【外】氧自由基吸收能力测定乳酸菌的抗氧化能力(多次提到无细胞提取物)

【外】氧自由基吸收能力测定乳酸菌的抗氧化能力(多次提到无细胞提取物)
【外】氧自由基吸收能力测定乳酸菌的抗氧化能力(多次提到无细胞提取物)

J.Dairy Sci.88:1352–1357

American Dairy Science Association,2005.

Antioxidative Activity of Lactobacilli Measured by Oxygen Radical Absorbance Capacity*

J.A.O.Saide?and S.E.Gilliland

Department of Animal Science and Food and Agricultural Products Center,Oklahoma State University,Stillwater 74078

ABSTRACT

The reducing ability and antioxidative activity of some species of Lactobacillus were compared under in vitro conditions.Cultures of Lactobacillus delbrueckii https://www.360docs.net/doc/533149103.html,ctis ,Lactobacillus delbrueckii ssp.bulgaricus ,Lactobacillus acidophilus ,and Lactobacillus casei were grown at 37°C in de Man,Rogosa,Sharpe (MRS)broth supplemented with 0.5%2,3,5triphenyl tetrazolium chloride (TTC)to evaluate reducing activity.Reduced TTC was extracted from the cultures with acetone,and the intensity of the red color measured colorimetrically at 485nm was an indication of reducing activity.The lactobacilli varied signi?cantly in relative ability to re-duce TTC when grown in MRS broth for 15h.The relative amounts of growth as indicated by pH values at 18h appeared to in?uence the amount of reduction.Antioxidative activity was evaluated by the ability of the whole cells or the cell-free extracts from cultures to protect a protein from being attacked by free radicals.These analyses were performed using the oxygen radi-cal absorbance capacity method.All cultures tested ex-hibited some degree of antioxidative activity.Among the treatments,the cell-free extracts from cells grown in MRS broth exhibited signi?cantly higher values than did whole cells.There was no apparent relationship between the reducing and antioxidative activities of the cultures evaluated.The results from this study show that these cultures can provide a source of dietary anti-oxidants.Furthermore,selection of cultures that pro-duce antioxidants as starters could provide yet another health or nutritional bene?t from cultured or culture-containing dairy products.

(Key words:antioxidative,reductase,lactobacilli)Abbreviation key:AAPH =2,2’-azobis(2-amidinopro-pane)dihydrochloride,MRS =de Man,Rogosa,Sharpe,

Received June 16,2004.Accepted December 4,2004.

Corresponding author:S.E.Gilliland;e-mail:seg@https://www.360docs.net/doc/533149103.html,.*Approved for publication by the Director,Oklahoma Agricultural Experiment Station.This project was supported under Project H-2293and Sitlington Endowment Funds.

?Current address:R.Antonio Jose de Almeida 169R/C esq.,B.R.U.,Maputo,Mozambique.

1352

ORAC =oxygen radical absorbance capacity,ROS =reactive oxygen species,TTC =2,3,5triphenyl tetrazo-lium chloride.

INTRODUCTION

The interest in reactive oxygen species (ROS )in biol-ogy and medicine is evident because of their strong relationship with phenomena such as aging and disease processes (Cao et al.,1995).The concept of ROS com-prises not only oxygen-centered radicals such as O ??

2and OH,but also nonradical derivatives of oxygen such as H 2O 2and hypochlorous acid.It is well known that free radicals and other ROS are continuously being pro-duced in living organisms.As a consequence,defense mechanisms have evolved to deactivate these free radi-cals and repair the damage caused by their reactivity (Halliwell and Chirico,1993).However,these systems are not always suf?ciently active to disarm the totality of metabolically produced or exogenous free radicals.Most lactic acid bacteria have systems to cope with oxygen radicals.According to Stecchini et al.(2000)the most common systems are superoxide dismutase and high internal concentrations of Mn 2+.Knauf et al.(1992)also reported that some species of lactobacilli produced a heme-dependent catalase,which can de-grade H 2O 2at a very high rate,blocking the formation of peroxyl radicals.The ability of lactic acid bacteria to create low oxidation-reduction potential needed for their optimum growth probably is related to some of these systems.Reducing activity can be measured by the ability of the organisms to reduce 2,3,5-triphenyl tetrazolium chloride (TTC )(Laxminarayana and Iya,1954).

Free radical scavenger properties of starter cultures would be useful in the food manufacturing industry.They could bene?cially affect the consumer by provid-ing another dietary source of antioxidants (Ouwehand and Salminen,1998)or by providing probiotic bacteria with the potential of producing antioxidants during growth in the intestinal tract.Some species of lactoba-cilli and bi?dobacteria have been reported to produce antioxidative activity (Zaizu et al.,1993;Korpela et al.,1997;Lin and Yen,1999c;Kullisar et al.,2002).The

LACTOBACILLI AND OXYGEN RADICAL ABSORBANCE

1353

intensity of antioxidative activity varied among cul-tures in each study.Most of these studies based the results on evaluation of cell-free extracts of the bacteria.There are many methods to assess free radical scav-enging ability,such as Trolox-equivalent antioxidant capacity and ferric-reducing ability (Cao and Prior,1998).Most of these methods assess one of the 2compo-nents of the antioxidative process,measuring time to reach a ?xed degree of inhibition or the extent of inhibi-tion at a ?xed time (Cao et al.,1995).

The oxygen radical absorbance capacity (ORAC )assay is,to date,the only method combining both vari-ables (Wang et al.,1996;Cao and Prior,1998;Cao et al.,1998).The ORAC assay is based on the protection by the antioxidant of a target compound exposed to an oxidant.It is measured by the change in ?uorescence caused by oxidation of the target compound.The assay permits measurement of the total antioxidant capacity of the sample being tested.This is basically a process whereby the reaction between a ROS,such as hydroxyl or peroxyl radicals,and a target molecule,such as low-density lipoprotein or β-phycoerythrin,can be moni-tored (Handelman et al.,1999).In the case of β-phycoer-ythrin,the structural change is re?ected in the decrease of ?uorescence.

The objective of this study was to compare the antioxi-dative activity of various species of lactobacilli used as yogurt starter cultures or as probiotic bacteria.A second objective was to determine whether reducing activity,based on the reduction of TTC could be used to predict relative antioxidative activity of these organisms.

MATERIALS AND METHODS

Source and Maintenance of Cultures

The cultures used in this study (Lactobacillus acido-philus ,Lactobacillus delbrueckii https://www.360docs.net/doc/533149103.html,ctis ,Lactobacil-lus delbrueckii ssp.bulgaricus ,and Lactobacillus casei )were obtained from the stock culture collection of the Food Microbiology Laboratory in the Food and Agricul-tural Products Research and Technology Center at Oklahoma State University.Cultures were maintained by subculture in de Man,Rogosa,Sharpe (MRS )broth (Difco Laboratories,Detroit,MI)using 1%inocula and incubation for 18h at 37°C.Between uses,cultures were stored at 5°C.To make freshly prepared cultures for experiments,immediately before use,they were sub-cultured 3times on successive days in MRS broth.Plate Counts

The total numbers of lactobacilli in the cultures were determined using the pour plate method (with overlay)on MRS agar.The samples were diluted in 0.1%peptone

Journal of Dairy Science Vol.88,No.4,2005

(Sigma Chemical Co.,St.Louis,MO)dilution blanks (99mL)containing 0.01%silicone antifoamer (Sigma Chemical Co.).Duplicate plates of the appropriate dilu-tions were prepared and incubated at 37°C for 48h.The colonies were counted with the aid of a Quebec colony counter (American Optical Co.,Buffalo,NY),and the colony-forming units per milliliter were determined.Screening Cultures for Reducing Activity

A stock solution of TTC (Sigma Chemical Co.)was prepared by dissolving 50mg in 10mL of distilled water and passing it through a sterile membrane ?lter (0.45-μm pore diameter;Gelman Laboratory,Ann Arbor,MI)into a sterile tube.The solution was pre-pared fresh daily and kept in the dark by wrapping the tube in aluminum foil.

For the screening of reducing activity,tubes con-taining 9-mL volumes of sterile modi?ed MRS broth (without beef extract;as it interfered with the assay)supplemented with 1mL of 0.5%(wt/vol)TTC (added just before use)were inoculated with 0.1mL of freshly prepared cultures and incubated for 18h at 37°C.After the incubation,0.8-mL aliquots were removed from each tube and dispensed into 1.8-mL microcentrifuge tubes along with an equal volume of acetone (Pharmaco,Brook?eld,CT)and shaken vigorously for 30s.The microcentrifuge tubes were placed in an ice-water bath for 3h to allow maximum extraction of the formazan.Then,the tubes were centrifuged at 12,000×g for 10min.One milliliter of the supernatant in each tube was collected with a 1-mL pipette and dispensed into a 1-mL cuvette.Then,the absorbance at 485nm was read using a spectrophotometer (Spectronic 21D;Milton Roy Co.,Rochester,NY)against a blank of deionized water.The remaining portions of the initial 9mL of cultures were checked for pH.

Antioxidative Activity of Broth Cultures

Freshly prepared cultures were used to inoculate (1%)50-mL volumes of sterile MRS broth followed by incubation for 18h at 37°C.After incubation,the cul-tures were centrifuged at 12,000×g for 10min at 4°C.The supernatant was discarded,and the pellet was washed by resuspending it in 50mL of deionized water and centrifuging it again under the same conditions.This wash procedure was repeated 3times.Finally,each washed pellet was resuspended in 50mL of 0.2M potassium phosphate buffer (pH 7.0)and aseptically dispensed (in 25-mL aliquots)into 2sterile vials to prepare the samples corresponding to whole cells and cell-free extracts.

