解析几何范围最值问题(教师)

解析几何范围最值问题(教师)
解析几何范围最值问题(教师)

第十一讲 解析几何范围最值问题

解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理. 一、几何法求最值

【例1】 抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足+=(-4,-12).

(1)求直线l 和抛物线的方程;

(2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值.

[满分解答] (1)根据题意可设直线l 的方程为y =kx -2,抛物线方程为x 2=-2py (p >0).

由?????

y =kx -2,x 2=-2py ,

得x 2+2pkx -4p =0 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 所以+=(-4,-12),所以???

?

?

-2pk =-4,-2pk 2

-4=-12,

解得?

????

p =1,k =2.故直线l 的方程为y =2x -2,抛物线方程为x 2=-2y .

(2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大. 对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2,y 0=-12x 20=-2,即P (-2,-2).

此时点P 到直线l 的距离d =

|2·(-2)-(-2)-2|22+(-1)2

=45=4 5

5.

由?

????

y =2x -2,

x 2=-2y ,得x 2+4x -4=0,则x 1+x 2=-4,x 1x 2=-4, |AB |=

1+k 2· (x 1+x 2)2-4x 1x 2=

1+22·(-4)2-4·(-4)=4 10.

于是,△ABP 面积的最大值为12×4 10×4 55=8 2.

二、函数法求最值

【示例】在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2

b 2=1(a >b >0)的离心率e =

2

3

,且椭圆C 上的点到点Q (0,2)的距离的最大值为3.

(1)求椭圆C 的方程;

(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.

(1)由e =c

a

a 2-

b 2

a 2= 23,得a =3

b ,椭圆C :x 23b 2+y 2

b

2=1,即x 2+3y 2=3b 2,

设P (x ,y )为C 上任意一点,则|PQ |= x 2+(y -2)2= -2(y +1)2+3b 2+6,

-b ≤y ≤b .

若b <1,则-b >-1,当y =-b 时,|PQ |max = -2(-b +1)2+3b 2+6=3,又b >0,得b =1(舍去), 若b ≥1,则-b ≤-1,当y =-1时,|PQ |max = -2(-1+1)2+3b 2+6=3,得b =1.

∴椭圆C 的方程为x 23

+y 2

=1.

(2)法一 假设存在这样的点M (m ,n )满足题意,则有m 23+n 2=1,即n 2

=1-m 23

,-3≤m ≤ 3.由题意可得S

△AOB

=12|OA |·|OB |sin ∠AOB =12sin ∠AOB ≤1

2

, 当∠AOB =90°时取等号,这时△AOB 为等腰直角三角形, 此时圆心(0,0)到直线mx +ny =1的距离为

2

2

, 则1m 2+n 2=22

,得m 2+n 2=2,又m 23+n 2=1,解得m 2

=32,n 2=12,即存点M 的坐标为

????62,22,????62,-22,????-62,22,????-62

,-22满足题意,且△AOB 的最大面积为12.(12分)

法二 假设存在这样的点M (m ,n )满足题意,则有m 23+n 2=1,即n 2

=1-m 23

,-3≤m ≤3,又设A (x 1,y 1)、

B (x 2,y 2),由?

????

mx +ny =1x 2+y 2=1,消去y 得(m 2+n 2)x 2-2mx +1-n 2=0,①把n 2

=1-m 23代入①整理得(3+2m 2)x 2-6mx

+m 2=0,

则Δ=8m 2(3-m 2)≥0,

∴???

x 1+x 2=

6m

3+2m 2

x 1x 2

=m

2

3+2m

2

,②而S △AOB =12|OA |·|OB |sin ∠AOB =1

2

sin ∠AOB ,

当∠AOB =90°,S △AOB 取得最大值1

2

此时·=x 1x 2+y 1y 2=0,又y 1y 2=1-mx 1n ·1-mx 2n =3-3m (x 1+x 2)+3m 2x 1x 2

3-m 2,

∴x 1x 2+3-3m (x 1+x 2)+3m 2x 1x 2

3-m 2

=0,即3-3m (x 1+x 2)+(3+2m 2)·x 1x 2=0, 把②代入上式整理得2m 4-9m 2+9=0,解得m 2=3

2或m 2=3(舍去),

∴m =±6

2,n =±

1-m 23=±22,∴M 点的坐标为????62

,22,????62,-22,????-62,22,????-62,-22,使得S △AOB 取得最大值1

2

.

老师叮咛:当所求的最值可以表示成某个变量的函数关系式时,我们常常先建立对应的函数关系式,然后利用函数方法求出对应的最值,称这种方法为函数法,这是解析几何问题中求最值的常用方法.函数法是研究数学问题

的一种最重要的方法,用这种方法求解圆锥曲线的最值问题时,除了重视建立函数关系式这个关键点外,还要密切注意所建立的函数式中的变量是否有限制范围,这些限制范围恰好制约了最值的取得,因此在解题时要予以高度关注.

三.定义法求最值

在求解有关圆锥曲线的最值问题时, 通常是利用函数的观点, 建立函数表达式进行求解。但是, 一味的强调函数观点, 有时会使思维陷入僵局。这时, 若能考虑用圆锥曲线的定义来求解, 问题就显得特别的简单。

例1、如图,M 是以A 、B 为焦点的双曲线2

2

2x y -=右支上任一点,若点M 到点C (3,1)与点B 的距离之和为S ,则S 的取值范围是( )

A 、)

++∞ B 、)

+∞

C 、-

D 、)

+∞

分析:此题的得分率很低,用函数观点求解困难重重。若能利用双曲线的第一定义,则势如破竹。解法如下:连结MA ,由双曲线的第一定义可得:2MB MC MA a MC +=-+

2MA MC =+-= 当且仅当A 、M 、C 三点共线时取得最小值。如果此题就到

此为止,未免太可惜了!于是笔者进一步引导学生作如下的探究:

(1)如果M 点在左支上,则点M 到点C (3,1)与点B 的距离之和为S ,则S 的取值范围是多少?

