 : 2 (B) 5 : 3 (C) 5 : 6 (D) 10 : 3 ( A ) 8. 体积恒定时,一定量理想气体的温度升高,其分子的: (A) 平均碰撞次数将增大 (B) 平均碰撞次数将减小 (C) 平均自由程将增大 (D) 平均自由程将减小 ( C ) 二、填充题 1.设氢气在27?C 时,每立方厘米内的分子数为12 104.2?个,则氢气分子的平均平动动能 2.下面给出理想气体状态方程的几种微分形式,指出它们各表示什么过程。 (1)T R )M /M (V P d d mol = 表示 过程; (2)T R )M /M (P V d d mol = 表示 过程; (3)0d d =+P V V P 表示 过程。 3.容积为10升的容器中储有10克的氧气。若气体分子的方均根速率1 2s m 600-?=v , 则此气体的温度 =T ;压强=P 。

气体动理论习题解答,DOC

习题 8-1设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。若此理想气体的压强为1.35×1014Pa 。 解:(1) J 1014.41054001038.12 3)(233232321?=?????=+=-∑N N kT t ε(2)Pa kT n p i 323231076.21054001038.1?=????==-∑

2 8-4储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。问气体的温度及 体的温度需多高? 解:(1)J 1065.515.2731038.12 323212311--?=???==kT t ε (2)kT 23 J 101.6ev 1t 19-==?=ε

8-7一容积为10 cm 3的电子管,当温度为300K 时,用真空泵把管内空气抽成压强为5×10-4mmHg 的高真空,问此时(1)管内有多少空气分子?(2)这些空气 量。 解:RT i E ν2= ,mol 1=ν 若水蒸气温度是100℃时

4 8-9已知在273K 、1.0×10-2atm 时,容器内装有一理想气体,其密度为1.24×10-2 kg/m 3。求:(1)方均根速率;(2)气体的摩尔质量,并确定它是什么气体;(3) 分子间均匀等距排列) 解:(1)325/m 1044.2?==kT p n

(2)32kg/m 297.1333====RT P RT p v p μμρ (3)J 1021.62 3 21-?==kT t ε (4)m 1045.3193-?=?=d n d (2)K 3.36210 38.1104.51021035.12322=??????==-Nk pV T 8-13已知)(v f 是速率分布函数,说明以下各式的物理意义:

大学物理振动波动例题习题

精品 振动波动 一、例题 (一)振动 1.证明单摆是简谐振动,给出振动周期及圆频率。 2. 一质点沿x 轴作简谐运动,振幅为12cm ,周期为2s 。当t = 0时, 位移为6cm ,且向x 轴正方向运动。 求: (1) 振动表达式; (2) t = 0.5s 时,质点的位置、速度和加速度; (3)如果在某时刻质点位于x =-0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。 3. 已知两同方向,同频率的简谐振动的方程分别为: x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+ 求:(1)合振动的初相及振幅. (2)若有另一同方向、同频率的简谐振动x 3 = 0.07cos (10 t +? 3 ), 则当? 3为多少时 x 1 + x 3 的振幅最大?又? 3为多少时 x 2 + x 3的振幅最小? (二)波动 1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s 。在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动, 求:(1)波动方程 (2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。 2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播。已知原点的振动曲线如图所示。求:(1)原点的振动表达式; (2)波动表达式; (3)同一时刻相距m 1的两点之间的位相差。 3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+。 S 1距P 点3个波长,S 2距P 点21/4个波长。求:两波在P 点引起的合振动振幅。

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第12章 气体动理论

第十二章 气体动理论 12-1 一容积为10L 的真空系统已被抽成1.0×10-5 mmHg 的真空,初态温度为20℃。为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出所吸附的气体,如果烘烤后压强为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子? 解:由式nkT p =,有 3 2023 52/1068.1573 1038.1760/10013.1100.1m kT p n 个?≈?????==-- 因而器壁原来吸附的气体分子数为 个183201068.110101068.1?=???==?-nV N 12-2 一容器内储有氧气,其压强为1.01?105 Pa ,温度为27℃,求:(l )气体分子的 数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。(设分子间等距排列) 分析:在题中压强和温度的条件下,氧气可视为理想气体。因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解。又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知d n V ,10=即可求出。 解:(l )单位体积分子数 3 25m 1044.2-?==kT p n (2)氧气的密度 3m kg 30.1-?===RT pM V m ρ (3)氧气分子的平均平动动能 J 1021.62321k -?==kT ε (4)氧气分子的平均距离 m 1045.3193-?==n d 12-3 本题图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦分子速率分布曲线。试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。 分析:由M RT v /2p =可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率p v 也就不同。因22O H M M <,故氢气比氧气的p v 要大,由此可判定图中曲线II 所标13p s m 100.2-??=v 应是对应于氢气分子的最概然速率。从而可求出该曲线所对应的温度。又因曲线I 、II 所处的温度相同,故曲线I 中氧气的最概然速率也可按上式求得。 解:(1)由分析知氢气分子的最概然速率为