The suspension of whole cells was incubated at 37°C for 30min.The cell-free extract was obtained by son-

SAIDE AND GILLILAND 1354

icating the cells suspended in buffer at setting4(Sonic Dismembranator;Heat Systems Ultrasonics,New York,NY)for5min.To avoid temperature damage during sonication,tubes were maintained in an ice-water mixture.

At the end of the incubation period,the whole cells and the sonicated cells were centrifuged as previously described for removal of cells or cell debris,and the supernatants were collected for evaluation of antioxida-tive activity.Buffer(0.2M phosphate buffer;pH7.0) solution without cells was used as the control. Measuring the Antioxidative Activity

Assay for antioxidative activity.The antioxidative activity of the samples from the cultures was measured according to the method described by Cao et al.(1995). For convenience,the protocol is described here.The stock solution ofβ-phycoerythrin(Sigma Chemical Co.) was prepared by dissolving1mg into5.6mL of phos-phate buffer(0.2M;pH7.0).This stock solution was kept under refrigeration.The working solution was made by mixing300μL of the stock solution with13.4 mL of phosphate buffer just before use.A solution of2,2’-azobis(2-amidinopropane)dihydrochloride (AAPH;Waco Chemical USA,Richmond,VA)was pre-pared fresh immediately before running the assay.For this,60mg of AAPH was weighed and dissolved in5 mL of phosphate buffer.A solution of6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid(Trolox;Aldrich Chem,Inc.,Milwaukee,WI)was prepared by dissolving 5mg of the substance in200mL of0.2M phosphate buffer as a stock solution(100μM).To obtain a working solution,1mL of the stock solution was mixed with9 mL of phosphate buffer.The stock solution was stored at2°C.Phosphate buffer was prepared by mixing0.75 M solutions of K2HPO4and NaH2PO4in a61.6:38.9 vol/vol ratio.The mixture was then diluted1:9with distilled water,and the pH was adjusted to pH7.This working solution(0.2M)was stored at2°C.

In the assay,the substrate(β-phycoerythrin)was subjected to oxidative attack from the radical generator (AAPH).To assess the antioxidative capacity of the cultures,diluted(100×)aliquots of the samples and the buffer control were added to the reaction mixture,and the degree of protection against the oxidation ofβ-phy-coerythrin was quanti?ed by measuring the relative ?uorescence emitted at595nm after excitation of the protein at535nm over a70-min period(Glazer,1990; Cao et al.,1995).

In this assay,total ORAC(Trolox equivalents)of a sample was directly proportional to the area under the kinetic curve of the plotted relative?uorescence values against time.To correct any deviation caused by instru-Journal of Dairy Science Vol.88,No.4,2005ment drifting,reagents,or any other assay conditions, the value of the analyzed samples was expressed with reference to known amounts and concentrations of Tro-lox and presented as Trolox equivalents(Cao et al., 1995).

All reactions were carried out in a Falcon48-well plate(Becton Dickinson Labware;Becton Dickinson and Company,Franklin Lakes,NJ).To each well of the plate was?rst dispensed20μL of the respective sample to be analyzed followed by160μL of the working solu-tion ofβ-phycoerythrin.Immediately before initiating the measurements,20μL of AAPH were added to each well to initiate the reaction.The plate was covered and placed into the analyzer.

In the assay,the ability of compounds to protectβ-phycoerythrin from oxidation was monitored by its de-cay curve.The quanti?cation was achieved by de-termining the net protection area under the quenching curve ofβ-phycoerythrin in the presence of AAPH.The following equation was used to calculate the ORAC val-ues(Cao et al.,1998):

ORAC value=X K(S sample?S blank)/(S trolox?S blank) where X is the sample volume in microliters,K is the dilution coef?cient,and S is the area under the curve of the corresponding subscript.

Statistical Analyses

For statistical analyses,the GLM procedures from SAS(1985)were used to determine whether there was any signi?cant interaction between strains and treat-ments and whether any signi?cant differences occurred among strains and treatments.Least squares means were used to separate the means.

RESULTS

Reducing Activities

Reducing activity of cultures grown in modi?ed MRS.The reducing activities exhibited by the cultures when grown in modi?ed MRS broth(without beef ex-tract)supplemented with TTC are shown in Table1. Based on results from preliminary experiments(data not shown),the cultures reached their maximum activ-ity at12to15h of incubation.The statistical analysis of the results revealed no interaction for reducing activity between the strains and time.Thus,only the data for the15-h incubation are https://www.360docs.net/doc/533149103.html,ctobacillus del-brueckii https://www.360docs.net/doc/533149103.html,ctis(RM2-5and RM5-4),L.acidophilus (O16and L-1),and L.casei(E10)exhibited the highest reducing activity in the respective species and among all analyzed cultures.These cultures also showed the

LACTOBACILLI AND OXYGEN RADICAL ABSORBANCE

1355

Table 1.Reduction of 2,3,5-triphenyl tetrazolium chloride by cultures of lactobacilli during growth in MRS broth.1Species

Strain

pH 2A 485nm 2Lactobacillus delbrueckii https://www.360docs.net/doc/533149103.html,ctis

RM2-5 3.7 1.036A RM5-4 3.70.912AB RM6-5

3.60.819B Lactobacillus acidophilus

O16 3.6 1.098A L-1 3.6 1.000A NCFM

4.00.802B Lactobacillus delbrueckii ssp.bulgaricus

18 6.30.338A 10442 6.40.045B Y-23

6.40.019B Lactobacillus casei

E10 3.7 1.104A 9018 4.30.688B E5

6.1

0.030C

A,B,C

Numbers with the same superscripts within the same species are not different (P >0.05).1

Following 15h at 37°C.2

Each value is an average of 3replications.

highest production of acid as indicated by the pH reach-ing values well below pH 4.0,indicating the degree of reduction was related to growth.None of the L.del-brueckii ssp.bulgaricus exhibited much reductase ac-tivity during the 15-h incubation.The pH values for these strains exhibited minimal decrease during the incubation,indicating minimal growth.Antioxidative Capacity/Activity

The same cultures used in the previous section (re-ducing activity)were studied for antioxidative activity.Their activities were assessed after growth in MRS broth for 18h at 37°C using the ORAC method (Cao et al.,1995).

Antioxidative activity of cells grown in MRS broth.Washed cells of each culture were resuspended in potassium phosphate buffer and incubated at 37°C for 30min to permit leakage of some intracellular anti-oxidant materials or for it to become dislodged from the cell surface.The supernatant was analyzed for antioxi-dative activity.Washed cells resuspended in buffer were sonicated,and the cell-free extracts were tested.The results of the antioxidative activity of both the whole cells and the cell-free extracts are presented in Table 2.The results are expressed as Trolox equivalents per 109cells.Both whole cells and cell-free extracts exhibited antioxidative capacity.For L.delbrueckii https://www.360docs.net/doc/533149103.html,ctis RM5-4,L.acidophilus NCFM,L.delbrueckii ssp.bulgaricus (all strains),and L.casei 9018,cell-free ex-tracts exhibited higher (P <0.05)total antioxidative capacity than did the intact cells.In the remaining cases,although the total antioxidant capacity of the

Journal of Dairy Science Vol.88,No.4,2005

cell-free extracts was numerically higher,they were not statistically different (P >0.05).Lactobacillius del-brueckii ssp.bulgarius (Y-23)exhibited by far the high-est activities when compared with the remaining cul-tures.Values for L.delbrueckii https://www.360docs.net/doc/533149103.html,ctis RM5-4,L.acidophilus L-1,L.delbrueckii ssp.bulgaricus Y-23,and L.casei 9018and E5were higher (P <0.05)than other strains in their respective species.

The results from the TTC reductase tests were not indicative of the levels of antioxidant activity as mea-sured by the ORAC assays for the cultures https://www.360docs.net/doc/533149103.html,-parison of the data in Tables 1and 2shows no apparent relationship between relative intensities of reductase activity and amounts of antioxidant produced.Thus,the reductase activity was not useful in predicting the antioxidant activity of the cultures.

DISCUSSION

Tetrazolium chloride has been used in a number of studies to test cell viability or reductase activity (Lax-minarayana and Iya,1953;Eidus et al.,1959;Bhupath-iraju et al.,1999).According to Seidler (1991),the wa-ter-soluble tetrazolium chloride is reduced to a water-insoluble red compound (formazan),which is trapped inside the cell.In our study,the assessment of the re-ducing capacity of cultures of lactobacilli was made by growing the cultures in modi?ed MRS broth supple-mented with 0.5%TTC.The use of a suitable concentra-tion of TTC was essential,as it can be suppressive (bacteriostatic in?uence)toward cell growth when in excess.The concentration used in the present study was well below the maximum (2%)used by May et al.(1960),which caused no inhibition.

The cultures grown in MRS broth reached their maxi-mum reducing activity between 12and 15h.In most cases,reducing values between the 2sampling periods did not show statistical https://www.360docs.net/doc/533149103.html,ctobacillus del-brueckii https://www.360docs.net/doc/533149103.html,ctis (RM2-5and RM5-4),Lactobacillus acidophilus (O16and L-1),and Lactobacillus casei (E10)exhibited the maximum reducing activities in the studied period.This result coincided with maximum growth for these cultures (data not shown),indicating that the degree of reduction for each culture was related to its growth.

