核酸的分子杂交技术及其应用

核酸的分子杂交技术及其应用
核酸的分子杂交技术及其应用

核酸的分子杂交技术及其应用

1概述

核酸的分子杂交(molecular hybridization)技术是目前生物化学和分子生物学研究中应用最广泛的技术之一,是定性或定量检测特异RNA或DNA序列片段的有力工具。它是利用核酸分子的碱基互补原则而发展起来的。在碱性环境中加热或加入变性剂等条件下,双链DNA之间的氢键被破坏(变性),双链解开成两条单链。这时加入异源的DNA或RNA(单链)并在一定离子强度和温度下保温(复性),若异源DNA或RNA之间的某些区域有互补的碱基序列,则在复性时可形成杂交的核酸分子。

在进行分子杂交技术时,要用一种预先分离纯化的已知RNA或DNA序列片段去检测未知的核酸样品。作为检测工具用的已知RNA或DNA序列片段称为杂交探针(probe)。它常常用放射性同位素来标记。

虽然核酸分子杂交技术的应用仅有二十多年的历史,但它在核酸的结构和功能的研究中作出了重要贡献,在基因的表达调控和物种的亲缘关系研究中也发挥重要作用。而且,随着核酸探针制备及标记技术的丰富和完善以及以不同材料为支持物的固相杂交技术的发展,使核酸分子杂交技术在分子生物学领域中的应用更加广泛。这里我们将就分子杂交技术的几个主要过程及其应用进行介绍。

2核酸探针的制备

核酸分子杂交的灵敏性主要依赖杂交探针的放射性比活度。比活度高就可提高反应的灵敏性,减少待测样品的用量。目前一般所用的是体外标记,这里介绍几种最常用的方法:

2.1DNA的切口平移

双链DNA分子的一条链有切口时,大肠杆菌DNA聚合酶Ⅰ可把核苷酸残基加到切口处的3’端,同时由于此酶具有5’→3’外切核酸酶活性,它还可从5’端除去核苷酸。这样5’端核苷酸的去除与3’端核苷酸的加入同时进行,导致切口沿着DNA链移动,称切口平移(nicktranslation)。常用于在双链DNA 上打开切口的酶为胰DNA酶Ⅰ。由于高放射性比活度的核苷酸置换了原有核苷酸,就有可能制备比活度大于108计数/(分.μg)的32P标记的DNA探针。

2.2单链DNA探针的制备

与传统的双链探针相比,单链探针由于不存在互补链,因此可以消除由探针的两条链重退火形成无效杂交体的可能。最常用的是以M13噬菌体载体合成单链DNA探针的方法。其主要原理是用人工合成的寡核苷酸引物(其序列与载体上固定区段的序列相互补。可从生物试剂公司直接购买)与来自重组M13噬菌体的单链DNA退火,然后以此寡核苷酸作为引物在大肠杆菌DNA聚合酶ⅠKlenow大片段催化下合成互补的放射性标记DNA。

2.3单链RNA探针的制备

首先将感兴趣的DNA序列到带有SP6噬菌体或T7及T3噬菌体的启动子的重组载体质粒中。由于这些重组质粒带有的强启动子能被噬菌体的依赖DNA的RNA聚合酶所识别。因此,当把线状质粒与适当的依赖DNA的RNA聚合酶及4种rNTP(核糖核苷三磷酸)在体外混合并温育时,就可在噬菌体启动子处开始合成RNA。

单链RNA探针除具有单链DNA探针的优点之外,还具有:①合成效果高(模板可反复被转录);②

用DNA酶Ⅰ处理就可容易除去RNA探针中的模板DNA,而无需用凝胶电泳纯化;③RNA杂交体稳定性高,所以探针在杂交反应中产生的信号较DNA探针强,等优点。

3杂交膜的准备

核酸的分子杂交可分成液相杂交和固相杂交两大类。液相杂交是将待检测的核酸样品和同位素标记的杂交探针同时溶于杂交液中进行反应,然后分离杂交双链和未参加反应的探针,用仪器计数并通过计数分析杂交结果。固相杂交是把欲检测的核酸样品先结合到某种固相支持物上,再与溶解于溶液中的杂交探针进行反应,杂交结果可用仪器进行检测,但大多数情况下直接进行放射自显影,然后根据自显影图谱分析杂交结果。目前,固相杂交技术的发展较快,而且应用范围更为广泛。

目前使用最多的固相支持物是硝酸纤维素(NC)膜。它对单链DNA有较强的吸附作用。RNA经过一些特殊变性剂处理后,也能较容易地结合到NC膜上。下面介绍固相杂交反应中常用的几种将核酸样品转移到膜上的方法。

3.1点印迹的直接点样法(Dot blotting)

这是一种能快速而且简便地检测样品中微量核酸的常用技术。其方法主要是将待测样品直接在NC膜上,然后进行杂交检测。其主要过程包括膜的处理、点样、变性、中和、干燥固定以及变性剂去除(检测RNA法)等。

3.2DNA转移(Southern blotting)

用于点印迹的DNA直接点样法具简单、快速、灵敏度高等优点,但不能确定特异DNA序列的大小和定位。1975年Southern氏建立了吸附转移法硝酸纤维素膜杂交。其主要原理是利用滤纸对水的毛细管吸附作用,将经限制酶酶切及琼脂糖凝胶电泳分离的的DNA片段转移到固相杂交膜上,此时的DNA 片段还保留着原来凝胶中的分布图式。然后再用探针进行杂交。

3.3RNA转移(Northern blotting)

这是在Southern blot的基础上发展的RNA固相杂交技术,其因两技术相类似而得名。其方法与Southernblot一样。但RNA需先经乙二醛等变性剂处理后,再于合适的条件下电泳,这样便能使充分变性的RNA像变性DNA一样直接转移到NC膜上。固定之后除去变性剂,再进行杂交,可大大提高杂交的敏感性,每条区带所需的RNA量可从500pg降低到1pg以下。

此外,由于有时需要分离的核酸样品分子量很小,用琼脂糖凝胶不能达到要求的分辨率。这种情况下往往需要聚丙烯酰胺凝胶电泳(PAGE)进行分离,而由于这种胶的孔经较小,用前述的吸印转移法转移速度缓慢,易造成转移不完全。为了解决之一问题,发展了电泳转移法。即以电泳的方法使分离后的待测核酸样品从凝胶转移到NC膜或DBM纸等固相支持物上,再进行杂交。

3.4用于原位杂交的菌落转移

在基因克隆操作中,为了在众多转化菌落中筛选带有目的基因的重组,常用的方法是用标记的探针通过原位杂交找出带有互补序列的目的基因。主要步骤包括长好菌落、制膜、NC膜上菌落的裂解及膜上核酸的固定等。

4固相杂交反应

核酸样品经直接点样或转移到NC膜上并经真空干燥后,即进行杂交反应。在杂交液中,NC膜上变

性核酸样品与变性后的标记探针在一定条件下形成杂交双链,然后通过仪器计数或放射自显影判定结果。主要步骤如下。

4.1预杂交目的在于消除NC膜对探针的非特异性结合,降低杂交背景。将膜在2×SSC中浸泡2分钟。然后将膜放入盛有预杂交液[6×SSC、0.05×BLOTTO(1×BLOTTO:5%脱脂奶粉。含0.02%叠氮钠)]的杂交管中,于68℃杂交炉中温育1~2hr。

4.2杂交将32P标记的双链DNA探针100℃加热5分钟变性,迅速置冰浴中冷却。然后加入预杂交液中混匀,于68℃下杂交16~18小时。

4.3洗膜将膜置于大体积2×SSC和0.1%SDS溶液中,于室温下轻轻振摇5分钟,反复2次。又于68℃下用1×SSC和0.1%SDS溶液洗2次,约1~1.5小时。