(2)如果M 是以A 、B 为焦点的椭圆22143x y +=上任一点,若点M 到点1,12C ??

???

与点B 的距离之差为S ,则S

的最大值是多少?

(3)如果M 是以A 、B 为焦点的椭圆22143x y +=上任一点,若点M 到点1,12C ??

???

与点B 的距离之和为S ,则S

的取值范围是多少?

分析:连结MA ,由椭圆的第一定义可得:

()22MB MC a MA MC a MA MC +=-+=--,当且仅当A 、M 、C 三点共线时取得最大、最小值,如

上图所示。对于抛物线,也有类似的结论,由于较简单,在此就不一一列举了。

练习

1、如图,椭圆C 的方程为22

22 1 (0)y x a b a b

+=>>,A 是椭圆C 的短轴左顶点,过A 点作斜率为-1的直线交

椭圆于B 点,点P (1,0), 且BP ∥y 轴,△APB 的面积为

9

2

. (1)求椭圆C 的方程;(2)在直线AB 上求一点M ,使得以椭圆C 的焦点为焦点,且过M 的双曲线E 的实轴最长,并求此双曲线E 的方程.

分析:同样, 此题若采用函数观点, 问题(2)将变得复杂化!若能利用双曲线的第一定义,则解答就容解易得多了。

简解:(1) ,2

9

21=?=

?PB AP S APB 又∠PAB =45°, AP =PB ,故AP =BP =3.

∵P (1,0),A (-2,0),B (1,-3)

∴ b=2,将B (1,-3)代入椭圆得:2

22

19

1b b a

=??

?+=?? 得 2

12a =,所求椭圆方程为22

1 124

y x +=

(2)设椭圆C 的焦点为F 1,F 2,则易知F 1(0,

-F 2(0

,),

直线AB 的方程为:20x y ++=,因为M 在双曲线E 上,要双曲线E 的实轴最大, 只须||MF 1|-|MF 2||最大,设F 1(0

,-)关于直线AB 的对称点为

1'F

(-2,

-2),则直线'12F F 与直线的交点为所求M , 因为'

12F F

的方程为:(30y x ++-=,

联立(30

20

y x x y ?++-=??

++=?? 得M (1,3-)

又'2a =||MF 1|-|MF 2||=||M 1'F |-|MF 2||21|'|F F ≤

=,故2,6''

max ==

b a ,

故所求双曲线方程为:22

1 62

y x -=

2、已知椭圆以坐标原点为中心,坐标轴为对称轴,且该椭圆以抛物线x y 162=的焦点P 为

其一个焦点,以双曲线19

1622=-y x 的焦点Q 为顶点。 (1)求椭圆的标准方程;

(2)已知点)0,1(),0,1(B A -,且C ,D 分别为椭圆的上顶点和右顶点,点M 是线段CD 上的动点,求BM AM ?的取值范围。

解:(1)抛物线x y 162

=的焦点P 为(4,0),双曲线19

162

2=-y x 的焦点Q 为(5,0) ∴可设椭圆的标准方程为122

22=+b

y a x ,由已知有a>b>0,且a=5,c=4 916252=-=∴b ,∴椭圆的标准方程

19

252

2=+y x (2)设),(00y x M ,线段CD 方程为135=+y

x ,即353+-=x y )50(≤≤x

点M 是线段CD 上,∴35

3

00+-=x y )50(0≤≤x

),1(00y x AM +=,),1(00y x BM -=,12

020-+=?∴y x AM ,

将35300+-

=x y )50(0≤≤x 代入得BM ?1)35

3(202

-+-+=x x BM AM ??85

182534020+-=

x x 34191

)3445(253420+-=x

500≤≤x ,BM AM ?∴的最大值为24,BM AM ?的最小值为34

191

。 BM AM ?∴的取值范围是]24,34

191

[

。 3、一动圆与圆1)1(:2

2

1=+-y x O 外切,与圆9)1(:2

2

2=++y x O 内切. (I)求动圆圆心M 的轨迹L 的方程.

(Ⅱ)设过圆心O 1的直线1:+=my x l 与轨迹L 相交于A 、B 两点,请问2ABO ?(O 2为圆O 2 的圆心)的内切圆N 的面积是否存在最大值?若存在,求出这个最大值及直线l 的方程,若 不存在,请说明理由.

解:(1)设动圆圆心为M(x ,y),半径为R .

由题意,得R MO R MO -=+=3||,1||21,4||||21=+∴

MO MO 由椭圆定义知M 在以O1,O2为焦点的椭圆上,且a=2,c=1,

3142

2

2

=-=-=∴c a b . ∴动圆圆心M 的轨迹L 的方程为13

42

2=+y x (2)如图,设2ABO ?内切圆N 的半径为r ,与直线l 的切点为C ,则三角形2ABO ?的面积

r BO AO AB S ABO |)||||(|21

222++=?r BO BO AO AO |)]||(||)||[(|2

12121+++=r ar 42==

当2ABO S ?最大时,r 也最大,2ABO ?内切圆的面积也最大, 设),(11y x A 、)0,0)(,(2122<>y y y x B , 则21221121||||2

1

||||212y y y O O y O O S ABO -=?+?=

?, (8分) 由???

??=++=134

1

22y x m y x ,得096)43(22=-++my y m ,

解得4

3163221+++-=m m m y ,43163222++--=m m m y , 4

311222

++=∴?m m S ABO ,令12

+=m t ,则t ≥1,且m 2=t 2-1, 有=+-=

?4)1(31222t t S ABO t

t t t 1312

1

3122+

=

+,令t t t f 13)(+=,则213)('t t f -=, 当t ≥1时,0)('>t f ,f(t)在[1,+∞)上单调递增,有4)1()(=≥f t f ,34

12

2=≤

?ABO S , 即当t=1,m=0时,4r 有最大值3,得43max =r ,这时所求内切圆的面积为π16

9

, ∴存在直线2,1:ABO x l ?=的内切圆M 的面积最大值为π16

9

.