The ORAC has been found to be a relatively simple,reliable,and sensitive method of quantifying the anti-oxidative capacity of foods and food products by protec-tion of a protein from radical damage (Cao et al.,1993,1995).In our study,the antioxidative activity of our cultures was assessed by quantifying the protection of β-phycoerythrin from attack by AAPH in the reaction mixture.Similar to other methods used for antioxida-tive assessment,the ORAC method gives the total anti-

SAIDE AND GILLILAND

1356

a,b Means in the same row followed by the same lowercase superscript letter are not different(P>0.05).

A,B,C Numbers followed by the same uppercase superscripts in the same column within the same species

are not different(P>0.05).

1Cultures were grown in MRS;cfu/mL at18h.

2Trolox eq./109cells=μmol Trolox/L equivalents×109 .

3Whole/intact washed cells;each value is an average of3replications. 4Each value is an average of3replications.

oxidative capacity of the analyzed sample rather than the capacity of the individual components of the system, but it also differs in some other aspects.It is the only method including the variables inhibition time and de-gree of inhibition in one system.It also allows the auto-mated analysis of enormous number of samples at the same time and in a relatively short time period. Various researchers have reported similar?ndings when working with whole cells and cell-free extracts of lactic acid bacteria but using different methods.Lin and Yen(1999a,b,c)reported that the cell-free extracts of all19cultures(L.acidophilus,L.delbrueckii ssp. bulgaricus,and Streptococcus thermophilus)included in their studies showed some degree of antioxidative activity when assessed by inhibition of ascorbate autox-idation.Lin and Chang(2000)reported that whole cells and cell-free extracts of L.acidophilus and Bi?dobact-erium longum exhibited some antioxidative capacity when tested using the thiobarbituric acid method. Based on the higher Trolox equivalents of the cell-free extracts compared with the intact cells observed in our study,it is possible that these cultures,once consumed, would release antioxidants into the gut after being ex-posed to bile salts.In related experiments(data not shown),we attempted to determine whether addition of bile salts to the cells would increase the release of antioxidants.However,the bile salts caused too much Journal of Dairy Science Vol.88,No.4,2005interference with the ORAC assay so that results were inconclusive.

The results of this study show that lactobacilli pos-sess an antioxidative capacity that can be assessed quantitatively through their ability to protectβ-phy-coerythrin from radical oxidation.The greatest degree of antioxidant capacity was associated with the cell-free extracts of the cultures,which suggests that they may be important in delivering antioxidants to the in-testines where they could be released when cells of the cultures encounter bile.Bile is known to alter the permeability of the organisms to enhance passage of substances into and out of the cells(Noh and Gilliland, 1993).Consumption of foods containing lactic acid bac-teria may be encouraged and may also contribute to the health effects associated with dietary antioxidants.

REFERENCES

Bhupathiraju,V.K.,M.Hernandez,https://www.360docs.net/doc/533149103.html,ndfear,and L.Alvarez-Cohen.1999.Application of tetrazolium dye as an indicator of viability in anaerobic bacteria.J.Microbiol.Methods37:231–243. Cao,G.,H.M.Alessio,and R.G.Cutler.1993.Oxygen-radical ab-sorbance capacity assay for antioxidants.Free Radic.Biol.Med.

14:303–311.

Cao,G.,and https://www.360docs.net/doc/533149103.html,parison of different analytical methods for assessing total antioxidant capacity of human serum.

Clin.Chem.44:1309–1315.

Cao,G.,S.L.Booth,J.A.Sadowski,and R.L.Prior.1998.Increases in human plasma antioxidant capacity after consumption of con-

LACTOBACILLI AND OXYGEN RADICAL ABSORBANCE

1357

trolled diets high in fruit and vegetables.Am.J.Clin.Nutr.68:1081–1087.

Cao,G.,C.P.Verdon,A.B.H.Wu,H.Wang,and R.L.Prior.1995.

Automated assay of oxygen radical absorbance capacity with the COBAS FARA II.Clin.Chem.41:1738–1744.

Eidus,L.,B.B.Diena,and L.Greenberg.1959.Observations on the

use of tetrazolium salts in the vital staining of bacteria.Can.J.Microbiol.5:245–250.

Glazer,A.N.1990.Phycoerythrin ?uorescence-based assay for reac-tive oxygen species.Methods Enzymol.186:161–168.

Halliwell,B.,and S.Chirico.1993.Lipid peroxidation:Its mechanism,

measurement and signi?cance.Am.J.Clin.Nutr.57(Suppl):715S–725S.

Handelman,G.J.,G.Cao,M.F.Walter,Z.D.Nightingale,G.L.

Paul,R.L.Prior,and J.B.Blumberg.1999.Antioxidant capacity of oat (Avena sativa L.)extracts.1.Inhibition of low-density lipo-protein oxidation and oxygen radical.J.Agric.Food Chem.47:4888–4893.

Knauf,H.J.,R.F.Vogel,and W.P.Hammes.1992.Cloning,sequenc-ing,and phenotypic expression of katA,which encodes the cala-lase of Lactobacillus sake LTH667.Appl.Environ.Microbiol.58:832–839.

Korpela,R.,K.Peuhkuri,https://www.360docs.net/doc/533149103.html,hteenmaki,E.Sievi,M.Saxelin,and

https://www.360docs.net/doc/533149103.html,ctobacillus rhamnosus GG shows antioxi-dative properties in vascular endothelial cell https://www.360docs.net/doc/533149103.html,chwis-senschaft 52:503–505.

Kullisar,T.,M.Zilmer,M.Mikelsaar,T.Vikalemm,H.Annuk,C.

Kairane,and A.Kilk.2002.Two antioxidative lactobacilli strains as promising probiotics.Int.J.Food Microbiol.72:215–224.

Laxminarayana,H.,and K.K.Iya.1953.Studies on the reduction

of tetrazolium by lactic acid bacteria.Indian J.Dairy Sci.6:75–https://www.360docs.net/doc/533149103.html,xminarayana,K.,and K.K.Iya.1954.Studies on the reduction

of tetrazolium chloride by lactic acid bacteria.Part II.Oxidation

Journal of Dairy Science Vol.88,No.4,2005

reduction potentials in relation to dye reduction.Indian J.Dairy Sci.8:32–38.

Lin,M.-Y.,and F.-J.Chang.2000.Antioxidative effect of intestinal

bacteria Bi?dobacterium longum ATCC 15708and Lactobacillus acidophilus ATCC 4356.Dig.Dis.Sci.45:1617–1622.

Lin,M.-Y.,and C.-L.Yen.1999a.Inhibition of lipid peroxidation by

Lactobacillus acidophilus and Bi?dobacterium longum .J.Agric.Food Chem.47:3661–3664.

Lin,M.-Y.,and C.-L.Yen.1999b.Reactive oxygen species and lipid

peroxidation product-scavenging ability of yogurt organisms.J.Dairy Sci.82:1629–1634.

Lin,M.-Y.,and C.-L.Yen.1999c.Antioxidative ability of lactic acid

bacteria.J.Agric.Food Chem.47:1460–1466.

May,P.S.,J.W.Winter,G.H.Fried,and W.Antopol.1960.Effect

of tetrazolium salts on selected bacterial species.Proc.Soc.Exp.Biol.Med.69:364–365.

Noh,D.O.,and S.E.Gilliland.1993.In?uence of bile on cellular

intergrity and β-galactosidase activity of Lactobacillus acido-philus .J.Dairy Sci.76:1253–1259.

Ouwehand,A.C.,and S.J.Salminen.1998.The health effects of

cultured milk products with viable and non-viable bacteria.Int.Dairy J.8:749–758.

SAS Institute.1985.SAS Procedures Guide for Personal Computers,

Version 6Edition.SAS Inst.,Inc.,Cary,NC.

Seidler,E.1991.Page 2in The Tetrazolium-Formazan System:De-sign and Histochemistry.G.Fischer,ed.Verlag,Stuttgart,Germany.

Stecchini,M.L.,M.Del Torre,and M.Munari.2000.Determination of

peroxy radical-scavenging of lactic acid bacteria.Int.J.Microbiol.64:183–188.

Wang,H.,G.Cao,and R.L.Prior.1996.Total antioxidant capacity

of fruits.J.Agric.Food Chem.44:701–705.

Zaizu,H.,M.Sasaki,H.Nakajima,and Y.Suzuki.1993.Effect of

antioxidative lactic acid bacteria on rats fed a diet de?cient in vitamin E.J.Dairy Sci.76:2493–2499.