4.4放射自显影将膜在纸巾上凉干,用Saron膜(或冰箱保鲜膜和微波炉用膜)将NC膜做成一夹心包装,用放射性墨水制作的圆点标签在Saron膜上作几个不对称的标记。然后置X光片暗盒中,黑暗下加X光片并加增感屏于-20℃或-70℃下曝光12~16小时。X光底片经显影、定影及冲洗后,利用放射性墨水留下的标记对准NC膜与底片的位置,并与凝胶电泳相片或菌落主板相对比,鉴定阳性核酸带或菌落。

5分子杂交技术的应用

Southern印迹技术用来检查DNA样品中是否存在有某个特定的基因,特异性非常高,而且还可知道其大小及酶切位点的分布,尽管其操作比较复杂;Northern印迹技术则用来检查中某个特定的基因是否得到转录;点印迹则仅需要一滴液体的样品,就可快捷地检查出其中是否有某个基因,但不能检出基因的大小或重复的程度;菌落原位杂交技术则是基因克隆中,从众多克隆中快速筛选出阳性的最常用的一种方法。

V.Davis(1990)通过病毒的随机引物逆转录制备了IBDV的互补DNA探针。在点印迹中,探针不能区分病毒的疫苗株、田间株以及突变株,但在很严格的条件下也可获得一些特异性。V.Vakharia用按澳大利亚IBDV序列合成的引物以及pGEM系统,制备了已知起始位点的。将从Delaware E株、Grayson株和STC标准毒株获得的RNA从琼脂糖凝胶转移到膜上并用放射性标记的探针检查。只需1小时的放射自显影。但探针不能区分病毒的不同毒株。他用非放射性的地高辛配基系统也获得了好的杂交结果。

Shaohua Zhao等(1990)通过将滑液膜支原体(MS)的WVU1853株克隆到质粒载体pUC18上,并用大肠杆菌转化,构建了MS的基因文库。在点印迹中,4个转化的克隆与放射性磷标记的MS染色体DNA杂交,但与MGS6株的染色体DNA则没有杂交。在Southern印迹中,所有氯化铯纯提的重组质粒都含有2个长度在1.0~2.3kbp的MSDNA片段。用4个重组质粒制备的探针在点印迹中与MS的WVU1853株和9个田间株均可杂交,但与MG及禽支原体其它15个种均无杂交。

M.L.Khan等已制成用来区分MG致病株和疫苗株的DNA探针。对于MG感染的快速诊断,他将株和种特异性的DNA探针直接应用在田间样品的点印迹检测上。将1毫升的样品培养液吸到膜上,然后用探针检查。株特异性的探针具有与MG疫苗株相同的、长度为6kbp的基因序列,它能特异性地检出经MGF株苗免疫的鸡群。种特异性的探针含有1个9kbp的插入片段,它可检测出所有的MG,而与其它的鸟类支原体则无交叉杂交。

M.Jenkins用Southern印迹来研究球虫的基因表达、基因的构成以及它们在球虫不同种的分布。

能特异性地鉴别球虫特定的发育阶段的探针也已制备。此外,还研制出了以诊断为目的、具有种特异性的其它探针。

K.S.Henderson等(1990)通过点印迹法,用cDNA探针来检测感染鸡体内的IBDV抗原,并用琼脂扩散试验和免疫荧光试验来作比较。结果用后两种方法在接种病毒2天后即可从鸡的组织中检出病毒抗原,检出的持续时间分别为3天和4天。而用点印迹法在接种病毒后1天即可检出病毒抗原并且在整个试验期里(24天)均可检出。这表明点印迹法比其它两种方法都敏感。

K.P.Snipes等(1990)应用REA及Southern印迹法可将分离自火鸡的多杀性巴氏杆菌的疫苗株(M9)和致病株相鉴别,尽管两者在血清型或荚膜型、生化特征、抗药性、全细胞蛋白的PAGE图以及质粒的内容等方面完全相同。为禽霍乱流行病学研究提供很有用的工具。除上述这些应用之外,分子杂交技术还可用于进行细胞原位杂交。此项技术是在保持细胞,甚至单个染色体形态的情况下,检查细胞内某些基因位置的一种有效的分子工具。它在诊断生物学、发育生物学、细胞生物学、遗传学和病理学研究上均得到广泛的应用。原则上它保持了核酸和细胞的形态,用标记的探针与之杂交,最后显影。影响试验的因素包括基因的性质及探针的大小。在包埋的或冰冻的切片中的待检样品用固定剂处理。交联固定剂如甲醛,可降低细胞的渗透性,这样反过来就需要较小的探针才能使之透入细胞,结果就使此方法的灵敏度下降。因此,固定剂及探针的选择是关键。探针可用被荧光标记或与酶联结的放射性核苷酸来标记。原位杂交是一项很难掌握的技术。因为许多的实验条件都很关键。

E.Tanizaki等(1990)用生物素标记的探针与经福尔马林固定的鸡皮肤上皮细胞进行原位杂交,以检查禽痘病毒(FPV)在感染细胞内的分布。结果表明FPV的DNA局限于细胞浆内。

D.Tripathy发展了一种凝胶原位杂交。杂交可接在琼脂糖凝胶上进行,而不需将其转移到固体载体上。由于减少了一个步骤和取消了膜的使用,从而使此方法简单化、缩短了时间,而且减少了经费的使用。

第八章分子生物学常用技术的原理及其应用及人类基因组学

第八章分子生物学常用技术的原理及其应用及人类基因组学 测试题 一、名词解释 1.分子杂交 2.Southernblotting 3.Northernblotting 4.Westernblotting 5.dotblotting 6.DNA芯片技术 7.PCR 8.功能性克隆 9.转基因技术 二、填空题 1.Southernblotting用于研究、Northernblotting用于研究,Westernblotting用于研究。 2.PCR的基本反应步骤包括、和三步。 3.在PCR反应体系中,除了DNA模板外,还需加入、、和。 4.Sange法测序的基本步骤包括、、和。 5.目前克隆致病相关基因的主要策略有、、。 6.血友病第Ⅷ因子基因的首次克隆成功所采用的克隆策略是,而DMD致病基因的克隆所采用的克隆策略是。 三、选择题 A型题 1.经电泳分离后将RNA转移到硝酸纤维素(NC)膜上的技术是: A.SouthernblottingB.Northernblotting

C.WesternblottingD.dotblotting E.insituhybridization 2.不经电泳分离直接将样品点在NC膜上的技术是 A.SouthernblottingB.Northernblotting C.WesternblottingD.Dotblotting E.insituhybridization 3.经电泳分离后将蛋白质转移到NC膜上的技术是 A.SouthernblottingB.Northernblotting C.WesternblottingD.dotblotting E.insituhybridization 4.经电泳后将DNA转移至NC膜上的技术是A.SouthernblottingB.Northernblotting C.WesternblottingD.Easternblotting E.insituhybridization 5.PCR的特点不包括 A.时间短,只需数小时B.扩增产物量大 C.只需微量模板D.用途非常广泛 E.底物必须标记 6.用于PCR的DNA聚合酶必须 A.耐热B.耐高压C.耐酸D.耐碱E.耐低温7.PCR反应过程中,模板DNA变性所需温度一般是A.95?CB.85?CC.75?CD.65?CE.55?C 8.PCR反应过程中,退火温度一般是 A.72?CB.85?CC.75?CD.65?CE.55?C 9.PCR反应过程中,引物延伸所需温度一般是A.95?CB.82?CC.72?CD.62?CE.55?C