微专题26解析几何中的最值与范围问题(教学案)

微专题26 解析几何中的最值与范围问题 1. 利用数形结合或三角换元等方法解决直线与圆中的部分范围问题. 2. 构造函数模型研究长度及面积相关的范围与最值问题. 3. 根据条件或几何特征构造不等关系解决与离心率相关的范围问题. 4. 熟悉线段的定比分点、弦长、面积等问题的处理手段,深刻体会数形结合、等价转化的数学思想方法的运用. 考题导航 利用数形结合或三角换元等方法解决直线与圆 2. 已知实数x 、y 满足方程x 2+y 2-4x +1=0.则y x 的最大值为________;y -x 的最小 值为________;x 2+y 2的最小值为________. 1. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 1. 已知A 、B 分别是椭圆x 36+y 20=1长轴的左、右端点,F 是椭圆的右焦点,点P 在 椭圆上,且位于x 轴的上方,PA ⊥PF.设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于MB ,则椭圆上的点到点M 的距离d 的最小值为________. 1. 已知双曲线为C :x 24-y 2 =1,P 为双曲线C 上的任意一点.设点A 的坐标为(3,0), 则PA 的最小值为________.

1. 如图,椭圆的中心在坐标原点,焦点在x 轴上,A 1,A 2,B 1,B 2为椭圆的顶点,F 2为右焦点,延长B 1F 2与A 2B 2交于点P ,若∠B 1PA 2为钝角,则该椭圆离心率的取值范围是________. 1. 椭圆M :x 2 a 2+y 2 b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上的任意一点, 且|PF 1→|·|PF 2→|的最大值的取值范围是[2c 2 ,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是_______. 1. 如图,在平面直角坐标系xOy 中,椭圆C :x a 2+y b 2=1(a >b >0)的左、右焦点分别 为F 1、F 2,P 为椭圆C 上的一点(在x 轴上方),连结PF 1并延长交椭圆C 于另一点Q ,设PF 1→ =λF 1Q → .若PF 2垂直于x 轴,且椭圆C 的离心率e ∈??? ?12,22,求实数λ的取值范围.

浙江高考数学复习专题四解析几何第3讲圆锥曲线中的定点、定值、最值与范围问题学案

第3讲 圆锥曲线中的定点、定值、最值与范围问题 高考定位 圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一,一般以椭圆或抛物线为背景,试题难度较大,对考生的代数恒等变形能力、计算能力有较高的要求. 真 题 感 悟 (2018·北京卷)已知抛物线C :y 2 =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围; (2)设O 为原点,QM →=λQO →,QN →=μQO → ,求证:1λ+1μ 为定值. 解 (1)因为抛物线y 2 =2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2 =4x . 由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0). 由? ????y 2 =4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2 ×1>0, 解得k <0或0

解析几何范围最值问题(教师)详解

第十一讲 解析几何范围最值问题 解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理. 一、几何法求最值 【例1】 抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足+=(-4,-12). (1)求直线l 和抛物线的方程; (2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值. [满分解答] (1)根据题意可设直线l 的方程为y =kx -2,抛物线方程为x 2=-2py (p >0). 由????? y =kx -2,x 2=-2py , 得x 2+2pkx -4p =0 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 所以+=(-4,-12),所以??? ? ? -2pk =-4,-2pk 2 -4=-12, 解得? ???? p =1,k =2.故直线l 的方程为y =2x -2,抛物线方程为x 2=-2y . (2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大. 对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2,y 0=-12x 20=-2,即P (-2,-2). 此时点P 到直线l 的距离d = |2·(-2)-(-2)-2|22+(-1)2 =45=4 5 5. 由? ???? y =2x -2, x 2=-2y ,得x 2+4x -4=0,则x 1+x 2=-4,x 1x 2=-4, |AB |= 1+k 2· (x 1+x 2)2-4x 1x 2= 1+22·(-4)2-4·(-4)=4 10. 于是,△ABP 面积的最大值为12×4 10×4 55=8 2. 二、函数法求最值 【示例】在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的离心率e = 2 3 ,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程; (2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由. (1)由e =c a = a 2- b 2 a 2= 23,得a =3 b ,椭圆C :x 23b 2+y 2 b 2=1,即x 2+3y 2=3b 2,

解析几何中的定点和定值问题精编版

解析几何中的定点定值问题 考纲解读:定点定值问题是解析几何解答题的考查重点。此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。 一、 定点问题 解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。 例1、已知A 、B 是抛物线y 2 =2p x (p >0)上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β= 4 π 时,证明直线AB 恒过定点,并求出该定点的坐标。 解析: 设A ( 121 ,2y p y ),B (222 ,2y p y ),则 2 1 2tan , 2tan y p y p ==βα,代入1)tan(=+βα 得2 21214)(2p y y y y p -=+ (1) 又设直线AB 的方程为b kx y +=,则 022222 =+-????=+=pb py ky px y b kx y ∴k p y y k pb y y 2,22121= += ,代入(1)式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点(-)2,2p p 说明:本题在特殊条件下很难探索出定点,因此要从已知出发,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点。 例2.已知椭圆C :22 221(0)x y a b a b +=>> ,以原点为圆心,椭圆的短半轴长为半径的 圆与直线0x y -相切. ⑴求椭圆C 的方程; ⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围; ⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.