超氧自由基清除能力测定法-操作图解

超氧自由基(·O2-)的清除能力测定法(连苯三酚自氧 化法) (适用于:SOD及各种抗氧化剂) 操作图解 具体方法 1 溶液配制 1.1 Tris溶液(0.1mol/L):1.21 gTris(三羟甲基氨基甲烷,M.W. 121.1)+100 mL蒸馏水。 1.2 HCl溶液(0.1mol/L):取0.1 mL浓盐酸,加蒸馏水稀释到6 mL。 1.3 Tris-HCl缓冲液(0.05mol/L,pH7.4,含1mmol/L Na2EDTA) 40 mL0.1 mol/L Tris溶液+ x mL0.1 mol/L HCl溶液+15.2 mg Na2EDTA,混合,稀释到80 mL。用pH 计测量,pH应为7.4。用棕色瓶保存在冰箱内(最多保存三天) 。(以上为一个样品的用量)用前稍热至室温,再测pH值,符合要求即可。 1.4 60 mmol/L连苯三酚溶液(溶于1 mmol/L盐酸中) 取0.1mol/L HCl溶液(见1.2项)20μL,用蒸馏水稀释到2 mL,得1 mmol/L盐酸溶液(用pH计测量,pH=2.5-3.0)。再往里加连苯三酚14.6 mg (M。W.126.1 ),即得。(当天有效,以上为1个样品的用量)。 2 测试液 2.1连苯三酚溶液:取2950μL Tris-HCl缓冲液加入到石英比色皿中,再加约50μL连苯三酚溶液,迅速混合(颠覆式),开始计时,每隔30秒读数一次A值(325nm),至300秒(5min)时为止。(空白参比:Tris-HCl 缓冲液) ΔA=A325nm,300s - A325nm,30s。由于ΔA值反映了生成·O2的初始浓度,所以,对于同一批实验而言,此时的ΔA值必须相等。此时的ΔA为ΔA0。 3.2 样品溶液:取xμL样品溶液加入到大石英比色皿中,再加(2950-x)μL Tris-HCl缓冲液,再加50μL 连苯三酚溶液,迅速混合(颠覆式),开始计时,每隔30秒读数一次(A值,325nm),至300秒时为止。(空白参比:Tris-HCl缓冲液) ΔA=A325nm,300s - A325nm,30s。此时的ΔA为ΔA样。 3 计算公式

羟基自由基清除注意事项

一般而言,对于Fenton试剂与有机化合物氧化能力的影响因素大致上可分为: A.亚铁离子浓度。 B.过氧化氢浓度。 C.溶液于反应时的反应温度。 D.溶液中的pH值。 以下将对此四项变因做详细的探讨: A.亚铁离子浓度的影响 在Fenton试剂的反应中,亚铁离子主要是扮演着催化过氧化氢的角色。因此,若溶液中没有亚铁离子当触媒,则其溶液可能就没有氢氧自由基的生成。所以,大致上分解反应会随亚铁离子的浓度增加而加快,亚铁添加量会影响脱色效率,亚铁剂量愈高效果愈佳,此原因为增加亚铁剂量将使氧化反应更加完全并且可产生混凝机制而进行脱色(26)。但亚铁离子本身会与有机物形成竞争,亚铁离子浓度过高会增加氢氧自由基的消耗,反而造成处理效果的下降,反应式如下: Fe2+ + ·OH Fe3+ + OH- 故当浓度到达某一定值时,则其分解速率便不会在随着亚铁离子浓度的增加而持续加快,且亚铁离子浓度和生成物的比值也将可能会影响生成物的分布。一般而言,亚铁离子浓度皆维持在亚铁离子与其反应物之浓度比值为1:10-50(wt/wt)。 此外,亚铁在Fenton程序中除了扮演催化过氧化氢的角色外,亦具有混凝的功能,因此过量的铁离子加入将会造成过度的混凝,降低Fenton程序处理的效果,其可能的反应如下所示: B.过氧化氢浓度的影响 反应过程中,过氧化氢的浓度会直接影响氧化有机物的效果。一般而言,随着过氧化氢添加量的增加,有机物的氧化效果亦将随之提升,并且过氧化氢的添加浓度不同,则分解反应生成的产物将会有所差异。大致而言,在过氧化氢浓度越高的情况下,则其氧化反应产物,将会更趋近于最终产物。但是,当溶液中的过氧化氢浓度过高时,反而会使过氧化氢与有机物竞争氢氧自由基,而造成反应速率的结果可能不如预期一般增加。此外,当Fenton试剂系统中过氧化氢浓度远高于亚铁离子浓度时,Fenton法所产生的氢氧自由基会与过氧化氢反应产生perhydroxyl radical (HO2.)及一系列反应,且三价铁离子会与HO2.进行氧化还原反应生成superoxide radical anion (O2.),造成过氧化氢消耗量的增加,过量的过氧化氢加药量并不必然增加氢氧自由基的浓度,氢氧自由基达到稳定浓度所需反应时间随加药量增加而增加(27)。因此,若以连续之方式加入低浓度之过氧化氢,减少因为过氧化氢初始浓度过高所导致的抑制效应,亦可得到较好的氧化效果。 C.温度的影响 根据Arrhennius' Law:k=k0exp(-Ea/RT)可得知温度的改变会影响活化能及反应速率常数,进而影响反应速率。 对于Fenton试剂反应而言,一般若选用的反应温度条件是在小于20℃以下时,其对有机物的氧化速率将会随温度升高而加快。但是,倘若将其反应的温度升高至40-50℃时,其Fenton反应将会可能因为温度过高,进而使过氧化氢自行分解成水与氧(2H2O2 → 2H2O + O2 ),造成Fenton试剂对氧化有机物之反应速率减慢。 因此,当过氧化氢浓度超过10-20 g/L时,在其经济与安全的考量下,应谨慎选择适当的温度。在一般商业应用上,通常皆将其反应的温度设定在20-40℃之间。 D. pH值的影响 于Fenton试剂反应中,其反应溶液之pH值对Fenton法之影响,关系到铁离子错合效应、铁

乳酸菌的作用及对治疗妇科病的功效

乳酸菌的作用及对治疗妇科病的功效据很多专家的多年研究,人体内特别是女性下体的健康问题和酸碱平衡问题直接相关,PH值(酸碱平衡)一旦不平衡,人体的健康会很快出现问题。而人体内的益生菌就是专门负责调解酸碱平衡的,并且吞噬有害细菌。但益生菌的数量会因人压力的增大、生活的无规律、精神状态的低沉及年龄的增大而迅速减少。也正因此,人的健康特别是妇科问题,治疗的根本是及时补充益生菌,以调节体内酸碱平衡,改善健康环境,增强免疫力,以安全、彻底的方式解决自身的病症。 而乳酸菌对人体的作用就是直接补充益生菌的数量,增加有益细菌的数量,微生物细菌直接相互制约和共生关系,可迅速恢复女性生殖系统平衡的菌群状态。也就是利用乳酸菌产生乳酸调节机体内PH值,改善和保障活性益生菌群最佳的生存环境,使机体PH值达酸碱平衡状态。通过活性益生菌来抑制致病菌的感染,能够做到自治自愈之功效,促使其恢复微生态平衡状态,从源头解决女性的下体问题。 这种治疗理念就是目前国际上最先进的生物酸碱疗法,这种疗法的的优势有: 一、定位准确:利用微生物原理有益菌和致病菌的相互制约及共生关系,“益菌抑菌”准确查清致病菌种,给予精确定性,实现快速治疗。 二、安全高效:在不破坏人体正常组织的情况下,通过机体自身

调理阴道内微生态环境,激活自体有益菌繁殖,阻止致病细胞复制,避免交叉感染,安全无损伤、无痛苦、无耐药性。 三、疗效确切:使用生物酸碱平衡疗法能快速抑制阴道内部细菌,排出生殖器官内积存的炎性分泌物和毒素。消除月经期前后,更年期前后和生育前后各种因素及内分泌引起的情绪不宁和烦躁抑郁等心理障碍。能全面有效地杀灭致病菌,清除体内病毒,修复受损表皮细胞,使机体自身免疫功能自然恢复,解决了久治不愈、易反复等难题。 四、安全快捷:快速杀菌、当天止痒、去除异味。1周内内完全阻止细菌沿生殖道上行及血行播散,半个月即可利用增加体内有益菌群改善和平衡体内微生态环境,清除致病菌在阴道内异常繁殖,安全无损伤、无痛苦、无耐药性、无副作用。 五、滋阴润道:纳米级微生物分子超强渗透阴道粘膜,深层清洁阴道内部。活性菌进入阴道后立即开始呈几何倍增的形式释放活菌因子,并在阴道壁形成薄膜层,快速修复因用药不当,性生活不洁造成的阴道粘膜损伤,补充缺失的各类有益菌,祛腐生肌。维护女性阴部生态环境,促进血液循环,濡养阴部器官,延缓阴部器官衰老。 这是一项医疗改革,这种生物酸碱平衡疗法彻底打破了人类传统医学治疗生殖系统疾病以及清洁护理方式,利用有益细菌和有害细菌之间的共生及相互制约关系,通过“非药物酸碱平衡疗法”来修复各种致病菌感染造成的生殖系统疾病。以“益菌抑菌”的微生物

乳酸菌抗菌机理

乳酸菌抗菌机理 乳酸菌的抗菌机理涉及其产生的各种代谢产物,包括酸性物质、乳酸菌素、二氧化碳和过氧化氢等。其中酸性物质可以消耗大量细胞能量并影响细胞膜的稳定性;乳酸菌素可作用于细胞膜,造成膜内物质和能量的泄漏。 乳酸菌是一类可发酵碳水化合物产生大量乳酸的细菌的通称,在自然界和食物中广泛存在。乳酸菌是最早被人类用于食品储藏加工的微生物之一,早在公元前6000年,人们就懂得利用乳酸菌发酵食物。他们发现食物经过一定的处理和储存就可改善风味、延长储存期和增加食物的安全性。迄今人们已明确了许多乳酸菌在生产安全优质食品中所起重要作用的生物学机理[1~2]:乳酸菌可以发酵食物中碳水化合物,分泌乳酸菌素,产生有机酸、酒精和二氧化碳等,来抑制一些腐败菌或致病菌的生长及改善食品的品质和风味,同时经过发酵,乳酸菌可以增加食品的可消化性并产生一些维生素、抗氧化剂。近几年,乳酸菌抑制食品中一些腐败菌和致病菌的作用引起人们的极大关注。虽然现代生物技术和安全体系(如HACCP)已被普遍的引入食品加工行业,但食品的安全问题仍然威胁着人类,每年都有许多关于食物中毒和食源性疾病散发或爆发的报道,同时,人们正力图追求不含化学防腐剂及各种添加剂的天然的安全食品。解决这问题需要发展新的食品保鲜技术来控制食品中腐败菌和致病菌的生长。国内外学者对之开展了大量的研究并建立了许多方法,其中最引人注目的就是利用乳酸菌来加强食品安全性和延长储存期。