核酸分子杂交技术

核酸分子杂交技术 由于核酸分子杂交的高度特异性及检测方法的灵敏性,它已成为分子生物学中最常用的基本技术,被广泛应用于基因克隆的筛选,酶切图谱的制作,基因序列的定量和定性分析及基因突变的检测等。其基本原理是具有一定同源性的原条核酸单链在一定的条件下(适宜的温室度及离子强度等)可按碱基互补原成双链。杂交的双方是待测核酸序列及探针(probe),待测核酸序列可以是克隆的基因征段,也可以是未克隆化的基因组DNA和细胞总RNA。核酸探针是指用放射性核素、生物素或其他活性物质标记的,能与特定的核酸序列发生特异性互补的已知DNA或RNA片段。根据其来源和性质可分为cDNA探针、基因组探针、寡核苷酸探针、RNA探针等。 固相杂交 固相杂交(solid-phase hybridization)是将变性的DNA固定于固体基质(硝酸纤维素膜或尼龙滤膜)上,再与探针进行杂交,故也称为膜上印迹杂交。 斑步杂交(dot hybridization) 是道先将被测的DNA或RNA变性后固定在滤膜上然后加入过量的标记好的DNA或RNA探针进行杂交。该法的特点是操作简单,事先不用限制性内切酶消化或凝胶电永分离核酸样品,可在同一张膜上同时进行多个样品的检测;根据斑点杂并的结果,可以推算出杂交阳性的拷贝数。该法的缺点是不能鉴定所测基因的相对分子质量,而且特异性较差,有一定比例的假阳性。 印迹杂交(blotting hybridization) Southern印迹杂交:凝胶电离经限制性内切酶消化的DNA片段,将凝胶上的DNA变性并在原位将单链DNA片段转移至硝基纤维素膜或其他固相支持物上,经干烤固定,再与相对应结构的已标记的探针进行那时交反应,用放射性自显影或酶反应显色,检测特定大小分子的含量。可进行克隆基因的酶切图谱分析、基因组基因的定性及定量分析、基因突变分析及限制性长度多态性分析(RELP)等。 Northern印迹杂交:由Southerm印杂交法演变而来,其被测样品是RNA。经甲醛或聚乙二醛变性及电泳分离后,转移到固相支持物上,进行杂交反应,以鉴定基中特定mRNA分子的量与大小。该法是研究基因表达常用的方法,可推臬出癌基因的表达程度。 差异杂交(differential hybridization) 是将基因组文库的重组噬菌体DNA转移至硝酸纤维素膜上,用两种混合的不同cDNA探针(如:转移性和非转移性癌组织的mRNA逆转录后的cDNA)分别与滤膜上的DNA杂交,分析两张滤膜上对应位置杂交信息以分离差异表达的基因。适用于基因组不太复杂的真核生物(如酵母)表达基因的比较,假阳性率较低。但对基因组非常复杂的盐酸核生物(如人),则因工作量太大,表达的序列所占百分比较低(仅5%左右),价值不大。 cDNA微点隈杂交(cDNA microarray hybridization) 是指将cDNA克隆或cDNA的PCR产物以高度的列阵形式排布并结合于固相支持物上(如:尼龙膜或

分子蒸馏技术和应用

分子蒸馏技术及其应用 摘要 分子蒸馏又称短程蒸馏,是一种新型的液-液分离技术,与常规蒸馏相比具有许多优点,本文对分子蒸馏的基本原理、设备、特点以及在食品、医药、化工工业中的应用进行了阐述。 关键词:分子蒸馏、食品工业。 分子蒸馏是在高真空度下进行的非平衡蒸馏技术(真空度可达 0.01Pa),是以气体扩散为主要形式、利用不同物质分子运动自由程的差异来实现混合物的分离。由于蒸发面和冷凝面的间距小于或等于被分离物料的蒸气分子的平均自由程,所以也称短程蒸馏。由于分子蒸馏过程中。待分离物质组分可以在远低于常压沸点的温度下挥发,并且各组分的受热过程很短,因此分子蒸馏已成为对高沸点和热敏性物质进行分离的有效手段。目前已广泛应用于食品、医药、油脂加工、石油化工等领域,用于浓缩或纯化低挥发度、高分子量、高沸点、高黏度、热敏性、具有生物活性的物料。 一、分子蒸馏的概念原理和过程 1.1分子蒸馏的基本概念分子有效直径:分子在碰撞过程中,两分子质心的最短距离,即发生斥离的质心距离。分子运动自由程:指一个分子与其他气体分子相邻两次分子碰撞之间所走的路程。分子运动平均自由程:在一定的外界条件下,不同物质中各个分子的自由程各不相同。就某一种分子来说在某时间间隔自由程的平均值称为平均自由程。 1.2分子蒸馏的基本原理分子蒸馏的分离是建立在不同物质挥发度不同的基础上,其操作是在低于物质沸点下进行,当冷凝表面的温度与蒸发物质的表面温度有差别时就能进行分子蒸馏。根据分子运动理论,液体混合物中各个分子受热后会从液面逸出,不同种类的分子,由于其有效直径不同,逸出液面后直线飞行距离是不相同的。轻分子的平均自由程大,重分子的平均自由程小,若在离液面小于轻分子平均自由程而大于重分子平均自由程处设置一冷凝面,使得轻分子落在冷凝面上被冷凝,而重分子则因达不到冷凝面,返回原来液面这样就将混合物分离了,分子平均自由程是分子蒸馏基本理论的核心。 1.3分子蒸馏的基本过程根据分子蒸馏的基本理论,可将蒸馏过程分解为 以下5个步骤:①物料在加热面上形成液膜;②分子在液膜表面上自由蒸发;③分子从加热面向冷凝面的运动;④轻分子在冷凝面上被捕获,重分子返回物料液膜;⑤馏出物和残留物的收集。 二、分子蒸馏的特点

第八章核酸分子杂交技术习题

第八章核酸分子杂交技术 习题 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第八章核酸分子杂交技术 一.选择题 【A型题】 1.DNA链的Tm值取决于核酸分子的 A.G-C含量 B.A-T含量 C.A-G含量 D.A-C含量 E.T-G含量 2.研究得最早的核酸分子杂交种类是 A.菌落杂交 B. Southern杂交 C. Northern杂交 D.液相杂交 E.原位杂交 3.Southern杂交通常是指 A.DNA和RNA杂交 B.DNA和DNA杂交C.RNA和RNA杂交 D.蛋白质和蛋白质杂交 E.DNA和蛋白质杂交 4.基因芯片技术的本质是 A.核酸分子杂交技术 B.蛋白质分子杂交技术 C.聚合酶链反应技术 D.基因重组技术 E.酶切技术 5.寡糖苷酸探针的最大的优势是 A.杂化分子稳定 B.可以区分仅仅一碱基辑差别的靶序列 C. 易标记 D.易合成 E.易分解 6.血友病是一种 A.染色体病 B.X链锁遗传病 C.先天性代谢缺陷病 D.先天 畸形 E.常染色体隐性遗传病

