大学物理教程 上课后习题 答案

大学物理教程 上课后习题 答案
大学物理教程 上课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2

1-4 1-12

1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求:

(1) 质点的运动轨迹;

(2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。

解:(1)由运动方程消去时间t 可得轨迹方程,将t =

或1

(2)将1t s =和2t s =代入,有

11r i =, 241r i j =+

位移的大小 231r =+= (3) 2x dx

v t dt

=

= 2x

x dv a dt

==, 2y y dv a dt == 当2t s =时,速度和加速度分别为

22a i j =+ m/s 2

1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量。求(1)质点的速度;(2)速率的变化率。

解 (1)质点的速度为

(2)质点的速率为

速率的变化率为 0dv

dt

= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。

解 由于 4d t dt

θ

ω=

= 质点在t 时刻的法向加速度n a 的大小为 角加速度β的大小为 24/d rad s dt

ω

β== 77

页2-15, 2-30, 2-34,

2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用下,由

静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。

解 由冲量的定义,有

2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力(空

气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。

解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 即

dv k

dt v m

=- 两边积分,速度v 与时间t 的关系为

2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球半

径的2倍(即2R ),试以,m R 和引力恒量G 及地球的质量M 表示出:

(1) 卫星的动能;

(2) 卫星在地球引力场中的引力势能.

解 (1) 人造卫星绕地球做圆周运动,地球引力作为向心力,有

卫星的动能为 212

6k GMm

E mv R

==

(2)卫星的引力势能为

2-37 一木块质量为1M kg =,置于水平面上,一质量为2m g =的子弹以500/m s 的速度

水平击穿木块,速度减为100/m s ,木块在水平方向滑行了20cm 后停止。求:

(1) 木块与水平面之间的摩擦系数; (2) 子弹的动能减少了多少。

解 子弹与木块组成的系统沿水平方向动量守恒

对木块用动能定理

得 (1) 2212()2m v v Mgs

μ-==

322

(210)(500100)0.16219.80.2-??-=???

(2) 子弹动能减少

114页3-11,3-9,

例3-2 如图所示,已知物体A 、B 的质量分别为A m 、B m ,滑轮C 的质量为C m ,半径

为R ,不计摩擦力,物体B 由静止下落,

(1)物体A 、B 的加速度; (2)绳的张力;

(3)物体B 下落距离L 后的速度。 分析: (1)本题测试的是刚体与质点的综合运动,由于滑轮有质量,在运动时就变成含

有刚体的运动

了。滑轮在作定轴转动,视为圆盘,转动惯量为212

J mR =。

(2)角量与线量的关系:物体A 、B 的加速度就是滑轮边沿的切向加速度,有t a R β=。 (3)由于滑轮有质量,在作加速转动时滑轮两边绳子拉力12T T ≠。 分析三个物体,列出三个物体的运动方程: 物体A 1A T m a = 物体B 2B B m g T m a -=

物体C ''22111()2

2

C C T T R J m R m Ra ββ-=== 解 (1)1

2

B A B C

m g a m m m =

++。

(2)112A B A B C m m g T m m m =++, 21()21

2

A C A

B C

m m g T m m m +=++。

(3)对B

来说有,22

02v v aL

v -===

2g

2

2 例3-4 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,

若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量22

1mR J =,其中m 为圆形平板的质量)

分析: 利用积分求圆形平板受桌面的摩擦力矩,运用转动定律求出平板的角加速度,再用运动学公式求转动的圈数.

