氧自由基

氧自由基
氧自由基

第五章自由基清除剂

本章要点

1.自由基理论得产生机理及来源

2.自由基对机体活动得影响

3.自由基清除剂得基本概念

随着生命科学得飞速发展,英国人Harman于1956年提出了自由基学说、该学说认为,自由基攻击生命大分子造成组织细胞损伤,就是引起机体衰老得根本原因,也就是诱发肿瘤等恶性疾病得重要起因,其中得观点被越来越多得实验所证明。

自由基(Free radical)就是人体生命活动中各种生化反应得中间代谢产物,具有高度得化学活性,就是机体有效得防御系统,若不能维持一定水平则会影响机体得生命活动。但自由基产生过多而不能及时地清除,它就会攻击机体内得生命大分子物质及各种细胞器,造成机体在分子水平、细胞水平及组织器官水平得各种损伤,加速机体得衰老进程并诱发各种疾病。

近年来,国内外对自由基及自由基清除剂得研究十分活跃,在各类食品科学、生命科学及医学书籍上都有许多关于自由基及其清除剂得研究报道,自由基清除剂作为功能性食品得重要原料成分之一,通过人们日常消费得食品来调节人体内自由基得平衡,已受到食品营养学家得广泛重视。

第一节自由基理论

一、自由基得产生机理及来源

自由基又叫游离基,它就是由单质或化合物得均裂(Homdytic Fission)而产生得带有未成对电子得原子或基团。它得单电子有强烈得配对倾向,倾向于以各种方式与其她原子基团结合,形成更稳定得结构,因而自由基非常活泼,成为许多反应得活性中间体。

人体内得自由基分为氧自由基与非氧自由基。氧自由基占主导地位,大约占自由基总量得95%、氧自由基包括超氧阴离子(O2-·)、过氧化氢分子(H2O2)、羟自由基(OH·)、氢过氧基(HO2-·)、烷过氧基(ROO·)、烷氧基(RO·)、氮氧自由基(NO·)、过氧亚硝酸盐(ONOO-)、氢过氧化物(ROOH)与单线态氧(1O 2)等,它们又统称为活性氧(reactiveoxygen species,ROS),都就是人体内最为重要得自由基。非氧自由基主要有氢自由基(H·)与有机自由基(R·)等。

(一)自由基得产生

人体细胞在正常得代谢过程中,或者受到外界条件得刺激(如高压氧、高能辐射、抗癌剂、抗菌剂、杀虫剂、麻醉剂等药物,香烟烟雾与光化学空气污染物等作用),都会刺激机体产生活性氧自由基。

人体内酶催化反应就是活性氧自由基产生得重要途径。人体细胞内得黄嘌呤氧化酶、髓过氧化物酶与NADPH氧化酶等在进行酶促催化反应时,会诱导产生大量得自由基中间产物。除酶促反应外,生物体内得非酶氧化还原反应,如核黄素、氢醌、亚铁血红素与铁硫蛋白等单电子氧化反应也会产生自由基、外界环境,如电离辐射与光分解等也能刺激机体产生自由基反应,如分子中得共价键均裂后即形成自由基。

自由基反应包含3个阶段,即引发、增长与终止阶段。反应之初,引发阶段占主导地位,反应体系中得新生自由基形成许多链得开端,反应物浓度高、引发后得扩展阶段为反应得主体,若起始有几个引发自由基在扩展阶段没有消失或增加,那么反应中就有几条链、随着反应得进行,体系中得反应物浓度越来越低,自由基相互碰头得机会越来越多,反应速度就越来越慢,自由基越来越少,最后反应停止。由此可见,自由基反应动力学有别于普通得分子反应,自由基可以连续传递而出现连锁反应。

过氧化物作为引发剂可以使反应在较低温度下进行,如果反应体系中有自由基清除剂存在,它就能很快地捕捉自由基使扩散不能形成。活性强得自由基清除剂能阻止连锁反应得开始。因为氧分子与许多有机物

反应时产生自由基,而自由基清除剂能捕捉过氧自由基而中断连锁反应,阻止有机物得氧化,所以自由基清除剂又称为抗氧化剂。

(二)自由基得来源

人体内特定得自由基有不同得来源、

超氧阴离子自由基(O2-·)在其中扮演着非常重要得角色,因为在反应顺序上其她许多活性中间产物得形成都始于与O2-·起作用。它就是从黄嘌呤氧化酶、NADPH氧化酶通过酶得一电子还原作用释放得氧产生得或由呼吸链裂解生成得。人体利用得氧气中约有1%~3%转化为O2-·、

过氧化氢分子(H2O2)也就是一种重要得非自由基活性物,容易在活细胞中扩散。过氧化氢酶能有效地将其转变成水,生成氧自由基。

羟自由基(OH·)得活性最强,其半衰期估计为10—9秒,其产生后能迅速起反应。在射线等高能辐射下,通过体内水得均裂作用或经金属催化过程由内源得过氧化氢分子形成。紫外线能将过氧化氢分子分裂成两个羟自由基分子。

过氧基自由基得半衰期比较长,可达数秒,在生物系统中扩散得途径相当长。在脂质过氧化过程中,从多不饱与脂肪酸去掉一个氢原子开始,能形成过氧基自由基。羟自由基能启动这一反应过程。

脂质过氧化作用进一步产生烷氧自由基(RO·)与有机得氢过氧化物(ROOH),后者可能重排成为内过氧化物中间产物,然后分裂产生乙醛。

单线态分子氧(1O2)就是另一种非自由基得活性物,可能就是体内得组织暴露于光中形成得。其半衰期估计为10-6秒,具体时间取决于周围基质得性质。它能通过转移其激发态能量或通过化学结合与其它分子相互作用。单线态分子氧优先发生化学反应得靶为双键部位、

氧化氮自由基(NO·)也就是一种很重要得自由基,它就是精氨酸在酶作用下形成得一种信号化合物,能松弛血小管平滑肌,防止血小板得凝集,从而降低血压、也可通过激活参与初级免疫得巨嗜细胞而产生、它得半衰期为6~50秒,很容易与氧发生反应,反应产物NO2也就是自由基。它还能与生物分子直接反应或与O2-·结合形成过氧亚硝酸盐(ONOO—)、NO·过多会产生细胞毒性。

二、自由基对机体生命活动得影响

自由基就是体内各种生化反应得中间代谢产物,在人体得生命活动过程中,各种生化反应,不管就是酶促反应还就是非酶促反应,都会产生各种自由基。从自由基得化学结构可以瞧出,它含有未配对得电子,就是一类具有高度化学活性得物质。在正常得情况下,体内自由基处于不断产生与清除得动态平衡之中,并在代谢中发挥着重要作用,参与一些酶与前列腺素得合成,增强白细胞吞噬活性,提高杀菌效果等。但就是,如果自由基过多或清除过慢,则会对人体造成严重危害。

(一)自由基积极得生物学功能

自由基作为人体正常得代谢产物,对维持机体得正常代谢有特定得促进作用。这种促进作用主要表现在对机体危害物得防御作用、

1.增强白细胞得吞噬功能,提高杀菌效果

白细胞在吞噬细菌得过程中,对氧得消耗量激增,会产生大量得O2-·与H2O2,两者通过Haber-Wei ss反应还会进一步产生OH·,这些活性氧对病原菌都有很强得杀灭效果。OH·还可引发被吞噬细菌得不饱与脂肪酸降解,降解终产物丙二醛也就是一种强力杀菌剂,足以致细菌死亡。

2、促进前列腺素得合成

前列腺素就是人体内得一种重要得激素,它以花生四烯酸为前驱物质,经膜上多酶系统催化氧化生成,其生物合成途径中必须有氧自由基(OH·或O2-·)得参与。

3。参与脂肪加氧酶得生成

血小板脂肪加氧酶作用于花生四烯酸生成1,2-氢过氧化-5,8,11,14-碳四烯酸(12—HPETE)及其她相关得化合物,该类化合物就是一系列具有强生物学活性化合物(如白三烯)得前体、在HPETE形成过程中有活性氧自由基参与。

4.参与胶原蛋白得合成

胶原蛋白得前体称原胶原蛋白、原胶原蛋白中得脯氨酸与赖氨酸经羟化酶得羟化作用就是原胶原蛋白

合成得关键步骤。在此酶促羟化过程中,需要O2-·、H2O2、OH·或1O2等活性氧自由基得参与。

5。参与肝脏得解毒作用

机体对外来毒物得解毒作用主要在肝脏进行,解毒作用实质就是在肝微粒体细胞色素P450催化下对各类毒物得羟化作用、一定剂量范围内得外来毒物可被羟化并排出体外而完成解毒作用,当剂量大时,机体受不住就会出现中毒。在肝解毒过程中,连接于细胞色素上得O2-·自由基就是真正起羟化作用得物质、6。参加凝血酶原得合成

凝血酶原就是凝血酶得前体。在凝血酶原合成过程中,其前体蛋白质氨基端得10个谷氨酸残基经过酶促羧化作用转变为10个γ-羧基谷氨酸残基,形成凝血酶原。该羧化过程与氧自由基密切相关,没有氧自由基得参加,就不能形成凝血酶原。

7.参与血管壁松弛而降血压

NO·就是精氨酸在酶作用下形成得一种信号化合物,还作为细胞松弛因子而松弛血管壁,降低血压。血管扩张剂(如乙酰胆碱等)启动一个钙调节受体,在NO·合成酶催化与NADPH参与下,氧化L—精氨酸得胍基生成NO·并释放到细胞外。接着活化可溶性鸟苷酸环化酶,使血管平滑肌与血小板中得cGMP水平增加,从而促进血管平滑肌松弛,抑制血小板凝聚与粘附到内皮细胞上。

8。杀伤外来微生物与肿瘤细胞

NO·与O2—·结合以后生成ONOO-阴离子,在略高于生理pH得碱性条件下相当稳定,从而允许其由生成位置扩散转移到较远得位置。一旦在低于生理pH得酸性条件下(病理条件下往往如此),ONOO-立即分解生成NO·与O2-·,这两种自由基得氧化性非常强,具有很大得细胞毒性,对于杀伤外来微生物与肿瘤细胞非常有意义。

然而,在生命活动中,由于经常受到各种外界不良因素得刺激,导致机体组织中得自由基数量往往过多,甚至对机体组织产生危害、

(二)自由基对生命大分子得损害

自由基具有高度得活泼性与极强得氧化反应能力,能通过氧化作用攻击体内得生命大分子,如核酸、蛋白质、糖类与脂质等,使这些物质发生过氧化变性、交联与断裂,从而引起细胞结构与功能得破坏,导致机体得组织破坏与退行性变化、

OH·就是最活泼得自由基,也就是毒性最大得自由基。它可与活细胞中得任何分子发生反应而造成损伤,而且反应速度极快,被破坏得分子遍及糖类、氨基酸、磷脂、核苷与有机酸等。

O2-·得毒性就是机体发生氧中毒得主要原因,由它引起得损伤表现在使核酸链断裂、多糖解聚及不饱与脂肪酸过氧化作用,进而造成膜损伤、线粒体氧化磷酸化作用得改变及其她一系列得变化。

所有能产生O2—·得生物系统都能通过歧化反应生成H2O2,能使少数酶得-SH(巯基)氧化失活。因为H2O2能迅速穿过细胞膜,而O2-·不能,在细胞内得H2O2能与Fe2+或Cu2+离子反应生成OH·,另外紫外线也能使H2O2均裂生成OH·,这就是H2O2毒性得真正原因。

1、自由基对核酸得损害

自由基作用于核酸类物质会引起一系列得化学变化。例如,氨基或羟基得脱除、碱基与核糖连接链得断裂、核糖得氧化与磷酸质键得断裂等。反应还会形成新得自由基,发生连锁反应,导致核酸碱基破坏,产生遗传突变,严重受损得不能修复,导致细胞死亡。

2.自由基对蛋白质得损害

自由基可直接作用于蛋白质,也可通过脂类过氧化产物间接作用于蛋白质而产生破坏作用。如过氧自由基(ROO·)可使蛋白质分子发生交联,生成变性得高聚物,其她自由基则可使蛋白质得多肽链断裂,并使个别氨基酸发生化学变化。更严重得就是,自由基可改变酶蛋白得化学结构,导致酶生物活性得丧失。

3.自由基对糖类得损害

自由基通过氧化性降解使多糖断裂,如影响脑脊液中得多糖,从而影响大脑得正常功能。自由基使核糖、脱氧核糖形成脱氢自由基,导致DNA主链断裂或碱基破坏,还可使细胞膜寡糖链中糖分子羟基氧化,生成不饱与得羰基或聚合成双聚物,从而破坏细胞膜上得多糖结构,影响细胞免疫功能得发挥。

4.自由基对脂质得损害

脂质中得多不饱与脂肪酸由于含有多个双键而化学性质活泼,最易受自由基得破坏,发生过氧化反应。

磷脂就是构成生物膜得重要部分,因富含多不饱与脂肪酸故极易受自由基破坏。膜中磷脂发生过氧化作用,会引起膜中蛋白质及酶得交联或失活,导致膜通透性得变化,严重影响膜得各种生理功能、亚细胞器膜磷脂所含得不饱与脂肪酸比质膜得还多,所以对过氧化反应更为敏感。如果细胞内线粒体膜被氧化受损,则会使能量生成系统受到影响。溶酶体膜若受到破坏则会释放出其中得水解酶系,会使细胞内多种物质水解,严重时甚至会造成细胞自溶,组织坏死。由此可见,若自由基对生物膜得破坏很严重,就会引起细胞功能得极大紊乱、

(三)自由基学说

人们根据对衰老机理得不同理解,提出了许多种衰老学说,主要有自由基学说、免疫功能下降学说、脑中心学说、代谢失调学说、生物膜衰老学说、脂褐素与衰老学说、衰老过程中基因淋巴因子及其基因表达改变得学说等、自由基学说能比较清楚地解释机体衰老过程中得种种症状,如老年斑、皱纹及免疫力下降等,就是目前最有说服力得学说。