7.检测的靶序列是RNA的技术是 A. Southern杂交 B. Western杂交 C. Northern杂交 D. Eastern杂交 E.杂交淋巴瘤 8. 检测的靶序列是DNA的技术是 A. Southern杂交 B. Western杂交 C. Northern杂交 D. Eastern杂交 E.杂交淋巴瘤 9.DNA双螺旋之间氢键断裂,双螺旋解开,DNA分子成为单链,这一过程称 A.变性 B.复性 C.复杂性 D.杂交 E.探针 10.具有碱基互补区域的单链又可以重新结合形成双链,这一过程称 A.变性 B.复性 C.复杂性 D.杂交 E.探针 11.一种标记核酸与另一种核酸单链进行配对形成异源核酸分子的双链,这一过程称 A.变性 B.复性 C.复杂性 D.杂交 E.探针 12.标记的参与杂交反应的核酸分子,称 A.变性 B.复性 C.复杂性 D.杂交 E.探针 13.点/缝杂交可以用于 A.快速确定是否存在目的基因 B.不仅可以检测DNA样品中是否存在某一特定的基因,而且还可以获得基因片段的大小及酶切位点分布的信息 C.用于基因定位分析

分子杂交技术

分子杂交技术 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

分子杂交技术 分子杂交技术 互补的核苷酸序列通过Walson-Crick碱基配对形成稳定的杂合双链分子DNA分子的过程称为杂交。杂交过程是高度特异性的,可以根据所使用的探针已知序列进行特异性的靶序列检测。 杂交的双方是所使用探针和要检测的核酸。该检测对象可以是克隆化的基因组DNA,也可以是细胞总DNA或总RNA。根据使用的方法被检测的核酸可以是提纯的,也可以在细胞内杂交, 即细胞原位杂交。探针必须经过标记,以便示踪和检测。使用最普遍的探针标记物是同位素, 但由于同位素的安全性,近年来发展了许多非同位素标记探针的方法。 核酸分子杂交具有很高的灵敏度和高度的特异性,因而该技术在分子生物学领域中已广泛地使用于克隆基因的筛选、酶切图谱的制作、基因组中特定基因序列的定性、定量检测和疾病的诊断等方面。因而它不仅在分子生物学领域中具有广泛地应用,而且在临床诊断上的应用也日趋增多。 第一节核酸探针标记的方法 核酸探针根据核酸的性质,可分为DNA和RNA探针;根据是否使用放射性标记物的与否,可分为放射性标记探针和非放射性标记探针;根据是否存在互补链,可分为单链和双链探针;根据放射性标记物掺入情况,可分为均匀标记和末端标记探针。下面将介绍各种类型的探针及标记方法。 一、双链DNA探针及其标记方法 分子生物研究中,最常用的探针即为双链DNA探针,它广泛应用于基因的鉴定、临床诊断等方面。 双链DNA探针的合成方法主要有下列两种:切口平移法和随机引物合成法。 1. 切口平移法(nick translation) 当双链DNA分子的一条链上产生切口时,E.coli DNA聚合酶Ⅰ就可将核苷酸连接到切口的3'羟基末端。同时该酶具有从5'→3'的核酸外切酶活性,能从切口的5'端除去核苷酸。由于在切去核苷酸的同时又在切口的3'端补上核苷酸,从而使切口沿着DNA链移动,用放射性核苷酸代替原先无放射性的核苷酸,将放射性同位素掺入到合成新链中。最合适的切口平移片段一般为50-500个核苷酸。切口平移反应受几种因素的影响: (a) 产物的比活性取决于[α-32 P]dNTP的比活性和模板中核苷酸被置换的程度。(b) DNA酶Ⅰ的用量和E.coli DNA聚合酶的质量会影响产物片段的大小。(c) DNA模板中的抑制物如琼脂糖会抑制酶的活性, 故应使用仔细纯化后的DNA。 材料:待标记的DNA。 设备:高速台式离心机,恒温水浴锅等。 试剂: (1)10×切口平移缓冲液:0.5mol/L Tris·Cl (pH7.2); 0.1mol/L MgSO4 ; 10mmol/L DTT; 100μg/ml BSA。 (2)未标记的dNTP原液:除同位素标记的脱氧三磷酸核苷酸外,其余3种分别溶解于50mmol/L Tris·Cl (pH7.5)溶液中,浓度为0.3mmol/L。 (3)[α-32 P] dCTP或[α-32 P]dATP:400 Ci/mmol, 10μCi/μl。 (4) E.coli DNA聚合酶Ⅰ(4单位/μ l):溶于50μ g/ml BSA, 1mmol/L DTT, 50%甘油,50mmol/L Tris·Cl(pH7.5)中。 (5)DNA酶Ⅰ:1mg/ml。 (6)EDTA :200mmol/L (pH8.0)。 (7)10mol/L NH4Ac。 操作步骤: (1) 按下列配比混合: 未标记的dNTP 10μl 10×切口平移缓冲液5μl 待标记的DNA 1μg [α-32 P]dCTP或dATP(70μCi) 7μl E.coli DNA聚合酶 4单位 DAN酶I 1μl 加水至终体积50μl (2) 置于15℃水浴60分钟。 (3) 加入5μl EDTA终止反应。

核酸分子杂交技术与应用综述样本

核酸分子杂交技术与应用综述 摘要核酸分子杂交技术是20世纪70年代发展起来的一种崭新的分子生物学技术。它是基于DNA分子碱基互补配对原理, 用特异性的核酸探针与待测样品的DNA/RNA形成杂交分子的过程。分子杂交实验依据其形式的不同能够分为液相杂交、固相杂交、原位杂交, 而固相杂交又能够分为菌落杂交、点/狭缝杂交、 Southern印迹杂交和Northern印迹杂交。各类型杂交稻基本原理和步骤是基本相同的, 只是选用的杂交原材料、点样方法有所不同。 关键字核酸分子杂交液相杂交固相杂交原位杂交应用 本文是对分子杂交技术的原理和类型分类及其应用的一篇综述。旨在了解各种杂交类型的应用方向, 即在生物、医学上的应用。 一、核酸分子杂交原理 DNA分子是由两条单链形成的双股螺旋结构, 维系这一结构的力是两条单链碱基氢键和同一单链上相邻碱基间的范德华力。在一定条件下, 双螺旋之间氢键断裂, 双螺旋解开, 形成无规则线团, DNA分子成为单链, 这一过程称作变性或融解。加热、改变DNA融解的pH 值, 或有机溶剂等理化因素, 均可使DNA变性。变性的DNA粘度下降, 沉降速度增加, 浮力上升, 紫外光吸收增加。在温度升高引起的DNA变性过程中, DNA的变性会在一个很狭窄的 温度范围内发生, 这一温度范围的重点被称作融解温度T m 。T m 值得大小取决于核酸分子的G-C 含量, 核酸分子的G-C含量越高, 其T m 值越高。因为G-C碱基之间有三个氢键, 而A-T碱基之间只有两个氢键。变性DNA只要消除变性条件, 具有碱基互补的单链又能够重新结合形成双链, 这一过程称作复性。根据这一原理, 将一种核酸单链标记成为探针, 再与另一种核酸单链进行碱基互补配对, 能够形成异源核酸分子的双链结构, 这一过程称作杂交( hybridization) 。杂交分子的形成并不要求两条单链的碱基顺序完全互补, 因此不同来源的核酸单链只要彼此之间有一定程度的互补序列就能够形成杂交体。 二、核酸分子杂交类型 ( 一) 固相杂交

分子蒸馏技术及其应用的研究进展(精)