解:在距圆形平板中心r 处取宽度为dr 的环带面积,环带受桌面的摩擦力矩为 总摩擦力矩为

故平板的角加速度为

可见圆形平板在作匀减速转动,又末角速度0ω=,因此有 设平板停止前转数为n ,则转角2n θπ=,可得

3-2:如题3-2图所示,两个圆柱形轮子内外半径分别为R 1和R 2,质量分别为M 1和M 2。二者同轴固结在一起组成定滑轮,可绕一水平轴自由转动。今在两轮上各绕以细绳,细绳分别挂上质量为m 1和m 2的两个物体。求在重力作用下,定滑轮的角加速度。

解:

m 1:1111a m g m T =-

m 2:2

222a m T g m =- 转动定律:βJ T R T R =-1122

其中:

2

2

22

112

121R M R M J += 运动学关系:

2

211R a R a =

解得:

2

2

2221111122)2/()2/()(R m M R m M g

R m R m +++-=β

3-6 一质量为m 的质点位于(11,y x )处,速度为j v i v v y x

+=, 质点受到一个沿x 负方向

的力f 的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩.

解: 由题知,质点的位矢为 作用在质点上的力为

所以,质点对原点的角动量为 作用在质点上的力的力矩为

3-11 如题3-11图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转

动,杆于水平位置由静止开始摆下.求:

(1)初始时刻的角加速度; (2)杆转过

θ角时的角速度. 解: (1)由转动定律,有 则 l

g 23=

β (2)由机械能守恒定律,有

22110232

()-=l

ml ωmg sin θ

题3-11图

所以有 l

g θ

ωsin 3=

3-13 一个质量为M 、半径为R 并以角速度ω转动着的飞轮 (可看作匀质圆盘),在某一

瞬时突然有一片质量为m 的碎片从轮的边缘上飞出,见题3-13图.假定碎片脱离飞轮时的瞬时速度方向正好竖直向上.

(1)问它能升高多少?

(2)求余下部分的角速度、角动量和转动动能. 解: (1)碎片离盘瞬时的线速度即是它上升的初速度

设碎片上升高度h 时的速度为v ,则有 题3-13图 令0=v ,可求出上升最大高度为

(2)圆盘的转动惯量212

=J MR ,碎片抛出后圆盘的转动惯量2212

'=-J MR mR ,碎片脱离前,盘的角动量为J ω,碎片刚脱离后,碎片与破盘之间的内力变为零,但内力不影响系统的总角动量,碎片与破盘的总角动量应守恒,即 式中ω'为破盘的角速度.于是 得ωω=' (角速度不变)

圆盘余下部分的角动量为 转动动能为

258页8-2,8-12,8-17

8-7 试计算半径为R 、带电量为q 的均匀带电细圆环的轴线(过环心垂直于圆环所在平

面的直线)上任一点P 处的场强(P 点到圆环中心的距离取为x ).

解 在圆环上任取一电荷元dq ,其在P 点产

生的场强为 (

)

2

20

4R x dq

dE +=

πε,

方向沿dq 与P 点的连线.将其分

解为平行于轴线的分量和垂直于轴线的分量,

由电荷分布

的对称性可知,各dq 在P 点产生的垂直于轴线的场强分量相互抵消,而平行于轴线的分量相互加强,所以合场强平行于轴线, 大小为:

E =E ∥=()()()

2

3

220212222044cos R x qx

R x x R x dq dE q

+=+?+=??πεπεθ 方向:q >0时,(自环心)沿轴线向外;q <0时,指向环心.

8-12 两个均匀带电的同心球面半径分别为R 1和R 2(R 2>R 1),带电量分别为q 1和q 2,求

以下三种情况下距离球心为r 的点的场强:(1)r <R 1;(2)R 1<r <R 2(3)r >R 2.并定性地画出场强随r 的变化曲线

解 过所求场点作与两带电球面同心的球面为高斯面,则由高斯定理可知: (1) 当r <R 1时,

0,04cos 2=∴=?==Φ?E r E dS E e πθ

(2) 当R 1<r <R 2 时,

2

010124,4cos r

q E q r E dS E e πεεπθ=∴=?==Φ?

解8-7O r

R 1 R 2

解8-12图 场强随r 的变化曲

线

(3) 当r >R 2 时,

8-13 均匀带电的无限长圆柱面半径为R ,每单位长度的电量(即电荷线密度)为λ. 求

圆柱面内外的场强.