2019-2020年高考数学二轮复习难点2.9解析几何中的面积,共线,向量结合的问题教学案文

2019-2020年高考数学二轮复习难点2.9解析几何中的面积,共线,向量结合的 问题教学案文 圆锥曲线是解析几何部分的核心内容,以计算量大、方法灵活、技巧性强著称,既是中学数学的重点、难点,也是历年高考的热点,常以压轴题的形式出现.而直线与圆锥曲线的位置关系,集中交汇了解析几何中直线与圆锥曲线的内容, 特别是解析几何中的面积,共线,向量结合的问题是圆锥曲线综合题,解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的.综合题中常常离不开直线与圆锥曲线的位置,因此,要树立将直线与圆锥曲线方程联立,应用判别式、韦达定理的意识.解析几何应用问题的解题关键是建立适当的坐标系,合理建立曲线模型,然后转化为相应的代数问题作出定量或定性的分析与判断.常用的方法:数形结合法,以形助数,用数定形. 在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份――对称性、利用到角公式)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等. 1解析几何中的面积问题 解析几何中某些问题,可以通过三角形面积的等量关系去解.研究方法:先选定一个易于计算面积的几何图形,再用不同方法计算同一图形面积,得到一个面积等式;或是用一图形面积等于其它图形面积的和或差.在教学时,适当讲解此法,是开拓学生思路,提高数学教学质量的有效手段之一. 例1【西南名校联盟高三2018年元月考试】已知抛物线2 :8C y x =上的两个动点()11,A x y , ()22,B x y 的横坐标12x x ≠,线段AB 的中点坐标为()2,M m ,直线:6l y x =-与线段AB 的垂直平分线相交于点Q . (1)求点Q 的坐标; (2)求AQB ?的面积的最大值. 思路分析:(1)根据题设条件可求出线段AB 的斜率,进而求出线段AB 的垂直平分线方程,联立直线 :6l y x =-与线段AB 的垂直平分线方程,即可求出点Q 的坐标; (2)联立直线AB 与抛物线C 的方程,结合韦达定理及弦长公式求出线段AB 的长,再求出点Q 到直线AB 的距离,即可求出AQB S 的表达式,再构造新函数,即可求出最大值.

解析几何三角形面积问题答案

解析几何三角形面积问题答案 1、解: (Ⅰ)由题意知,曲线C 是以12,F F 为焦点的椭圆. ∴2,1,a c ==2 3b ∴= 故曲线C 的方程为: 2 2 14 3 x y + =. 3分 (Ⅱ)设直线l 与椭圆 2 2 14 3 x y + =交点1122(,),(,)A x y B x y , 联立方程22 3412 y x b x y =-+??+=?得22 784120x bx b -+-= 4分 因为2 48(7)0b ?=->,解得2 7b <,且2 12128412 ,7 7 b b x x x x -+= = 5分 点O 到直线l 的距离d = 6分 AB = = 9分 ∴12 AO B S ?=? = 10分 ≤ 当且仅当227b b =-即2 772 b = <时取到最大值. ∴A O B ? . 12分 2、解:(1)依题意可得???? ?-= -+= +, 12,12c a c a 解得.1,2==c a 从而.1,22 2 2 2 =-==c a b a 所求椭圆方程为 .12 2 2 =+x y …………………4分 (2)直线l 的方程为.1+=kx y 由?????=++=,12 , 12 2x y kx y 可得() .01222 2=-++kx x k 该方程的判别式△=()2 2 2 88244k k k +=++>0恒成立. 设()(),,,,2211y x Q y x P 则.2 1,222 212 21+- =+-=+k x x k k x x ………………5分 可得().2 4 22 2121+= ++=+k x x k y y 设线段PQ 中点为N ,则点N 的坐标为.22 , 22 2?? ? ??++-k k k ………………6分

解析几何最值问题

解析几何最值问题的赏析 丹阳市珥陵高级中学数学组:李维春 教学目标:1.掌握解析几何中图形的处理方法和解析几何中变量的选择; 2.掌握利用基本不等式和函数的思想处理最值问题. 重点难点:图形的处理和变量的选择及最值的处理. 问题提出: 已知椭圆方程:14 32 2=+y x ,A ,B 分别为椭圆的上顶点和右顶点。过原点作一直线与线段AB 交于点G ,并和椭圆交于E 、F 两点,求四边形AEBF 面积的最大值。 问题分析: 1、 图形的处理: 不规则图形转化为规则图形(割补法) ABF ABE AENF S S S ??+= BEF AEF AENF S S S ??+= 2、 变量的选择: (1) 设点:设点),(00y x E 则),(00y x F --,可得到二元表达式; (2) 设动直线的斜率k (可设AF,BF,EF,AE,BE 中任意一条直线的斜率),可得 一元表达式。 3,最值的处理方法: (1) 一元表达式可用基本不等式或函数法处理; (2) 二元表达式可用基本不等式或消元转化为一元表达式。 X

问题解决: 解法一: 由基本不等式得62 24)34(2322 02000==+≤+=y x y x S 时取“=” 当且仅当0032 y x = 解法二: 00000 0(,),(,),(0,0)x y F x y x y -->>设E ,四边形的面积为S (0,2),A B 因为,12 y += 20x +-=即1d =点E 到直线的距离:00( ,)x y 因为E 在直线AB 的上方,0020x ->所以1d =所以2d =点F 到直线的距离:00(,)x y --因为F 在直线的下方2d =所以)(21)(212121d d AB d AB d AB S +=+=002S x =+所以AB =因为00(,)F x y 又因为22134 x y +=在椭圆上22004312x y +=所以max S =所以

解析几何中的最值问题.

解析几何中的最值问题 解析几何中的最值问题是很有代表性的一类问题,具有题形多样,涉及知识面广等特点。解决这类问题,需要扎实的基础知识和灵活的解决方法,对培养学生综合解题能力和联想思维能力颇有益处。本文通过实例,就这类问题的解法归纳如下: 一、 转化法 例1、 点Q 在椭圆 22 147 x y +=上,则点Q 到直线32160x y --=的距 离的最大值为 ( ) A B C D 分析:可转化为求已知椭圆平行于已知直线的切线,其中距离已知直线较远的一条切线到该直线的距离即为所求的最大值。 解:设椭圆的切线方程为 3 2 y x b =+,与 22 147 x y +=消去y 得 224370x bx b ++-=由?=01272=+-b 可得4(4)b b ==-舍去,与 32160x y --=平行且距离远的切线方程为3280x y -+= 所以所求最大值为d = = ,故选C 二 、配方法 例2、 在椭圆 22 221x y a b +=的所有内接矩形中,何种矩形面积最大? 分析:可根据题意建立关系式,然后根据配方法求函数的最值。 解:设椭圆内接矩形在第一象限的顶点坐标为A (),x y ,则由椭圆对称性,矩形的长为2x ,宽为2y ,面积为4xy ,与 22 221x y a b +=消去 y 得: 22b S x a =?=

