声纳图像水下管线检测与跟踪技术研究

声纳图像水下管线检测与跟踪技术研究
声纳图像水下管线检测与跟踪技术研究

声纳图像水下管线检测与跟踪技术研究

几十年以来,为更充分的利用海洋资源,人类在海底铺设了大量的能源输送管道和信息通信线缆。海底管线的正常工作,是海上油气与跨国通信的重要保障。

由于海底施工、自然腐蚀和其他种种原因,海底管线易破损甚至断裂,造成经济和环境上的重大损失。因此,需要水下机器人对海底管线进行定期跟踪检查。

利用侧扫声纳采集海底信息,通过图像处理算法检测出管线的位置和走向,并引导水下机器人对管线跟踪是本文的主要研究内容,具体如下:(1)研究侧扫声纳图像管线检测系统与图像预处理。首先,介绍管线检测与跟踪系统结构;其次,分析侧扫声纳成像原理与影响声纳图像质量的因素;然后,介绍水下管线系统模型;最后,研究均值滤波、中值滤波、高斯滤波去除声纳图像噪声的方法。

实验结果表明,高斯滤波对声纳图像滤波的效果最佳。(2)研究二维平均恒虚警率的管线检测方法。

首先,介绍在高斯噪声条件下的二维平均恒虚警率算法,在计算参考单元平均值时,需要反复提取像素灰度值,从而耗费大量的计算时间,本文研究采用积分矩阵加速计算;其次,采取形态学方法平滑管线边缘,并根据二值图连通区域离心率指标去除虚警;最后,通过Hough变换检测管线边缘,拟合得出管线的位置与走向。实验结果表明,该方法能有效检测出声纳图像中的管线目标。

(3)提出矩形和十字形检测结构的二维平均恒虚警率算法。首先,根据管线的形状特征,研究矩形检测结构。

相对于正方形检测结构,矩形检测结构在检测管线目标时具有较低的阈值,从而有效提取图像中的管线。十字形检测结构在矩形检测结构基础上,利用左右方向与上下方向参考单元灰度平均值之比,改善声纳图像野值点造成的管线像素

缺失的问题。

实验结果表明,本文提出的方法能更完整的检测出管线目标。(4)研究类PID 的水下机器人管线跟踪方法。

首先,根据水下机器人与管线的相对位置,制定快速接近管线并慢速跟踪管线的策略;然后,利用卡尔曼滤波确定管线位置。实验结果表明本文方法能有效控制水下机器人跟踪管线。

城镇排水管道声纳检测管理办法

城镇排水管道声纳检测管理办法 5.1 一般规定 5.1.1 水吸收声纳波的能力很差,利用水和其它物质对声波的吸收能力不同,主动声纳装置向水中发射声波,通过接收水下物体的反射回波发现目标,目标距离可通过发射脉冲和回波到达的时间差进行测算,经计算机处理后,形成管道的横断面图,可直观了解管道内壁及沉积的概况。声纳检测的必要条件是管道内应有足够的水深,300mm的水深是设备淹没在水下的最低要求。《城镇排水管渠与泵站维护技术规程》CJJ/T68第3.3.11条也规定,“采用声纳检测时,管内水深不宜小于300mm”。 5.2检测设备 5.2.1为了保证声纳设备的检测效果,检测时设备应保持正确的方位。“不易滚动或倾斜”是指探头的承载设备应具有足够的稳定性。 5.2.2 声纳系统包括水下探头、连接电缆和带显示器声纳处理器。探头可安装在爬行器、牵引车或漂浮筏上,使其在管道内移动,连续采集信号。每一个发射/接收周期采样250点,每一个360度旋转执行400个周期。探头的行进速度不宜超过0.1m/s。 用于管道检测的声纳解析能力强,检测系统的角解析度

为0.9度(1密位),即该系统将一次检测的一个循环(圆周)分为400密位;而每密位又可分解成250个单位;因此,在125mm的管径上,解析度为0.5mm,而在直径达3m的上限也可测得12mm的解析度。 5.2.3 倾斜和滚动传感器校准在±45°范围内,如果超过这个范围所得读数将不可靠。在安装声纳设备时应严格按照要求,否则会造成被检测的管道图像颠倒。 5.3 检测方法 5.3.1声纳检测是以水为介质,声波在不同的水质中传播速度不同,反射回来所显示的距离也不同。故在检测前,应从被检管道中取水样,根据测得的实际声波速度对系统进行校准。 5.3.2 探头的推进方向除了行进阻力有差别外,顺流行进与逆流行进相比,更易于使探头处于中间位置,故规定“宜与水流方向一致”。 5.3.3探头扫描的起始位置应设置在管口,将计数器归零。如果管道检测中途停止后需继续检测,则距离应该与中止前检测距离一致,不应重新将计数器归零。 5.3.4 在距管段起始、终止检查井处应进行2m~3m长度的重复检测,其目的是消除扫描盲区。

无人水下航行器声呐装备现状与发展趋势

无人水下航行器声呐装备现状与发展趋势 无人水下潜航器(UUV)最早出现于20世纪60年代。在发展初期,UUV主要用于深水勘探、沉船打捞、水下电缆铺设及维修等民用领域,后逐步扩展应用于水下声源探测、协助潜艇深水避雷、港口战术侦察等军事领域。近十几年来,随着平台、推进器、导航、控制系统以及传感器技术的发展,加上现代战争追求人员零伤亡的理念,UUV的军事应用得到高度重视,其在水下侦察、水下通信和反潜、反水雷作战、信息作战等领域的应用得到了空前发展。 美国国防部于2007~2013年间前后发布了4版《无人系统(一体化)路线图》,其中针对UUV的4个级别将任务按优先级扩充为17项,如表1所示:

美海军于2000年和2004年分别发布两版《海军无人水下潜航器总体主规划》,将UUV(不分级别)的任务按优先顺序归纳为9类:①情报/监视/侦察(ISR);②水雷对抗(MCM);③反潜战(ASW);④检查/识别;⑤海洋调查; ⑥通信/导航网络节点(CN3);⑦载荷投送;⑧信息作战; ⑨时敏打击。 不论是《海军无人水下潜航器总体主规划》,还是《无人系统(一体化)路线图》,这几版文件中对于所有级别的