解 过所求场点作与无限长带电圆柱面同轴的、长为l 的封闭圆柱面,使所求场点在封闭圆柱面的侧面上.由电荷分布的对称性可知,在电场不为零的地方,场强的方向垂直轴线向外(设λ>0),且离轴线的距离相等的各点场强的大小相等. 所以封闭圆柱面两个底面的电通量为零,侧面上各点场强的大小相等,方向与侧面垂直(与侧面任一面积元的法线方向平行).设所求场点到圆柱面轴线的距离为r ,当r <R 即所求场点在带电圆柱面内时,因为0,02000cos cos =∴=?=++==Φ??E rl E dS E dS E e πθ;

当r >R 即所求场点在带电圆柱面外时,r

E l rl E e 002,2πελ

ελπ=∴=

?=Φ . 8-15 将q=2.5×10-8

C 的点电荷从电场中的A 点移到B 点,外力作功5.0×10-6

J.问电势

能的增量是多少?A 、B 两点间的电势差是多少?哪一点的电势较高?若设B 点的电势为零,则A 点的电势是多少?

解 电势能的增量:J 100.56-?==-=?外A W W W A B ;

A 、

B 两点间的电势差:V 100.210

5.2100.52

8

6?-=??-=-=-=---q W W q W q W U U B A B A B A <0, ∴ B 点的电势较高;

若设B 点的电势为零,则 V 100.22?-=A U .

8-17 求习题8-12中空间各点的电势.

解 已知均匀带电球面内任一点的电势等于球面上的电势

R

q 04πε,其中R 是球面的半

径;均匀带电球面外任一点的电势等于球面上的电荷全部集中在球心上时的电势.所以,由电势的叠加原理得:

(1) 当r <R 1即所求场点在两个球面内时:2

021

0144R q R q U πεπε+

=

(2) 当R 1<r <R 2即所求场点在小球面外、大球面内时:2

020144R q r

q U πεπε+

=;

当r >R 2即所求场点在两个球面外时:r q q r q r q U 02

10201444πεπεπε+=

+=

当r >R 2即所求场点在两个球面外时:r

q q r

q r

q U 02

10201444πεπεπε+=

+=

285页9-3,9-4

9-3.如图,在半径为R 的导体球外与球心O 相距为a 的一点A 处放置一点电荷+Q ,在球内

有一点B 位于AO 的延长线上,OB = r ,求:(1)导体上的感应电荷在B 点产生的场强的大小和方向;(2)B 点的电势.

解:(1)由静电平衡条件和场强叠加原理可知,B 点的电场强度为点电荷q 和球面感应电荷在该处产生的矢量和,

且为零,即 (2)由电势叠加原理可知,B 点的电势

为点电荷q 和球面感应电荷在该处产生的电

势的标量和,即

由于球体是一个等势体,球内任一点的电势和球心o 点的电势相等

因球面上的感应电荷与球心o 的距离均为球的半径R ,且感应电荷的总电贺量为零,所以感应电荷在o 点产生的电势为零,且00V V =',因此

所以, B 点的电势 a

q V B 04πε=

9-4.如图所示,在一半径为R 1 = 6.0 cm 的金属球A 外面罩有一个同心的金属球壳B.已知

球壳B 的内、外半径分别为R 2 = 8.0 cm ,R 3 = 10.0 cm ,A 球带有总电量Q A = 3.0×10-8 C ,球壳B 带有总电量Q B = 2.0×10-8 C.求:(1)球壳B 内、外表面上所带的电量以及球A 和球壳B 的电势;(2)将球壳B 接地后再断开,再把金属球A 接地,求金属球A 和球壳B 的内、外表面上所带的电量,以及球A 和球壳B 的电势

.