可知当x a = 时,max 2S ab = 三、 基本不等式法 例3、 设21,F F 是椭圆14 22 =+y x 的两个焦点,P 是这个椭圆上任一点,则21PF PF ?的最大值是 解: 124PF PF += 由12PF PF +≥得 44 )(2 2121=+≤ ?PF PF PF PF 即21PF PF ?的最大值是4 。 四、 利用圆锥曲线的统一定义 例4 、设点A (-,P 为椭圆22 11612 x y +=的右焦点,点 M 在椭 圆上,当取2AM PM +最小值时,点M 的坐标为 ( ) A (- B (- C D 解:由已知得椭圆的离心率为1 2 e = , 过M 作右准线L 的垂线,垂足为N ,由圆锥曲线的统一定义得 2MN PM = 2AM PM AM MN ∴+=+ 当点M 运动到过A 垂直于L 的直线上时, AM MN +的值最小,此时点M 的坐标为,故选 C 五、 利用平面几何知识 例5 、平面上有两点(1,0),(1,0)A B -,在圆22 (3)(4)4x y -+-=上取一点 P ,求使22 AP BP +取最小值时点P 的坐标。

解析几何中的与三角形面积相关的问题

解析几何中的与三角形面积相关的问题 类型 对应典例 椭圆中有关三角形的面积最值 典例1 抛物线中有关三角形的面积最值 典例2 椭圆中有关三角形的面积的取值范围 典例3 抛物线中有关三角形的面积的取值范围 典例4 椭圆中由三角形面积问题求参数值或范围 典例5 抛物线中由三角形面积问题求参数值或范围 典例6 椭圆中由三角形面积问题求直线方程 典例7 抛物线中由三角形面积问题求直线方程 典例8 【典例1】已知椭圆C :()222210x y a b a b +=>>的离心率为2 2 ,且与抛物线x y =2交于M ,N 两点,OMN ?(O 为坐标原点)的面积为22 (1)求椭圆C 的方程; (2)如图,点A 为椭圆上一动点(非长轴端点)1F ,2F 为左、右焦点,2AF 的延长线与椭圆交于B 点,AO 的延长线与椭圆交于C 点,求ABC ?面积的最大值. 【解析】(1)椭圆22 22:1(0)x y C a b a b +=>>与抛物线x y =2交于M ,N 两点, 可设(M x x ,(,)N x x -, ∵OMN ?的面积为22 ∴22x x =2x =,∴2)M ,(2,2)N , 由已知得222222 242 1c a a b a b c ?=? ??+=??=+??? ,解得22a =2b =,2c =,

∴椭圆C 的方程为22 184 x y +=. (2)①当直线AB 的斜率不存在时,不妨取A ,(2,B ,(2,C -,故 1 42 ABC ?=?=; ②当直线AB 的斜率存在时,设直线AB 的方程为(2)y k x =-,()11,A x y ,()22,B x y , 联立方程22(2)18 4y k x x y =-???+=??,化简得()2222 218880k x k x k +-+-=, 则()()()2222 64421883210k k k k ?=-+-=+>, 2122821k x x k +=+,212288 21 k x x k -?=+, ||AB = = 22121k k +=+, 点O 到直线02=-- k y kx 的距离d = = , 因为O 是线段AC 的中点,所以点C 到直线AB 的距离为2d = , ∴1 ||22ABC S AB d ?= ?2211221k k ??+=? ?+?? = ∵ () () ()()22222 2 2 2211211k k k k k k k ++= ?? +++??() () 222211 4 41k k k k += +,又221 k k ≠+ ,所以等号不成立. ∴ ABC S ?=< 综上,ABC ?面积的最大值为 【典例2】已知抛物线()02:2>=p py x C ,其焦点到准线的距离为2,直线l 与抛物线C 交于A ,

解析几何中的最值问题教案

解析几何中的最值问题 一、教学目标 解析几何中的最值问题以直线或圆锥曲线作为背景,以函数和不等式等知识作为工具,具有较强的综合性,这类问题的解决没有固定的模式,其解法一般灵活多样,且对于解题者有着相当高的能力要求,正基于此,这类问题近年来成为了数学高考中的难关。基本内容:有关距离的最值,角的最值,面积的最值。 二、教学重点 方法的灵活应用。 三、教学程序 1、基础知识 探求解析几何最值的方法有以下几种: (1)函数法(设法将一个较复杂的最值问题,通过引入适当的变量能归为某初等函数(常见)的有二次函数和三角函数)的最值问题,然后通过对该函数单调性和最值的考察使问题得以解决。 (2)不等式法:(常用的不等式法主要有基本不等式等) (3)曲线定义法:利用圆锥曲线的定义刻画了动点与动点(或定直线)距离之间的不变关系,一般来说涉及焦半径、焦点弦的最值问题可以考虑该方法 (4)平面几何法:有些最值问题具有相应的几何意义(如分式最值联想到斜率公式,求平方和最值联想到距离公式等等) (1)函数法 例1、已知P 点在圆()2241x y +-=上移动,Q 点在椭圆2 219 x y +=上移动,试求PQ 的最大值。 分析:两个都是动点,看不出究竟,P 、Q 在什么位置时|PQ|最大 故先让Q 点在椭圆上固定,显然当PQ 通过圆心O 1时|PQ|最大,因此要求|PQ| 的最大值,只要求|OQ|的最大值。 说明:函数法其我们探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数等,值得注意的是函数自变量取值范围的考察不易忽视。 例2 在平面直角坐标系xOy 中,点(),P x y 是椭圆2 213 x y +=上的一个动点,求S x y =+的最大值 (2)不等式法