UUV,情报/监视/侦察(ISR)、检查/识别和水雷对抗(MCM)这3项任务的排序都十分靠前,这也印证了在当今复杂国际环境下美国海军对于这3项UUV任务执行的迫切需求。 UUV执行各项任务无一不需要声呐的配合,尤其是对于ISR、检查/识别和MCM,声呐性能的优劣,往往是任务完成度的决定性因素。根据功能的不同,UUV声呐装备主要分为三大类:通信声呐、导航声呐和探测声呐,如图1所示。 通信声呐主要用于UUV与协同行动的其他UUV、母船(艇)或通信浮标之间的信息链接;导航声呐为UUV的安全航行和执行作业任务提供其位置、航向、深度、速度和姿态等信息;探测声呐主要用于警戒、探测、识别水中或沉底目标信息,对水下地形、地貌、地质进行勘察和测绘。承担不

声呐蛙人声呐探测系统研究进展

声呐蛙人声呐探测系统研究进展 2008年11月在孟买发生了令人震惊的恐怖袭击事件,死亡195人,295人受伤,被喻为印度的“9.11”,经核查,恐怖分子是由近海乘坐橡皮艇从港口登陆的,这起事件清楚地表明近海/近岸水面或水下探测技术水平的缺失已经成为军用及民用港口安全体系的阿基利斯之踵,将可能遭受到来自恐怖分子或敌对敌方特种作战蛙人的袭击。 从二战以来,采用水下隐蔽袭击港口设施和停泊军舰的战例十分多。2003年,停泊在也门的亚丁港的美国战舰“科尔”号突遭一艘不明身份,满载炸药的橡皮艇的自杀式袭击,携带的炸药将军舰左舷撕开12米长4米宽的大洞,17名美军殉职,37名美国水兵受伤。2008年,泰米尔的猛虎组织的海虎突击队员突破斯里兰卡的亭可马里港的严密防护使用一枚威力巨大的水下炸弹炸伤了一艘斯里兰卡海军的军舰。 近年来越来越多使用蛙人进行攻击的现象说明人们认为从水下对停泊在码头的船只进行攻击是一种相对容易的方法。因此使用声纳或其他技术设备对港口的出入航线等地进行水下监视是应对毒品走私、水下攻击的必要的措施。 敌方蛙人隐蔽进入港口或海岸水域对海军舰艇或民用船只进行攻击方式将不仅对军事安全,同时对民用全球贸易和海运的安全产生威胁。另外,使用水下潜入的方式在毒品走私和恐怖袭击中应用也越来越多。 一、蛙人探测声呐的作用 过去且在现在的许多地方,对水下安全的排查采用的是派遣一个战斗蛙人小组进入相应的水域搜索,这是一个花费大且耗时的工作。采用声呐方式不仅节约经费并且重要的是提高了实时性。 在声呐探测中,时间的花费是必不可少的,然而在水下运载具的帮助下,敌对蛙人的运动速度是很快的。为了挫败敌方破坏意图,声呐系统不仅要把敌方蛙人的信号从复杂的混响背景中分辨出来,并且对其进行的分析越快越好,因为时间就意味着生存或死亡。 由于日益增强的威胁,水域安全问题得到越来越多的重视。主动式、高频率、多波束声呐技术是当前应对水下威胁最好的技术手段。探测距离有限的3D声呐技术对这种安全防护的努力是有补充作用的。但是,由于价值昂贵,

水下目标主动声呐回波信号特征研究

水下目标主动声呐回波信号特征研究 目前在水下安静型小目标主动声纳回波信号特征提取中存在几个关键性问 题亟待研究,包括了目标回波信号特征在复杂环境下的稳定性,目标几何声散射 与各阶次弹性声散射时序结构的分析,目标固有物理属性与回波信号特征的关系,以及海底混响的抑制等。针对上述问题,本文研究了典型目标模型在混响背景下稳定的目标回波信号特征提取方法,独立的目标声散射成分信号提取方法,以及 基于盲分离与时频分布图像处理的海底混响抑制方法,为实现水下安静型小目标主动声呐探测与识别奠定基础。 首先,针对混响背景下目标回波信号特征稳定性问题,提出了目标回波信号 的瞬时频率特征提取方法,并研究了目标回波与混响的在信号特征空间中的分布特性。将混响视为一类具有独立信号性质和特征的信号,推导了目标几何声散射成分与混响的时频分布特性,根据信号瞬时频率序列的随机性,提取了瞬时频率 方差、瞬时频率熵、瞬时频率峰度与WVD-Radon变换半功率宽度四种特征。 研究中采用特征选择方法建立了二维信号特征空间,对湖上沉底目标探测实验数据处理结果表明,目标回波与混响在该信号特征空间中具有稳定的分布特性。其次,针对目标回波中几何声散射与弹性声散射混叠的问题,提出了一种目标声 散射成分信号分离方法。 在声呐发射信号为线性调频脉冲的条件下,将目标声散射成分映射为单频信号成分,推导了目标声散射时序结构与映射结果之间的线性对应关系,从而可以 通过窄带滤波分离出特定的单频信号成分。仿真及水池实验数据处理结果表明该方法对提取独立的目标弹性声散射特征的有效性。 另外,提出了一种目标声散射成分时延估计处理流程,通过带阻滤波抑制强

无人水下航行器声呐装备现状与发展趋势

无人水下潜航器(UUV)最早出现于20世纪60年代。在发展初期,UUV主要用于深水勘探、沉船打捞、水下电缆铺设及维修等民用领域,后逐步扩展应用于水下声源探测、协助潜艇深水避雷、港口战术侦察等军事领域。近十几年来,随着平台、推进器、导航、控制系统以及传感器技术的发展,加上现代战争追求人员零伤亡的理念,UUV的军事应用得到高度重视,其在水下侦察、水下通信和反潜、反水雷作战、信息作战等领域的应用得到了空前发展。 美国国防部于2007~2013年间前后发布了4版《无人系统(一体化)路线图》,其中针对UUV的4个级别将任务按优先级扩充为17项,如表1所示。 表1 不同级别UUV任务需求优先级