1乳酸菌产生的酸性物质及其抑菌作用 1.1乳酸菌产生的酸性物质乳酸菌可产生对食品中微生物具有抑制作用的酸性物质,主要是乳酸菌的代谢终产物及中间产物,包括乳酸、乙酸、乙醇等。 1.2酸性物质对食品微生物的抑制作用一般细菌生长的最适pH 值为6~7,若低于该值,细菌的生长速率将大大降低或不生长甚至死亡,这在腐败性微生物上尤为可见。乳酸菌产生的酸性物质对食品中微生物的抑制作用已在许多实验中得到证实,这种抑菌作用取决于3个相互影响的因素:1.介质的pH值; 2.酸的离解程度; 3.酸的种类。 从20世纪70~80年代,国内外学者就开始建立pH值对食品中各种腐败菌和致病菌抑制作用的预测模型。但在这些模型中都是用无机酸如盐酸、磷酸来降低pH值,而乳酸菌产生的多是一些含羧基的弱有机酸。只有未离解的弱有机酸进入细菌细胞才能有效的发挥抑菌作用。这些有机酸的离解度取决于其pKa和pH值,可以用Henderson-Hasselbach公式计算:pH=pKa+log([A-] / [HA])。从中不难看出介质的pH值影响酸的离解,若在pH值固定条件下酸的pKa决定了其离解度。因此乳酸菌产生的弱酸的抗菌能力取决于介质的pH值及酸的种类(pKa)。由于胞质的pH值相对较高,当非离解的酸通过细胞膜进入胞质,就发生离解使细胞质酸化并释放酸性阴离子。这就给微生物带来两种后果:首先,若微生物要维持其胞内的pH值,就得动用ATP酶来清除质子,这将消耗大量细胞能量,加重细胞的代谢负担;其次,细胞内阴性酸离子的积聚可影响细胞膜的稳定性并抑制其传递

有关抗氧化能力分析

有关抗氧化能力分析 ORAC (Oxygen radical absorbance capacity) 即抗氧化能力指数,是目前抗氧化研究领域一个重要的评价方法。该方法以偶氮类化合物AAPH作为过氧自由基来源,以荧光素Fluorescence为荧光指示剂,维生素E水溶性类似物Trolox为定量标准,使用荧光微孔板分析仪进行分析。与其他抗氧化能力分析方法相比, ORAC方法具有诸多显著的优点。该方法自1993年建立以来,经过不断发展和完善,可以说ORAC方法是目前评价抗氧化物质的抗氧化活性的最为简单、准确、灵敏度高、应用范围广和最具影响力的抗氧化能力研究方法之一。目前,ORAC方法已成功应用于生物样品、植物或食品提取物和纯化合物等多种样品的体内外抗氧化能力分析。 科标检测,其团队通过多年的研究沉淀,通过模拟各种氧自由基在人体内的产生机制产生各种氧自由基,而这些自由基可破坏荧光探针的结构从而造成荧光信号的衰减。当具有抗氧化活性的样品加入到实验体系中时,可以不同程度的保护荧光探针不被氧自由基所损坏,因而通过检测荧光信号的不同,便可以计算出某种样品的抗氧化活性。在ORAC实验中,以水溶性维生素E(Trolox)为标准品,因此最终样品的抗氧化实验结果最终以每克或是每毫升样品含有多少Trolox当量的形式表示。通过ORAC5.0检测样品的抗氧化活性,为抗氧化食品、保健品、化妆品以及药品的研发提供了有效的检测手段。 ORAC(Oxgen Radical Absorbance Capacity)指氧自由基吸收能力,即测试食品药品中抗氧化物的含量的国际通用标准单位。ORAC的含量超高,抑制自由基的抗氧化能力就越强。 对于一个未知样品,ORAC化学方法测试出样品的理论抗氧化值,并测出对各种自由基作用的具体数值,以寻找研发方向。然后通过ORAC生物细胞方法测试其生物利用度(被人体细胞所吸收的值),以验证其真实的效果。最后进行动物临床或人体临床,证实样品(产品)的实际效果。通过这种循序渐进、符合逻辑的研发方案步骤,企业可以安全、有效的研发出符合预期的新产品,建立起一套扎实的数据支撑体系。ORAC已建立从化学层面、生物细胞层面、临床层面纵向立体的分析方法。 常见蔬菜或水果的ORAC: "ORAC-total"是指总抗过氧化自由基能力值;“ORAC-5.0”是指总抗自由基能力值; 芦荟: ORAC-total :2737 μmol TE/g ORAC-5.0 :135,647 μmol TE/g

超氧阴离子清除实验

·O2ˉ自由基清除实验 (1) 实验原理 黄嘌呤氧化酶 黄嘌呤+H2O+O2尿酸+H2O2+·O2ˉ 即黄嘌呤氧化酶在有氧条件下催化黄嘌呤转化为尿酸,同时产生超氧阴离子自由基(·O2ˉ)。·O2ˉ与NBT结合后呈蓝色,样品清除能力越大,与NBT结合的·O2ˉ越少,溶液的颜色越浅。 (2)试剂 Xanthine(黄嘌呤): (C5H4N4O2 ), MW=152.1, 6.084mg/100mL(0.4mmol/l) 实际配制:1.216mg/10mL,与NBT等体积混合使用 Xanthine oxidase(黄嘌呤氧化酶)贮液: 1 unit/mL , (溶解酶的溶液要高压灭菌!防止蛋白酶对酶的降解!) 0.05 unit/mL,每次取200uL稀释到4mL(PBS溶解) NBT: (Nitro blue tetrazolium chloride氯化硝基四氮唑蓝), MW=817.65, 黄色19.6236mg/100mL(0.24mmol/l) 实际配制3.925mg/10mL,与Xanthine等体积混合使用 PBS(0.01mol/L,pH=8.0): NaCl 8g, KCl 0.2g, Na2HPO4(无水) 1.44g, KH2PO4 0.24g, 800mL水,用NaOH(1M)调pH到8.0,定容到1000mL。 实际配制500mL。高压灭菌,室温保存。 PBS(0.01mol/L,pH=7.4): 配制同上 Ascorbic acid: MW=176.12 母液为1mg/mL 先两倍逐级稀释5个浓度 实际配制见记录本! HCl(1M): MW=36.5 310ul/10ml.(36% HCl密度1.18g/ml) 实际配制:800uL浓盐酸+9mL水,于塑料管中4℃保存。 NaOH(1M): MW=40 0.4g/10mL, 存于冰箱 (3) 测定方法 超氧阴离子自由基清除能力的测定参照Bae等人的方法略加改进。样品溶液1-5mg/ml 起始浓度,用于水或50%乙醇溶液。 Bae, S.W., Suh, H.J., 2007. Antioxidant activities of ve different mulberry cultivars in Korea.

清除自由基能力的研究概况

清除自由基能力的研究概况 陶涛 (西南林业大学林学院农学(药用植物)昆明 650224) 摘要:自由基及其诱导的氧化反应是导致生物衰老和某些疾病如癌症、糖尿病、一心血管疾病等的重要因素。乳酸茵作为一种高效、低毒的生物源天然抗氧化荆,正逐步受到食品、制药、化工等领域的广泛关注。就目前国内外常用的乳酸茵抗氧化活性的筛选方法、乳酸茵抗氧化机理的国内外研究进展及未来的发展趋势作一综述。 关键词:自由基;乳酸茵;抗氧化. Study on the scavenging ability of lactic acid bacteria on free radical bstract:Free radical and its inducing oxiditative reaction may CaUSe biological doat and certain diseases such as Cancers,diabetes and the cat- diovascular.The lactic acid baaeria as one ofbiological SOUrCeS oxidation inhibitor is becoming more and more popular in the fields offood.,drug manufacture and chemical industry.This article mainly reviews the screening methods for antioxidative of lactic add bacteria among domestic and foreign countries,the advance of the research progress in lactic add bacteria antioxidative and r∞earch trends in future. 引言 氧化过程可以提供能量.对大多数生物体来说,是维持生命必不可少的一个能量转化过程。但过多的氧化过程会对生物大分子引起损伤.氧化损伤主要是由于自由基和过氧化产物作用于人体而产生的。 自由基(free radicals)27..称游离基.为人体氧化代谢过程中形成含有一个不成对电子的原子或原子团。人体的自由基主要包括超氧阴离子自由基(o2)、