解析几何范围最值问题(教师)解答

讲 解析几何范围最值问题 解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、 范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适 变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据 问题的实际情况灵活处理 一、几何法求最值 【例1】 抛物线的顶点 0在坐标原点,焦点在 y 轴负半轴上,过点 M(0,- 2)作直线I 与抛物线相交于 A , B 两点,且满足+= (— 4,— 12). (1)求直线I 和抛物线的方程; (2)当抛物线上一动点 P 从点A 运动到点B 时,求△ ABP 面积的最大值. [满分解答](1)根据题意可设直线I 的方程为y = kx —2,抛物线方程为x 2= — 2py(p > 0). y = kx — 2, 2 由 5 2 得 X + 2pkx — 4p = 0 X = — 2P y , 设点 A(X 1, y 1), B(X 2, y 2),贝 U X 1 + X 2= — 2pk ,力十 y 2= k(x 1 + X 2) — 4 =— 2p k 2— 4. 所以+= (— 4,— 12),所以—2Pk = —4, -2p k 2— 4 =— 12, 解得P = 1 , 故直线I 的方程为y = 2x — 2,抛物线方程为x 2=— 2y. k = 2. ⑵设P (X 0, y o ),依题意,知当抛物线过点 P 的切线与I 平行时,△ ABP 的面积最大. 对 y = — 1x 2 求导,得 y '=— X ,所以一X o = 2, 即卩 X o =— 2, y o = — ^x 0=— 2,即 P( — 2,— 2). 此时点P 到直线I 的距离d =書+简口峙=呼 [y = 2x — 2, 2 由 b 一 2y ,得 x + 4x -4= 0,则 x1 + x2=- 4, x1x2=- 4, |AB|=(1 + k 2 ? p (X 1 + X zf — 4X 1X 2 = 5 + 22 ?寸(—钉-4 ?(-4尸 4^10. 于是,△ ABP 面积的最大值为2x 4 锁 X 4-^5= 8返. 二、函数法求最值 2 2 【示例】在平面直角坐标系 xOy 中,已知椭圆C :字+器=1(a >b >0)的离心率e = 点Q(0,2)的距离的最大值为 3. (1)求椭圆C 的方程; n),使得直线I : mx + ny = 1与圆0: x 2+ y 2= 1相交于不同的两点 A 、B , M 的坐标及对应的^ OAB 的面积;若不存在,请说明理由. 2 2 a={3b ,椭圆 C :和 + 器=1,即卩 X 2+ 3y 2= 3b 2, (2)在椭圆C 上,是否存在点 M(m , <△ OAB 的面积最大?若存在,求出点 a ^= (1)由 e = a = ,且椭圆C 上的点到

解析几何中求参数取值范围的方法_答题技巧

解析几何中求参数取值范围的方法_答题技巧 近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。那么,如何构造不等式呢?本文介绍几种常见的方法: 一、利用曲线方程中变量的范围构造不等式 曲线上的点的坐标往往有一定的变化范围,如椭圆x2a2 + y2b2 = 1上的点P(x,y)满足-aa,-bb,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法. 例1 已知椭圆x2a2 + y2b2 = 1 (a0), A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0 , 0) 求证:-a2-b2a a2-b2a 分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解. 解: 设A,B坐标分别为(x1,y1) ,(x2,y2),(x1x2)代入椭圆方程,作差得: y2-y1x2-x1 =-b2a2 x2+x1 y2+y1 又∵线段AB的垂直平分线方程为 y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 ) 令y=0得x0=x1+x22 a2-b2a2 又∵A,B是椭圆x2a2 + y2b2 = 1 上的点 -aa, -aa, x1x2 以及-ax1+x22 a -a2-b2a a2-b2a 例2 如图,已知∵OFQ的面积为S,且OFFQ=1,若12 2 ,求向量OF与FQ的夹角的取值范围. 分析:须通过题中条件建立夹角与变量S的关系,利用S的范围解题.

解析几何中的范围问题

解析几何中的范围问题 一般解题思路是,首先寻觅出(或直接利用)相关的不等式,进而通过这一不等式的演变解出有关变量的取值范围。 一、“题设条件中的不等式关系” 题设条件中明朗或隐蔽的不等关系,可作为探索或寻觅范围的切入点而提供方便。 例1、(2004全国卷 I )椭圆 的两个焦点是 ,且 椭圆上存在点P 使得直线 垂直.求实数m 的取值范围; 分析:对于(1),要求m 的取值范围,首先需要导出相关的不等式,由题设知,椭圆方程为标准方程,应有 , 便是特设条件 中隐蔽的不等关系. 解:(1)由题设知 设点P 坐标为 ,则有 得① 将①与 联立,解得 ∵m>0,且 ∴m≥1 即所求m 的取值范围为 . 二、“圆锥曲线的有关范围” 椭圆、双曲线和抛物线的“范围”,是它们的第一几何性质。 例2、已知椭圆以坐标原点为中心,坐标轴为对称轴,且该椭圆以抛物线x y 162 =的焦点P 为其一个焦点,以双曲线19 162 2=-y x 的焦点Q 为顶点。 (1)求椭圆的标准方程; (2)已知点)0,1(),0,1(B A -,且C ,D 分别为椭圆的上顶点和右顶点,点M 是线段CD 上的动点,求BM AM ?的取值范围。 解:(1)抛物线x y 162 =焦点P 为(4,0),双曲线19 162 2=-y x 的焦点Q 为(5,0) ∴可设椭圆的标准方程为122 22=+b y a x (a>b>0),且a=5,c=4