美海军于2000年和2004年分别发布两版《海军无人水下潜航器总体主规划》,将UUV(不分级别)的任务按优先顺序归纳为9类:①情报/监视/侦察(ISR);②水雷对抗(MCM);③反潜战(ASW);④检查/识别;⑤海洋调查;⑥通信/导航网络节点(CN3);⑦载荷投送;⑧信息作战;⑨时敏打击。

不论是《海军无人水下潜航器总体主规划》,还是《无人系统(一体化)路线图》,这几版文件中对于所有级别的UUV,情报/监视/侦察(ISR)、检查/识别和水雷对抗(MCM)这3项任务的排序都十分靠前,这也印证了在当今复杂国际环境下美国海军对于这3项UUV任务执行的迫切需求。 UUV执行各项任务无一不需要声呐的配合,尤其是对于ISR、检查/识别和MCM,声呐性能的优劣,往往是任务完成度的决定性因素。根据功能的不同,UUV声呐装备主要分为三大类:通信声呐、导航声呐和探测声呐,如图1所示。 图1 UUV主要声呐装备

应用侧扫声呐的海底目标探测技术研究

龙源期刊网 https://www.360docs.net/doc/537054739.html, 应用侧扫声呐的海底目标探测技术研究 作者:温志坚何志敏 来源:《科技创新导报》2017年第22期 摘要:本文基于笔者从事侧扫声呐应用的工作经验,以海底目标探测为研究对象,探讨 了侧扫声呐与多波束测深系统配合进行海底目标探测的相关思路何方法,并结合具体案例给出了探测流程和结果评价,相信对从事相关工作的同行能有所裨益。 关键词:侧扫声呐海底目标探测多波束测深 中图分类号:P228 文献标识码:A 文章编号:1674-098X(2017)08(a)-0028-02 多波束测深系统以条带测量的方式,可以对海底进行100%的全覆盖测量,每个条带的覆盖宽度可以达到水深的数倍。应用这种高新技术,不仅可以获得高精度的水深地形数据,还可以同时获得类似侧扫声纳测量的海底声像图,为人们提供了直观的海底形态;侧扫声纳的出现为海底探测提供了完整的海底声学图像,用于获得海底形态,并对海底物质的纹理特征进行定性的描述。利用侧扫声纳和多波束测深系统能够探测海底地形、地貌、障碍物的特点,侧扫声纳和多波束测深系统在大陆架测量、港口疏浚、渔业捕捞、水利和生态监测、海底电缆探测、油气管道布设路径地形测绘以及轮船锚泊海区检测等方面均得到了广泛的应用,且取得了明显的效果,两者都是开发和利用海洋资源必需的仪器设备。在水深测量精度、定位精度、声像图分辨率等方面两者又各有独特的优点,如果将两者综合起来加以应用,可有效增强不同观测数据的互补性,提高工程质量。本文以EdgeTech 4200FS型侧扫声纳和SimradEM 1002型多波束测深系统为例来说明其在海洋目标探测中的综合应用。 1 侧扫声纳和多波束测深系统的特点 多波束测深系统与侧扫声纳都是实现海底全覆盖扫测的水声设备,都能够获得几倍于水深的覆盖范围。它们具有相似的工作原理,以一定的角度倾斜向海底发射声波脉冲,接收海底反向散射回波,从海底反向散射回波中提取所需要的海底几何信息。 由于接收波束形式的不同以及对所接收回波信号处理方式的不同,多波束测深仪通过接收波束形成技术能够实现空间精确定向,利用回波信号的某些特征参量进行回波时延检测以确定回波往返时间,从而确定斜距以获取精确的水深数据,绘制出海底地形图。侧扫声纳只是实现了波束空间的粗略定向,依照回波信号在海底反向散射时间的自然顺序检测并记录回波信号的幅度能量,仅仅显示海底目标的相对回波强度信息,获得海底地貌声像图。 1.1 高精度的水深和定位数据 多波束测深系统在处理接收的海底反向散射回波时,有着精密的空间定向,从回波信号时延处理上,有着准确的回波信号时延检测,因此多波束测深系统测量的水深数据精度高;从回

管道检测公司

随着社会和科技的高速发展,管道作为物资运送的载体在资源调配、城市建设等领域的作用越来越明显。在大型建设配套设备中,管道主要应用于石油、天然气等能源运输领域以及城市地下管网建设这两大工程。在工业生产领域,大型发电厂、核能研究所等物料需求量较大的场所均使用管道运输作为其首选方式。 管道运输在城市建设和工业生产中的应用逐渐增大,但管道内部恶劣环境和狭隘的空间不利于工作人员进行作业,因此,为了保证能对管道的维护、管道内作业的顺利进行,开发一套应用范围广、符合市场需求的管道检测机器人系统用以替代人工完成作业是非常必要的。 随着运输管道的使用范围增大、应用数量增多,各行业对管道的使用寿命和安全性能提出的要求越加严格,因此加大了对管道检测机器人的需求。目前,国内外管道检测的管道机器人种类和型号繁多,功能多样化,但多数管道机器人由于结构复杂,运送拆卸难度大,控制不便等因素导致其推广使用受阻,并不能为管道行业提供更好的服务。 那么,目前国内管道检测公司哪家好呢?

武汉中仪物联技术股份有限公司是一家以排水管网检测、评估、养护、修复相关技术、设备及材料研发制造为核心产业的高新技术企业,专注于为城市提供智慧排水管网运维信息化整体解决方案。公司集“产、学、研”于一体,经过多年的累积和沉淀,中仪股份已经成为国内管道检测与修复行业的标杆企业,在业内享有“管道检测与修复专家”的美誉。 公司总部设于华中腹地湖北武汉,与中国地质大学、华中科技大学、武汉大学等多家高校及科研机构保持紧密合作,在理论研究、设备研制、工程检测等领域,依托扎实的理论功底和大胆的创新精神,先后研发出一系列技术先进、适用性强、操作简便、稳定耐用的检测、养护及修复设备和软件产品。并在北京、上海、浙江、山东、安徽、江苏、广东、福建、广西等地设有分公司及分销机构,建立了完善的售后服务体系。 公司已完成管道潜望镜系列(QV)、管道CCTV机器人系列、管道声纳检测系统系列、推杆式管道内窥镜系列、钻孔电视成像仪系列、管道电法测漏仪系列、管道养护系列、非开挖管道修复系列等具有自主知识产权的管网检测、养护及修复产品的研制,在物探、城建、市政、国防、水利水电等各个基础建设领域得到广泛应用。 目前公司在管网修复技术及材料领域,自主研发的国内首台非开挖修复装备已投入市场使用,填补了我国非开挖修复装备的产业化空白,可有效改善由排水管渠修复维护而造成的交通问题,保障城市的安全高效运行,树立政府良好形象。 随着信息化建设理念的深入人心,公司在智慧管网、地理信息系统领域与北京清华规划院、中地数码形成战略合作联盟,相继开发了一系列数据管理系统,如检测数据服务系统,