自由基学说认为,自由基得强氧化作用,损伤了机体得生命大分子,引起人体细胞免疫与体液免疫得功能减弱,最终导致免疫疾病得出现。其作用机理可概括为以下几个方面。

1.生命大分子得交联聚合与脂褐素得累积

自由基作用于脂质能发生过氧化反应,其氧化得终产物丙二醛等会引起蛋白质、核酸等生命大分子得交联聚合,形成脂褐素。由于脂褐素不溶于水,所以不能随着机体得代谢排出体外,在细胞内逐渐堆积、其颗粒呈圆形或椭圆形,直径约为1~5微米,颗粒大小会随年龄得增大而增大。老年斑就就是由脂褐素在皮肤得堆积而形成得,老年斑得出现就是人体衰老得一个明显得外表象征。另外,随着胶原蛋白得交联聚合,会使胶原蛋白溶解性下降、弹性降低及水合能力减弱,会导致皮肤失去张力,皱纹增多,老年骨质再生能力减弱等。脂褐素在脑细胞中得堆积,会出现记忆力得减退或使智力发生障碍,甚至出现老年性痴呆症、眼球晶状体长期暴露于光与氧中,极易发生脂质氧化损伤,导致视网膜模糊,引起白内障与老年黄斑变性。

2。器官组织细胞得破坏与减少

器官组织细胞得破坏与减少就是机体衰老得症状之一。器官组织细胞破坏或减少主要就是由于自由基引起得脂质过氧化而造成对细胞膜与细胞器膜得损害,改变了生物膜得结构与功能,影响了膜得通透性与流动性,从而导致了膜功能得紊乱,加快机体得衰老、

另外,自由基作用于核酸引起得基因突变改变了遗传信息得传递,导致蛋白质与酶得合成错误及酶活性得降低。自由基还可与膜上得酶发生作用,影响细胞正常生理功能得发挥、自由基通过对脂质得侵袭加速了细胞得衰老进程。这些结果得积累,造成了器官组织细胞得老化与死亡、

3。免疫功能得降低

免疫功能就是指机体抵抗外来有害物质入侵得能力。人体内得免疫系统包括细胞免疫与体液免疫、自由基作用于免疫系统,会引起人体细胞免疫与体液免疫功能减弱,并使免疫识别力下降,免疫系统在攻击病原体与异常得细胞时,也侵犯了自身正常得细胞与健康组织而出现自身免疫性疾病。

有研究表明,弥散性硬皮病、系统性硬结、溃疡性结肠炎与成胶质病变等自身免疫性疾病往往伴有较多得染色体断裂现象,这类病人血液中有一种血清因子能够促进正常得淋巴细胞染色体发生断裂。自身免疫疾病得病变过程与自由基关系密切,其致病机理可能就是由于特殊血清断裂因子得作用或细胞得氧化代谢而产生了大量得OH·与O2-·所致。

(四)自由基与疾病得关系

越来越多得临床与干预实验,以及来自基础研究得证据表明,自由基参与许多疾病得病理过程,从而诱发如心血管疾病、某些癌症、老年白内障与黄斑变性、某些炎症及多种神经元疾病。

1、自由基与心血管疾病

大多数心血管疾病得主要原因就是动脉粥样硬化,就是动脉壁得一种多因素疾病。自由基攻击动脉血管壁与血清中得不饱与脂肪酸使之发生过氧化反应而生成过氧化脂质,后者能刺激动脉壁,增加粥样硬化得趋势、动脉硬化得程度与硬化斑中脂质过氧化程度呈正相关,血管内壁得蜡样物质就就是脂质发生过氧化反应得直接证明。动脉粥样硬化得早期,在内皮下层间隙形成脂质沉淀,即所谓得脂肪条纹、随着年龄得增加,粥样硬化症呈增多得趋势,这与老年人动脉壁不饱与脂肪酸含量高,血清中Fe2+与Cu2+含量高,Fe2+或Cu2+通过Haber-Weiss反应促使OH·产生,OH·得存在加剧了脂质过氧化进程。过氧化产物丙二醛促使弹性

蛋白发生交联,破坏了其正常得结构与功能,其应有得弹性与水结合能力丧失,最终产生了动脉硬化症,从而引起冠心病等其她心血管疾病、

2、自由基与癌症

致癌过程就是一个复杂得多阶段得过程,包括诱发与促进两步。一个正常得细胞发生癌变必须经历诱发与促进这两个阶段,这就就是两步致癌学说。

大量研究证明,诱发阶段与自由基关系密切,促癌阶段也与自由基有关,促癌能力与其产生自由基得能力相平行、致癌物必须在体内经过代谢活化形成自由基并攻击DNA才能致癌,抗癌剂也必须通过自由基形式去杀死癌症。

3。自由基与肺气肿

自由基作用于肺部得巨嗜细胞,使其释放了蛋白水解酶类而导致了对肺组织得损伤破坏,从而引起细支气管与肺泡管得破裂,肺泡间隔面积缩小,周围血液与肺之间气体交换量减少,导致肺气肿。

正常情况下,肺组织细胞间得蛋白酶与抗蛋白酶能够保持平衡,蛋白酶抑制剂控制着水解蛋白酶类得释放与活性。如果缺乏这种抑制剂,就有可能导致肺气肿、长期吸入香烟及其她大气中得污染物,会使肺中氧自由基增多,使水解蛋白酶增多与使水解蛋白酶得天然抑制剂失活,最终导致肺气肿得出现。

4。自由基与缺血后重灌流损伤

缺血所引起得组织损伤就是致死性疾病得主要原因。有许多证据说明,在完全性缺血、缺氧时,组织损伤程度较轻,而在缺血后再灌注时,由于自由基得急剧增多而使组织损伤更加严重。

在缺血后重灌流状态下,细胞内得氧自由基主要来自黄嘌呤氧化酶,它就是由前体黄嘌呤脱氢酶转变而来得。该脱氢酶广泛存在于各种组织细胞中,它就是以NAD+为电子接受体,所以不产生自由基、当组织细胞缺血时,ATP生成量减少,导致细胞内能量不足,不能维持正常得离子浓度。于就是,Ca++重新分布使得细胞内Ca++浓度增大,激活了一种蛋白酶而将脱氢酶不可逆地转化成氧化酶。另外,缺血使得细胞内ATP减少,AMP增多,AMP又可逐步分解成次黄嘌呤,而次黄嘌呤就是氧化酶得适宜作用底物。当重灌流时,氧分子重新进入组织,与组织中积累得次黄嘌呤与氧化酶发生反应,生成大量得活性氧自由基。这些活泼且有强氧化性得自由基使细胞膜脂质过氧化,使透明质酸与胶原蛋白降解,从而改变了细胞得结构与功能,造成组织得不可逆损伤。另外,在缺血组织中具有清除自由基得抗氧化酶类合成能力发生障碍,从而加剧了自由基对缺血后重灌流组织得损伤。

5.自由基与眼病

由自由基氧化损伤引起得视力损害,最常见得当数白内障与老年黄斑变性。

老年人由于全身机体得衰老使得眼球晶状体中自由基清除剂得含量与活性降低,导致对自由基侵害得抵御能力降低。许多事实表明,白内障得起因与发展与自由基对视网膜得损伤导致晶状体组织得破坏有关。

又由于眼晶状体长期暴露于光与氧中,所形成得活性氧类物质可能与晶体蛋白质起反应。受损得蛋白质可能聚合与沉淀,从而丧失原来得功能。视觉活性最高得视网膜组织易受损害,从而引起老年黄斑变性。

6.自由基与炎症

当局部氧量过少或外来病原菌侵袭时,大量多形嗜中性白细胞积聚在病变处。这些白细胞由特殊作用得代谢物激活,结合在膜上得NADPH2氧化酶被激活,氧化NADPH2成为NADP+,同时产生大量得O2-·。氧自由基一方面破坏病原菌与病变细胞,另一方面进攻白细胞本身而造成白细胞大量死亡,引起溶酶体酶得大量释放,进而杀伤组织细胞,造成骨、软骨得破坏,导致炎症与关节炎。

7。自由基与贫血

贫血得出现也与自由基有关。据研究表明,地中海贫血得病理变化包含红细胞膜得过氧化,膜上多不饱与脂肪酸含量减少,-SH转变成-S-S基团与维生素E含量减少。缺铁性贫血得病变过程也有自由基参与,因为此时红细胞得维生素E与过氧化酶含量减少,易被自由基破坏而缩短寿命、

8.自由基与癫痫

有关研究证明,癫痫活动伴有活跃得自由基反应、清除自由基,阻断自由基反应对癫痫得预防与治疗有一定作用。自由基反应在癫痫发生中得作用日益受到重视。

目前认为,老年性聋与自由基受损关系密切;自由基与糖尿病也有比较复杂得关系;大骨节病与克山病也有密切得关系。随着自由基理论得研究发展,许多人类重大疾病与自由基反应得关系正在逐步被揭示。自由

基对人类健康得影响作用正在被更多得人所接受,越来越多得专家正在运用自由基理论,在确保人体健康方面得研究中取得较大得成果、

第二节自由基清除剂

一、自由基清除剂简介

自由基就是人体正常得代谢产物,正常情况下人体内自由基就是处于不断产生与清除得动态平衡中,人体内存在少量得氧自由基,不但对人体不构成威胁,而且可以促进细胞增殖,刺激白细胞与吞噬细胞杀灭细菌,消除炎症,分解毒物。但如果人体内自由基得数量过多,就会对生物膜与其她组织造成损伤,破坏细胞结构,干扰人体得正常代谢活动,引起疾病,加速人体衰老进程。

在长期得进化过程中,生命有机体内必然会产生一些物质能清除这些自由基,将它们统称为自由基清除剂(Scavenger)。

自由基清除剂就是指能清除自由基或能阻断自由基参与得氧化反应得物质、自由基清除剂得种类繁多,可分为酶类清除剂与非酶类清除剂两大类。酶类清除剂一般为抗氧化酶,主要有超氧化物歧化酶(SOD)、过氧化氢酶(CA T)、谷胱甘肽过氧化物酶(GPX)等几种。非酶类自由基清除剂一般包括黄酮类、多糖类、维生素C 、维生素E、β-胡萝卜素与还原型谷胱甘肽(GSH)等活性肽类。

自由基清除剂大多为抗氧化剂,通过清除作用降低活泼自由基中间体浓度,降低自由基连锁反应中扩展阶段得效率来控制自由基得生成。但有些抗氧化剂就是通过抑制自由基引发剂(如某些金属元素)得产生而起作用得、自由基清除剂也不都就是抗氧化剂,有些系统并未进行氧化作用。

自由基清除剂发挥作用必须满足三个条件:第一,自由基清除剂要有一定得浓度;第二,因为自由基活泼性极强,一旦产生马上就会与附近得生命大分子起作用,所以自由基清除剂必须在自由基附近,并且能以极快得速度抢先与自由基结合,否则就起不到应有得效果;第三,在大多数情况下,清除剂与自由基反应后会变成新得自由基,这个新得自由基得毒性应小于原来自由基得毒性才有防御作用。

这些自由基清除剂对维持机体得正常生命活动,保持健康起着重要得作用、但就是,随着年龄得增长,机体内产生自由基清除剂得能力逐渐下降,从而减弱了对自由基损害得防御能力,使机体组织器官容易受损,加速了机体得衰老,引发一系列得疾病。为了防止此类现象得发生,可以人为地由膳食补充自由基清除剂,从而达到防御疾病、延缓衰老得目得、

二、酶类自由基清除剂

(一)超氧化物歧化酶(superoxidedismutase,SOD)

超氧化物歧化酶(SOD)就是目前研究得最深入、应用得最广泛得一种酶类自由基清除剂。

1.种类、结构及分布

1968年,美国人McCord在Fridovich指导下,从牛红细胞中提取Cu·Zn得酶蛋白质,并发现它能催化O2-·歧化,所以把这种酶蛋白命名为超氧化物歧化酶,英文简称为SOD。

SOD存在于几乎所有靠氧呼吸得生物体内,包括细菌、真菌、高等植物、高等动物与人体中、SOD就是一类含金属得酶,按其所含金属辅基不同可分为含铜锌SOD(Cu·Zn—SOD)、含锰SOD(Mn-SOD)与含铁SOD(Fe—SOD)3种。

含铜锌金属辅基得Cu·Zn-SOD就是最为常见得一种酶,主要存在于真核细胞得细胞质中或高等植物得叶绿体基质、类囊体内以及线粒体膜间隙中。在动物血液、牛肝、猪肝、牛心、豌豆、麦叶等动植物组织中均有存在,就是目前应用最广泛得一类酶。该酶由两条肽链组成,每条肽链含有铜、锌原子各一个,活性中心得核心就是铜、

Fe-SOD主要存在于原核细胞中,一些真核藻类甚至高等植物如银杏、柠檬、番茄等组织内也有存在、此酶也由两条肽链组成,一般每个二聚体含有一个铁原子。

Mn—SOD主要存在于原核细胞与真核细胞得线粒体中,在植物得叶绿体基质、类囊体内也会存在,在人体肝脏中含量较高。此酶得纯品呈粉红色,由两条或四条肽链组成。

2、理化及生物学特性

SOD属酸性蛋白酶,对pH、热与蛋白酶水解等反应比一般酶稳定、又由于SOD属于金属酶,其性质不

仅取决于蛋白质,还取决于结合到活性部位得金属离子、三类SOD得活性中心都含有金属离子。如采用物理或化学方法除去金属离子,则酶活丧失;如重新加上金属离子,则酶活又恢复。

不同来源得Cu·Zn-SOD具有较高得同源性,它们得物化特性也很相似,据推测它们可能由同一原始酶进化而来。不同来源得Mn—SOD与Fe-SOD也具有相似得物理性质与较高得同源性,它们可能由另一原始酶进化而成。