氧自由基与氧自由基清除剂依达拉奉

氧自由基与氧自由基清除剂依达拉奉 山东大学齐鲁医院麻醉科(250012)于金贵 一、氧自由基 (一)自由基的概念 自由基(free radical,FR)是指外层轨道上有未配对电子的原子、原子团、分子或离子的总称。因其含有未配对的电子,故化学性质非常活泼,极易与其生成部位的其他物质发生反应,而这种反应的最大特点是以连锁反应的形式进行。氧原子上有未配对电子的自由基称为氧自由基。人体吸入的分子氧,在正常状态下绝大多数(98%)都连接4个电子,它们最终与H+结合,代谢还原为H2O。但有极少数氧(1~2%)在代谢过程中被夺去或接受一个电子而形成活性氧,即氧自由基。 (二)氧自由基的生理作用 氧自由基在生理上是必需的物质,如合成ATP 和前列腺素、中性粒细胞杀灭细菌、酸性粒细胞杀灭寄生虫等过程都必须有氧自由基参与。氧自由基在体内的生成与清除保持动态平衡,且在体内存在时间甚短。由于其化学性极强,反应剧烈,过量产生会对机体造成极大危害。 (三)氧自由基的种类及其作用

1. 超氧化物阴离子:氧自由基连锁反应的启动者,使生物膜、激素和脂肪酸过氧化。 2. 羟自由基(OH∙):作用最强的自由基,可破坏氨基酸、蛋白质、核酸和糖类。 3. 过氧化氢(H2O2):过渡型氧化剂,主要使巯基氧化,可氧化不饱和脂肪酸。 4. 单线态分子氧(1O2):氧分子的激发状态,亲电子性强,在光作用下可由O2直接产生,对细胞有杀伤作用。 5. 其他含氧的自由基如脂质过氧化物(ROOH):易于分解再产生自由基,腐化脂肪,破坏DNA,可与蛋白质交联使之形成变性交聚物。 (四)机体抗氧化机制 机制一:直接提供电子,以确保氧自由基还原;机制二:增强抗氧化酶的活性,以有效地消除或抵御氧自由基的破坏作用如酶类抗氧化剂超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-PX);非酶类抗氧化剂如维生素E、维生素C、辅酶Q、还原型谷胱甘肽(GSH)、葡萄糖、含硫氨基酸和不饱和脂肪酸等。 SOD多存在于细胞的线粒体内,作用是将氧自由基歧化,将其一半转变成H2O,另一半转变成O2,从而清除氧自由基。CAT是血红蛋白酶类之一,作用是分解H2O2,并将其清除之。

自由基清除剂

第五章自由基清除剂 本章要点 1.自由基理论的产生机理及来源 2.自由基对机体活动的影响 3.自由基清除剂的基本概念 随着生命科学的飞速发展,英国人Harman于1956年提出了自由基学说。该学说认为,自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因,其中的观点被越来越多的实验所证明。 自由基(Free radical)是人体生命活动中各种生化反应的中间代谢产物,具有高度的化学活性,是机体有效的防御系统,若不能维持一定水平则会影响机体的生命活动。但自由基产生过多而不能及时地清除,它就会攻击机体内的生命大分子物质及各种细胞器,造成机体在分子水平、细胞水平及组织器官水平的各种损伤,加速机体的衰老进程并诱发各种疾病。 近年来,国内外对自由基及自由基清除剂的研究十分活跃,在各类食品科学、生命科学及医学书籍上都有许多关于自由基及其清除剂的研究报道,自由基清除剂作为功能性食品的重要原料成分之一,通过人们日常消费的食品来调节人体内自由基的平衡,已受到食品营养学家的广泛重视。 第一节自由基理论 一、自由基的产生机理及来源 自由基又叫游离基,它是由单质或化合物的均裂(Homdytic Fission)而产生的带有未成对电子的原子或基团。它的单电子有强烈的配对倾向,倾向于以各种方式与其他原子基团结合,形成更稳定的结构,因而自由基非常活泼,成为许多反应的活性中间体。 人体内的自由基分为氧自由基和非氧自由基。氧自由基占主导地位,大约占自由基总量的95%。氧自由基包括超氧阴离子(O2-·)、过氧化氢分子(H2O2)、羟自由基(OH·)、氢过氧基(HO2-·)、烷过氧基(ROO·)、烷氧基(RO·)、氮氧自由基(NO·)、过氧亚硝酸盐(ONOO-)、氢过氧化物(ROOH)和单线态氧(1O2)等,它们又统称为活性氧(reactive oxygen species,ROS),都是人体内最为重要的自由基。非氧自由基主要有氢自由基(H·)和有机自由基(R·)等。 (一)自由基的产生 人体细胞在正常的代谢过程中,或者受到外界条件的刺激(如高压氧、高能辐射、抗癌剂、抗菌剂、杀虫剂、麻醉剂等药物,香烟烟雾和光化学空气污染物等作用),都会刺激机体产生活性氧自由基。 人体内酶催化反应是活性氧自由基产生的重要途径。人体细胞内的黄嘌呤氧化酶、髓过氧化物酶和NADPH氧化酶等在进行酶促催化反应时,会诱导产生大量的自由基中间产物。除酶促反应外,生物体内的非酶氧化还原反应,如核黄素、氢醌、亚铁血红素和铁硫蛋白等单电子氧化反应也会产生自由基。外界环境,如电离辐射和光分解等也能刺激机体产生自由基反应,如分子中的共价键均裂后即形成自由基。 自由基反应包含3个阶段,即引发、增长和终止阶段。反应之初,引发阶段占主导地位,反应体系中的新生自由基形成许多链的开端,反应物浓度高。引发后的扩展阶段为反应的主体,若起始有几个引发自

喝乳酸菌有什么好处

喝乳酸菌有什么好处 乳酸菌在动物体内能发挥许多的生理功能。大量研究资料表明,乳酸菌能促进动物生长,调节胃畅道正常菌群、维持微生态平衡,从向改善胃肠道功能;提高食物消化率和生物效价;降低血清胆固醇,控制内毒素;抑制肠道内腐败菌生长:提高机体免疫力等。 乳酸菌通过发酵产生的有机酸、特殊酶系、细菌表向成分等物质具有生理功能,,可刺激组织发育,对机体的营养状态、生理功能、免疫反应和应激反应等产生作用。 1.提供营养物质,促进机体生长乳酸菌如果能在体内正常发挥代谢活性,就能直接为宿主提供可利用的必需氨基酸和各种维生素(维生素B族和K等),还可提高矿物元素的生物活性,进而达到为宿主提必需营养物质、增强动物的营养代谢、直接促其生长的作用。研究报道乳酸菌可以改良水质,提高斑节对虾的存活率、生长速率和健康状况。试验证明,小麦、稻米等谷物进行乳酸发酵后,营养价值大大提高。此外,乳酸菌产生的酸性代谢产物使肠道环境偏酸性,而一般消化酶的最适PH值为偏酸性(淀粉酶6.5、糖化酶4.4),这样就有利于营养素的消化吸收。何机峻的产生还可加强肠道的蠕动和分泌,也可促进消化吸收养分。 2.改善胃肠道功能,维持肠道菌群平衡动物的整个消化道在正常情况卜郁寄生有大量微生物。 就其作用而言,可分乃三类: ①共生性类型,主要是兼性厌氧菌,在生态平衡时,它们的维生素和蛋白质合成、消化吸收、生物拮抗和免疫等功能对宿主有利。 ②致病性类型,正常情况下数量少,寄生于正常部位,不至于使宿主发病。若失控,则会导致宿主的不良反应。 ③中间性类型,即同时具有生理和致病两种作用。微生物群的平衡,对机体的健康十分重要,而乳酸菌就能够调节这种微生态平衡,保障宿主正常生理状态。乳酸菌是畅道常在菌,畜禽服用乳酸菌后,可以改变肠道内环境,抑制有害菌繁殖,调整胃肠道蔺群平衡。乳酸菌通过粘附素与肠粘膜细胞紧密结合,在肠粘膜表面定植占位,成为生理屏障的主要组成部分,从向达到恢复宿主抵抗力,修复肠道菌群屏障、治愈肠道疾病的作用。如采这个屏障遭剑抗生素或其他因素的破坏,宿土丧失了对外来菌抵抗力,会使具有耐药性的肠内菌异常增殖而取代优势菌的位置,造成肠道内微生态平衡的失调。 3.改善免疫能力乳酸杆菌和双歧杆菌一方面能明显激活巨噬细胞的吞噬作用,另一方面由于它能在肠道定植,相当于天然自动免疫。它们还能刺激腹膜巨噬细胞、诱导产生干扰素、促进细胞分裂、产生抗体及促进细胞免疫等,所以能增强机体的非特异性和特异性免疫反应,提高机体的抗病能力。报道,口服乳酸菌后,对巨璇细胞的?半乳糖甙酶活性、巨噬细胞的吞噬活性等具有显著的激活和促进作用。当异物侵入机体时,免疫细胞被乳酸菌激活,增强了机体对异物产生抗