第7章 气体动理论习题解答

第7章 气体动理论 7.1基本要求 1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。 2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。 3.理解自由度和内能的概念,掌握能量按自由度均分定理。掌握理想气体的内能公式并能熟练应用。 4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。 5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。 7.2基本概念 1 平衡态 系统在不受外界的影响下,宏观性质不随时间变化的状态。 2 物态参量 描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强p 、体积V 和温度T 3 温度 宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。 4 自由度 确定一个物体在空间的位置所需要的独立坐标数目,用字母i 表示。 5 内能 理想气体的内能就是气体内所有分子的动能之和,即2 i E RT ν= 6 最概然速率 速率分布函数取极大值时所对应的速率,用p υ表示,p υ= =≈其物理意义为在一定温度下,分布在速率p υ附近的单位速率区间内的分子在总分子数中所占的百分比最大。 7 平均速率 各个分子速率的统计平均值,用υ表示,υ==≈8 方均根速率 各个分子速率的平方平均值的算术平方根,用rms υ表示,

rms υ= =≈ 9 平均碰撞频率和平均自由程 平均碰撞频率Z 是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程λ是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为: Z υ λ= = 或 λ= 7.3基本规律 1 理想气体的物态方程 pV RT ν=或' m pV RT M = pV NkT =或p nkT = 2 理想气体的压强公式 2 3 k p n = 3 理想气体的温度公式 2132 2 k m kT ευ== 4 能量按自由度均分定理 在温度为T 的平衡态下,气体分子任何一个自由度的平均动能都相等,均为12 kT 5 麦克斯韦气体分子速率分布律 (1)速率分布函数 ()dN f Nd υυ = 表示在速率υ附近单位速率区间内的分子数占总分子数的百分比或任一单个分子在速率υ附近单位速率区间内出现的概率,又称为概率密度。 (2)麦克斯韦速率分布律 2 3/22 2()4()2m kT m f e kT υ υπυπ-= 这一分布函数表明,在气体的种类及温度确定之后,各个速率区间内的分子数占总分子数的百分比是确定的。 麦克斯韦速率分布曲线的特点是:对于同一种气体,温度越高,速率分布曲线越平坦;而在相同温度下的不同气体,分子质量越大的,分布曲线宽度越窄,高度越大,整个曲线比质量

大学物理振动习题含答案

一、选择题: 1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) π (B) π/2 (C) 0 (D) θ [ ] 2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。第一个质点的振动方程为x 1 = A cos(ωt + α)。当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。则第二个质点的振动方程为: (A) )π21cos(2++=αωt A x (B) ) π2 1cos(2- +=αωt A x (C) ) π23cos(2- +=αωt A x (D) )cos(2π++=αωt A x [ ] 3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是 (A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ] 4.3396:一质点作简谐振动。其运动速度与时间的曲线如图所示。若质点的振动规律 用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ] 5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。将它们拿到月球上去,相应的周期分别为1T '和2T '。则有 (A) 11T T >'且22T T >' (B) 11T T <'且22T T <' (C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为 ) 31 2cos(10 42 π+ π?=-t x (SI)。 从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 (A) s 8 1 (B) s 6 1 (C) s 4 1 (D) s 3 1 (E) s 2 1 [ ] 7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。当重物通过平衡位置且向规定的正方向运动时,开始计时。则其振动方程为: (A) )21/(cos π+=t m k A x (B) )21 /cos(π-=t m k A x (C) )π21/(cos + =t k m A x (D) )21/cos(π- =t k m A x (E) t m /k A x cos = [ ] 8.5312:一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点。若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为 v v 2 1