声纳图像水下管线检测与跟踪技术研究

声纳图像水下管线检测与跟踪技术研究 几十年以来,为更充分的利用海洋资源,人类在海底铺设了大量的能源输送管道和信息通信线缆。海底管线的正常工作,是海上油气与跨国通信的重要保障。 由于海底施工、自然腐蚀和其他种种原因,海底管线易破损甚至断裂,造成经济和环境上的重大损失。因此,需要水下机器人对海底管线进行定期跟踪检查。 利用侧扫声纳采集海底信息,通过图像处理算法检测出管线的位置和走向,并引导水下机器人对管线跟踪是本文的主要研究内容,具体如下:(1)研究侧扫声纳图像管线检测系统与图像预处理。首先,介绍管线检测与跟踪系统结构;其次,分析侧扫声纳成像原理与影响声纳图像质量的因素;然后,介绍水下管线系统模型;最后,研究均值滤波、中值滤波、高斯滤波去除声纳图像噪声的方法。 实验结果表明,高斯滤波对声纳图像滤波的效果最佳。(2)研究二维平均恒虚警率的管线检测方法。 首先,介绍在高斯噪声条件下的二维平均恒虚警率算法,在计算参考单元平均值时,需要反复提取像素灰度值,从而耗费大量的计算时间,本文研究采用积分矩阵加速计算;其次,采取形态学方法平滑管线边缘,并根据二值图连通区域离心率指标去除虚警;最后,通过Hough变换检测管线边缘,拟合得出管线的位置与走向。实验结果表明,该方法能有效检测出声纳图像中的管线目标。 (3)提出矩形和十字形检测结构的二维平均恒虚警率算法。首先,根据管线的形状特征,研究矩形检测结构。 相对于正方形检测结构,矩形检测结构在检测管线目标时具有较低的阈值,从而有效提取图像中的管线。十字形检测结构在矩形检测结构基础上,利用左右方向与上下方向参考单元灰度平均值之比,改善声纳图像野值点造成的管线像素

管道检测设备介绍及检测方案

1、需求分析: 根据本次的总体系统规划需求,充分考虑**地区“智慧城管”整体规划的特点,设备将提供的功能模块涵盖排水管道地理空间位置信息采集、排水管道属性信息采集、排水管道内部检测视频、声纳数据采集。 利用雷达检测排水管道地理空间信息以及排水管道属性信息;利用管道机器人采集管道内部视频;利用全景镜头采集管道2D图像,可进行量化分析管道各种缺陷尺寸;利用管道声纳检测系统,用于检测在管道水量达到一半以上时的管道内部状况检测,检测管道的变形、破碎、淤泥含量,利用软件技术,还原管道三维声纳图,直观展示管道淤积、变形、破碎等特种状况。 2、设备设计方案 2.1设备信息表 2.2设备详细资料方案介绍 2.2.1载车 车辆改装总则:

车身表面为工程黄涂装,并安装有作业警示灯,整车结构及外形不进行大的改动。主要将车厢分为二大部分三个区域,即操作区(设备安装室)、监控区(设备操控室)、驾驶区(驾驶室),其中监控区和驾驶区为一个部份并配置空调,操作区为独立部份,拆除了部份空调风道。如下图所示: 2.2.1.1操作区 1、车厢改装(如上图所示) 车厢通过中间隔板分为二个部份,三个区域。中间隔板的中间开有过道门(用户可选)以便操作人员进入操作区,并开有观察窗及电源控制盒。 中间隔板在顶上隔断二侧空调通风道进入操作区并利用监控区二侧空调通风道中间的空间加设顶隔窗以便工作人员放置办公或私人用品。 为了更好利用空间,将操作区地板将通过钢架结构抬高至车轮挡泥板齐平。并设置三个底隔窗以便放置2米的伸缩梯、长杆等辅助操作工具。 操作区地板采用3mm铁板加铺防绣铝板。

2、工作台、旋转吊臂及电动钢丝绳绞盘(如下图所示) 工具箱安装在操作区的右前侧,主要用来放置一些维修工具备件。 旋转吊臂安装在操作区的左后侧,车底安装加强骨和埋铁,保证其刚底工强度。收藏时旋转吊臂向后门靠近并固定,工作状态时转向后车门,吊臂梁可自由伸缩,吊臂的转动半径内不得有干涉物。 电动钢丝绳绞盘配置左右各一个(用户可选择)。 3、可移动部件的放置或固定(如下图所示)

【CN110335202A】一种水下声纳图像噪声消除方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910277579.9 (22)申请日 2019.04.08 (71)申请人 武汉理工大学 地址 430070 湖北省武汉市洪山区珞狮路 122号 (72)发明人 刘文 卢煜旭 张瑞 孙睿涵  吴芷璇 何俊 马全党  (74)专利代理机构 湖北武汉永嘉专利代理有限 公司 42102 代理人 李丹 (51)Int.Cl. G06T 5/00(2006.01) G06T 7/45(2017.01) (54)发明名称 一种水下声纳图像噪声消除方法 (57)摘要 本发明公开了一种水下声纳图像噪声消除 方法,包括以下步骤:1)采取不同环境下的色彩 清晰的彩色图像,然后将其转变成灰度图;2)将 步骤1)中采集的图象进行图像处理操作转换成 为设定数量数据集,作为训练数据;3)将得到的 数据集进行对数化处理;4)将处理完毕的数据集 运用基于残差卷积神经网络框架训练学习;5)得 到训练参数,根据得到的残差卷积神经网络对测 试图像进行去噪处理,得到噪声图像,然后根据 噪声图像和原始测试图像得到去噪后的图像。本 发明采用CNN对对数域的散斑噪声进行估计,采 用结构相似性度量作为损失函数,在散斑噪声抑 制过程中保持更多的几何结构,保证高质量的去 噪检测性能。权利要求书1页 说明书5页 附图1页CN 110335202 A 2019.10.15 C N 110335202 A