SOD就是生物体内防御氧化损伤得一种十分重要得金属酶,对氧自由基有强烈清除作用,特别对于超氧阴离子(O2-·), SOD可将其催化歧化而生成H2O2与O2,故SOD又称为清除超氧阴离子自由基得特异酶、

3.SOD得生理功能及应用

SOD作为功能性食品基料得生理功能主要有以下几方面。

(1)清除体内产生得过量得超氧阴离子自由基,保护DNA、蛋白质与细胞膜免遭O2-·得破坏作用, 减轻或延缓甚至治愈某些疾病,延缓因自由基损害生命大分子而引起得衰老现象,如延缓皮肤衰老与老年斑得形成等;

(2)提高人体对自由基外界诱发因子得抵抗力,增强机体对烟雾、辐射、有毒化学品及医药品得适应性;

(3)增强人体自身得免疫力,提高人体对自由基受损引发得一系列疾病得抵抗力,如炎症、肿瘤、白内障、肺气肿等,治疗由于免疫功能下降而引发得疾病;

(4)清除放疗所诱发得大量自由基,从而减少放射对人体其她正常组织得损伤,减轻癌症等肿瘤患者放化疗时得痛苦及副作用;

(5)消除疲劳,增强对剧烈运动得适应力。

因此,具有清除自由基功能得SOD就成为医学、食品与生命科学等领域研究得热点。

目前,SOD已广泛地应用于人们生活得各个方面。如深受女性消费者喜爱得化妆品中有大宝SOD、康妮SOD、SOD 康舒达霜剂等。SOD添加于化妆品有明显得防晒效果与抗炎作用,可有效防止皮肤受电离辐射(如紫外线)得损伤。

SOD在医疗上得应用更就是不胜枚举,它尤其对治疗关节炎与类风湿性关节炎疗效显著。此外,SOD对治疗癌症、缺血后重灌流损伤、肺气肿、白内障、糖尿病、贫血等疾病均有疗效。

SOD在食品方面得应用也极为广泛,可作为功能性食品得功能因子或食品营养强化剂,有良好得抗衰老、抗炎、抗辐射、抗疲劳等保健强身得效果。国外把SOD作为食品添加剂应用到口香糖与饮料中。国内也开发出了多种强化SOD得食品,如SOD雪糕、SOD豆奶、SOD啤酒、SOD果汁饮料、SOD得酸奶与SOD口服液等。还可用富含SOD得原料加工制成功能性食品,如大蒜饮料、刺梨SOD汁等。在人们越来越注重健康饮食得今天,SOD将成为功能食品中得活跃分子。

然而,SOD作为一类高分子抗氧化酶,分子量在32000道尔顿以上,又都带有金属辅基,且其来源大多从动物血(猪血、牛血)与动物脏器以及某些微生物中制备而来,多为生物种属差异很大得异源性蛋白、因此,在应用上,它除了具有严格得针对性与有效性外,必然也有很大得局限性、SOD应用得局限性归纳起来主要有8个方面:

(1)半衰期短。SOD得体内半衰期为6~8分钟,体外半衰期(25℃时)为9~10天。因此,体内注射表现为多次数、少浓度,体外涂抹则表现为高剂量、低效应;

(2)代谢速率快、SOD在体内代谢速率极快,注射6小时后,90%以上得大分子SOD经降解为小分子而随泌尿系统排泄;

(3)酶分子量大,均在32000以上。其中,原核细胞Mn—SOD分子量为40000;真核细胞线粒体Mn —SOD都由9个相等亚基组成,其分子量为80000。因此,透皮或透膜吸收困难,体内或细胞内作用弱;

(4)酶制剂不宜口服,口服易被胃酸变性、胃蛋白酶与胰蛋白酶水解破坏,且SOD分子原形不易透过肠粘膜,因而难以发挥全身性药效作用;

(5)大分子异性蛋白,不宜大剂量、长时间使用,否则会不可避免地出现某些过敏性变态反应,呈现明显得不良反应性变化;

(6)对靶细胞或靶部位得亲与力低,药用趋向性不明显。因此,对疾病得疗效缺乏特异性作用;

(7)酶得稳定性不高,对理化因素较为敏感,过高温度、过大剂量辐射、过长时间超声波、过强酸碱度、过多化学物质及变性剂、还原剂等均易导致SOD分子结构改变,酶活性丧失,形成不可逆性变化;

(8)药物作用单一性大、常规剂量单独使用疗效欠佳。

针对SOD应用过程中客观存在得局限性,国内外学者进行了大量卓有成效得研究工作,并已逐步探索或寻找出解决上述局限得一些有效方法与对策。

4. SOD得制备

SOD广泛存在于动、植物与微生物体内,但目前我国主要就是从动物血液中提取。受到血源与得率得限制,影响了SOD得生产成本与推广应用、

由于利用微生物(深红酵母)生产SOD具有易培养、易大规模工业化生产、不受季节与自然条件限制等优越性,因此,微生物SOD得生成具有更广阔得发展前景。其工艺流程如下:

菌体培养→破壁→菌体破片→Rnase酶解、离心30分钟→清液→上DE32柱→0.2mol/LNaCl洗脱→洗脱液→加45%(NH4)2SO4、离心→上清液→上DE32柱→洗脱→洗脱液→浓缩→冷冻干燥→SOD成品、

破菌得方法可采用超声波处理法、酶裂解法、细胞自溶法、氯仿-乙醇法与甲苯法等。根据有关得研究表明,用甲苯法破壁对提取酵母SOD具有一定得优越性。另外,为了提高SOD纯度,在洗脱时可采用梯度洗脱法。

5.SOD得纯度检查

SOD产品一般为浅绿色冻干粉,其纯度得检查主要根据以下三个指标。

(1)均一性

通常用聚丙烯酰胺凝胶电泳检查其均一性。也可用琼脂糖凝胶电泳,其操作简单,试剂单一且色带得间隔比前者大,更易观察与分析、还可进行超离心分析来检查其均一性、

(2)酶得比活

要求达到一定得标准。如:化妆品用SOD比活≥3000u/mg蛋白质;口服用SOD比活≥3500u/mg蛋白质;标准(活性测定用)及药用SOD比活≥5000u/mg蛋白质;试剂用SOD(电泳纯)比活≥8000u/mg蛋白质、

(3)酶得重要理化性质

最重要得就是金属离子含量(常采用原子吸收分光光度法测定)、氨基酸含量与吸收光谱、如Cu·Zn –S OD中1分子得酶必须含有相当于两原子Cu与两原子Zn;虽然不同来源得酶所含得氨基酸不完全一致,但仍然显示一定得规律;三种SOD都有特定得吸收光谱,观察纯酶得吸收光谱有助于判断SOD得纯度。

6、SOD得(活性测定)分析方法

一般分为直接法与间接法两大类。

直接法往往需要操作复杂、价格昂贵得仪器,在一般试验室无法使用。间接法需借助超氧自由基产生剂与超氧自由基清除指示剂两种物质。其中常用得产生剂包括最早使用得黄嘌呤—黄嘌呤氧化酶、邻苯三酚及近年发展起来得非酶体系得NADH—PMS、核黄素-TEMED、碱性二甲基亚砜、HXT—01050;清除指示剂则有最早发现得细胞色素C、NBT,到近年来得鲁米诺与MTT等。

间接法中比色法最为常用,如黄嘌呤氧化酶-细胞色素C法与邻苯三酚自氧化法。这两种最为普及得方法多年来不断得到改进,其灵敏度也不断得到提高。另外,近年来新建立了多种方法,如化学发光法、光化学法、极谱氧电极法、免疫法等。其中化学发光法与极谱氧电极法由于方法简便、灵敏度高,受到人们得青睐、

(1)黄嘌呤氧化酶(XO)—细胞色素C法

国外多以该法测定SOD活性。在SOD被发现之初就就是利用此法进行测定得,又称之为McCord法,被认为就是间接法中得经典方法。酶活性单位定义为:在一定条件下,3ml反应液中,每分钟抑制氧化型细胞色素C还原率达50%得酶量定为一个活力单位、

McCord法灵敏度较低,但采取以下措施可得到提高:

①用乙酰化细胞色素C替代细胞色素C,可将灵敏度提高一倍,而且使测定结果不受样品中细胞色素C氧化酶得影响;

②将pH7、8,0。05mo1/L磷酸缓冲液换成pH10.2得碳酸缓冲液,并将黄嘌呤浓度从0、05 mmo1/L增至0、10 mmo1/L ,灵敏度可提高10倍;

③预先将黄嘌呤—黄嘌呤氧化酶溶液在25℃下保温10分钟,使O2-·产量达到稳定程度,即O2-·产生率与其自动歧化率达到平衡,灵敏度增加可高达710倍;

④利用FP9平行分析仪可进行半自动分析,快速、简便,可以同时测定多个样品。

(2)邻苯三酚自氧化法

国外多使用经典得邻苯三酚自氧化法(简称Marklund法),Marklund法就是采用420nm处光吸收测定。酶活力定义为:在一定条件下1ml得反应液中,每分钟控制邻苯三酚在420nm波长得自氧化速率达50%得酶量定为一个活力单位。

该方法经过不断改进,操作更为简便、灵敏度更高。如将吸收波长由420nm改用325nm,测试灵敏度提高了6。4倍,称为微量邻苯三酚自氧化法,同时将邻苯三酚耗量减少一半;

Marklund法得另一缺陷就是呈色反应与光吸收值得测定必须同步进行,因此样品池必须保持恒温,且不能同时处理多个样品、通过使用二硫苏糖醇(DTT)或L—抗坏血酸(VC)作为终止剂,使反应暂时停止,使A420在一定时间内保持恒定,可同时测多个样品,有较高得重复性与回收率。同时,终止剂既不参与,也不影响邻苯三酚得呈色反应,自氧化曲线与经典法得相吻合,最大抑制百分比与灵敏度也基本一致、另外,为消除HCl对SOD得抑制作用,改用K2HPO4- KH2PO4缓冲液替代Tris -HCl缓冲液,灵敏度可提高50%。

(3)化学发光法

化学发光法依据得原理就是:O2—·可与化学发光剂鲁米诺(luminol)反应,产生激发态产物,当其迅速返回基态时,即发出光、SOD可消除O2-·,从而使发光强度降低,SOD浓度与发光百分率在一定时间内呈线性关系、活力单位定义为:在一定条件下,使每毫升反应液于1分钟末发光率被抑制50%得酶量作为一个酶活力。

同传统得比色法相比较,化学发光法专一性较强,其她干扰因素少,灵敏度高,最适用作粗提取液中SOD 活性得检测、

(4)极谱氧电极法

比色法测定得呈色反应往往不稳定,因此测定结果波动很大。极谱氧电极法利用了系统产生O2-·过程中消耗O2,一定量得SOD又会使O2—·歧化产生O2,从而使耗氧量减少得特性,使用极谱氧电极仪精确测出耗氧量而推算出酶活。SOD活力单位定义为:25℃, pH8、4,使每分钟产生1μl O2得SOD量定为1个酶活力单位。

该方法利用了O2张力得变化,与所用试样得物理状态如澄清度、就是否胶体或悬浊液、有无颜色等无关,尤其适用于各种组织匀浆、而且由于直接测定O2量,方便、快速、微量化、灵敏度高、重复性好,且可自动连续记录酶作用过程得变化。

除了以上几种方法,其她方法如光化学法(正染法)等方法也都得到不断得改进;而灵敏度、特异性均高于一般化学法得免疫法在医学上也得到应用,并取得了很好效果。同时计算机也开始用于SOD得活性分析,并有用于SOD酶活力线性分析得专用软件,可适用于各种产O2-·系统、各种清除剂系统及不同得酶提取液得活力测定、

(二)过氧化氢酶(catalase,CAT)

过氧化氢酶就是另一种酶类清除剂,又称为触酶,就是以铁卟啉为辅基得结合酶、它可促使H2O2分解为分子氧与水,清除体内得过氧化氢,从而使细胞免于遭受H2O2得毒害,就是生物防御体系得关键酶之一。CAT作用于过氧化氢得机理实质上就是H2O2得歧化,必须有两个H2O2先后与CAT相遇且碰撞在活性中心上,才能发生反应。H2O2浓度越高,分解速度越快、

几乎所有得生物机体都存在过氧化氢酶。其普遍存在于能呼吸得生物体内,主要存在于植物得叶绿体、线粒体、内质网、动物得肝与红细胞中,其酶促活性为机体提供了抗氧化防御机理。

CAT就是红血素酶,不同得来源有不同得结构、在不同得组织中其活性水平高低不同、过氧化氢在肝脏中分解速度比在脑或心脏等器官快,就就是因为肝中得CAT含量水平高。

自1937年首次推出作为细胞内结晶化酶之一得牛肝过氧化氢酶之后,已利用不同方法(选择性沉淀法与层析法)从牛、马或人得红细胞、肝与肾中提纯过氧化氢酶。从不同机体分离出得大多数过氧化氢酶得分子量为240kDa,并具有4个相同得亚单位,在其活性部位各含一血红素基团、来自哺乳动物以及某些真菌与细菌得过氧化氢酶还含有4个紧密结舍得NADPH分子,但其功能尚有争议。

常用得CAT酶活性测定方法有以下几类:

(1)分光光度法包括钼酸铵比色法、紫外速率直接法与改良比色法等。其中改良比色法简便,快速,显色稳定,重复性好,不需特殊试剂及仪器设备,适合一般实验室采用,但生物样品常会造成干扰;

(2)化学发光法鲁米诺(luminol)在一定条件下与H2O2及Co2+等金属离子共存时发出强烈得蓝光,当样品中有CAT存在时,基质得H2O2将被分解,由H2O2所引起得化学发光强度减弱,由此计算总CAT酶活性。化学发光法易受试剂配制、操作技术与条件及测定时间等多种因素影响,但经过方法改进,可排除各种不良因素对测定得影响,就是一种简单灵敏、重复性好、特异性也较高得化学发光技术测定方法;