导体球A的表解:(1)在导体到达静电平衡后,A Q 分布在面上.由于静电感应,在B 球壳的内表面上

感应出负电荷表面上的总电A Q ,外表面上感应出正电荷A Q ,则B 球壳外

高斯定理求得

荷(B A Q Q +)。由场的分布具有对称性,可用各区域的场强分布

E 的方向眼径向外.

导体为有限带电体,选无限远处为电势零点。由电势的定义可计算两球的电势B A V V 和. A 球内任一场点的电势A V 为 B 球壳内任一点的电势B V 为

9-5.两块无限大带电平板导体如图排列,试证明:(1)相向的两面上(图中的2和3),

其电荷面密度大小相等而符号相反;(2)背向的两面上(图中的1和4),其电荷面密度大小相等且符号相同.

解:因两块导体板靠得很近,可将四个导体表面视为四个无限大带点平面。导体表面上的电荷分布可认为是均匀的,且其间的场强方向垂直导体表面。作如图所示的圆柱形高斯面,因导体在到达静电平衡后内部场强为零,导体外的场强方向与高斯面的侧面平行,

由高斯定理可得

再由导体板内的场强为零,可知P 点合场强 由 32σσ-= 得41σσ-=

9-7. 一平行板电容器,充电后极板上的电荷面密度为σ = 4.5×10-5 C . m -2,现将两极板

与电源断开,然后再把相对电容率为εr

= 2.0的电介质充满两极板之间.求此时电介质中

的D 、E 和P .

解:当平行板电容器的两板与电源断开前后,两极板上所带的电荷量没有发生变化,所以

自由电荷面密度也没有发生变化,由

习题图10-6

∴极化电荷面密度r

r )

(εεσσ1-=

' 对于平行板电容器σ'=P

且E D P

,,的方向均沿径向.

9-11.圆柱形电容器由半径为R 1的导线和与它同轴的导体圆筒构成,其间充满相对电容率为εr 的电介质.圆筒内半径为R 2.电容器长为L ,沿轴线单位长度上的电荷为± λ,略去边缘效应,试求:(1)两极的电势差;

(2)电介质中的电场强度、电位移、极化强度; (3)电介质表面的极化电荷面密度.

解:(1) 设导线上的电荷均匀地分布在导线的表面上,

圆筒上的电荷

均匀的分布在圆筒的内表面上,可由高斯定理求得各区域的场强

∴两极的电位差1

201202ln 2ln 22

1

R R R R r l d E u r r R R επελεπελ==

?=?

(2) 由第(1)问知,电介质中的电场强度 电位移r

r r E D πλ

εε20=

= 极化强度 0)1(εε-=r P

329页10-9,10-10

10-6 一边长为0.15l =m 的立方体如图放置,有

一均匀磁场

(631.5B i j k =++T 通过立方体所在区域.计算:

(1)通过立方体上阴影面积的磁通量; (2)通过立方体六面的总磁通量. 解:(1)立方体一边的面积2S l = (2)总通量0B ds Φ=

?=??

10-11 如图所示,已知相距为d 的两平行长直导线载有相同电流,求 (1)两导线所在平面与此两导线等距一点处的磁感应强度;

(2)通过图中矩形面积的磁通量 ()31r r =

解 在两导线所在平面内,两导线之间的任一点P 处,两导线所产生的磁感应强度B 1和B 2

方向相同,都垂直纸面向外。故 设P 点离导线1的距离为r ,则 R

I

B P πμ21=,()r d I B P -=πμ22

代入上式得

(1) 在导线等距的点有 2d r =

, d

I

B πμ2= (2) 取面积元ldr dS =,则通过矩形面积的磁通量为

?

=ΦS

m B d S ()ldr r d I r I r r r ?

+??

????-+=2

11

22πμπμ πμ2Il =

㏑121r r r ++πμ2Il ㏑211r r d r d ---πμIl =

㏑1

1

r r d - 10-10 如图,载流导线弯成(a )、(b )、(c )所示的形状,求三图中P 点的磁感应强度B 的

大小和方向.