权 利 要 求 书1/1页CN 110335202 A 1.一种水下声纳图像噪声消除方法,其特征在于,包括以下步骤: 1)采取不同环境下的色彩清晰的彩色图像,然后将其转变成灰度图; 2)将步骤1)中采集的图象进行图像处理操作转换成为设定数量数据集,作为训练数据;所述图像处理操作包括上下翻转、左右翻转、向左或向右旋转、放大、缩小、切割中的一种或几种的组合; 3)将得到的数据集进行对数化处理; 4)将处理完毕的数据集运用基于残差卷积神经网络框架训练学习; 5)得到训练参数,根据得到的残差卷积神经网络对测试图像进行去噪处理,得到噪声图像,然后根据噪声图像和原始测试图像得到去噪后的图像。 2.根据权利要求1所述的水下声纳图像噪声消除方法,其特征在于,所述步骤4)中基于残差卷积神经网络框架训练学习过程如下: 1)设置训练学习参数,为残差卷积神经网络进行权值的初始化;所述参数包括批训练量、学习率、训练次数; 2)输入数据经过卷积层、下采样层、全连接层的向前传播得到输出值;根据损失函数求出残差卷积神经网络的输出值与目标值之间的误差; 3)当误差大于期望值时,将误差传回网络中,依次求得全连接层,下采样层,卷积层的误差;各层的误差可以理解为对于网络的总误差,网络应承担多少; 4)误差大于期望值时,根据求得误差进行权值更新; 5)当误差等于或小于期望值时,结束训练。 3.根据权利要求2所述的水下声纳图像噪声消除方法,其特征在于,所述步骤2)中采用的损失函数为SSIM损失函数。 4.根据权利要求1所述的水下声纳图像噪声消除方法,其特征在于,所述步骤4)中残差卷积神经网络的结构如下,包括: 1)输入层:输入层为第一层,输入为35x35xc的图像,经过64个3x3x3的卷积核卷积,输出为64张35x35的特征图,即35x35x64的图像; 2)卷积层:卷积层共16层,每层有64个3x3x64的卷积核,每层的输入输出都为35x35x64的图像; 3)输出层:输出层通过1个3x3x64的卷积核,重建1维图像,作为输出。 2

各类管道检测技术的解析

广州迪升探测工程技术有限公司 一、排水管道检测 随着城市建设和生产的发展,越来越多的管理者开始重视、加强地下管网等基本设施的管理;但常年埋设于地下排水管道,在类别众多的地下管线中往往被忽视;在已经开展过城市地下管线普查的城市中,排水管网虽然属于调查、探测范围,其主要以管线的平面位置、埋深、管径、材质为主要探测、调查内容,这些工作的开展在某种程度上可满足城市规划、市政建设的需求;但由于行业管理、部门管理所要求的侧重面存在相当的差异,单纯的沿用上述的方法,已远远不能满足市政排水系统深化管理的要求。 由于排水管网埋设于地下,属于地下隐蔽工程,因历史原因及方法技术的限制,使得排水管道的运行状况检测一直处于滞后和较为被动的局面,而且并未被引起足够的重视。排水管网的重要性,往往只能在其部分或完全丧失输水能力,甚至造成污水四溢,对正常的生产或生活产生不利影响时,才被引起注意,而工作的目的也仅仅是对管道进行应急性疏通。 根据目前掌握了解的情况,在我国城市排水管网中运行中普遍存在着建设和运行管理脱节的普遍现象,需引起足够的重视。 1、目前城市排水管网运行中存在的问题 1.1、城市内涝,给市民生活带来不便 随着城市建设规模和城市周边区域城市化进程的不断加快,排水管网在现代化城市中的作用举足轻重,排水管网的运营状况关系到城市运行功能是否正常。 2004年7月间的一场大雨就让北京市的交通几乎瘫痪;给城市的正常运行和市民的工作、生活产生了巨大的影响。 2007年7月,济南的暴雨更使得“泉城”变成“水城”,并造成了人员的伤亡。 在我国国内的各个城市,每逢雨季,“水浸街”的问题屡见不鲜。

究其原因:随着城市化进程和路面普及率的提高,城区内大地的保水、滞洪能力大大下降,雨水的径流量增加很快,部分地段原有的管渠设计流量已难以承受短时间强降雨产生的地面径流。 另一方面,排水管网输送的污水中均含有一定的固体、半固体杂质;布设排水管网时,按设计的坡度和排放量一般可以保持管道的自净流速,但因局部管段的缺陷(如阻塞、破碎、沉降或施工遗留问题),直接影响了排水管道的过水能力,导致管道内水流速度减慢,从而产生管道淤积,降低了管道的输水能力,造成排水不畅甚至管道堵塞。 1.2路面塌陷 排水管网埋设于地下,会因为施工质量、运行年代、酸碱腐蚀、基础沉降错位等原因,使管道产生破损而造成的污水泄漏。 在部分管内流量大、流速高的地段,破损的管道带走大量泥土造成路面的塌陷, 北京市降雨后立交桥的交通状况 广州市降雨后立交桥的交通状况 城区道路积水状况1 城区道路积水状况2