916252 =-=∴b ,∴椭圆的标准方程为 19 252 2=+y x (2)设),(00y x M ,线段CD 方程为135=+y x ,即353+-=x y )50(≤≤x 点M 是线段CD 上,∴35 3 00+-=x y )50(0≤≤x ),1(00y x AM +=,),1(00y x BM -=,12 020-+=?∴y x AM , 将35300+- =x y )50(0≤≤x 代入得BM ?1)35 3(202 0-+-+=x x BM AM ??85 182534020+-= x x 34191 )3445(253420+-=x 500≤≤x , BM AM ?∴的最大值为24,BM AM ?的最小值为34 191 。 BM AM ?∴的范围是]24,34 191 [。 三、“一元二次方程有二不等实根的充要条件” 在直线与曲线相交问题中,直线与某圆锥曲线相交的大前提,往往由“相关一元二次方程有二不等实根”来体现。因此,对于有关一元二次方程的判别式△>0,求某量的值时,它是去伪存真的鉴别依据,求某量的取值范围时,它是导出该量的不等式的原始不等关系。 例3、如图,直角梯形ABCD 中∠DAB =90°,AD ∥BC ,AB =2,AD =23,BC =2 1 .椭圆C 以A 、B 为焦点且经过点D . (1)建立适当坐标系,求椭圆C 的方程; (2)若点E 满足EC 2 1 = AB ,问是否存在不平行AB 的直线l 与椭圆C 交于M 、N 两点且||||NE ME =,若存在,求 出直线l 与AB 夹角的范围,若不存在,说明理由. 解:(1)以AB 所在直线为x 轴,AB 中垂线为y 轴建立直角坐标系,则 A (-1,0),B (1,0) 设椭圆方程为:12222=+b y a x 令c b y C x 2 0=?= ∴?? ?==??????= =322 31 2 b a a b C ∴ 椭圆C 的方程是:13 42 2=+y x 。 (2)1(02EC AB E =?,)2 1 ,l ⊥AB 时不符,设l : y =kx +m (显然k ≠0)

高中数学教学论文在解析几何中求参数范围的种方法

从高考解几题谈求参数取值范围的九个背景 解析几何中确定参数的取值范围是一类转为常见的探索性问题,历年高考试题中也常出现此类问题。由于不少考生在处理这类问题时无从下手,不知道确定参数范围的函数关系或不等关系从何而来,本文通过一些实例介绍这类问题形成的几个背景及相应的解法,期望对考生的备考有所帮助。 背景之一:题目所给的条件 利用题设条件能沟通所求参数与曲线上点的坐标或曲线的特征参数之间的联系,建立不等式或不等式组求解。这是求范围问题最显然的一个背景。 例1:椭圆),0(1 22 22为半焦距c b c a b y a x >>>=+的焦点为F 1、F 2,点P(x , y )为其 上的动点,当∠F 1PF 2为钝角时,点P 的横坐标的取值范围是___。 解:设P(x 1, y ),∠F 1PF 2是钝角?cos∠F 1PF 2 =||||2||||||2 12 212221PF PF F F PF PF ?-+ 222212221)(||||||0y c x F F PF PF ++?<+?<2)(c x -+2 2224y x c y +?<+22 22222222 2 )(x a b a c x a a b x c -?<-+?<)(2 222222b c c a x b c -

常见解析几何中的一些最值问题 人教版

常见解析几何中的一些最值问题 张凤仙 (贵州师范大学 数学与计算机科学学院 贵州贵阳 550001) 摘要:有关解析几何中的最值问题,在中学数学中较为常见,相对高中数学的其他分科如代数、立体几何、三角中的最值问题,它亦占据了相当的比重,以下将从具体的实例出发,分析并介绍几种比较典型的解题方法,找出一般的解题程序与技巧。 关键词:最值;函数解析式;二次函数;自变量;已知量 引言: 中学数学的最值问题遍及代数、三角、立体几何及解析几何各学科中,在生产实践当中也有广泛的应用,也是历届各类考试的热点。学习如何利用一定的数学方法来解决这类问题,能够提高分析问题和解决问题的能力,也是进一步为学习高等数学中的最值问题打下基础。下面将针对解析几何中的最值问题,作出几种具体分类讨论: 一、利用二次函数的知识求最值 关于二次函数: y=ax2+bx+c (a≠0),x ∈R 当x= -a b 2时,y=a b ac 442 -为最值。 当a>0时,有ymin 当a<0时,有ymax 但通常二次函数有相应的定义域,自变量x 的具体取值范围有所不同,讨论最值的方式也有所不同。主要有两种情况: 1、x ∈R ,当a>0,则有ymin=a b ac 442 - 当a<0,则有ymax=a b ac 442- 2、当x 定义在闭区间,即x ∈[a ,b](a,b 为常数),则应当看对称轴x= -a b 2 是否在此区间,如果x 在此区间,则函数同时有最大值与最小值,如果x 不在此区间,则函数的最大值与最小值必定分别取在该区间两个端点上(具体由函数单调性决定)。 当x 定义在一个含参数的闭区间即∈x [t, t+a](t 为参数,a 为常数)时,需要对参数进行讨论。 例1.1 已知二次函数y=x2-x 2sec α+αα 2 cos 22sin 2+(α为参数,cos α≠0) ①求证此抛物线系的顶点轨迹为双曲线。 ②求抛物线y=x2+2x+6到上述双曲线的渐近线的最短距离。 分析:由于该二次函数y 的定义域为R ,所以这道题应归结于上述类别1。 对于问题①虽然所给解析式中含有参数,(为抛物线系)但实际上它是一个关于自变量x 的二次函数,通过配方,可对其变形,得到该抛物线的顶点,观察后可以判断这是一个含有参数α的轨迹方程。此时,消掉参数即可求解;对于问题②,已知某抛物线方程及已经求得的双曲线方程,要求该抛物线到该双曲线的渐近线的最短距离即为求某动点到定直线的距离,首先应该把该动点设出,其次要确定该直线的方程,这样方可根据点到直线的距离公式,得出所求最值的函数对象,从而求得最值。随之确定这个点。 解:① 由y=x2-2xsec α+αα 2 cos 22sin 2+ ?y=x-2xsec α+sec2 αααα22cos 22sin 2sec ++ -