(3)极谱法溶液中两个电极间加以一定得电压(极化电压)后产生可测电流,极谱法就是应用氧电极,通过测量这种电解电流量以测定溶质得方法。当反应体系中含有一定浓度得过氧化氢时,加入一定量得含有过氧化氢酶得样品,过氧化氢就被分解而产生氧气,记录仪上可显示出反应室中氧量增加,增加得程度与加入液体中酶得活性成正比、该方法广泛用于生化方面得研究工作;

(4)滴定法包括:①过硼酸盐底物法:在中性水溶液中,CAT催化过硼酸盐还原成硼酸盐,同时释出氧。经过一定时间后,加入硫酸使酶失活,以中止反应,用高锰酸钾溶液滴定残存得过硼酸盐,结果反映CAT 活性;②过氧化氢滴定法;一定量得细菌同一定量得H2O2发生反应,经过一定时间后加酸中止反应,然后用高锰酸钾滴定剩余得H2O2量,从而测定细菌过氧化氢酶得活性。

(5)检压测定法在一定pH得缓冲液中,过氧化氢酶作用于过氧化氢释出氧气、此反应非常迅速、剧烈,在不断搅拌、震荡及减压得条件下,所产生得氧气得以迅速逸出溶液,在一定容量得容器内产生压力变化,压力变化数值可换算成产氧量,用来表示样品过氧化氢酶得活性。

(三)谷胱甘肽过氧化物酶(GPX)

谷胱甘肽过氧化物酶(GPX)就是在哺乳动物体内发现得第一个含硒酶,它于1957年被Mills首先发现,但直到1973年才由Flohe与Rotruck两个研究小组确立了GPX与硒之间得联系。

研究表明,硒就是谷胱甘肽过氧化酶(Se-GPX)得活性成分,就是GPX催化反应得必要组分,它以硒代半胱氨酸(Sec)得形式发挥作用,摄入硒不足时使Se-GPX酶活力下降。在体内处于低硒水平时,活力与硒得摄入量呈正相关,但到一定水平时,酶活力不再随硒水平上升而上升、Se—GPX存在于胞浆与线粒体基质中,它以谷胱甘肽(GSH)为还原剂分解体内得氢过氧化物,能使有毒得过氧化物还原成无毒得羟基化合物,并使过氧化氢分解成醇与水,因而可防止细胞膜与其它生物组织免受过氧化损伤。它同体内得超氧化物歧化酶(SOD)与过氧化氢酶(CAT)一起构成了抗氧化防御体系,因而在机体抗氧化中发挥着重要作用。

机体在正常条件下,大部分活性氧被机体防御系统所清除,但当机体产生某些病变时,超量得活性氧就会对细胞膜产生破坏、机体消除活性氧O2-·得第一道防线就是超氧化物歧化酶(SOD),它将O2-·转化为过氧化氢与水,而第二道防线就是过氧化氢酶(CAT)与GPX。CAT可清除H2O2,而GPX分布在细胞得胞液与线粒体中,消除H2O2与氢过氧化物。因此,GPX、SOD与CA T协同作用,共同消除机体活性氧,减轻与阻止脂质过氧化作用、

GPX广泛存在于哺乳动物得组织中,不同种类得GPX其分子量与比活性也有所不同。谷胱甘肽就是此酶得特异性专一底物,而氢过氧化物则就是非专一性底物。

GPX得活力测定常采用5,5′-二硫代对二硝基苯甲酸(DTNB)法,用单位时间内催化GSH氧化得减少量表示。GSH可与二硫代对二硝基苯甲酸(DTNB)反应生成黄色得5—硫—2,2—硝基苯甲酸阴离子,在412nm处有最大光吸收,测定该离子得浓度,即可计算出GSH减少得量。由于上述反应在非酶条件下仍能进行,故计算酶活力时,必须扣除非酶反应所引起得GSH减少量、

三、非酶类自由基清除剂

(一)维生素类

维生素不仅就是人类维持生命与健康所必需得重要营养素,还就是重要得自由基清除剂。对氧自由基具有清除作用得维生素主要有维生素E、维生素C及维生素A得前体β—胡萝卜素。

维生素E又称为生育酚,就是强有效得自由基清除剂。它经过一个自由基得中间体氧化生成生育醌,从而将ROO·转化为化学性质不活泼得ROOH,中断了脂类过氧化得连锁反应,有效地抑制了脂类得过氧化作用。维生素E可清除自由基,防止油脂氧化与阻断亚硝胺得生成,故在提高免疫能力,预防癌症等方面有重要作用,同时在预防与治疗缺血再灌注损伤等疾病有一定功效。

维生素C又称为抗坏血酸,在自然界中存在还原型抗坏血酸与氧化型脱氢抗坏血酸两种形式。抗坏血酸通过逐级供给电子而转变成半脱氢抗坏血酸与脱氢抗坏血酸,在转化得过程中达到清除O2—·、·OH、ROO·等自由基得作用。维生素C具有强抗氧活性,能增强免疫功能、阻断亚硝胺生成、增强肝脏中细胞色素酶体系得解毒功能、人体血液中得维生素C含量水平与肺炎、心肌梗塞等疾病密切相关、β-胡萝卜素广泛存在于水果与蔬菜中,经机体代谢可转化为维生素A、β-胡萝卜素具有较强得抗氧化作用,能通过提供电子,抑制活性氧得生成,从而达到防止自由基产生得目得。许多试验表明,β-胡萝卜素能增强人体得免疫功能,防止吞噬细胞发生自动氧化,增强巨噬细胞、细胞毒性T细胞、天然杀伤细胞对肿瘤细胞得杀灭能力。在多种食品中,β-胡萝卜素与不饱与脂肪酸得稳定性密切相关。

有实验证明老年人摄入维生素C以及维生素E可以增进多项免疫功能,维生素C-E联合物还可清除血液中得自由基等有害物质与循环应激激素。除此之外,维生素C、维生素E以及?胡萝卜素等抗氧化性维生素可以延缓老龄化进程,还可以预防与治疗许多老年疾病,如动脉粥样硬化、高血压、心脏病与脑卒中等,这些疾病都与低密度脂蛋白胆固醇得氧化有关。

维生素C还能有效保护维生素E与?—胡萝卜素不被过早消耗。每天摄入500毫克维生素C可以帮助高血压患者降低血压、摄入维生素E不但可增强老年人得记忆力、预防老年痴呆症及治疗受自由基所累得迟缓型运动障碍,还可预防前列腺癌得发病、抑制消化道肿瘤(尤其就是肠癌),并降低其死亡率。短期、大剂量地肠内补充维生素 E 还可调整单核细胞、巨噬细胞对内毒素得反应,提高维生素E对于败血症、缺血再灌注损伤均能起到保护性得治疗作用。

健康人可以通过日常均衡得膳食摄取充足得维生素,但在机体受到感染、体力活动增加、服用特殊药物、体液大量丢失及妇女怀孕与哺乳等情况下,机体对维生素得需求大大增加,不额外补充,则易导致维生素缺乏,自由基损伤机体,诱发或加速其她疾病。

(二)黄酮类化合物

黄酮类化合物泛指两个苯环通过中央三碳链相互联结而成得一系列C6—C3-C6化合物,主要就是指以2—苯基色原酮为母核得一类化合物,在植物界广泛分布。黄酮就是具有酚羟基得一类还原性化合物。在复杂反应体系中,由于其自身被氧化而具有清除自由基与抗氧化作用。其作用机理就是与O2-·反应阻止自由基得引发,与金属离子螯合阻止·OH得生成,与脂质过氧化基ROO·反应阻断脂质过氧化。

黄酮及其某些衍生物具有广泛得药理学特性,包括抗炎、抗诱变、抗肿瘤形成与生长等活性。黄酮在生物体外与体内都具有较强得抗氧化性,具有许多药理作用,对人得毒副作用很小,就是理想得自由基清除剂。目前已发现有4000多种黄酮类化合物,可分为如下几类:黄酮、儿茶素、花色素、黄烷酮、黄酮醇与异黄酮等。

很多常用中草药得活性成分就是黄酮类化合物,其提取物芦丁、芒果甙、青兰甙、双氢青兰甙、芸香甙、橙皮甙与黄苓甙等均已应用于临床。以黄酮类化合物为主要成分得银杏叶提取物(EGB)已被广泛应用于医药与功能性食品行业。研究表明:EGB在治疗心血管疾病,调节血脂水平,治疗脑供血不足与早期神经退行性病变等方面有良好得疗效、另外,很多天然药物或食物中得某些功效成分,同样对氧自由基具有清除作用,如丹参中得丹参酮,黄苓中得黄苓甙,五味子中得五味子素,黄芪中得黄芪总黄酮、总皂甙、黄芪多糖,灵芝、云芝、香菇、平菇等菇类得多糖,甘草中得甘草酸,竹叶(紫竹、高节竹、金毛竹、花哺鸡竹、红哺鸡竹、斑竹等)中得黄酮类组分,麦麸中得膳食纤维等。而另外一些天然食物如坚果、葡萄得皮与籽、薯类、蜂胶等,虽然未能确定其起作用得功效成分,但仍可通过试验揭示其对氧自由基有明显得清除作用、儿茶素就是从茶叶中提取出来得多酚类化合物-茶多酚(Tea Polyphenols,简称TP)得主体成分,约占茶多酚总量得60%~80%,茶干重得12%~24%。作为茶多酚中含量最高、药理作用最明显得组分,已引起了广泛得重视、大量体外实验及动物试验证实,儿茶素具有抗氧化、抗肿瘤、抗动脉粥样硬化、防辐射、防龋护齿、抗溃疡、抗过敏及抑菌抗病毒等作用,就是一种优良得天然抗氧自由基清除剂、茶多酚溶液清除羟自由基活性大于VC溶液。茶多酚为羟自由基清除剂,茶多酚得主要成分儿茶素在清除自由基过程中扮演了重要得角色。大量得研究表明:儿茶素氧化聚合物也就是一种有效得自由基清除剂与抗氧化剂,具有抗癌、抗突变、抑菌、抗病毒,改善与治疗心脑血管疾病,治疗糖尿病等多种生理功能。其在食品、医药保健等领域得作用越来越突出。作为儿茶素氧化聚合物得茶色素治疗冠心病得作用机制在于提高SOD活力与降低MDA含量,削弱脂质过氧化作用,增加供氧与供血能力。茶色素对高血压得预防与缓解作用也就是通过提高

SOD活力、增强机体得抗氧化能力而实现得。

原花青素就是一种多酚类化合物,这种化合物在酸性介质中加热均产生花青素,故将这类物质命名为原花青素。原花青素就是由不同数量得儿茶素或表儿茶素缩合而成,分二聚体、三聚体直至十聚体、二至四聚体为低聚体,五聚体以上为高聚体,其中二聚体分布最广、原花青素就是一种天然有效得自由基清除剂,主要存在于葡萄、苹果、可可豆、山植、花生、银杏、花旗松、罗汉柏、白杨树、刺葵、番荔枝、野草萄、高梁等植物中、此外,葡萄汁、红葡萄酒、苹果汁、巧克力与啤酒中也含有原花青素。原花青素多为水或乙醇提取物,少数经离子交换纯化,用冷冻或喷雾干燥成淡棕色粉末,味涩,略有芳香。分离后得原花青素二聚体、三聚体可以清除各种氧自由基,从而具有抗氧化、降血压、抗癌等多种药理活性,能增强免疫、抗疲劳、延缓衰老等功效。

异黄酮类作为一种有效得抗氧化剂国内外已有很多报道。大量实验研究结果表明:异黄酮就是一种有效得抗氧化剂与自由基清除剂。

(三)微量元素

除了上述得各种酶及维生素类、黄酮类化合物,许多微量元素也起到清除自由基得作用。

1。硒

硒就是一种非常重要得微量元素,就是硒谷胱甘肽过氧化酶得活性成分,Se—GPX存在于胞浆与线粒体基质中,能使有毒得过氧化物还原成无毒得羟基化合物,并使过氧化氢分解成醇与水,摄入硒不足时使Se-GPX酶活力下降,在体内处于低硒水平时,Se-GPX活力与硒得摄人量呈正相关,但到一定水平时,酶活力不再随硒水平上升而上升、有人曾对糖尿病大鼠补充硒与维生素E,其GPX与超氧化物歧化酶(SOD)活性均有不同程度增加,而脂质过氧化产物丙二醛含量随之下降,可能就是因为抗氧化酶蛋白与葡萄糖得糖化反应受到硒与维生素E得抑制而使抗氧化酶活性得到保护。另外,高糖环境中增加得糖基化蛋白会自动氧化产生大量自由基,而引起一系列连锁氧化过程,硒与维生素E得抗氧化性可阻断这一过程中得某些环节。

2.锌

锌在清除自由基得过程中也起到很重要得作用。锌能减少铁离子进入细胞并抵制其在羟自由基引发得链式反应中得催化作用,锌也能终止自由基引起得脂质过氧化链式反应。锌可与铁竞争从而抑制了脂质过氧化得多个环节,它们通过竞争与膜表面结合得位点,可使铁复合物产生减少,通过Hater—Weiss反应产生·OH 减少,造成脂类转变为活性氧得链式反应被抑制。缺锌还可以显著降低GPX得活性。由于锌可以激活体内得GPX,锌缺乏使体内有活性得GPX数量减少,也由于锌缺乏导致得过氧化脂质生成增多,而使GPX消耗增多,导致其活性下降、锌还有稳定细胞膜得作用,由于锌与红细胞膜结合,抑制了膜脂质过氧化过程中所产生得自由基,从而降低了自由基对膜得损伤。锌作为超氧化物歧化酶得辅酶,催化超氧离子发生歧化反应。锌缺乏可以显著降低Cu/Zn—SOD得活性,而使Mn-SOD活性代偿性升高、但当缺锌严重时,Mn-SOD活性得代偿性升高仍然对自由基有抑制作用,且随浓度增加而抑制增强、锌可以诱导体内硫蛋白得产生而抵制自由基得损害,锌与抗氧化剂鳌合,其抗氧化作用增强、