一种侧扫声纳图像的无缝拼接方法

一种侧扫声纳图像的无缝拼接方法 发表时间:2019-07-30T16:14:56.560Z 来源:《防护工程》2019年8期作者:胡鑫玉程彬彬徐从营[导读] 本文以某湖泊实测的侧扫声纳数据为例,研究侧扫声纳图像的无缝拼接方法,对其中的关键步骤进行详细的阐述。 中国船舶重工集团有限公司第七一〇研究所湖北宜昌 443003 摘要:本文以某湖泊实测的侧扫声纳数据为例,研究侧扫声纳图像的无缝拼接方法,对其中的关键步骤进行详细的阐述。本文先对图像进行校正,通过研究地理编码的拼接方法,提出基于共视地形的图像拼接处理,生成了大区域、无缝拼接的侧扫声纳图像。实验验证了该方法的有效性和可行性,实验结果较理想。 关键词:侧扫声纳系统;无缝拼接;图像校正;地理编码;共视地形 1 引言 高分辨率声纳图像对水底地形构建、水下小目标探测及底质判别都有着重要作用,受尺寸影响,多波束图像分辨率有限,而侧扫声纳就以其高精度、高效率、高分辨率的特点成为获取水下图像的主要设备。为获得水下大范围地形地貌,需要对侧扫声纳图像进行拼接和镶嵌。 原始侧扫声纳瀑布图按时间序列堆叠,没有结合地理信息;由于航行器姿态、风浪、海流等因素影响,侧扫声纳记录位置信息时存在一定误差;声波强度随距离加大产生的扩展损失和吸收损失使图像存在灰度畸变;而受航速和航向变化的影响,图像也存在几何畸变,给图像的无缝拼接带来困难。 2 声纳图像拼接流程 侧扫声纳图像的无缝拼接主要分为以下步骤:①原始数据的读取:提取出原始数据和辅助信息;②斜距改正:利用高度信息消除由于声波波束倾斜造成的数据横移,削弱图像横向畸变;③图像增强:调整机器自动增益后的灰度不均衡;④航速校正:消除由于航行体速度变化引起的图像纵向畸变;⑤地理编码与重采样:将瀑布图映射到具有地理信息的图像中;⑥图像拼接:将多条侧扫条带图像拼接成大比例高精度的图像。 3 研究方法 3.1 侧扫声纳数据读取 本文利用Edgetech公司的侧扫声纳扫测某湖泊,对原始数据进行处理。通过检测文本文件头,得到数据类型和有效数据长度,对文件头后的数据及侧扫声纳回波强度信息进行提取,得到原始数据和辅助信息(包含航行体的位置、姿态、速度和时间等)。 3.2 斜距改正 其中,代表采样点到声呐的平面距离,为可调参数。

多波束和声纳在大面积水域中探测水下目标物的组合方法

多波束和声纳在大面积水域中探测水下目标物的组合方法 摘要:侧扫声纳是目前水下探测的一种重要探测工具,有很高的探测效率和分辨率,但是定位精度差;而多波束则以高效率、高精度、高分辨率证明了它的优越性。通过工程实例说明了侧扫声纳和多波束在大面积水域中探测水下目标物的方法,并对两者的扫测结果进行了对比分析。充分利用多波束和声纳的扫测数据结果,可有效增强观测数据的互补性,如此既可以提高工程质量,又可以使扫测结果达到最优。 关键词:侧扫声纳;多波束;水下目标物;精度;分辨率 1 引言 多波束测深系统主要用于水下地形测量,应用这种高新技术,不仅可以获得高精度的水下地形数据,还可以为人们提供直观的水下三维图和类似侧扫声纳的声像图。 侧扫声纳的出现为水下目标物探测提供了完整的水下声学图像,用于获得水下地形形态[1]。侧扫声纳和多波束测深系统都是能够实现全覆盖扫测得探测设备,能够获得几倍于水深的探测范围。在水深测量精度、定位精度、声像图分辨率等方面两者又各有优点。所以在多次的工程实践中,我们发现利用声纳和多波束同时来完成探测工作,可有效增强不同观测数据的互补性,将扫测结果达到最优化,提高工程质量。本文就声纳和多波束探测时的实际效果进行对比分析。 在工作实践中,侧扫声纳采用由美国EdgeTech公司生产的EdgeTech 4200MP 型双频侧扫声纳,该系统将EdgeTech的全频谱和多脉冲技术集成与一体,是高科技数字双模式高分辨率侧扫声纳系统;多波束采用Sionc 2024型测深仪,工作频率为300kHZ,最大量程为500米。波束个数为256个,垂直航迹方向的波束大小为0.5°,沿着航迹方向的波束大小为1.0°。 2 侧扫声纳和多波束的工作原理 这两种设备均是采用向水底发射声波脉冲,并接收声波传至水底目标物后反射和散射的回波,从反射和散射的回波信息中提取我们所需要的几何信息。 (a)多波束设备连接图(b)侧扫声纳设备连接图 图1 多波束和侧扫声纳设备连接示意图 由于它们接收波束的形式不同以及对回波的处理方式的不同,多波束测深仪通过接收回波信号能够实现空间精确定向,利用声波在传播途中所消耗的时间来确定斜距,而每一束波束都有一个固有的波束角,从而确定斜距可以得到精确地

声纳技术及其应用与发展

声纳技术及其应用与发展 王云罡(04011115) (东南大学信息科学与工程学院南京 211189) 摘要:声纳技术是声学检测新技术在水下介质中的具体应用。文章简要阐述了声纳技术的原理及其发展历史,介绍了声纳技术的主要应用及其最新进展。 关键词:声纳技术原理应用发展 APPLICATION AND DEVELOPMENT OF SONAR TECHNOLOGY Wang Yungang (04011115) (Department of Information Science and Engineering, Southeast University, Nanjing,211189) Abstract : Sonar technology is the specific application of acoustic detection techniques in underwater media. Its principle and development as well as its main applications and progress are reviewed. Key words:sonar technique principle applications development