解:(a )水平方向的载流导线对P 电磁感应强度的贡献为0。竖直部分对P 点磁感应强度

10-6 一边长为0.15l =m 的立方体如图放置,有一均匀磁场(63 1.5)B i j k =++T 通过立方体所在区域.计算:

习题图10-10

0021

00(cos cos )(cos90cos180)44[0(1)]44o o I I B r a I

a I a

μμθθππμπμπ=-=-=--=

习题图10-6

(1)通过立方体上阴影面积的磁通量; (2)通过立方体六面的总磁通量. 解:(1)立方体一边的面积2S l = (3)总通量0B ds Φ=

?=??

10-11 如图所示,已知相距为d 的两平行长直导线载有相同电流,求 (1)两导线所在平面与此两导线等距一点处的磁感应强度; (2)通过图中矩形面积的磁通量 ()31r r =

解 在两导线所在平面内,两导线之间的任一点P 处,两导线所产生的磁感应强度B 1和B 2

方向相同,都垂直纸面向外。故 设P 点离导线1的距离为r ,则 R

I

B P πμ21=,()r d I B P -=πμ22

代入上式得

(3) 在导线等距的点有 2d r =

, d

I

B πμ2= (4) 取面积元ldr dS =,则通过矩形面积的磁通量为

?

=ΦS

m B d S ()ldr r d I r I r r r ?

+?

????-+=2

11

22πμπμ πμ2Il =

㏑1

21r r r ++πμ2Il ㏑211r r d r d ---πμIl =

㏑11

r r d - 10-10 如图,载流导线弯成(a )、(b )、(c )所示的形状,求三图中P 点的磁感应强度B

习题图10-10

习题图10-14

习题图10-14

大小和方向.

解:(a )水

平方向的载流导线对P 电磁感应强

度的贡献为0。竖直部分对P 点磁感应强度

方向垂直纸面向外. (b )P 点处的磁感应强度为三部分载流导线所产生的磁感应强度的叠

加,则

方向垂直纸面向里.

(c )B 为三边磁感应强度叠加,由对称性 方向垂直纸面向里.

10-14 一根很长的铜导线,载有电流10 A ,在导线内部通过中心线作一平面S ,如图所示.试计算通过导线1m 长的S 平面内的磁通量(铜材料本身对磁场分布无影

响).

解:设距轴线为r 处的磁感应强度为B .则 即S 平面内的磁通量为61.010Wb -?. 方向垂直纸面向外.

(b )P 点处的磁感应强度为三部分载流导线所产生的磁感应强度的叠加,则 方向垂直纸面向里.

(c )B 为三边磁感应强度叠加,由对称性 方向垂直纸面向里.

10-14 一根很长的铜导线,载有电流10

A ,在导线内部通过中心线作一平面S ,如图所示.试计算通过导线1m 长的S 平面内的磁通量(铜材料本身对磁场分布无影

响).

解:设距轴线为r 处的磁感应强度为B .则 即S 平面内的磁通量为61.010Wb -?. 367页11-1,11-5

11-1 一载流I 的无限长直导线,与一N 匝矩形线圈ABCD 共面。已知AB 长为L ,与导线间距为a ;CD 边与导线间距为b (b ?a )。线圈以 v 的速度离开直导线,求线圈内感应电动势的方向和大小。

002100(cos cos )(cos90cos180)

44[0(1)]