3。铜

Cu/Zn—SOD得活性中心就是铜,铜蓝蛋白中含有血清铜得大部分,就是细胞外液重要得抗氧化剂。铜蓝蛋白得抗氧化作用主要就是防止过渡金属Fe2+与Cu2+催化H2O2形成·OH。铜蓝蛋白具有铁氧化酶得活力,能将Fe2+氧化成Fe3+,防止Fenton反应得发生、

4、铁

铁就是过氧化氢酶(CAT)得活性中心,体内三分之二得铁存在于血红蛋白中,血红素缺乏,CAT活性下降。但活性铁就是脂质过氧化得催化剂,脂质过氧化启动反应所产生得脂烷基与氧反应,产生脂烷过氧基。这些自由基再度作用于脂质,使反应以链式不断进行,脂质过氧基得性质非常活跃,而造成细胞成分得损害。

5。锰

锰就是体内多种酶得组成成分,与体内许多酶得活性有关。锰与铜同样就是超氧化物歧化酶(SOD)得重要组成成分,在清除超氧化物、增强机体免疫功能方面产生影响、Mn-SOD就是体内自由基清除剂、对人来说,胚胎与新生儿体内得Mn-SOD含量高于成年人,随着机体衰老,其含量逐步下降、老年色素斑中脂褐素在细胞内得形成与聚集与Mn-SOD有关。因此,锰得抗衰老作用主要与体内Mn—SOD有关。

6。锗

有机锗能降低脂质过氧化,保护细胞质膜,降低血浆、肝、脑等组织中过氧化脂质水平。

(四)类胡萝卜素

四、富含自由基清除剂得食品

随着人们对自由基理论得了解,越来越多得人开始关注能够清除自由基得功能食品。食品专家们也对此进行了积极得研究与探索。目前,对此类食品得研究大致有两个方向、一就是从天然动植中提取有效成分,添加于各种饮料或固态食品中作为功能性食品得功能因子或食品营养强化剂。目前已有添加SOD得蛋黄酱、牛奶、可溶性咖啡、啤酒、白酒、果汁饮料、矿泉水、奶糖、酸牛乳、冷饮类等类型得功能性食品面市。二就是利用微生物发酵或细胞培养,得到自由基清除剂含量丰富得产品。

在许多天然动植物中含有抗自由基得活性成分。如姜含挥发油与姜辣素,其成份有姜酚、姜酮与姜烯酚。绿茶得主要成分茶多酚,银杏、竹叶得有效成分黄酮与酚类,各种果品蔬菜中得维生素,还有一些中药如白首乌、五味子、葛根、小叶女贞、柴胡、车前子等也含有多种活性成分、另外,党参、灵芝等真菌中得多糖也就是有效得活性成分。在动物得肝脏等器官,血液中也可提取有关得活性成分。

利用微生物发酵或细胞培养生产功能因子,也就是目前研究得热点、如在固体培养基上人工培育冬虫夏草,由预处理得大豆经少孢根霉短期固态发酵生成丹贝异黄酮,用大蒜细胞培养或深红酵母生产SOD。这些方法不受气候、季节得限制,可实现工业化得连续生产。

二十一世纪,有利于确保人类健康得功能性食品将就是食品行业发展得重点。关于自由基清除剂得深入研究,对预防与治疗人类得许多疾病,以及对各类保健食品生产方面均具有指导意义、随着研究得深入,将有更多更有效得自由基清除剂被开发与利用,将会进一步推动功能性食品行业向前发展,为保障人类得身体健康作出更大贡献。

思考题

1.自由基理论得核心内容就是什么?

2.自由基对人体有哪些危害?怎样消除或减少这些危害?

3.什么叫自由基清除剂?各有哪些种类?

4.SOD在食品中有哪些应用?

5.微量元素与自由基清除剂有什么关系?

参考文献

1付瑞燕等。氧自由基清除剂得应用。生物学杂志, 2002,19(4):52~58

2赵宝路、氧自由基与天然抗氧化剂、北京:科学出版社,1999

3郑建仙。功能性食品.北京:中国轻工出版社,1995

4迟乃玉等. SOD得化学特性及其应用、沈阳农业大学学报,1999, 30(2): 171~175

5周嘉伟、衰老得自由基学说与抗衰老中药得研究。天津药学.1997,9(2): 47~49

6万素英等、天然食品抗氧化剂与人得营养与健康、河北农业大学学报,1998,21(1):110~114

7汪秋安.天然抗氧化剂得开发利用。广西轻工业,1999,2:22~23

8钱玉春等. 丹贝异黄酮得抗氧化作用、南京农业大学学报,1998, 21(2):104~108

9夏维木等. 几种黄酮类化合物清除活性氧得实验研究。第二军医大学学报,1997,18(4): 363~365

10贡长生、茶多酚得提取与应用研究进展.现代化工,1999,19(3):34~36

11张英等、竹叶有效成分与抗活性氧自由基效能得研究、竹子研究汇刊,1996,7, 15(2):154~162

12李春美等。儿茶素氧化聚合产物药理作用研究概况。茶叶Journal of Tea, 2001,27(l):28~34

13王玉萍等。富硒香菇食用凝胶对小鼠血清总氧自由基清除能力得影响、食品科学,1998,8:9~10

14郑玉芝,曹立成、银杏叶提取物及其在保健食品中得应用、食品工业科技,1996,(2):47~48

15杨海龙,林燕文、平菇多糖得分离纯化及其对超氧自由基得效应、食品科学,1999,10:16~18

16杨黎明等。维生素E与硒对糖尿病肾病及高血压肾损害时丙二醛及超氧化歧化酶得作用观察、上海医学,2002,25(11):22~26

17陈听映等.茶多酚—优良得抗氧化自由基清除剂。茶叶,Journal of Tea ,1998,24(4):217~218

18陈留记等. 茶儿茶素代谢动力学研究进展。茶叶科学,2001,21(1):11 ~16

19张德权等.生物类黄酮得研究及应用概况[J]。食品与发酵工业,1999,25(6):52~57

20王海宽等。甘草有效成分分离及其对自由基得清除能力、食品与机械,2000,4:45~47

21韦安阳等、微量元素硒在防护自由基损伤中得作用. 广东微量元素科学,2001, 8(5):25~29

22李亚洁等. 微量元素锌在防护自由基损伤中得作用。广东微量元素科学,2001,8(7):47~48

23欧仕益等、麦麸膳食纤维抗氧化与·OH自由基清除活性得研究、食品工业科技,1997,5:23~27

24许申鸿等、葡萄籽化学成分分析及抗氧化性质得研究.食品工业科技,2000,21(2):18~20

25李雪华等。三类根茎类食物抗氧自由基得比较研究.食品科学,1998,19(2):12~14

26郭长江等。坚果类食物清除ROO·得作用.食品科学,2000,21(1):42~43

27杨成峰,陈学敏。锗-132对氧自由基清除作用得研究。现代预防医学,1997,24(1):28~30

28FLOYDRA,SOONG L M, STUART M A, et al. Spin trappingof free radicals produced from nitrosoamine carcinogens。Photochem photobiol, 1978, 28:857~863

29HEINLEH, KLING D, etal. Oxygen free radicaland scavengersin the natural sciences. Budapest: Akade miaiKiado(PublishingHouseoftheHungarianAcademyof Sciences), 1993。

159~165

30TOTH E, NGUYEN ThiHa, et al。Oxygenfreeradical and scavengers inthenatural sciences. Budapest:Akade miai Kiado(Publishing Houseof the Hungarian Academyof Sciences)、1993。155~158

31TOLLE A, KOLLECK I, et al. Vitamin E metabolism of the lung、FettLipid, 1996,98:328~331

32MutohH,Hiraishi H, OTA S, et al。Relationshipsbetween metalsionsand oxygen free radicalsinethanolinduced damagetocultured ratgastric mucosal cells. Digestive Diseases and Sciences、1995, 40: 2704~2711

33TING H H,TI MI MI F K,BOLES K S, et al。Vitamin C improvesendothelium dependentvasodil ationin patientswithnon—insulin-dependentdiabetesmellitus. Journalof ClinicalIn vestigation, 1996, 97: 22~28

34NATVING DO、Human copper zinc superoxide dismutasecomplements superoxide dismutase deficient E。coli [J]。J Biol Chem, 1986, 261: 9361~9370

35DEVECI M, DIBIRDIKI, et al. Alpha–tocopherol and GinKgobiloba treatment protectslipi dper-oxidation duringischemic period in ratgroin island skinflaps。EuropeanJournalofPlastic Surgery, 1997, 20: 141~144

36NIAZ M A, SINGH RB, etal。Effect ofantioxidant rich foods onplasma ascorbic acid, cardiac enzyme, and lipid peroxide levels in patients hospitalized with acutemyocardialinfarction.Journal of the American DieteticAssociation, 1995, 95: 775~780

37BIACS P A,DAOOD HG, etal。Oxygen freeradicalsand scavengersin the natural sciences。Budapest:Akade miai Kiado(Publishing House ofthe Hungarian AcademyofSciences)、1993、307~314

38ATTELLAMJ, HOFFMAN SW, STASIOMJ,etal、GinKgo biloba extractfacilitates rec overy from penetrating brain injury adult male rats. Exp Neurol,1989, 105: 62~71

39NI Y C,ZHAO B L, HOU J W,et al。Protection of cerebellar neuron by GinKgobiloba extract against apoptosisindured byhydroxyl radicals、Neuron ScienceLetter, 1996, 214: 115~118

40SZELEKOVSZKY S,SIRO B, SZA TMARIE, etal. Local treatment of chronic inflammatorycon ditions withpropolis enrichedwith antiphlogistic trace metal ions、Radicals ions and tissue damage、Budapest:Akademiai Kia does Nyomda Vallalat.1990.257~269

41HUANGKehe, CHEN Wan—feng, HUANG K H,etal、Effect of selenium on the resistance of chickens to Marek’sdisease and its mode ofaction、Acta Veterinarian et—Zoo technica Sinica,

1996, 7: 448~455

超氧自由基清除能力测定法-操作图解

超氧自由基(·O2-)的清除能力测定法(连苯三酚自氧 化法) (适用于:SOD及各种抗氧化剂) 操作图解 具体方法 1 溶液配制 1.1 Tris溶液(0.1mol/L):1.21 gTris(三羟甲基氨基甲烷,M.W. 121.1)+100 mL蒸馏水。 1.2 HCl溶液(0.1mol/L):取0.1 mL浓盐酸,加蒸馏水稀释到6 mL。 1.3 Tris-HCl缓冲液(0.05mol/L,pH7.4,含1mmol/L Na2EDTA) 40 mL0.1 mol/L Tris溶液+ x mL0.1 mol/L HCl溶液+15.2 mg Na2EDTA,混合,稀释到80 mL。用pH 计测量,pH应为7.4。用棕色瓶保存在冰箱内(最多保存三天) 。(以上为一个样品的用量)用前稍热至室温,再测pH值,符合要求即可。 1.4 60 mmol/L连苯三酚溶液(溶于1 mmol/L盐酸中) 取0.1mol/L HCl溶液(见1.2项)20μL,用蒸馏水稀释到2 mL,得1 mmol/L盐酸溶液(用pH计测量,pH=2.5-3.0)。再往里加连苯三酚14.6 mg (M。W.126.1 ),即得。(当天有效,以上为1个样品的用量)。 2 测试液 2.1连苯三酚溶液:取2950μL Tris-HCl缓冲液加入到石英比色皿中,再加约50μL连苯三酚溶液,迅速混合(颠覆式),开始计时,每隔30秒读数一次A值(325nm),至300秒(5min)时为止。(空白参比:Tris-HCl 缓冲液) ΔA=A325nm,300s - A325nm,30s。由于ΔA值反映了生成·O2的初始浓度,所以,对于同一批实验而言,此时的ΔA值必须相等。此时的ΔA为ΔA0。 3.2 样品溶液:取xμL样品溶液加入到大石英比色皿中,再加(2950-x)μL Tris-HCl缓冲液,再加50μL 连苯三酚溶液,迅速混合(颠覆式),开始计时,每隔30秒读数一次(A值,325nm),至300秒时为止。(空白参比:Tris-HCl缓冲液) ΔA=A325nm,300s - A325nm,30s。此时的ΔA为ΔA样。 3 计算公式

超氧阴离子产生速率测定

超氧阴离子产生速率测定 羟氨氧化法 (王爱国,罗广华.植物的超氧物自由基与羟胺的反应[J].植物生理学通讯,1990,(6):55-57) 一、原理 植物组织器官的衰老总是伴着细胞内膜结构的破坏,表现为细胞内的电解质大量渗漏出来。很多研究结果表明,细胞衰老过程中膜的破坏是由细胞中(特别是线粒体和叶绿体)产生的自由基(如O2·ˉ、OH·、O2等)使膜脂中的不饱和脂肪酸发生过氧化作用而造成的。膜脂过氧化作用中产生的自由基,它不仅能连续诱发膜脂过氧化作用,而且还可以使蛋白质脱H+而产生蛋白质自由基,使蛋白质分子发生链式聚合,从而使细胞膜变性,最终导致细胞损伤、衰老和死亡。 二、材料、仪器设备与试剂 (一)材料 植物叶片、花瓣等器官 (二)仪器设备 低温高速离心机、微量加样器(1mL、20uL)、精密电子天平、分光光度计、试管、 研钵、剪刀、镊子、烧杯、试管架 (三)试剂 (1)0.05 mol·L-1磷酸缓冲液PH=7.8(0.66304g的NaH2PO4.2H2O和16.3849g的 Na2HPO4.12H2O定溶1000mL,校正PH) (2)10m mol·L-1盐酸羟胺(NH2OH·HCl,69.49,溶于水)0.3475g定溶到500mL,(冷) (3)17m mol·L-1对氨基苯磺酸(C6H7NO3S 173.19 1.4721g) 或者(C6H7NO3S·H2O 191.21 1.6253g)定溶到500mL,(冷,磁) (4)7m mol·L-1α-萘胺,0.5012g定溶到500mL,(乙醇溶解,定溶,溶解完全) 三、试验步骤 (1)制做亚硝酸根标准曲线 2mL系列浓度的NaNO2(5,4,3,2,1,0.5μg/L)加入4mL对氨基苯磺酸和4mLa-萘胺于25℃保温20min,然后测定OD530以[NO2-]和测得的OD530值互为函数作图,制的亚硝酸根标准曲线 (2)取0.2g植物材料,加入1.0mL 0.05 mol·L-1磷酸缓冲液(PH7.8)于冰浴研磨