声波是人类迄今为止已知可以在海水中远程传播的能量形式.,声纳( sonar)一词是第一次世纪大战期间产生的, 它是由声音( sound)、导航( navigation)和测距( ranging ) 3个英文单词的字头构成的.。声纳设备利用水下声波判断海洋中物体的存在、位置及类型,同时也用于水下信息的传输。 [1] 近年来,随着科学技术的高速发展,人类对覆盖地球总面积70 %的海洋的认识逐渐深化,海洋因其经济上的巨大潜力和战略上的重要地位越来越被人们所重视.。美国加州海洋研究中心的罗伯逊博士说:“海洋的开发对人类带来的利益要比那些耗资庞大的太空计划实惠得多。”1998 年曾被定为“国际海洋年”,有人说,21 世纪是海洋的世纪。 众所周知,电磁波是空气中传播信息最重要的载体,例如,通信、广播、电视、雷达等都是利用电磁波.。但是在水下,它几乎没有用武之地。这是因为海水是一种导电介质,向海洋空间辐射的电磁波会被海水介质本身所屏蔽,它的绝大部分能量很快地以涡流形式损耗掉了,因而电磁波在海水中的传播受到严重限制。至于光波,本质上属于更高频率的电磁波,被海水吸收损失的能量更为严重,因此,它们在海水中都不能有效地传递信息。实验证实,在人们所熟知的各种辐射信号中,以声波在海水中的传播性能为最佳。正因为如此,人们利用声波在水下可以相对容易地传播及其在不同介质中传播的性质不同,研制出了多种水下测量仪器、侦察工具和武器装备,即各种“声纳”设备.。声纳技术不仅在水下军事通信、导航和反潜作战中享有非常重要的地位,而且在和平时期已经成为人类认识、开发和利用海洋的重要手段。本文将简单介绍声纳技术的原理、应用及其发展。 一、定义及其发展史 声纳就是利用水中声波对水下目标进行探测、定位和通信的电子设备,是水声学中应用最广泛、最重要的一种装置。它是SONAR一词的“义音两顾”的译称,SONAR是Sound Navigationand Ranging(声音导航测距)的缩写。 声呐技术至今已有100年历史,它是1906年由英国海军的刘易斯?尼克森所发明。他发明的第一部声呐仪是一种被动式的聆听装置,主要用来侦测冰山。这种技术,到第一次世界大战时被应用到战场上,用来侦测潜藏在水底的潜水艇[2]。 二、工作原理 声波在水中传播的优点: 1.在水中进行观察和测量,具有得天独厚条件的只有声波。 2.光在水中的穿透能力很有限,然而,声波在水中传播的衰减就小得多,低频的声波还可以穿透海底几千米的地层,并且得到地层中的信息。在水中进行测量和观察,至今还没有发现比声波更有效的手段。 三、结构与分类 1.结构 (1)基阵:水声换能器以一定几何图形排列组合而成,其外形通常为球形、柱形、平板形或线列行,有接收基阵、发射机阵或收发合一基阵之分。(2)电子机柜:发射、接收、显示和控制等分系统。 (3)辅助设备:包括电源设备、连接电缆、水下接线箱和增音机、与声纳基阵的传动控制相配套的升降、回转、俯仰、收放、拖曳等装置,以及声纳导流罩等。 2.分类 可按其工作方式,装备对象,战术用途、基阵

管道声纳检测报告模板

XXX污水管道声纳检测评估试点工程报告书 目录 1. 项目信息 (2) 2. 检测工程概况 (2) 3. 检测设备简介 (2) 4. 作业流程示意图 (3) 5 总体评估与建议 (4) 5.1 管道评估与建议依据 (4) 5.2 声纳检测管道淤积断面图 (4) 5. 3 修复与养护建议 (4) 5. 4 结论 (5) 6.管道检测情况详表 (5) 7.管道声纳检测图片汇总 (6)

1. 项目信息 2. 检测工程概况 按照委托单位的要求,我公司于月开始,对项目范围内的排水管道进行了检测,本次检测使用设备为1512USB声纳检测系统。现场操作人,外业工作于结束。 3. 检测设备简介 本次检测使用的设备是英国1512USB声纳检测系统。该设备在同类设备中属高端产品。声纳检测主要应用于管道的破损、变形、淤积等缺陷的检测。声纳头通过发射声纳波,反射到管壁后成像,形成一个管道内的声纳扫描图,可以判断管道内的积泥、破损等情况。

(英国1512USB声纳检测系统)4. 作业流程示意图

5 总体评估与建议 5.1 管道评估与建议依据 本次检测的评估报告采用的是《上海市公共排水管道电视和声纳检测评估技术规程》标准。 5.2 声纳检测管道淤积断面图 5. 3 修复与养护建议 管道修复建议

管道养护建议 5. 4 结论 根据声纳检测结果,管道功能性状况具体如下: 养护建议: 经过对该段污水管道进行声纳检测,发现管道淤积现象比较严重,最大淤积部分已经达到管径的1/3(40cm),全线淤积深度在30cm左右,严重影响管道正常使用;建议立即对管道进行除泥、疏通,以保证管道功能完好畅通 6.管道检测情况详表 表7.1 CCTV检测管道评估统计表