乳酸菌益生特性及其功能性乳品的研究

乳酸菌益生特性及其功能性乳品的研究 乳酸菌及其发酵乳制品具有营养丰富、风味优良和功能性多样等特点,深受消费者喜爱,备受企业界的关注,研究开发功能性较强的乳酸菌及其发酵乳制品已成为研究的焦点。为研制具有抗氧化作用的乳酸菌发酵乳制品,本文以鼠李糖乳杆菌(Lactobacillus rhamnosus,LCR)、植物乳杆菌(Lactobacillus Plantarum,LP)、干酪乳杆菌(Lactobacillus casei,LC)、乳双歧杆菌(Bifidobacterium animalis,BL)、罗伊氏乳杆菌(Lactobacillus reuteri,LR)、副干酪乳杆菌(Lactobacillus paracasei,LCP)、嗜酸乳杆菌(Lactobacillus acidophilus,LA)、保加利亚乳杆菌(Lactobacillus bulgaricus,LB)、粪链球菌(Enterococcus faecalis,SF)和嗜热链球菌(Streptococcus thermophilus,ST)等十株乳酸菌为发酵菌株,分析研究其益生特性、蔬菜增菌作用及其所产超氧化物歧化酶(SOD酶)、过氧化氢酶(CAT酶)、VB1和VB6等功能性成分,并针对SOD 酶抗氧化活性指标,初步研制蔬菜与鲜乳复合乳酸菌发酵乳。 主要研究结果如下:十株乳酸菌的益生特性:分别对菌株产酸能力、人工胃肠液的耐受能力以及MRS培养过程中所产生的SOD酶、CAT酶、VB1和VB6进行分析研究。结果表明:十株菌株在MRS液体培养基中37℃下培养48 h后,总酸量(%)依次为2.75、2.98、3.03、1.23、2.88、2.66、2.34、2.38、1.11、1.01;SOD 酶活力(U/mL)依次为17.58、15.34、28.43、26.21、16.32、36.24、38.45、16.82、11.78、13.53;CAT酶活力(U/mL)依次为2.28、2.12、3.43、5.36、2.31、7.23、8.56、2.46、1.56、1.24;VB1量(mg/L)分别为1.32、1.64、2.01、1.24、1.02、1.56、1.26、1.07、1.28、2.37;VB6量(mg/L)分别为3.42、2.36、4.81、1.47、1.53、1.87、5.32、0.98、0.56、0.35;在人工胃液培育3h后的存活率(%)分别

清除氧自由基

1、超氧负离子 黄嘌呤-黄嘌呤氧化酶系统产生超氧负离子产生超氧负离子 黄嘌呤、黄嘌呤氧化酶、 清除超氧自由基负离子O2- 徐艳,曲婷婷. 甘草消除氧自由基的体外研究[J]. 食品研究与开发,2006,(8). 2、1.2.2NBT 光还原反应中主要试剂的配制 1.2.2.1 测试缓冲液: 0.026 mol/LMet- 磷酸钠缓冲液具体配制方法: 首先配制0.1 mol/LpH7.8Na2HPO4- NaH2PO4缓冲液 a 称取Na2HPO4·12H2O( MW=358.14) 3.581 4 g 于100 mL 小烧杯中, 加少量蒸馏水溶解后, 移入100 mL容量瓶中, 用蒸馏水定容至刻度。 b 称取NaH2PO4·2H2O(MW=156.01)0.780 g 于50 mL小烧杯中, 加少量蒸馏水溶解后, 移入50 mL 容量瓶中, 用蒸馏水定容至刻度。 c 量取91.5 mL a 液与8.5 mL b 液混合后, 该液即为0.1 mol/LpH7.8 磷酸钠缓冲液。 d 称取L- Met( MW=149.2) 0.194 1 g 于50 mL 小烧杯中, 用少量0.1 mol/LpH7.8 磷酸钠缓冲液溶解后, 移入50 mL 容量瓶中, 用0.1 mol/LpH7.8 磷酸钠缓冲液定容至刻度。 1.2.2.2 NBT( 氯化硝基四氮唑蓝) 的配制(7.5×10-4mol/L) 称取NBT( MW=817.7) 0.061 3 g 于50 mL 小烧杯中, 用少量蒸馏水溶解后, 移入100 mL 容量瓶中, 用蒸馏水定容至刻度。 1.2.2.3 核黄素溶液(2×10-5 mol/L) a.称取EDTA( MW=292) 0.002 92 g 于50 mL 小烧杯中, 用少量蒸馏水溶解。 b.称取核黄素( MW=376.36) 0.073 5 g 于50 mL 小烧杯中, 用少量蒸馏水溶解。合并 a 液和 b 液, 移入100 mL 容量瓶中, 用蒸馏水定容至刻度( EDTA0.1 mmol,核黄素2 mmol)。贮于冰箱中, 避光保存, 用时稀释100 倍。 1.2.3 甘草提取物溶液的配制 1.2.3.1 甘草酸溶液的配制 称取甘草酸0.05 g 用少量稀醇(10 %乙醇溶液)溶解后, 移入50 mL 容量瓶中, 用稀乙醇定容至刻度, 即为 1 g/ mL 的甘草酸溶液。 1.2.3.2 甘草次酸溶液的配制 称取甘草次酸0.05 g 用少量稀醇(10 %乙醇溶液)溶解后, 移入50 mL 容量瓶中, 用稀乙醇定容至刻度,即为 1 g/mL 的甘草次酸溶液。 1.2.3.3 甘草总黄酮组溶液的配制

如何清除体内自由基

如何清除体内自由基 消除体内自由基,应该要了解自由基的来源,从外界到身体内部的代谢一起中和性的描叙不要单方面的讲叙体内各种酶与自由基之间的关系 人体内的自由基有两个来源:其一是来自环境,如环境污染、食品污染、过度的紫外线照射和各种辐射、杀虫剂、室内外废气、吸烟、二手烟、酗酒、工作压力、生活不规律等等,都会直接导致人体内产生过多的自由基(活性氧);食品添加剂、食用脂肪和熏炸烤肉、某些抗癌药物、安眠药、抗生素、有机物腐烂物、塑料用品制造过程、油漆干燥挥发、石棉粉尘、空气污染、化学致癌物、大气中的臭氧等也都能诱发人体内产生自由基。 其二是来自体内,人体内组织细胞的新陈代谢也会产生自由基,这是人体代谢过程的正常产物,十分活跃又极不稳定,它们会附着于健康细胞之上,再慢慢瓦解健康细胞,而被破坏的细胞则又再转而侵害更多健康的细胞,如此恶性循环从而导致人体的衰老和疾病的发生。另外,组织器官损伤后的缺血一段时间后又突然恢复供血(即重灌流),如心肌梗塞、脑血栓、外伤、外科手术后,自由基会大量生成。正常人体有一套清除自由基的系统,但这个系统的力量会因人的年龄增长及体质改变而减弱,致使自由基的负面效应大大增强,引起多种疾病发病率的提高。活性氧自由基对人体的损害实际上是一种氧化过程。因此,要降低自由基的损害,就要从抗氧化做起。 听说过抗氧化剂吗?它对人体的健康可是有着密切的关系。既然自由基不仅存在于人体内,也来自于人体外,那么,降低自由基危害的途径也有两条:一是,利用内源性自由基清除系统清除体内多余自由基;二是发掘外源性抗氧化剂——自由基清除剂,阻断自由基对人体的入侵。 大量研究已经证实,人体内本身就具有清除多余自由基的能力,这主要是靠内源性自由基清除系统,它包括超氧化物歧化酶(SOD)、过氧化氢酶、谷胱甘肽过氧化物酶等一些酶和维生素C、维生素E、还原型谷胱甘肽、β-胡萝卜素和硒等一些抗氧化剂。酶类物质可以使体内的活性氧自由基变为活性较低的物质,从而削弱它们对肌体的攻击力。酶的防御作用仅限于细胞内,而抗氧化剂有些作用于细胞膜,有些则是在细胞外就可起到防御作用。这些物质就深藏于我们体内,只要保持它们的量和活力它们就会发挥清除多余自由基的能力,使我们体内的自由基保持平衡。 要降低自由基对人体的危害,除了依靠体内自由基清除系统外,还要寻找和发掘外源性自由基清除剂,利用这些物质作为替身,让它们在自由基进入人体之前就先与自由基结合,以阻断外界是自由基的攻击,使人体免受伤害。在自然界中,可以作用于自由基的抗氧化剂范围很广,种类极多。目前,国内外已陆续发现许多有价值的天然抗氧化剂。如β-胡萝卜素(维生素A)、维生素C、维生素E、番茄红素、辅酶q10、等等。此外,我国很多中草药植物中的有效成分都是天然抗氧化剂,例如,银杏黄酮、甘草黄酮等,另外还有巴西菇、灰树花、茯苓、黄芪、丹参、银杏、枸杞、灵芝、人参......。 吃什么可以减少体内自由基 在正常的生命过程中,自由基为维持生命所必需。体内自由基不断产生,也不断地被清除,两者 处于动态平衡之中,使之维持在一个正常的生理水平上。自由基在生物体内具有参与吞噬病原体,参 与前列腺素和凝血酶原的合成、解毒,参与体内部分生化反应和胶原蛋白的合成,调节细胞增殖与分化,参与机体免疫和环核苷酸的生物合成,以及生殖和胚胎发育等重要的生理功能。但是当自由基过 量时,自由基在机体内损伤蛋白质、核酸和生物膜,导致细胞凋亡,并参与许多疾病的发病过程。 由基清除剂即抗氧化剂清除机体自由基,保护机体免受氧化损害中起重要作用。因此,近年来对 自由基清除剂的研究备受关注。多吃点抗氧化剂食物有利于减少体内多余自由基。 方法/步骤 1.全面复方自由基清除剂:葡茶多酚胶囊。适当吃葡茶多酚可以全面清除体内多余自由