高中数学解析几何中求参数取值范围的方法-

高中数学解析几何中求参数取值范围的方法 近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。那么,如何构造不等式呢?本文介绍几种常见的方法: 一、利用曲线方程中变量的范围构造不等式 曲线上的点的坐标往往有一定的变化范围,如椭圆x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法. 例1 已知椭圆x2a2 + y2b2 = 1 (a>b>0), A,B是椭圆上的两点,线段AB的垂直平分线与x 轴相交于点P(x0 , 0) 求证:-a2-b2a ≤x0 ≤a2-b2a 分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B 满足的范围求解. 解: 设A,B坐标分别为(x1,y1) ,(x2,y2),(x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 =-b2a2 ?x2+x1 y2+y1 又∵线段AB的垂直平分线方程为 y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 ) 令y=0得x0=x1+x22 ?a2-b2a2 又∵A,B是椭圆x2a2 + y2b2 = 1 上的点 ∴-a≤x1≤a, -a≤x2≤a, x1≠x2 以及-a≤x1+x22 ≤a ∴-a2-b2a ≤x0 ≤a2-b2a 例2 如图,已知△OFQ的面积为S,且OF?FQ=1,若12 < S <2 ,求向量OF与FQ的夹角θ的取值范围. 分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题. 解: 依题意有 ∴tanθ=2S ∵12 < S <2 ∴1< tanθ<4 又∵0≤θ≤π ∴π4 <θ< p> 例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是( ) A a<0 B a≤2 C 0≤a≤2 D 0<2< p> 分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解. 解: 设Q( y024 ,y0) 由|PQ| ≥a 得y02+( y024 -a)2≥a2 即y02(y02+16-8a) ≥0 ∵y02≥0 ∴(y02+16-8a) ≥0即a≤2+ y028 恒成立 又∵y02≥0 而2+ y028 最小值为2 ∴a≤2 选( B )

解析几何中面积问题的研究与拓展

专题7.22:解析几何中面积问题的研究与拓展 【探究拓展】 探究1:如图,设A ,B 分别为椭圆22 22:1(0)x y E a b a b +=>>的右顶点和上顶点,过原点O 作直线交线段 AB 于点M (异于点A ,B ),交椭圆于C ,D 两点(点C 在第一象限),ABC ?和ABD ?的面积分别为1S 与2S . (1)若M 是线段AB 的中点,直线OM 的方程为1 3 y x =,求椭圆的离心率; (2)当点M 在线段AB 上运动时,求 1 2 S S 的最大值. 解:(1)23 2 = e ; (2)设),(),,(0000y x D y x C --,(0,000>>y x ) ab ay bx ab ab ay bx ab ay bx ab ay bx ab ay bx S S ++- =++-+=----+=000000000021 21 令00ay bx t += 1:三角换元:??? ??+= 4sin 2πθt ?? ? ??∈2,0(πθ), 当且仅当2= t 时(此时4 π θ= 时等号成立), 2 1 S S 可取得最大值223- 2:基本不等式的应用:2 2 2 2 02 02 1)()(t b a ay bx ≥ =+,同理可得结果 椭圆的外切矩形的对角线和椭圆的交点处的切线必和另一条对角线平行; 且在该交点处,此时21,S S ,2 1 S S 都是最大的. 探究2:如图,椭圆22122:1(0)x y C a b a b +=>> 的离心率为2,x 轴被曲线2 2:C y x b =- 截得的线段 长等于C 1的长半轴长 (1)求C 1,C 2的方程;

解析几何中最值问题的解题策略

解析几何中最值问题的解题策略 圆锥曲线中最值问题的基本解法有几何法和代数法。其中,代数法是建立求解目标关于某个或某两个变量的函数,通过运用基本不等式或构造函数等来求解函数的最值。下面我们来介绍运用基本不等式的方法来解决圆锥曲线的一个优美性质。 例题1.已知(0,2)A ,椭圆2222:1(0)x y E a b a b +=>> 的离心率为2,右焦点F ,直线AF 的斜率为3 - ,O 是坐标原点。 (1)求E 的方程; (2)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ?的面积最大时,求l 的方程。 解:(1)2 2:14 x E y += (2)由题意直线l 的斜率存在,设:2l y kx =+ 联立22 2 14 y kx x y =+???+=? ?消y 得22 (41)16120k x kx +++=,22316(43)0,4k k ?=->>得 122|||41PQ x x k -==+ 原点O 到直线PQ 的距离 所以221 443||1241 OPQ k S PQ d k ?+-=?==≤=+ 当2273 44 k = > 时,取等号,此时:2l y x =+ 先来解析这道题,应用了两个公式: 一. 弦长公式212|||,PQ x x a x a -=是的系数 二. ,0,0,=2 a b a b a b +≤ >>=当时,不等式式取“”号 我们运用这两个知识来证明该题型具有的一般性结论 例题2.已知22 22:1(0)x y E a b a b +=>>,设过点(0,)A m 的动直线l 与E 相交于,P Q 两点,

当OPQ ?的面积最大时,求l 的方程。 解:由题意直线l 的斜率存在,设:l y kx m =+ 联立22221 y kx m x y a b =+???+=??消y 得2222222222 ()20a k b x a b kmx a m a b +++-=, 22 22 2 2 2 2 2 2 4(),m b a b a k b m k a -?=+-> 222||PQ a k b =+原点O 到直线PQ 的距离所以 1||2OPQ S PQ d ?=?== 22222222 ()2()2 m a k b m ab ab a k b ++-≤=+ 当2222222222a k b m m a k b m +-=+=,即时,取等号。由此我们得出一个一般性结论: 若直线l 的斜率k 为定值,当222 2 +=2a k b m 时,OPQ S ?有最大值2 ab 若直线l 的截距m 为定值,且满足2 2 2m b ≥,当22 2 22-=m b k a 时,OPQ S ?有最大值2 ab 若2 2 2m b <,当22 2 2 2-=0m b k a <时,OPQ S ?取不到最大值2 ab ,此时不能用基本不等式求最值。我们得探索其他求最值的方法,用构造函数法或放缩法可以证明,当=0k 时,OPQ S ?有最大值,下面我们再看一道例题。 例题3已知动圆P 与圆22 1:(2)49F x y ++=相切,且与圆1)2(:222=+-y x F 相内切,记 圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设Q 为曲线C 上的一个不在x 轴上的动点,O 为坐标原点,过点2F 作OQ 的平行线交曲线C 于,M N 两个不同的点, 求△QMN 面积的最大值.

相关文档
最新文档