综述与专论 分子蒸馏技术及其应用的研究进展 陈立军陈焕钦 (华南理工大学化学工程研究所,广州510640 摘要分子蒸馏是一种在高真空下进行的特殊蒸馏技术。分子蒸馏是一项国内外正在工业化开发应用的高新分离技术,尚未实现大规模的工业化。分子蒸馏技术同普通蒸馏技术的差别很大。介绍了分子蒸馏基本原理、技术特点、主要装置和优势。此外还详细介绍了分子蒸馏技术在国内外的应用新进展,并提出了未来分子蒸馏领域的重点研究方向。关键词 平均自由程分子蒸馏应用进展R esearch Progress in the T echnique of Molecular Distillation and its Application Chen Lijun Chen H uanqin (R esearch I nstitute of Chemical E ngineering ,Southern China U niversity of T echnology ,G uangzhou 510640 Abstract The m olecular distillation (short -path distillation or unobstructed distillation is a special separation technique of liquid -liquid and a special distillation technique under the high vacuum.It is an industrializing Hi -tech at home and abroad and not used in

核酸的分子杂交技术及其应用

核酸的分子杂交技术及其应用 1概述 核酸的分子杂交(molecular hybridization)技术是目前生物化学和分子生物学研究中应用最广泛的技术之一,是定性或定量检测特异RNA或DNA序列片段的有力工具。它是利用核酸分子的碱基互补原则而发展起来的。在碱性环境中加热或加入变性剂等条件下,双链DNA之间的氢键被破坏(变性),双链解开成两条单链。这时加入异源的DNA或RNA(单链)并在一定离子强度和温度下保温(复性),若异源DNA或RNA之间的某些区域有互补的碱基序列,则在复性时可形成杂交的核酸分子。 在进行分子杂交技术时,要用一种预先分离纯化的已知RNA或DNA序列片段去检测未知的核酸样品。作为检测工具用的已知RNA或DNA序列片段称为杂交探针(probe)。它常常用放射性同位素来标记。 虽然核酸分子杂交技术的应用仅有二十多年的历史,但它在核酸的结构和功能的研究中作出了重要贡献,在基因的表达调控和物种的亲缘关系研究中也发挥重要作用。而且,随着核酸探针制备及标记技术的丰富和完善以及以不同材料为支持物的固相杂交技术的发展,使核酸分子杂交技术在分子生物学领域中的应用更加广泛。这里我们将就分子杂交技术的几个主要过程及其应用进行介绍。 2核酸探针的制备 核酸分子杂交的灵敏性主要依赖杂交探针的放射性比活度。比活度高就可提高反应的灵敏性,减少待测样品的用量。目前一般所用的是体外标记,这里介绍几种最常用的方法: 2.1DNA的切口平移 双链DNA分子的一条链有切口时,大肠杆菌DNA聚合酶Ⅰ可把核苷酸残基加到切口处的3’端,同时由于此酶具有5’→3’外切核酸酶活性,它还可从5’端除去核苷酸。这样5’端核苷酸的去除与3’端核苷酸的加入同时进行,导致切口沿着DNA链移动,称切口平移(nicktranslation)。常用于在双链DNA 上打开切口的酶为胰DNA酶Ⅰ。由于高放射性比活度的核苷酸置换了原有核苷酸,就有可能制备比活度大于108计数/(分.μg)的32P标记的DNA探针。 2.2单链DNA探针的制备 与传统的双链探针相比,单链探针由于不存在互补链,因此可以消除由探针的两条链重退火形成无效杂交体的可能。最常用的是以M13噬菌体载体合成单链DNA探针的方法。其主要原理是用人工合成的寡核苷酸引物(其序列与载体上固定区段的序列相互补。可从生物试剂公司直接购买)与来自重组M13噬菌体的单链DNA退火,然后以此寡核苷酸作为引物在大肠杆菌DNA聚合酶ⅠKlenow大片段催化下合成互补的放射性标记DNA。 2.3单链RNA探针的制备 首先将感兴趣的DNA序列到带有SP6噬菌体或T7及T3噬菌体的启动子的重组载体质粒中。由于这些重组质粒带有的强启动子能被噬菌体的依赖DNA的RNA聚合酶所识别。因此,当把线状质粒与适当的依赖DNA的RNA聚合酶及4种rNTP(核糖核苷三磷酸)在体外混合并温育时,就可在噬菌体启动子处开始合成RNA。 单链RNA探针除具有单链DNA探针的优点之外,还具有:①合成效果高(模板可反复被转录);②

第八章 核酸分子杂交技术习题

第八章核酸分子杂交技术 一.选择题 【A型题】 1.DNA链的Tm值取决于核酸分子的 A.G-C含量 B.A-T含量 C.A-G含量 D.A-C含量 E.T-G含量 2.研究得最早的核酸分子杂交种类是 A.菌落杂交 B. Southern杂交 C. Northern杂交 D.液相杂交 E.原位杂交 3.Southern杂交通常是指 A.DNA和RNA杂交B.DNA和DNA杂交C.RNA和RNA杂交D.蛋白质和蛋白质杂交E.DNA和蛋白质杂交 4.基因芯片技术的本质是 A.核酸分子杂交技术 B.蛋白质分子杂交技术 C.聚合酶链反应技术 D.基因重组技术 E.酶切技术 5.寡糖苷酸探针的最大的优势是 A.杂化分子稳定 B.可以区分仅仅一碱基辑差别的靶序列 C.易标记 D.易合成 E.易分解 6.血友病是一种 A.染色体病 B.X链锁遗传病 C.先天性代谢缺陷病 D.先天畸形 E.常染色体隐性遗传病

7.检测的靶序列是RNA的技术是 A. Southern杂交 B. Western杂交 C. Northern杂交 D. Eastern杂交 E.杂交淋巴瘤 8. 检测的靶序列是DNA的技术是 A. Southern杂交 B. Western杂交 C. Northern杂交 D. Eastern杂交 E.杂交淋巴瘤 9.DNA双螺旋之间氢键断裂,双螺旋解开,DNA分子成为单链,这一过程称 A.变性 B.复性 C.复杂性 D.杂交 E.探针 10.具有碱基互补区域的单链又可以重新结合形成双链,这一过程称 A.变性 B.复性 C.复杂性 D.杂交 E.探针 11.一种标记核酸与另一种核酸单链进行配对形成异源核酸分子的双链,这一过程称 A.变性 B.复性 C.复杂性 D.杂交 E.探针 12.标记的参与杂交反应的核酸分子,称 A.变性 B.复性 C.复杂性 D.杂交 E.探针 13.点/缝杂交可以用于 A.快速确定是否存在目的基因 B.不仅可以检测DNA样品中是否存在某一特定的基因,而且还可以获得基因片段的大小及酶切位点分布的信息 C.用于基因定位分析

分子蒸馏技术的原理和应用(精)

分子蒸馏技术的原理和应用 分子蒸馏技术简介 分子蒸馏是一项较新的尚未广泛应用于产业化生产的分离技术,能解决大量常规蒸馏技术所不能解决的题目。分子蒸馏是一种特殊的液-液分离技术,能在极高真空下操纵,它依据分子运动均匀自由程的差别,能使液体在远低于其沸点的温度下将其分离,特别适用于高沸点、热敏性及易氧化物系的分离。由于其具有蒸馏温度低于物料的沸点、蒸馏压强低、受热时间短、分离程度高等特点,因而能大大降低高沸点物料的分离本钱,极好地保护了热敏性物质的特点品质,该项技术用于纯自然保健品的提取,可摆脱化学处理方法的束缚,真正保持了纯自然的特性,使保健产品的质量迈上一个新台阶。 分子蒸馏技术,作为一种对高沸点、热敏性物料进行有效的分离手段,自本世纪三十年代出现以来,得到了世界各国的重视。到本世纪六十年代,为适应浓缩鱼肝油中维生素A的需要,分子蒸馏技术得到了规模化的产业应用。在日、美、英、德、苏相继设计制造了多套分子蒸馏装置,用于浓缩维生素A,但当时由于各种原因,应用面太窄,发展速度很慢。但是,在过往地三十多年中,人们一直在不断地重视着这项新的液-液分离技术的发展,对分离装置精益求精、完善,对应用领域不断探索、扩展,因而一直有新的专利和新的应用出现。特别是从八十年代末以来,随着人们对自然物质的青睐,回回自然潮流的兴起,分子蒸馏技术得到了迅速的发展。 对分子蒸馏的设备,各国研制的形式多种多样。发展至今,大部分已被淘汰,目前应用较广的为离心薄膜式和转子刮膜式。这两种形式的分离装置,也一直在精益求精和完善,特别是针对不同的产品,其装置结构与配套设备要有不同的特