自由基总结

f 也称氧化压力。化学上也称为“游离基”,是含有一个不成对电子的原子团。由于原子形成分子时,化学键中电子必须成对出现,因此自由基就到处夺取其他物质的一个电子,使自己形成稳定的物质。在化学中,这种现象称为“氧化”。我们生物体系主要遇到的是氧自由基,例如超氧阴离子自由基、羟自由基、脂氧自由基、二氧化氮和一氧化氮自由基。加上过氧化氢、单线态氧和臭氧,通称活性氧。体内活性氧自由基具有一定的功能,如免疫和信号传导过程。但过多的活性氧自由基就会有破坏行为,导致人体正常细胞和组织的损坏,从而引起多种疾病。如心脏病、老年痴呆症、帕金森病和肿瘤等等疑难杂症。此外,外界环境中的阳光辐射、空气污染、吸烟、农药等都会使人体产生更多活性氧自由基,使核酸突变,这是人类衰老和患病的根源。 氧自由基:我们生活在富含氧气的空气中,离开氧气我们的生命就不能存在,但是氧气也有对人体有害的一面,有时候它能杀死健康细胞甚至致人于死地。当然,直接杀死细胞的并不是氧气本身,而是由它产生的一种叫氧自由基的有害物质,它是人体的代谢产物,可以造成生物膜系统损伤以及细胞内氧化磷酸化障碍,是人体疾病、衰老和死亡的直接参与者,对人体的健康和长寿危害非常之大。

正常情况下,参与代谢的氧大多数与氢结合生成水,然而有4-5%的氧将被酶所催化形成超氧阴离子,后者又可形成过氧化氢,它们都属于自由基。自由基有多种,如氧自由基和羟自由基 ,是指那些最外层电子轨道上含有不配对电子的原子、离子或分子。自由基具有高度的氧化活性,它们极不稳定,活性极高,它们攻击细胞膜、线粒体膜,与膜中的不饱和脂肪酸反应,造成脂质过氧化增强。脂质过氧化产物(mda等)又可分解为更多的自由基,引起自由基的连锁反应。这样,膜结构的完整性受到破坏,引起肌肉、肝细胞、线粒体、DNA、RNA 等广泛损伤从而引起各种疾病,诸如炎症、癌症、扩张性心肌病、老年性白内障、哮喘等疾患,故自由基是人体疾病、衰老和死亡的直接参与和制造者。 氧自由基的克星------抗氧化剂,(也就是氧自由清除剂或者抑制剂)它对人体的健康可是有着密切的关系。根据医学上的研究,维他命、矿物质及酵素中具保护身体、防止自由基(free radicals)形成功能者,就称作抗氧化剂。 而我们的身体,当然也会有自然产生的自由基清除者来抑制自由基形成,此外,身体自然制造的酵素,也可中和自由基。除了这些酵素,我们还可由饮食中摄取天然的抗氧化剂,例如:维他命A、C、E及硒,以协助体内清除自由基。如果人体系统在自由基的充斥下,而自然产生的自由基清除者无法“应付”时,健康就会亮起红灯。因此,人们在平时就应通过饮食,摄取天然的抗氧化剂,或服用一些补充品,来协助身体破坏自由基。号称第六生命元素的壳寡糖,可完全净化自由基,使自由基失去活性,达到抵御疾病和延缓衰老的作用。在1991年的国际学术会议上,美欧等许多国家的科学家一致把壳寡糖与蛋白质、脂肪、糖类、维生素、矿物质并列誉为人体第六生命要素。壳寡糖能降血脂、降血压、能抗癌,对现代文明病有惊人的防治作用。壳寡糖是机体“清道夫”,能排除体内自由基,提高机体免疫力,减肥美肤,延缓衰老。 我们知道,细胞经呼吸获取氧,其中98%与细胞器内的葡萄糖和脂肪相结合,转化为能量,满足细胞活动的需要,另外2%的氧则转化成氧自由基。由于这种物质非常活跃,几乎可以与各种物质发生作用,引起一系列对细胞具有破坏性的连锁反应。 在一般情况下,细胞不会遭到这种分子杀手的杀害,这是因为我们人体细胞存在着大量氧自由基的克星——抗氧化剂,比如,脂溶性的维生素E、水溶性的维生素C及一些酶类等等,这些天然的抗氧化剂能够与氧自由基发生氧化还原反应,使氧自由基被彻底清除,而只有在某些情况下,氧自由基才会致细胞甚至肌体于死地。 自由基清除剂:至于对付氧自由基的办法,目前已经发现了许多氧自由基的克星,也就是氧自由清除剂或者抑制剂,其作用机理有

超氧阴离子清除实验

·O2ˉ自由基清除实验 (1) 实验原理 黄嘌呤氧化酶 黄嘌呤+H2O+O2尿酸+H2O2+·O2ˉ 即黄嘌呤氧化酶在有氧条件下催化黄嘌呤转化为尿酸,同时产生超氧阴离子自由基(·O2ˉ)。·O2ˉ与NBT结合后呈蓝色,样品清除能力越大,与NBT结合的·O2ˉ越少,溶液的颜色越浅。 (2)试剂 Xanthine(黄嘌呤): (C5H4N4O2 ), MW=152.1, 6.084mg/100mL(0.4mmol/l) 实际配制:1.216mg/10mL,与NBT等体积混合使用 Xanthine oxidase(黄嘌呤氧化酶)贮液: 1 unit/mL , (溶解酶的溶液要高压灭菌!防止蛋白酶对酶的降解!) 0.05 unit/mL,每次取200uL稀释到4mL(PBS溶解) NBT: (Nitro blue tetrazolium chloride氯化硝基四氮唑蓝), MW=817.65, 黄色19.6236mg/100mL(0.24mmol/l) 实际配制3.925mg/10mL,与Xanthine等体积混合使用 PBS(0.01mol/L,pH=8.0): NaCl 8g, KCl 0.2g, Na2HPO4(无水) 1.44g, KH2PO4 0.24g, 800mL水,用NaOH(1M)调pH到8.0,定容到1000mL。 实际配制500mL。高压灭菌,室温保存。 PBS(0.01mol/L,pH=7.4): 配制同上 Ascorbic acid: MW=176.12 母液为1mg/mL 先两倍逐级稀释5个浓度 实际配制见记录本! HCl(1M): MW=36.5 310ul/10ml.(36% HCl密度1.18g/ml) 实际配制:800uL浓盐酸+9mL水,于塑料管中4℃保存。 NaOH(1M): MW=40 0.4g/10mL, 存于冰箱 (3) 测定方法 超氧阴离子自由基清除能力的测定参照Bae等人的方法略加改进。样品溶液1-5mg/ml 起始浓度,用于水或50%乙醇溶液。 Bae, S.W., Suh, H.J., 2007. Antioxidant activities of ve different mulberry cultivars in Korea.

超氧阴离子自由基检测试剂盒(磺胺比色法)

超氧阴离子自由基检测试剂盒(磺胺比色法) 简介: 超氧阴离子自由基作为生物体代谢过程中产生的一种自由基,可攻击生物大分子,如脂质、蛋白质、核酸和聚不饱和脂肪酸等,使其交链或者断裂,引起细胞结构和功能的破坏,与机体衰老和病变有很密切的关系,清除超氧阴离子自由基的研究已经得到了广泛的关注。 Leagene 超氧阴离子自由基检测试剂盒(磺胺比色法)又称超氧阴离子清除能力检测试剂盒,其检测原理是利用羟胺氧化的方法可以检测生物体系中超氧阴离子自由基(O 2-),即超氧阴离子自由基(O 2-)与羟胺反应生成NO 2-,在一定范围内颜色深浅与超氧阴离子自由基(O 2-)成正比,根据NO 2-反应的标准曲线将A 530换算成NO 2-浓度,再依据上述关系式即可计算出O 2-浓度。该试剂盒主要用于测定植物组织中的超氧阴离子自由基含量或超氧阴离子清除能力。该试剂盒仅用于科研领域,不宜用于临床诊断或其他用途。 组成: 自备材料: 1、 蒸馏水 2、 实验材料:植物组织(大豆、绿豆、玉米等叶片)、血液、组织样本等 3、 研钵或匀浆器 4、 离心管或试管 5、 低温离心机 6、 恒温箱或水浴锅 7、 比色杯 8、 分光光度计 操作步骤(仅供参考): 编号 名称 TO1123 50T Storage 试剂(A): NO 2-标准(1mM) 1ml RT 试剂(B): O 2- Lysis buffer 125ml RT 试剂(C): 羟胺溶液 30ml RT 试剂(D): 氨基苯磺酸显色液 30ml 4℃ 避光 试剂(E): 萘胺显色液 30ml 4℃ 避光 使用说明书 1份

1、准备样品: ①植物样品:取正常或逆境下的新鲜植物组织,清洗干净,擦干,切碎,迅速称取预冷的O2-Lysis buffer后冰浴条件下匀浆或研磨,4℃离心,上清液即为超氧阴离子自由基提取液,4℃保存备用。 ②血浆、血清和尿液样品:血浆、血清按照常规方法制备后可以直接用于本试剂盒的测定,4℃保存,用于超氧阴离子自由基的检测。 ③高活性样品:如果样品中含有较高浓度的超氧阴离子自由基,可以使用O2- Lysis buffer 进行恰当的稀释。 2、配制系列NO2-标准溶液:取出NO2-标准(1mM)恢复至室温后,以NO2-标准(1mM) 按下表继续稀释: 加入物(ml) 1 2 3 4 5 6 NO2-标准(1mM)0.01 0.02 0.03 0.04 0.05 0.06 蒸馏水0.99 0.98 0.97 0.96 0.95 0.94 NO2-含量(μM) 10 20 30 40 50 60 3、O2-加样:按照下表设置空白管、标准管、测定管,溶液应按照顺序依次加入,并注意 避免产生气泡。如果样品中的超氧阴离子自由基浓度过高,可以减少样品用量或适当稀释后再进行测定,样品的检测最好能设置平行管。 加入物(ml) 空白管标准管测定管 蒸馏水1—— 系列NO2-标准(1-6号管) — 1 — 待测样品——0.25 O2- Lysis buffer ——0.25 羟胺溶液——0.5 混匀,25℃水浴孵育。 氨基苯磺酸显色液0.5 0.5 0.5 萘胺显色液0.5 0.5 0.5 混匀,30℃水浴孵育。 4、O2-测定:以空白调零,分光光度计(1cm光径比色杯)检测标准管、测定管530nm处吸光度(A标准、A测定)。 计算: 以系列NO2-标准(1-6号管)含量(μM)为横坐标,以对应的吸光度为纵坐标,制作标准曲线,根据测定管的吸光度进而计算NO2-含量。根据如下公式计算具体样品中超氧阴离子

植物生理学实验

口试部分 实验一多酚氧化酶(PPO)活性的测定 实验原理:多酚氧化酶是植物体内普遍存在的一种非线粒体内的末端氧化酶。他可以把酚类物质如单酚、邻苯二酚、邻苯三酚、对苯二酚等氧化为氧化为相应的醌类物质。醌类物质对病原微生物起抑制作用或杀伤作用,具有一定的抗病能力。因此,在感病的植物体中,PPO 活性都具有不同程度的提高,以抵抗病原体进一步侵染健康的植物组织。此外,PPO对食品和饮料生产也会产生重大影响,它影响其品质,特别是在制作绿茶、红茶、烤烟和水果类饮料的过程中更为突出。所以,准确测定PPO活性,具有重要的生理和现实意义。多酚氧化酶是一种含铜的氧化酶,在有氧的条件下,能使酚氧化产生醌,PPO反应在3分钟内呈直线上升,其后反应速度变慢,因而在研究时,用分光光度在3分钟内于410纳米波长下测其吸光度,即可计算出PPO的活力和比活力。 思考题:1、粗酶液提取中丙酮和磷酸缓冲液的作用,提取液为什么要预冷:丙酮是有机溶剂,能提取PPO,磷酸缓冲液为了保持酶活性,预冷降低酶活。 2、为什么要先在37度下恒温,再加酶液:使酶和底物处于最适状态。 实验二硝酸还原酶(NR)活性的测定 实验原理:硝酸还原酶是植物氮代谢中的关键酶,植物吸收的硝酸根,首先通过硝酸还原酶的催化,还原成亚硝酸根(NADPH+NO3-NR-NO2+NAD+H2O)。亚硝酸根可用磺胺显色法测定,即在酸性条件下,亚硝酸根与对氨基苯磺酸发生重氮反应,生成的重氮化合物又与盐酸萘乙胺生成红色偶氮化合物,可在520纳米下比色测定。 思考题1、为什么标准液与样品液的测定要在同一条件下:亚硝酸的磺胺比色法显色速度受温度和酸度等因素影响。 2、NR活性测定时取材为什么要进行一段时间的光和作用:进行光合作用积累一定糖类,否则酶活偏低。 3、测量酶活是为什么要在暗处:光下光反应会将形成的亚硝酸根转变成铵根,影响结果。 4、如果实验材料酶活过低怎么办:可在取样的前几天,用50mmol/l硝酸钾加在培养液中,以诱导硝酸还原酶的生成。 5、为什么要严格控制时间:本实验要是酶在最适条件下测酶活,要严格控制时间。 磺胺、盐酸萘乙二胺和硝酸钾的作用:在酸性条件下,亚硝酸根与对氨基苯磺酸发生重氮反应,生成的重氮化合物又与盐酸萘乙胺生成红色偶氮化合物,硝酸钾作为酶促反应的底物,亚硝酸钠用于制作标准曲线的梯度亚硝酸浓度。 6、粗酶液提取中丙酮和磷酸缓冲液的作用:磷酸缓冲液为了保持酶活性。 实验三电导法测定植物细胞膜透性 实验原理:植物组织在受到各种不利环境条件危害时,细胞膜的结构和功能首先受到伤害,细胞膜透性增加,其外渗液中的电解质的含量比正常组织的外渗液含量增加,组织受伤害越严重,电解质的含量增加的越多。用电导仪测定外渗液电导值的变化,可反映出质膜受伤害的程度,也可反映植物的抗逆程度。 思考题:1、在处理材料时,为什么要用真空泵抽气:以抽出细胞间隙空气,缓慢放入空气中,水即渗入细胞间隙。 2、为什么要清洗电导电极和温度传感器以及其他玻璃器皿:由于电导值变化非常灵敏,稍有杂质就会产生很大误差,因此所用的玻璃器皿均需多次冲洗干净。 3、抗逆性强的植物材料外渗液中的电导率高还是低,为什么?电导值与抗性成反比。 实验四植物光合与呼吸速率的测定 实验原理:由异原子组成的偶极距的气体分子,如CO2、CO、H2O、SO2、NO、NH3和CH4等,都有红外吸收带,其中CO2、H2O的吸收率最大,可用红外线分析法测定。CO2的吸收峰分别在2.69、2.77、4.26、14.09um,其中只有4.26um的吸收带不与水的吸收带重