海洋侧扫声呐探测技术的现状及发展

海洋侧扫声呐探测技术的现状及发展 摘要:侧扫声纳是海洋地形地貌测量的必备仪器之一。侧扫声呐是利用回声测 深原理探测海底地貌和水下物体的设备,目前广泛应用于海洋地形调查以及探测 海底礁石、沉船、管道、电缆以及各种水下目标等。本文从侧扫声呐技术的现状 进行分析,对未来侧扫声呐探测技术的发展趋势进行总结,为后续进行海洋侧扫 声呐探测技术的研究打下基础。 关键词:侧扫声呐;海洋探测;海洋资源 海底地形地貌作为了解和认识海洋的基本信息,在海洋资源开发、海洋工程 建设和海洋权益维护等方面具有重要意义。海底信息的探测是进行海底科学研究 的基础,是了解海洋空间形态特征的基础资料。由于声波在水中传播的独特优势,目前海底信息的快速获取主要依赖于声学探测设备,主要包括单波束、多波束和 侧扫声纳系统。前两种设备是通过测量海底深度反演海底地形,称之为等深线成像:侧扫声纳系统根据回波强度反映海底地形变化;相比而言,侧扫声纳探测效 率和分辨率较高,可获得更清晰的目标信息,在国内外应用广泛。 一、侧扫声呐检测原理 侧扫声呐技术运用海底地物对入射声波反向散射的原理来探测海底形态,它 能直观地提供海底形态的声成像。通过声呐线阵向左右两侧发射扇型波束,海底 反向散射信号依时间的先后被声呐线阵接收,有一定高度的海底障碍物在侧扫声 呐资料上能产生“阴影”。通过对不同的成像条件下得到的声呐图谱中“阴影”的研究,可以判断海底管线的状态为透空还是非透空,从而评价悬空管线治理效果。 当海底管线状态为悬空时,侧向发射的声呐波束首先遇到管线形成强反射,其反 射时程最短,最先成像在声呐图谱上;管线下方与海床面之间的空隙(空隙高度 即为悬空高度)可允许声呐波束穿过,形成“声学透空区”,其反射时程次之,在 声呐图谱上位于管线强反射外侧;管线本身会遮挡一定宽度范围的声呐波束穿过,形成“声学阴影区”,其理论反射时程最长,在声呐图谱上位于“声学透空区”外侧。如此,悬空管线形成的声呐图谱由近及远依次为管线强反射、“声学透空区”海底 面反射、“声学阴影区”空白反射(图1a)。当悬空管线经过非透空式治理之后,侧向发射的声呐波束首先遇到管线及其下方支撑的砂袋,形成较强反射,其反射 时程最短,最先在声呐图谱上成像;同时,管线及其下方支撑的砂袋本身会遮挡 一定宽度范围的声呐波束穿过,形成“声学阴影区”,其反射时程较长,反映到声 呐图谱上,就是在管线与砂袋强反射外侧成像。如此,悬空治理之后管线形成的 声呐图谱由近及远依次为:管线和砂袋的强反射、“声学阴影区”空白反射(图1b)。当采用水下短桩支撑等透空式方法治理时,在水下短桩处会产生图1b所 示的波束路径和声呐图谱,而两管线桩之间区域的反射特征相当于管线悬空时的 探测结果(图1a)。 二、国内外现状 1.国外侧扫声呐技术现状。近年来,随着计算机处理技术的快速发展和应用,有效的推进了侧扫声呐探测技术的发展,出现了一系列以数字化处理技术为基础 设计的数字化侧扫声呐设备,进而使得侧扫声呐技术发展达到了一个全新的台阶,图3是常见的侧扫声呐换能器拖体。符合特定探测深度和精度的侧扫系统正在不 断的被研发出来。美国Klein公司近年研发的Klein5000系列深海多波束侧扫声呐 系统,采用波束控制和与数字动态聚焦技术,在拖鱼每一则同时生成数个相邻的

用于水下机器人的主动侧扫声呐图像预处理技术_高延增

第38卷 第2期2009年4月 船海工程SH IP &OCEA N ENG IN EERI NG V ol.38 N o.2 A pr.2009 Feature Ex traction of Ship Weld Flaw Image Based on H u p s M oment Invariant GAO Lan,ZHAO Yong -zhu,FAN Sh-i dong,LUO Wen -feng (Schoo l o f Ener gy and Po wer Eng ineer ing,Wuhan U niv ersity of T echnolog y,W uhan 430063,China) Abstract:A metho d o f flaw feature ex tractio n of ship w eld imag e based o n Hu p s mo ment invar iant w as intro duced.Ex periment show ed that H u p s mo ment invar iants picked up sat isfy geomet ric invar iance after zo om,mot ion and eddy o f image,with st rong ant-i no ise perfo rmance.T o the complex ship weld imag e flaw ,mo ment inva riants can sho w the featur e informat ion of image effectively,on a cer tain ext ent,it can be an impor tant g ist o f flaw identificatio n. Key words:moment invariants;featur e extr action;weld imag e;sample bases 收稿日期:2008-09-02修回日期:2008-11-17 作者简介:高延增(1982-),男,博士生。 研究方向:水下机器人的三维声视觉系统人工智能 技术。 E -mail:gao yangzeng @fox https://www.360docs.net/doc/537054739.html, DOI:10.3963/j.issn.1671-7953.2009.02.028 用于水下机器人的主动侧扫声呐图像预处理技术 高延增,叶家玮,陈爱国 (华南理工大学土木与交通学院,广州510641) 摘 要:分析了侧扫声呐接收机的噪声来源:自噪声和水体噪声,概括了它们影响声呐接收机的辐射路径;求出回波噪声的数字特征,在此基础上给出单扫描角度上声呐图像数据的递归最小二乘滤波算法,可提高水下机器人路径规划算法的实时性。使用超小型远程操纵机器人(RO V )搭载SeaSpr ite 声呐在船池中实验,对比给出预处理前后的声呐回波数据的还原图像,显示效果明显改善。 关键词:侧扫声呐;噪声模型;递归最小二乘滤波;图像声呐 中图分类号:U 666.7 文献标志码:A 文章编号:1671-7953(2009)02-0097-04 光学成像系统易受光线、水质混浊度、流水中气泡等因素影响,而声呐设备能克服这些限制,在海底矿物质勘探、目标探测、海洋工程等方面的应用越来越广泛,为水下机器人作业、海洋工程、海洋测绘等提供第一手数据。在自主水下机器人(AUV )导航的应用中,可将声呐图像中出现的障碍物分成独立的、星群状的和过大的三类,然后利用特征匹配归类声呐图像中的障碍物[1] ,文献[2]提出一种声呐图像中密集障碍物的避让方法。 但声呐图像存在图像背景复杂、噪声污染严重等缺点,而大多图像处理算法又对图像噪声敏感,所以有必要对声呐图像进行预处理。声呐图 像预处理算法应能够:改善声呐图像显示效果;纠正声呐图像中的波束模式异常;平抑表面反射的 影响;自动调节声呐数据获取过程中由软、硬件增益改变引起的像素点亮度变化。文献[3]介绍了使用扫描声呐进行目标跟踪、识别时的图像预处理方法,其中用到小波技术,文献[4]中还将其与Fourier 变换进行比较,它的作用对象是冰下侧扫声呐图像。 但前面提到的预处理方法都是针对整幅声呐图像的,限制了侧扫声呐图像的处理时间,影响水下机器人的决策速度。本文将影响声呐接收机的噪声分为自噪声和水体噪声,分析了噪声对声呐接收机的辐射路径,根据瑞利法则给出噪声的条件密度模型;在此基础上对单扫描角度的声呐数据进行递归最小二乘滤波后还原为声呐图像,最后将各扫描角度上的图像镶嵌组成整幅图像,而在镶嵌的同时将单扫描角度图像实时传给水下机器人路径规划的决策模块,保证了路径选择算法的实时性。 97

相关文档
最新文档