点,因此,就分子蒸馏装置本身来说,其开发研究的内容尚十分丰富。 在应用领域方面,国外已在数种产品中进行产业化生产。特别是近几年来在自然物质的提取方面应用较为突出,如:从鱼油中提取EPA与DHA、从植物油中提取自然维生素E等。另外,在精细化工中间体方面的提取和分离,品种也越来越多。 我国对分子蒸馏技术的研究起步较晚,八十年代末期,国内引进了几套分子蒸馏生产线,用于硬脂酸单甘酯的生产。国内的科研职员也曾经作过一些研究,但未见产业化应用的报道。 分子蒸馏成套产业化装置具有设计新奇、结构独特、工艺先进,可明显进步分离效率。从小试到产业化生产又到小试的反复循环实验探索中,特别解决了产业化生产中轻易出现的突出题目。如有效地解决了物料返混题目,明显地进步了产品质量,创造性地设计了有补偿功能的消息密封方式;实现了产业装置高真空下的长期稳定运行。该项技术属国内领先、国际先进。 截止目前为止已经开发的产品有二十余种,如:硬脂酸单甘酯、丙二醇酯、玫瑰油、小麦胚芽油、米糠油、谷维素等。并已确定了应用分子蒸馏技术的有关工艺条件,为进行产业化生产奠定了基础。 分子蒸馏的原理和装置的结构决定其有如下特点: 1、分子蒸馏的操纵温度远低于物料的沸点: 由分子蒸馏原理可知,混合物的分离是由于不同种类的分子溢出液面后的均匀自由程不同的性质来实现的,并不需要沸腾,所以分子蒸馏是在远低于沸点的温度下进行操纵的,这一点与常规蒸馏有本质的区别。 2、蒸馏压强低: 由于分子蒸馏装置独特的结构形式,其内部压强极小,可以获得很高的真空,因此分子蒸馏是在很低的压强下进行操纵,一般为×10-1Pa数目级(×10-3为托数目级)。

最新分子蒸馏技术的原理和应用

分子蒸馏技术的原理 和应用

分子蒸馏技术的原理和应用 分子蒸馏技术简介 分子蒸馏是一项较新的尚未广泛应用于产业化生产的分离技术,能解决大量常规蒸馏技术所不能解决的题目。分子蒸馏是一种特殊的液-液分离技术,能在极高真空下操纵,它依据分子运动均匀自由程的差别,能使液体在远低于其沸点的温度下将其分离,特别适用于高沸点、热敏性及易氧化物系的分离。由于其具有蒸馏温度低于物料的沸点、蒸馏压强低、受热时间短、分离程度高等特点,因而能大大降低高沸点物料的分离本钱,极好地保护了热敏性物质的特点品质,该项技术用于纯自然保健品的提取,可摆脱化学处理方法的束缚,真正保持了纯自然的特性,使保健产品的质量迈上一个新台阶。 分子蒸馏技术,作为一种对高沸点、热敏性物料进行有效的分离手段,自本世纪三十年代出现以来,得到了世界各国的重视。到本世纪六十年代,为适应浓缩鱼肝油中维生素A的需要,分子蒸馏技术得到了规模化的产业应用。在日、美、英、德、苏相继设计制造了多套分子蒸馏装置,用于浓缩维生素A,但当时由于各种原因,应用面太窄,发展速度很慢。但是,在过往地三十多年中,人们一直在不断地重视着这项新的液-液分离技术的发展,对分离装置精益求精、完善,对应用领域不断探索、扩展,因而一直有新的专利和新的应用出现。特别是从八十年代末以来,随着人们对自然物质的青睐,回回自然潮流的兴起,分子蒸馏技术得到了迅速的发展。

对分子蒸馏的设备,各国研制的形式多种多样。发展至今,大部分已被淘汰,目前应用较广的为离心薄膜式和转子刮膜式。这两种形式的分离装置,也一直在精益求精和完善,特别是针对不同的产品,其装置结构与配套设备要有不同的特点,因此,就分子蒸馏装置本身来说,其开发研究的内容尚十分丰富。 在应用领域方面,国外已在数种产品中进行产业化生产。特别是近几年来在自然物质的提取方面应用较为突出,如:从鱼油中提取EPA与DHA、从植物油中提取自然维生素E等。另外,在精细化工中间体方面的提取和分离,品种也越来越多。 我国对分子蒸馏技术的研究起步较晚,八十年代末期,国内引进了几套分子蒸馏生产线,用于硬脂酸单甘酯的生产。国内的科研职员也曾经作过一些研究,但未见产业化应用的报道。 分子蒸馏成套产业化装置具有设计新奇、结构独特、工艺先进,可明显进步分离效率。从小试到产业化生产又到小试的反复循环实验探索中,特别解决了产业化生产中轻易出现的突出题目。如有效地解决了物料返混题目,明显地进步了产品质量,创造性地设计了有补偿功能的消息密封方式;实现了产业装置高真空下的长期稳定运行。该项技术属国内领先、国际先进。 截止目前为止已经开发的产品有二十余种,如:硬脂酸单甘酯、丙二醇酯、玫瑰油、小麦胚芽油、米糠油、谷维素等。并已确定了应用分子蒸馏技术的有关工艺条件,为进行产业化生产奠定了基础。 分子蒸馏的原理和装置的结构决定其有如下特点: 1、分子蒸馏的操纵温度远低于物料的沸点:

分子蒸馏技术及其在食品方面的应用

分子蒸馏技术及其在食品方面的应用 摘要:分子蒸馏技术是一种新型、高效的分离技术,现已在许多领域得到广泛应用。本文介绍下分子蒸馏的概念、原理、特点以及影响分子蒸馏速度的因素;其中举以例子,介绍下分子蒸馏技术目前在食品工业中的应用。最后本文对其发展状况及应用前景进行了分析和展望。 关键词:分子蒸馏技术;食品;应用;前景