如何清除体内自由基

如何清除体内自由基 消除体内自由基,应该要了解自由基的来源,从外界到身体内部的代谢一起中和性的描叙不要单方面的讲叙体内各种酶与自由基之间的关系 人体内的自由基有两个来源:其一是来自环境,如环境污染、食品污染、过度的紫外线照射和各种辐射、杀虫剂、室内外废气、吸烟、二手烟、酗酒、工作压力、生活不规律等等,都会直接导致人体内产生过多的自由基(活性氧);食品添加剂、食用脂肪和熏炸烤肉、某些抗癌药物、安眠药、抗生素、有机物腐烂物、塑料用品制造过程、油漆干燥挥发、石棉粉尘、空气污染、化学致癌物、大气中的臭氧等也都能诱发人体内产生自由基。 其二是来自体内,人体内组织细胞的新陈代谢也会产生自由基,这是人体代谢过程的正常产物,十分活跃又极不稳定,它们会附着于健康细胞之上,再慢慢瓦解健康细胞,而被破坏的细胞则又再转而侵害更多健康的细胞,如此恶性循环从而导致人体的衰老和疾病的发生。另外,组织器官损伤后的缺血一段时间后又突然恢复供血(即重灌流),如心肌梗塞、脑血栓、外伤、外科手术后,自由基会大量生成。正常人体有一套清除自由基的系统,但这个系统的力量会因人的年龄增长及体质改变而减弱,致使自由基的负面效应大大增强,引起多种疾病发病率的提高。活性氧自由基对人体的损害实际上是一种氧化过程。因此,要降低自由基的损害,就要从抗氧化做起。 听说过抗氧化剂吗?它对人体的健康可是有着密切的关系。既然自由基不仅存在于人体内,也来自于人体外,那么,降低自由基危害的途径也有两条:一是,利用内源性自由基清除系统清除体内多余自由基;二是发掘外源性抗氧化剂——自由基清除剂,阻断自由基对人体的入侵。 大量研究已经证实,人体内本身就具有清除多余自由基的能力,这主要是靠内源性自由基清除系统,它包括超氧化物歧化酶(SOD)、过氧化氢酶、谷胱甘肽过氧化物酶等一些酶和维生素C、维生素E、还原型谷胱甘肽、β-胡萝卜素和硒等一些抗氧化剂。酶类物质可以使体内的活性氧自由基变为活性较低的物质,从而削弱它们对肌体的攻击力。酶的防御作用仅限于细胞内,而抗氧化剂有些作用于细胞膜,有些则是在细胞外就可起到防御作用。这些物质就深藏于我们体内,只要保持它们的量和活力它们就会发挥清除多余自由基的能力,使我们体内的自由基保持平衡。 要降低自由基对人体的危害,除了依靠体内自由基清除系统外,还要寻找和发掘外源性自由基清除剂,利用这些物质作为替身,让它们在自由基进入人体之前就先与自由基结合,以阻断外界是自由基的攻击,使人体免受伤害。在自然界中,可以作用于自由基的抗氧化剂范围很广,种类极多。目前,国内外已陆续发现许多有价值的天然抗氧化剂。如β-胡萝卜素(维生素A)、维生素C、维生素E、番茄红素、辅酶q10、等等。此外,我国很多中草药植物中的有效成分都是天然抗氧化剂,例如,银杏黄酮、甘草黄酮等,另外还有巴西菇、灰树花、茯苓、黄芪、丹参、银杏、枸杞、灵芝、人参......。 吃什么可以减少体内自由基 在正常的生命过程中,自由基为维持生命所必需。体内自由基不断产生,也不断地被清除,两者 处于动态平衡之中,使之维持在一个正常的生理水平上。自由基在生物体内具有参与吞噬病原体,参 与前列腺素和凝血酶原的合成、解毒,参与体内部分生化反应和胶原蛋白的合成,调节细胞增殖与分化,参与机体免疫和环核苷酸的生物合成,以及生殖和胚胎发育等重要的生理功能。但是当自由基过 量时,自由基在机体内损伤蛋白质、核酸和生物膜,导致细胞凋亡,并参与许多疾病的发病过程。 由基清除剂即抗氧化剂清除机体自由基,保护机体免受氧化损害中起重要作用。因此,近年来对 自由基清除剂的研究备受关注。多吃点抗氧化剂食物有利于减少体内多余自由基。 方法/步骤 1.全面复方自由基清除剂:葡茶多酚胶囊。适当吃葡茶多酚可以全面清除体内多余自由

胞内羟基自由基和超氧阴离子自由基测定

活性氧(ROS)在许多致病过程中起关键作用,包括致癌作用、炎症、缺血再灌注损伤和信号转导。目前开发的几种方法包括电子自旋共振法和化学荧光法。其中,荧光检测在高灵敏度和实验方便性方面是优越的。细胞溶质Ca2+的荧光指示剂,极大地促进了细胞中Ca2+依赖性信号转导的实验研究。然而,几种用于检测ROS的荧光探针(包括2,7-二氢二氢荧光素(DCFH))可与各种ROS(超氧化物,过氧化氢等等)发生反应。此外,DCFH易于自氧化,导致暴露在光下时荧光自发增加。因此,将这些探针视为检测细胞中特定的氧化物质(例如过氧化氢)是不合适的。 胞内羟基自由基测定机理: 2-[6-(4-羟基)苯氧基-3H-黄嘌呤-3-酮基-9-基]苯甲酸(HPF)被设计并合成为新型荧光探针,用于检测选择性高活性氧(hROS),即羟基。这种新开发的ROS指示剂HPF比二氯二氢荧光素二乙酸酯(H2DCFDA)具有更高的特异性和稳定性,因此被广泛用于更精确的胞内ROS 定性测量。 尽管HPF本身几乎不发荧光,但HPF选择性地和剂量依赖性地在与hROS反应时产生强荧光化合物,但不与其他活性氧物质(ROS)反应。因此,通过单独使用HPF,可以将hROS 与过氧化氢,一氧化氮和超氧化物区分开来。此外,HPF对光诱导的自动氧化具有抗性。 胞内羟基自由基测定方法: 在本研究中,用PBS洗涤500 μL藻类培养物,并在黑暗条件和室温下于10 μM HPF (Invitrogen,美国)的终浓度下温育40 min。用PBS洗涤一次后,通过FL1通道检测胞内羟基自由基水平。 胞内超氧阴离子自由基测定机理: 一种名为二氢乙锭(DHE)的荧光素被广泛用于测量细胞内超氧阴离子自由基。DHE可自由透过活细胞膜进入细胞内,并被细胞内的ROS氧化,形成氧化乙啶,氧化乙啶可掺入染色体DNA中,产生红色荧光。根据活细胞中红色荧光的产生,可以判断细胞ROS含量的多少和变化,二氢乙啶在细胞内主要被超氧阴离子型ROS氧化,用流式细胞仪可直接观察。 胞内超氧阴离子自由基测定方法: 在本研究中,用PBS洗涤1 mL藻类培养物,并在黑暗条件和室温下于20 μM DHE(Invitrogen,美国)的终浓度下温育30 min。用PBS洗涤一次后,通过FL2通道检测胞内超氧阴离子自由基水平。

自由基及检测方法

ESR 电子顺磁共振(EPR)或称电子自旋共振(ESR)现象最早发现于1944年。它利用具有未成对电子的物质在磁场作用下吸收电磁波的能量使电子发生能级间的跃迁的特征,对顺磁性物质进行检测与分析。 自旋捕集方法是将不饱和的抗磁性化合物(自旋捕集剂)加入反应体系,与反应体系中产生的各种活性高、寿命短的自由基结合形成相对稳定的自旋加合物,以适于ESR检测其原理是利用适当的自旋捕捉剂与活泼的短寿命自由基结合,生成相对稳定的自旋加合物,可以用电子自旋共振波谱法检测自旋加合物的数量,利用自旋加合物的数量来计算原来自由基的多少。 H: V: ESR测自由基是怎么被检测的(细胞,组织,溶液?体内,体外?) (MGD)2 - Fe2 +,是含有10mmol·L- 1MGD 和2mmol·L- 1FeSO4的溶液。 体外捕集:处死后取组织(血液、细胞),加入捕集剂,ESR测定 体内捕集:腹腔注射捕集剂,处死取组织(血液、细胞),ESR测定 腹腔注射几乎没有检测到自由基信号,或者信号很弱,而处死后样品加捕获剂则可以检测到自由基信号。 通用捕获剂 典型的自旋捕捉剂是亚硝基化合物或氮氧化合物,把足够量的自旋捕捉剂加入到产生自由基的体系中,自旋捕获剂就会快速地和任何出现的自由基反应,最后给出稳定的可检测的氮样氧自由基加合物。所形成的自由基加合物的ESR 谱上有被捕自由基基因给出的超精细分裂,可鉴别被捕自由基通用自旋捕获剂所形成的自由基加合物对自由基结构变化相当敏感, ESR 技术检测O-2 O-2可以与1,2-二羟基苯-3,5-二磺酸钠(Tiron)(钛铁试剂)快速反应生成一种称之为“Tiron 半醌自由基”的自旋加合物,比较稳定,可在室温下应用电子顺磁共振波谱仪(EPR)进行检测,从而解决了生理条件下水溶液中寿命极其短暂的O-2·的定性和定量问题 ESR 技术检测·OH DMPO作自由基捕获剂对自由基结构变化相当敏感,可以提供自由基结构的详细信息。它与·OH产生的自旋加合物的ESR谱表现出特别容易识别的特征谱线。在溶液中容易形成的自我捕集产物二聚体自由基不会干扰实验结果。 ESR 技术检测血红蛋白结合的一氧化氮 在组织或血液中,一氧化氮大多与氧或过渡金属反应生成了硝酸盐或亚硝酸盐以及一氧化氮与金属的配合物。一氧化氮与血红蛋白的结合速率常数非常高,而且能够得到有特征的ESR 波谱。利用这一性质,我们可以用血红蛋白作为一氧化氮的捕集剂检测一氧化氮自由基。但是,HbNO 极易氧化,这就限制了这种方法在富氧条件下的应用。 ESR 技术检测生物体系产生的一氧化氮 一氧化氮与含金属蛋白反应产生的亚硝酰的金属配合物,往往会抑制细胞中许多重要的酶,对细胞产生毒害作用。目前应用较多的捕集剂的有Fe2+- (DETC)2,它可与一氧化氮形成稳定的单亚硝酰-铁配合物MNIC,给出特征的ESR 波谱。但由于Fe2+-( DETC)2不溶