大学物理答案第4章

第四章 流体力学 4-1如本题图,试由多管压力计中水银面高度的读数确定压力水箱中A 点的相对压强(P -P 0)。(所有读数均自地面算起,其单位为米) 解:根据gh P ρ=得 ) -(汞7.08.103g P P ρ=- )-(水7.0232g P P ρ-=- )-(汞9.0221g P P ρ=- )-( -水9.05.21g P P ρ=- m g m g P P 9.22.20??=-∴水汞-ρρ 4-2如本题图,将一充满水银的气压计下端浸在一个广阔的盛水银的容器中,其读数为 -2 5 m N 10950.0??=p 。(1)求水银柱的高度h 。(2) 考虑到毛细现象后,真正的大气压强0p 多大? 已知毛细管的直径 m 100.23-?=d ,接触角π=θ,水银的表面张力系数-1m N 49.0?=σ。 解:(1)gh p ρ= cm g p h 3.716 .138.910950.05≈??==∴ρ (2)Pa d p p 43 500106.9100.1cos 49.021095.02 cos 2'?=??+?=+ =-π θσ 4-3灭火筒每分钟喷出60m 3的水,假定喷口处水柱的截面积为1.5cm 2,问水柱喷到2m 高时其截面积有多大? 解:流量2211S v S v Q == 且 gh v v 22 12 2-=- s m m s m S Q v /107.6105.1606032 43 11?≈?= =∴- 2212235.42cm gh v Q v Q S =-== 4-4油箱内盛有水和石油,石油的密度为0.9g /cm 3,水的厚度为1m ,油的厚度为4m 。 求水自箱底小孔流出的速度。 解:如图,流线上1、2点分别是油面和小孔处的两点。根据伯努利方程 习题4-2图

大学物理习题解答8第八章振动与波动 (1)

第八章 振动与波动 本章提要 1. 简谐振动 · 物体在一定位置附近所作的周期性往复运动称为机械振动。 · 简谐振动运动方程 ()cos x A t ω?=+ 其中A 为振幅,ω 为角频率,(ωt+?)称为谐振动的相位,t =0时的相位? 称为初相位。 · 简谐振动速度方程 d () d sin x v A t t ωω?= =-+ · 简谐振动加速度方程 2 2 2d ()d cos x a A t t ωω?= =-+ · 简谐振动可用旋转矢量法表示。 2. 简谐振动的能量 · 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为 2 12k E m v = · 弹簧的势能为 2 12p E kx = · 振子总能量为 P 2 2 2 2 2 211()+()22 1=2 sin cos k E E E m A t kA t kA ωω?ω?=+=++ 3. 阻尼振动

· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。 · 阻尼振动的动力学方程为 2 2 2d d 20d d x x x t t β ω++= 其中,γ是阻尼系数,2m γ β= 。 (1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。 (2) 当22ωβ=时,不再出现振荡,称临界阻尼。 (3) 当22ωβ<时,不出现振荡,称过阻尼。 4. 受迫振动 · 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力 · 受迫振动的运动方程为 2 2 P 2d d 2d d cos x x F x t t t m β ωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。 · 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。 5. 简谐振动的合成与分解 (1) 一维同频率的简谐振动的合成 若任一时刻t 两个振动的位移分别为 111()cos x A t ω?=+ 222()cos x A t ω?=+ 合振动方程可表示为 ()cos x A t ω?=+ 其中,A 和? 分别为合振动的振幅与初相位 A =

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第9章 电磁感应

第9章 电磁感应 9-1在通有电流I=5A 的长直导线近旁有一导线ab ,长l =20cm ,离长直导线距离d=10cm (如图)。当它沿平行于长直导线的方向以v =10m/s 速率平移时,导线中的感应电动势多大?a 、b 哪端的电势高? 解:根据动生电动势的公式E =? ??L l B v d )( E 3ln 22030 10 0π μ=πμ= ? Iv x dx Iv V 57 101.13ln 210 510 4--?=π ???π= 方向沿x 轴负向,a 电势高。 9-2平均半径为12cm 的4×103匝线圈,在强度为0.5G 的地磁场中每秒钟旋转30周,线圈中可产生最大感应电动势为多大?如何旋转和转到何时,才有这样大的电动势? 解:t NBS ω=?cos ,电动势的大小为 E t NBS dt d ωω=? = sin E max n r NB ππ=22 V 7.1302)1012(105.0104224 3 =?π???π????=-- 9-3如图所示,长直导线中通有电流I=5A 时,另一矩形线圈共1.0×103匝,a=10cm ,长L=20cm ,以v =2m/s 的速率向右平动,求当d=10cm 时线圈中的感应电动势。 解:10 10 ln 2102010 10 0+πμ=+πμ= ?? +x IL N x dx IL N x 电动势的大小为E dt d ? = dt dx x IL N 10120+πμ= 10 20+πμ=x v IL N E x=d=10= V 37 3 102) 1010(22 5104100.1--?=+π???π?? 9-4若上题中线圈不动,而长导线中,通有交流电i =5sin100πt A ,线圈内的感生电动势将多大? 解:2ln 2102010 1010 0π μ=+πμ= ?? +iL N x dx iL N v x o

相关文档
最新文档