蒸馏是实现分离的一种最基本的方法,可实现固体和液体或液体和液体混合物的分离。常规蒸馏的过程中,经常采用减压的方法,能够有效降低蒸馏所需要的温度,从而可以避免有些物质在蒸馏过程中因受热分解而造成的损失。但是,对于沸点高、热不稳定、粘度高或容易爆炸的物质,并不适宜使用普通减压蒸馏法。为了分离和纯化这些特殊性质的物质,一种新的分离技术——分子蒸馏技术也相应产生。 分子蒸馏是一种以液相中逸出的气相分子依靠气体扩散为主体的分离过程,是在高真空度下进行分离操作的连续蒸馏过程,实质上是一种特殊的液-液蒸馏分离技术。分子蒸馏过程中,待分离物质组分可在远低于常压沸点的温度下挥发,并且各组分的受热过程很短,因此成为目前分离目的产物最温和的蒸馏方法,特别适合于分离高沸点、粘度大、热敏性的天然物料[1]。目前,分子蒸馏技术已成功地应用于食品、医药、化妆品、精细化工、香料工业等行业。 1 基本原理 分子蒸馏技术的原理,在于突破了常规蒸馏依靠沸点差分离物质的原理,而是依靠不同物质分子逸出后的运动平均自由程的差别来实现物质的分离。普通蒸馏过程中,当形成的蒸汽分子离开溶液液面后,在运动中相互碰撞,一部分进入冷凝器中,另一部分则返回溶液内。分子蒸馏技术的特点,在于溶液液面与冷凝器的冷凝面间距离十分靠近,蒸汽分子离开液面后,在它们的分子自由程内未经过相互碰撞就可到达冷凝面,不再返回溶液内[2]。 对液体混合物的分离,首先要加热提供能量,接受到足能量的分子就会逸出液面成为气相分子。不同质量的分,由于分子有效直径不同,一般轻分子的平均自由程较大,分子的平均自由程较小。若在离液面小于轻分子平均自由而大于重分子平均自由程处设置一个冷凝面,当轻分子到冷凝面后就被冷凝,从而使轻分子不断逸出;而重分子达不到冷凝面就会发生碰撞而返回溶液中,很快与液相中重分子趋于动态平衡,表观上不再从液相中逸出。通过这种方法,就可以将轻分子和重分子进行分离[3]。 分子平均自由程是一个分子在相邻的两次分子碰撞之间所经过的路程,它的长短与分子有效直径、压力和温度有关[4]。当压力不变时,物质的分子平均自由程随温度的增加而增加;当温度不变时,物质的分子平均自由程随压力的降低而增加。例如,当系统中的压力为13.3Pa 时,空气分子的平均自由程只有0.056cm,而当系统

分子杂交技术

分子杂交技术 分子杂交技术 互补的核苷酸序列通过Walson-Crick碱基配对形成稳定的杂合双链分子DNA分子的过程称为杂交。杂交过程是高度特异性的,可以根据所使用的探针已知序列进行特异性的靶序列检测。 杂交的双方是所使用探针和要检测的核酸。该检测对象可以是克隆化的基因组DNA,也可以是细胞总DNA或总RNA。根据使用的方法被检测的核酸可以是提纯的,也可以在细胞内杂交, 即细胞原位杂交。探针必须经过标记,以便示踪和检测。使用最普遍的探针标记物是同位素, 但由于同位素的安全性,近年来发展了许多非同位素标记探针的方法。 核酸分子杂交具有很高的灵敏度和高度的特异性,因而该技术在分子生物学领域中已广泛地使用于克隆基因的筛选、酶切图谱的制作、基因组中特定基因序列的定性、定量检测和疾病的诊断等方面。因而它不仅在分子生物学领域中具有广泛地应用,而且在临床诊断上的应用也日趋增多。 第一节核酸探针标记的方法 核酸探针根据核酸的性质,可分为DNA和RNA探针;根据是否使用放射性标记物的与否,可分为放射性标记探针和非放射性标记探针;根据是否存在互补链,可分为单链和双链探针;根据放射性标记物掺入情况,可分为均匀标记和末端标记探针。下面将介绍各种类型的探针及标记方法。 一、双链DNA探针及其标记方法 分子生物研究中,最常用的探针即为双链DNA探针,它广泛应用于基因的鉴定、临床诊断等方面。 双链DNA探针的合成方法主要有下列两种:切口平移法和随机引物合成法。 1. 切口平移法(nick translation) 当双链DNA分子的一条链上产生切口时, DNA聚合酶Ⅰ就可将核苷酸连接到切口的3'羟基末端。同时该酶具有从5'→3'的核酸外切酶活性,能从切口的5'端除去核苷酸。由于在切去核苷酸的同时又在切口的3'端补上核苷酸,从而使切口沿着DNA链移动,用放射性核苷酸代替原先无放射性的核苷酸,将放射性同位素掺入到合成新链中。最合适的切口平移片段一般为50-500个核苷酸。切口平移反应受几种因素的影响: (a) 产物的比活性取决于[α-32 P]dNTP的比活性和模板中核苷酸被置换的程度。(b) DNA酶Ⅰ的用量和 DNA聚合酶的质量会影响产物片段的大小。(c) DNA 模板中的抑制物如琼脂糖会抑制酶的活性, 故应使用仔细纯化后的DNA。 材料:待标记的DNA。 设备:高速台式离心机,恒温水浴锅等。 试剂: (1)10×切口平移缓冲液:L Tris·Cl ; L MgSO4 ; 10mmol/L DTT; 100μg/ml BSA。 (2)未标记的dNTP原液:除同位素标记的脱氧三磷酸核苷酸外,其余3种分别溶解于50mmol/L Tris·Cl 溶液中,浓度为

核酸分子杂交的种类及应用

核酸分子杂交 摘要:核酸分子杂交技术就是基因工程中重要的研究手段,就是目前生物化学、分子生物学、与细胞生物学研究中应用最广泛的技术之一。也就是现阶段定性、定量与定位检测DNA与RNA序列片段必须掌握的基本技术与方法。本文主要介绍了核酸分子的原理,分类以及它的相关应用。 关键词:核酸分子;分类;应用; 1、核酸杂交技术的原理 核酸分子(DNA、RNA)就是由许多单核苷酸分子通过3,5磷酸二酯键相互连接所形成的生物大分子。DNA分子双链的形成,DNA的复制,以及RNA的转录等都遵循碱基互补配对原则。DNA就是由两条互补配对的单核苷酸链通过氢键连接的双链分子。双链结构的核酸分子在加热、偏碱环境或受尿素、甲酰胺等氢键解离剂的作用,则形成单链分子,称为核酸“变性”。两条单链核甘酸若有同源顺序,则在一定条件下,她们的碱基互补配对,从而形成双链分子,称为核酸“复性”或核酸“杂交”[1]。核酸分子杂交就是用核酸分子的变性,复性等理化性质而设计的一种常用技术。通常利用一种顺序已知,并被放射性同位素标记的核酸片段瞧作为探针,与未知样品的核酸进行分子杂交,如果样品中的核酸与探针有碱基互补顺序就能形成杂交分子。此时标有同位素或生物素的探针则固定在标本上,用放射性自显影法或免疫组化法可显示出探针[2]。 核酸分子杂交可分为液相杂交、固相杂交与原位杂交[3]。 2、固相分子杂交: 将待测的靶核甘酸链预先固定在固体支持物(硝酸纤维素膜或尼龙膜)上,而标记的探针则游离在溶液中,进行杂交反应后,使杂交分子留在支持物上,然后再进行检测与计算。 固相分子杂交又可分为:Southern印迹杂交、Northern印迹杂交、Western印迹杂交、斑点杂交、菌落原位杂交等。 2、1 Southern印迹杂交 1975年建立的一种DNA转移方法。该法利用硝酸纤维素膜(或经特殊处理的滤纸或尼龙膜)具有吸附DNA的功能。首先用酚提法从待检测组织中提取DNA,然后以限制性内切酶消化待测的DNA片段,接着进行琼脂糖凝胶电泳使DNA按分子量大小分离,电泳完毕后,将凝胶放入碱性溶液中使DNA变性,解离为两条单链。再在凝胶上贴上硝酸纤维素膜,使凝胶上的单链DNA区带按原来的位置吸印到膜上。然后直接在膜上进行核酸探针(已被同位素标记)与被测样品之间的杂交,再通过放射自显影对杂交结果进行检测[4]。 2、2 Northern印迹杂交 1976年Alwine建立了该方法。这就是一种将RNA从琼脂糖凝胶中转印到硝酸纤维素膜上的方法。其检测过程与Southern转移杂交基本相同,所不同的就是用DNA探针检测经凝胶电泳分开的RNA分子。它主要用于研究基因的转录活性及表达[5]。 2、3 Western印迹杂交 Western印迹就是指将蛋白质样品经聚丙烯酰胺凝胶电泳分离,然后转移至到固相载体上,然后用抗体通过免疫学反应检测目的蛋白,分析基因的表达程度。