乳酸菌的作用与功效有哪些呢

乳酸菌的作用与功效有哪些呢酸奶里含有很多乳酸菌成份,食用后可帮助肠胃的消化与吸收,对皮肤是非常好的,同时也能增强患者的味口,但是很多人却不喜欢酸奶的味道,从而是对酸奶食物远离,其实只要大家知道了乳酸菌的作用与功效后,就会选择这样的产品类型食物,那么乳酸菌的作用与功效有哪些呢?请随我们一起来分析乳酸菌的作用与功效。 乳酸菌是一种发酵制品。一般来说在葡萄糖中发酵的细菌都被叫做乳酸菌。它是一种对人体有益的菌。像人们平时所喝的酸奶,啤酒等等需要用来发酵的都有它的加入。像电视上的酸奶广告,就经常会说此酸奶中添加了活性乳酸菌。这个活性乳酸菌就是对人体很有的益生菌。可以说乳酸菌在生活中被用到的地方很多。 乳酸菌一般被分为两类,一种是从动物中提取的,一种是植物。也就是常说的动物源和植物源的乳酸菌,乳酸菌在动物体内能发挥许多的生理功能。大量研究资料表明,乳酸菌能促进动物生长,调节胃肠道正常菌群、维持微生态平衡,从而改善胃肠道功能;提高食物消化率和生物效价;降低血清胆固醇,控制内毒素;抑制肠道内腐败菌生长:提高机体免疫力等。 乳酸菌通过发酵产生的有机酸、特殊酶系、酸菌素等物质具有特殊生理功能,可刺激组织发育,对机体的营养状态、生理功能、免疫反应和应激反应等产生作用。

1、提供营养物质,促进机体生长乳酸菌。 如果能在体内正常发挥代谢活性,就能直接为宿主提供可利用的必需氨基酸和各种维生素(维生素B族和K等),还可提高矿物元素的生物活性,进而达到为宿主提供必需营养物质、增强动物的营养代谢、直接促其生长的作用。 2、改善胃肠道功能,维持肠道菌群平衡。 动物的整个消化道在正常情况下都寄生有大量微生物。 3、改善免疫能力。 乳酸杆菌和双歧杆菌一方面能明显激活巨噬细胞的吞噬作用,另一方面由于它能在肠道定植,相当于天然自动免疫。 常喝含乳酸菌的酸奶,对身体是非常好的,多吃含有乳酸菌制成的食物,能够帮助身体吸收营养,而且乳酸菌在进入人体内后还可以帮助人们控制自己身体内的毒素,防止毒素继续生长。 乳酸菌的作用与功效对身体是很明确的,每种酸奶时都含有乳酸菌,喜欢吃酸奶的人群可以自己做,酸奶的存放时间并没有牛奶长,做好后请尽快食用。对牛奶有过敏现象的患者可多食用含有乳酸菌的食物,同样能增强身体健康,食物中的营养也能达到身体成长的需求,请患者在选择牛奶的时候谨慎。

抗氧化乳酸菌L4的SOD活性及其发酵乳的抗氧化作用

表1乳酸菌L3和L4无细胞提取物的抗氧化活性(n=3,X±SD) 抗氧化活性 DPPH自由基清除率/%脂质过氧化抑制率/%超氧自由基清除率/%羟自由基清除率/%对Fe2+螯合 还原活性(L-半胱氨酸)/μmol?L-1乳酸菌L3 50.171.814.983.5 (54.3±2.1)×10-6 (200.0±3.6) 乳酸菌L4 48.175.287.045.7 (41.3±1.9)×10-6(187±2.3) 0引言 正常情况下, 体内自由基的产生和清除是平衡 的,一旦体内自由基代谢失衡,就会导致细胞损伤并引发一些疾病,如糖尿病、高血压、关节炎、心血管疾病、癌症等[1-3]。这时外加一些抗氧化物质对协助体内氧代谢的平衡是很有帮助的。国内外对乳酸菌抗氧化活性的研究较少。在体外实验中,Lin等[4]研究发现嗜酸乳杆菌与长双歧杆菌的无细胞提取物对亚油酸过氧化反应有抑制作用;Kullisaar等[5]利用人体实验报道了发酵乳杆菌ME-3在具有抗氧化活性;Yang[6]等的研究证明,与发酵前相比,乳酸菌发酵豆奶的还原活性及清除DPPH自由基的能力明显提高。 在前期的研究中,已经从30株乳酸菌中筛选到了 抗氧化活性相对较高的乳酸菌L3和L4,发现它们的无细胞提取物有清除氧自由基,抑制亚油酸过氧化作用 等[2],见表1。 本研究进一步对这2株乳酸菌的抗氧化活性物质进行分析, 利用PCR技术鉴定了乳酸菌L4的超氧化 物歧化酶(Superoxidedismutase,SOD)基因及其表达,并对其发酵乳的抗氧化作用,如还原活性,螯合 Fe2+作用,清除DPPH自由基作用进行了分析,以期对 抗氧化乳酸菌L4的SOD 活性及其发酵乳的抗氧化作用 张江巍,曹郁生,刘晓华,徐波 (南昌大学中德联合研究院食品科学教育部重点实验室,江西南昌330047) 摘 要:从30株乳酸菌中筛选出的抗氧化活性相对较高的乳酸菌L3和L4进行实验,发现乳酸菌L4的抗H2O2的能力明显要高于乳酸菌L3 和保加利亚乳杆菌。并检测到乳酸菌L4无细胞提取物SOD活性为(73.70±1.77)U/mg。但未检测到乳酸菌L3和L4具有GSH-Px活性。利用PCR技术扩增了乳酸菌L4的SOD基因,通过DNA序列测定,发现乳酸菌L4的SOD基因与E.coli的Mn-SOD基因有高度的同源性。并发现乳酸菌L4发酵乳的还原活性和螯合Fe2+作用均明显高于未发酵乳。关键词:乳酸菌;超氧化物歧化酶;发酵乳;抗氧化中图分类号:Q936 文献标识码:A 文章编号:1001-2230(2006)11-0012-04 SODActivityoflacticacidbacteriaL4andtheantioxidationofitsfermentedmilk ZHANGJiang-wei,CAOYu-sheng,LIUXiao-hua,XUBo (Sino-GermanJointResearchInstitute,NanchangUniversityTheKeyLaboratoryofFoodScienceofMinistryofEducation,Nanchang330047,China) Abstract:ThisstudywasaimedatlacticacidbacteriastrainL3andL4thatdisplayedexcellentantioxidativeactivitiesamong30lacticacidbacteria.StrainL4waslesssensitivetoH2O2thanothers.Thesuperoxidedismutaseactivitywasfoundinthecell-freeextractsofL4(73.70±1.77U/mgprotein),buttheglutathioneperoxidasewasnotfoundinL3andL4.TheSODgenewasamplifiedwithPCRfromthegenomicDNAofL4,andthePCRproductwassequencedandcomparedwiththesequenceofSODgeneinGenebank.TheresultindicatedthatthesequencesofSODgenefromL4ishighlyhomologywiththesequencesofMn-SODgeneofE.coli(98%).ThemilkfermentedbyL4demonstratedbetterFe2+chelatingabilityandreducingactivitythanunfermentedmilk.Keywords:lacticacidbacteria;superoxidedismutase;fermentedmilk;antioxidative 收稿日期:2006-04-19 作者简介:张江巍(1981-),男,硕士研究生,研究方向为食品生物技术。 www.chinadairy.netrpgy@chinajournal.net.cn 中国乳品工业

乳酸菌的功效和作用

乳酸菌的功效和作用 乳酸菌是一种发酵制品.一般来说在葡萄糖中发酵的细菌都被叫做乳酸菌.它是一种对人体有益的菌.像人们平时所喝的酸奶,啤酒等等需要用来发酵的都有它的加入.像电视上的酸奶广告,就经常会说此酸奶中添加了活性乳酸菌.这个活性乳酸菌就是对人体很有的益生菌.可以说乳酸菌在生活中被用到的地方很多. 乳酸菌一般被分为两类,一种是从动物中提取的,一种是植物.也就是常说的动物源和植物源的乳酸菌.那么乳酸菌都有什么对人体好的功效和作用呢?今天就来说一下. 乳酸菌在动物体内能发挥许多的生理功能.大量研究资料表明,乳酸菌能促进动物生长,调节胃肠道正常菌群、维持微生态平衡,从而改善胃肠道功能;提高食物消化率和生物效价;降低血清胆固醇,控制内毒素;抑制肠道内腐败菌生长:提高机体免疫力等. 乳酸菌通过发酵产生的有机酸、特殊酶系、酸菌素等物质具有特殊生理功能,可刺激组织发育,对机体的营养状态、生理功能、免疫反应和应激反应等产生作用. 1.提供营养物质,促进机体生长乳酸菌如果能在体内正常发挥代谢活性,就能直接为宿主提供可利用的必需氨基酸和各种维生素(维生素B族和K等),还可提高矿物元素的生物活性,进而达到为宿主提供必需营养物质、增强动物的营养代谢、直接促其生长的作用. 2.改善胃肠道功能,维持肠道菌群平衡动物的整个消化道在

正常情况下都寄生有大量微生物. 3.改善免疫能力.乳酸杆菌和双歧杆菌一方面能明显激活巨噬细胞的吞噬作用,另一方面由于它能在肠道定植,相当于天然自动免疫. 常喝含乳酸菌的酸奶,对身体是非常好的,多吃含有乳酸菌制成的食物,能够帮助身体吸收营养,而且乳酸菌在进入人体内后还可以帮助人们控制自己身体内的毒素,防止毒素继续生长.

相关文档
最新文档