超氧阴离子自由基荧光探针法检测及其应用研究

网络出版时间:2012-12-19 08:52 网络出版地址:https://www.360docs.net/doc/eb16675418.html,/kcms/detail/11.2206.TS.20121219.0852.010.html 2012-11-20 超氧阴离子自由基荧光探针法检测及其 应用研究 赵永强1,2,林洪1,李来好2,*,杨贤庆2,郝淑贤2,张牧天3 (1.中国海洋大学食品科学与工程学院,山东青岛 266003; 2.中国水产科学研究院南海水产研究所,农业部水产品加工重点实验室,国家水产品加工技术研发中心,广 东广州 510300; 3. 北京师范大学-香港浸会大学联合国际学院,广东珠海 519085) 摘要:该研究以2-氨基吡啶与吡啶-2-甲醛为原料,经亲核取代反应合成了一种新型荧光探针:2-(2’-吡啶 亚胺甲基)吡啶(2-APC),所得目标产物经熔点测定、元素分析、红外光谱与核磁共振波谱等方法表征确认。 利用2-APC与超氧阴离子自由基(O2·-)发生荧光淬灭反应的原理,建立了一种测定邻苯三酚自氧化体系 产生O2·-的方法,该方法反应体系最佳条件为:反应pH=8.2;反应温度T=40℃;反应时间t=40 min。测 定条件为:λex=295 nm、λem=365nm,狭缝宽度5 nm。邻苯三酚在0.4×10-6~8.0×10-6 mol?L-1浓度范围内 与相对荧光强度呈良好线性关系,线性回归方程为y=37.567x+55.581,R2=0.9834。应用该方法对L-抗坏 血酸清除O2·-能力进行评价,结果表明L-抗坏血酸清除O2·-的IC50值为0.182 mmol?L-1。 关键词:超氧阴离子自由基;荧光探针;合成;应用 Fluorescence Probe Method for Superoxide Anion Radical Detection and its Application Study ZHAO Yong-qiang 1,2,LIN Hong1,LI Lai-hao2,*,YANG Xian-qing2,HAO Shu-xian2,ZHANG Mu-tian (1. College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P.R.China; 2.Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, P.R.China; Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519085, P.R.China) Abstract:A novel fluorescence probe 2-APC was synthesized by 2-aminopyridine and 2-pyridinecarbaldehyde based on nucleophilic substitution reaction in this study. The reaction product was characterization by melting test, elemental analysis, infrared spectrum and 1HNMR. A fluorescence probe method for superoxide anion radical detection was established. The optimum conditions of this reaction system were as follows, pH, temperature and time of reaction system was 8.2,40 oC and 40 min respectively. The conditions of fluorimetric determination were as follows, λex=295 nm, λem=365nm and the slit width was 5 nm. In the range from 0.4×10-6 M to 8.0×10-6 M, relative fluorescence intensity (y) and pyrogallol concentration (x) were shown a good linear relationship, y=37.567x+55.581,R2=0.9834. Superoxide anion radical (O2·-) scavenging activity of L-ascorbic acid was evaluated using the above mentioned method, the results showed that the IC50of L-ascorbic was 0.182×10-3mol?L-1. Key words:superoxide anion radical, fluorescence probe, synthesis, application 中图分类号:O657.34 文献标识码:A 文章编号: 活性氧是需氧生物细胞进行正常代谢的产物,生物体生命代谢过程中通过非酶反应与酶反应不断产生各种活性氧自由基,如超氧阴离子自由基(superoxide anion radical, O2·-)、过氧化氢(hydrogen peroxide, 收稿日期:2012 基金项目:国家科技支撑计划项目(2012BAD28B00);国家现代农业产业技术体系(CARS-49);国家海洋局海 洋公益性行业科研专项(201005020;2013418018);茂名市科技计划项目(2011A01002) 作者简介:赵永强(1985—),男,博士研究生,研究方向为水产品加工及贮藏工程。E-mail:zhaoyq1122@https://www.360docs.net/doc/eb16675418.html, *通信作者:李来好(1963—),男,研究员,博士,研究方向为水产品加工与质量安全。E-mail:laihaoli@https://www.360docs.net/doc/eb16675418.html,

潘铜华 超氧阴离子的组织定位

超氧阴离子的组织定位 园艺学院潘铜华 1 前言 【目的】探索超氧阴离子在植物组织中的分布情况,了解超氧阴离子的对植物的影响,学会超氧阴离子含量测定及超氧阴离子组织定位的方法。【意义】超氧阴离子的组织定位是目前国内外许多科研人员正在探索的新方向,国内此方向的研究成果尚存在空白,了解超氧阴离子的组织定位有利于我们下一步的科研进展。【原理】Met+核黄素→超氧阴离子(光下)超氧阴离子+NBT→NBT(蓝色),超氧阴离子+NBT+E(酶)→NBT(淡蓝色) 2. 材料与方法 2.1 材料 新鲜小白菜(切下叶片) 2.2 实验方法 2.2.1 取一颗新鲜的小白菜,剪下上面4片叶片,洗净后放在桌面上一一拍照,然后一起拍照。 2.2.2 将叶片放入250ml烧杯中,加入反应液(含0.1%的NBT,10mmol/L的Nan3的PBs6.4 50ml)中,抽真空20min.,此过程重复2次。 2.2.3 取出叶子,放入固定液中,暗中放置1小时,将烧杯放入100摄氏度水浴中若干分钟以使叶片褪色为黄色。 2.2.4 加入95%的乙醇固定照相,分别对每片叶片拍照及对总体拍照。 3结果如果如下图所示: 3.1实验前小白菜叶片照片: 3.2实验后相应小白菜叶片照片:

4 讨论: 活性氧自由基如超氧阴离子等是与植物的衰老、胁迫伤害等生理过程密切相关的自由基,而植物体内同时存在清楚活性氧的酶系如SOD、 POD 、CAT等,能清除活性氧对植物生理产生的破坏。正常情况下活性氧与清除酶系处于动态平衡关系。逆境胁迫下活性氧自由基含量增加。活性氧能使NBT变蓝,而植物体内消除活性氧的酶系如SOD等能降低活性氧的浓度而使NBT蓝色变淡。在活性氧一定的情况下,颜色越浓说明超氧阴离子浓度越多,反之越少。由图可知,植物叶片颜色更浓的部分超氧阴离子含量更多。 小白菜的维管束是运输有机物的主要通道之一,超氧阴离子会抑制有机物向库的运输,因而在小白菜的维管束周围活性氧的含量更高。 5 实验注意事项: 5.1实验中的很多药品是致癌性药品,在实验过程中务必使人体的任何部位与药品的直接接触,必要时一定要带上手套、口罩,穿实验服等,以免造成不必要的人身伤害。 5.2实验药品不能浪费,适量最好。试验药品用的越多产生的污染就就严重。同时,浪费试验药品也是不爱护公共财产的表现。 5.3叶片最好使用同一颗小白菜的叶片,这样他们的其他条件更趋一致,实验结果更准确。 5.4 拍照时可选纯黑、大红、白色三种北京,拍出的照片效果更好。 5.5 实验时间务必把握好,及时做好实验记录与结果,查询资料,了解实验的一些研究进展。

超氧阴离子自由基清除

一.实验原理: 该方法利用NADH-PMS-NBT为超氧阴离子(O2·-)生成系统,超氧阴离子清除剂能减少NBT 的蓝色。通过检测560nm处吸光值可判断体系中还原物质的还原能力。 二.实验仪器:分光光度计 三.实验试剂: 一:液体40mL×1瓶; 二:液体1mL一瓶; 三:粉剂一支; 四:粉剂一支; 五:1mg/mL芦丁标准品,1mL 四.溶液配制: 一工作液:用时加双蒸水360mL,也就是10倍稀释,得到400mL试剂一工作液; 二工作液:用赠送的棕色瓶配制。试剂二工作液由试剂二加上100mL试剂一工作液配得,现配现用,注意避光; 三工作液:试剂三工作液由试剂三溶解于100mL试剂一工作液配得,现配现用; 四工作液:粉剂一支。用50mL双蒸水溶解,摇匀后,取10mL,加入90mL试剂一,配成试剂四工作液,现配现用,用赠送的棕色瓶盛装。注意避光,配好的试剂请于2小时内用完。五工作液:阳性对照,按需配制,-20℃保存。 五.实验步骤: 测定吸光值。

六.清除能力计算: 超氧阴离子自由基清除(%)=[空白孔吸光值-(测定孔吸光值-对照孔吸光值)]/空白孔吸光值*100 注: 1 如未做对照孔,可以将其视作为0; 2 阳性对照求值时将其视作测定孔进行计算即可。 七.注意事项: 1. 如样品中色素物质不是分析对象,建议先通过SEP C18柱进行脱色处理,处理后样品可不做对照孔; 2. 如不确定样品的超氧阴离子自由基清除能力,可先做不同浓度的稀释液进行摸索,并选择适宜浓度进行测定,高浓度下,浓度与清除率间并不线性相关。 3. 试剂三建议全程冰上操作。试剂四切记避光保存,特别是配制后,且应尽快用完。建议在做好一切其它准备工作后再配制试剂四应用液。试剂四正常颜色为黄色,强光照射下,5-10分钟内会变为绿色,随后变为蓝色,变色后试剂不可再用! 4. 试剂二、三应用液和样品混匀后再加入试剂四,次序颠倒会导致不显色。 5. 部分物质会导致显色加深,导致求得的抑制率是负值,如遇到此类现象请先确定该物质是否具有超氧阴离子清除能力,再考虑更换方法,如邻苯三酚自氧化法等进行测试。

抗超氧阴离子自由基及生产超氧阴离子自由基测试盒

抗超氧阴离子自由基及生产超氧阴离子自由基测试盒 说明书修订日期:2015.07.13 Cat number:KGT012 Store at4℃for6months For Research Use Only(科研专用) 一、测定原理 模拟机体中黄嘌呤与黄嘌呤氧化酶反应系统,产生超氧阴离子自由基O2—,加入电子传递物质及gress 氏显色剂,使反应体系呈现紫红色,可用分光光度计测其吸光度,当被测样本中含有O2。抑制剂时,则比色时测定管的吸光度低于对照管的吸光度,而如果被测样本中含有产生O2。物质时,则比色时测定管的吸光度高于对照管的吸光度,通过以维生素C做标准,可计算出被检物品对O2。的影响能力。 二、试剂盒组份 组份KGT012 50assays Buffer A 5.0mL Buffer B 5.0mL Buffer C 5.0mL Buffer D350μL Buffer D稀释液 5.0mL 试剂E1支 试剂F1支 Vc标准品4支 注意事项 1.Buffer A室温较低时会有部分结晶析出,溶解后加蒸馏水稀释10倍至1×Buffer A50ml。 2.Buffer D用前用Buffer D稀释液按1︰14稀释至1×Buffer D(不可冷冻,4℃可保存2个月)。 3.试剂E配制:将试剂加入蒸馏水37.5mL中溶解后备用,4℃避光保存。 4.试剂F配制:将试剂加入蒸馏水37.5mL中溶解后备用,4℃避光保存。 5.显色剂配制:试剂E︰试剂F︰冰乙酸=3︰3︰2的体积比配制,4℃避光保存(冰乙酸自备)。 6.Vc标准贮备液配制:将一支Vc标准品加蒸馏水定容至5ml(Vc标准配制后当天内使用)Vc标准品工作液(0.15mg/ml)配制:取1ml贮备液加4ml蒸馏水,5倍稀释现配现用。 Vc标准品配制后见光极易分解,配制的0.15mg/ml Vc标准品工作液需30分钟内检测。

超氧阴离子含量测定

植物体内超氧阴离子自由基含量的测定 一、原理 在生物体中,氧作为电子传递的受体,得到单电子时,生成超氧阴离子自由基(?-2O )。 利用羟胺氧化的方法可以测定生物系统中超氧阴离子含量。超氧阴离子自由基与羟胺反应生成NO 2-, 在对氨基苯磺酸和α-萘胺的作用下,生成对苯磺酸-偶氮-α-萘胺(红色)。该红色产物在530nm 波长处有专一吸收峰。根据NO 2-显色反应的标准曲线将样品测得的A 530换算成定NO 2-的浓度,再根据反应式直接进行超氧阴离子化学计算,得出超氧阴离子浓度。 反应式如下: NH 2OH + 2?-2O + H + → NO 2-+ H 2O 2 + H 2O 三、材料及仪器设备 1. 材料:小白菜。 2. 仪器设备:高速冷冻离心机;分光光度计;研钵;试管;移液管;试管架;移液管架;洗耳球等。 四、实验步骤 1、标准曲线制备 标准液稀释100倍后,按上述表格顺序添加试剂,每一种试剂摇匀。然后至于30℃培养箱中保温30分钟,显色反应后测定A530,以 NO 2-为横坐标,A530为纵坐标,绘制标准曲线。 2、超氧阴离子制备 称取1g 样品放入冰浴的研钵中,加入少量PBS (pH7.8)5ml, 研磨成匀浆,定容10ml ,在8000r/min ,4℃下离心10min ,取上清液备用。 3、超氧阴离子的测定 -

25℃保温20min - 上述反应液(ml) 2.0 对氨基苯磺酸(ml) 2.0 α-萘胺(ml) 2.0 30℃恒温箱中保温30min 4、含量计算 从标准曲线中计算出测定液对应NO2-的浓度,并换算成超氧阴离子的浓度(X),再算出超氧阴离子的含量。 超氧阴离子的含量(μg-1FW)=2X·V t·n/g·FW·V s V t为样品提取液总体积;n为稀释倍数;V s为显色时取样品体积;X为从标准曲线上计算出的浓度。 五、实验结果 5.1 标准曲线 y = 19.025x R2 = 0.97314 5.2 样品测定 样品A530=0.046 NO2-的浓度=0.046/19.025=0.0024ug/ml 超氧阴离子的含量(μg·g-1FW)=2X·V t·n/g·FW·V s=2*0.0024*10*6/(1*2)=0.144 六、注意事项 如果样品中含有大量叶绿素将干扰测定,可在样品液与羟胺温浴后,加入等

清除自由基能力的研究概况

清除自由基能力的研究概况 陶涛 (西南林业大学林学院农学(药用植物)昆明 650224) 摘要:自由基及其诱导的氧化反应是导致生物衰老和某些疾病如癌症、糖尿病、一心血管疾病等的重要因素。乳酸茵作为一种高效、低毒的生物源天然抗氧化荆,正逐步受到食品、制药、化工等领域的广泛关注。就目前国内外常用的乳酸茵抗氧化活性的筛选方法、乳酸茵抗氧化机理的国内外研究进展及未来的发展趋势作一综述。 关键词:自由基;乳酸茵;抗氧化. Study on the scavenging ability of lactic acid bacteria on free radical bstract:Free radical and its inducing oxiditative reaction may CaUSe biological doat and certain diseases such as Cancers,diabetes and the cat- diovascular.The lactic acid baaeria as one ofbiological SOUrCeS oxidation inhibitor is becoming more and more popular in the fields offood.,drug manufacture and chemical industry.This article mainly reviews the screening methods for antioxidative of lactic add bacteria among domestic and foreign countries,the advance of the research progress in lactic add bacteria antioxidative and r∞earch trends in future. 引言 氧化过程可以提供能量.对大多数生物体来说,是维持生命必不可少的一个能量转化过程。但过多的氧化过程会对生物大分子引起损伤.氧化损伤主要是由于自由基和过氧化产物作用于人体而产生的。 自由基(free radicals)27..称游离基.为人体氧化代谢过程中形成含有一个不成对电子的原子或原子团。人体的自由基主要包括超氧阴离子自由基(o2)、

相关文档
最新文档