分子蒸馏技术及其最新应用

分子蒸馏技术及其应用进展 摘要分子蒸馏技术是近年来发展起来的一种新型的液-液分离技术,现已在很多领域得到广泛的应用。综合评述了分子蒸馏的基本原理、过程技术特点、常用设备及其优缺点。工业应用及过程模型化的研究进展。并对分子蒸馏过程技术的前景提出了一些展望。 前言分子蒸馏[1]又叫短程蒸馏,是一种在高真空下,利用不同物质的分子运动平均自由程的差异来实现分离的液-液分离技术。该技术具有蒸馏温度低、受热时间短、分离程度高、系统能耗低等特点,并且该分离技术为不可逆过程,不存在沸腾及鼓泡现象。因此特别适用于分离高沸点、热敏性和易氧化的物质,能解决常规蒸馏技术所不能解决的问题。目前已广泛地应用于国民经济的各个行业中。 1 分子蒸馏过程技术的基本原理和特点 分子蒸馏是指在高真空的条件下,液体分子受热从液面逸出,利用不同分子平均自由程差导致其表面蒸发速率不同而达到分离的方法[2]。分子分离过程如图所示,经过预热处理 的待分离料液从进口沿加热板自上而下流入,受 热的液体分子从加热板逸出。由于冷凝和蒸发表 面的间距一般小于或等于蒸发分子的平均自由 程,逸出分子可以不经过分子碰撞而直接到达冷 凝面冷凝,最后进入轻组分接受罐。重组分分子 由于平均自由程小,不能到达冷凝板,从而顺加 热板流入重组分接收罐中,这样就实现了轻重组 分的分离[3]。 2 分子蒸馏的基本过程 根据分子蒸馏的基本理论,可将蒸馏过程分 解为以下5个步骤:①物料在加热面上形成液膜; ②分子在液膜表面上自由蒸发;③分子从加热面向冷凝面的运动;④轻分子在冷凝面上被捕获,重分子返回物料液膜;⑤馏出物和残留物的收集。 3 分子蒸馏设备和特点 3.1 设备组成 一套完整的分子蒸馏设备主要由脱气系统、进料系统、

第八章 核酸分子杂交技术

第八章核酸分子杂交技术 主要用途:①核酸定性或定量检测;②基因克隆、突变及其表达研究;③疾病的临床诊断。 第一节核酸杂交概述及基本原理 一、核酸杂交概述 ?1961年Hall等建立核酸杂交技术,探针与靶序列溶液中杂交,通过平衡密度梯度离心分离杂交体; ?60年代中期Nygaard 等的研究为应用标记DNA或RNA探针检测固定在硝酸纤维素(NC)膜上的DNA序列奠定了基础; ?70年代末期到80年代早期,分子克隆技术的出现,各种质粒和噬菌体DAN载体系统的构建,使特异性DNA探针的来源变得十分丰富; ?80年代中期,PCR技术的发明与核酸分子杂交有机的结合,又使得核酸分子杂交技术的灵敏度大大提高; ?90年代,基因芯片技术的出现使得一次性对大量样品序列进行检测和分析成为可能,从而解决了传统核酸印迹杂交技术操作繁杂、自动化程度低、操作序列数量少、 检测效率低等不足。 核酸的结构:一级结构:核苷酸的排列循序,稳定键为磷酸二酯键; 二级结构:双螺旋结构,稳定键为氢键、碱基堆积力、疏水键; 高级结构:染色体 二、核酸变性 核酸变性(nucleic acid denaturation):在某些理化因素的作用下,维系DNA分子二级结构 的氢键和碱基堆积力受到破坏,DNA由双螺旋变成单链过程。 ?化学键变化:维持双螺旋稳定的氢键和疏水键发生断裂,断裂可以是部分的或全部的,可以是可逆的或是非可逆的。 ?化学结构变化:DNA变性改变了其空间结构,不涉及到其一级结构的改变。 DNA的变性因素:凡能破坏双螺旋稳定性的因素都可以成为变性的条件。 如加热;极端的pH;有机试剂(甲醇、乙醇、尿素、甲酰胺等) 变性DNA的性质:变性能导致DNA的一些理化性质及生物学性质发生改变 ①溶液黏度降低---DNA双螺旋是紧密的“刚性”结构,变性后代之以“柔软”无规则单股线性 结构,DNA黏度明显下降。 ②溶液旋光性发生改变---变性后DNA分子的对称性及局部构型改变。 ③紫外吸收增加---DNA变性后,DNA 溶液的紫外吸收增强,双链DNA<单链DNA<单核苷酸。变性DNA的增色效应 增色效应(hyperchromic effect):DNA变性时其溶液OD260增高的现象。 ?DNA分子在250-280nm 波长具有吸收紫外光的特性,其吸收峰值在260nm。 ?增色效应可以作为DNA变性的指标。 ?不同来源DNA的变化不一,如大肠杆菌DNA经热变性,其260nm的吸光度值可增加40%以上,其它不同来源的DNA溶液的增值范围大多在20-30%之间。 解链曲线:通常利用DNA变性后在波长260nm处吸光度(A260)的增加来监测DNA变性的过程。如果以温度对A260的关系作图,所得的曲线称为解链曲线。典型DNA变性曲线呈S型。

核酸分子杂交试题

核酸分子杂交试题 一. 名词解释: 1. 核酸分子杂交 2. DNA复性 3. Southern杂交 4. Northern杂交 5. 斑点印迹 6. 原位杂交 二. 单项选择题: 1. 在加热或紫外线照射下,可导致两条DNA链中间的氢链断裂,而核酸分子中所有的共价键则不受影响的称为()。 A. DNA变性 B. DNA复性 C. DNA重组 D. DNA杂交 变性的本质是()的断裂。 A. 盐键 B. 氢键 C. 离子键 D. 共价键 3. 一般影响核酸变性的温度可选在()。 A. 60—70℃ B. 70—80℃ C. 80—90℃ D. 90—100℃ 4. 在核酸分子杂交时,一般对应温度作图得到的DNA复性曲线所用的紫外吸收值是()。 A. A260吸收值 B. A280吸收值 C. A320吸收值 D. A360吸收值 5. 进行核酸分子杂交时,一般适宜的探针浓度是( B )。 A. 0.1μg —μg —μg 6.杂交时如果使用单链核酸探针,随着溶液中探针浓度的增加,杂交效率也会增加,所以探针长度控制在()。 A. 50—300bp B. 20—200bp —400bp —500 7.进行核酸杂交时,一般适宜的复性温度较Tm值低()。 A.10℃ B.15℃ C.20℃ D.25℃ 8.寡核酸探针杂交反应一般在低于Tm值()下进行。 A.5℃ B.10℃ C.15℃ D. 25℃ 9. 下列哪种试剂能降低核酸杂交的Tm值( B )。 A.尿素 B. 甲酰胺 C.甲醛 D. 乙醇 10. 在凝胶中核酸变性时,为了使DNA片段在合理的时间内从凝胶中移动出来,必须将最长的DNA片段控制在大约()。 A. 1Kb B. 2 Kb C. 3 Kb D. 4 Kb 11. 将RNA或DNA变性后直接点样于硝酸纤维素膜上,用于基因组中特定基因及其表达的定性及定量研究,称为()。

相关文档
最新文档