44o

o I I B r a

I

a

I

a

μμθθππμπμπ=-=-=--=

解 由于I 为稳恒电流,所以它在空间各点产生的磁场为稳恒磁场。当矩形线圈ABCD 运动时,不同时刻通过线圈的磁通量发生变化,故有感应电动势产生。取坐标系如图(a)所示。 设矩形线圈以速度 v 以图示位置开始运动,则经过时间t 之后,线圈位置如图(b)所示。取面积元ldx dS =,距长直导线的距离为x ,按无限长直载流导线的磁感应强度公式知,该面积元处B 的大小为 B =

x

πμ20

I 通过该面积元的磁通量为 于是通过线圈的磁通量为 =

πμ20Il ㏑vt

a vt

b ++ 由法拉第电磁感应定律可知,N 匝线圈内的感应电动势为

令t = 0,并代入数据,则得线圈刚离开直导线时的感应电动势 按楞次定律可知,E 感应电动势的方向沿顺时针方向。

11-5 在无限长螺线管中,均匀分布着与螺线管轴线平行的磁场B (t)。设B 以速率

dt

dB

=К变化(К为大于零的常量)。现在其中放置一直角形导线 abc 。若已知螺线管截面半径为R,l ab =,求:

(1)螺线管中的感生电场E V ;

(2)bc ab ,两段导线中的感生电动势。

解 (1)由于系统具有轴对称性,如图所示,可求出感生电场。在磁场中取圆心为O ,半径为()R r r <的圆周,根据感生电场与变化磁场之间的关系 可得

由楞次定律可以判断感生电场为逆时针方向。

(2)解法一 用法拉第电磁感应定律求解。连接Ob Oa ,和Oc ,在回路OabO 中,穿过回路所围面积的磁通量为 则 而 所以

方向由a 指向b

同理可得 12

22124bc l E lk R ??

=- ???

方向由b 指向c

解法二 也可由感生电场力做功求解。由于(1)中已求出E V 。则

11-1.解: (1)由电磁感应定律812)1(--=Φ

-

t dt

d i ε (2) 2106.1-?==

R

I i

ε

由于磁通量是增加的,所以线圈中产生的感应电动势使R 中产生感应电流的方向是

由左向右

11-4解:由题意可知金属棒沿杆下滑的速度为重力加速度所引起

11-5

解:由于I 为稳定电流,所以它在空间各点产生的磁场为稳恒磁场.当矩形线圈ABCD 运动时,不同时刻通过线圈的磁通量回发生变化,故有感

应电动势产生.取坐标系如图。 设矩形线圈以速度V 从图示位置开始

运动,经过时间t 之后,线圈位置如图(b)所示,取面积元ds=ldx ,距长直导线的距离为x ,按无限长

直载流导体的磁感应强度公式知,该面积元外B 的大小为x

I

B πμ20=

通过该面积元的磁通量为ldx x

I

Bds d ?=

=Φπμ20 于是通过线圈的磁通量为???++++?

=?=Φ=Φvt

b vt a vt b vt a x

ldx

x I ldx x I d t πμπμ22)(00 由法拉第电磁感应定律可知,N 匝线圈中的感应电动势为 令t=0,代入数据,得到线圈,刚离开直导线时的感应电动势 按楞次定律E 的方向为图b 中的顺时针方向

1、 一质点作匀速率圆周运动,其质量为m,线速度为v ,半径为R 。求它对圆心的角动 量;它相对于圆周上某一点的角动量是否为常量,为什么?

答:它对圆心的角动量Rmv ,是常量;它相对于圆周上某一点的角动量不是常量。 4、彗星绕太阳作椭圆轨道运动,太阳位于椭圆轨道的一个焦点上,问系统的角动量是否

守恒?近日点与远日点的速度哪个大?

答:在彗星绕太阳轨道运转过程中,只受万有引力作用,万有点 r 小 v 大,

引力对太阳不产生力矩,系统角动量守恒。近日远日点 r 大 v 小。

这就是为什么彗星运转周期为几十年,而经过太阳时只有

很短的几周时间。

彗星接近太阳时势能转换成动能,而远离太阳时,动能转换成

势能。

8.利用角动量守恒定律简要分析花样滑冰、跳水运动过程。

答:对这一力学现象可根据角动量守衡定律来解释。例如旋转着的芭蕾舞演员要加快旋转时,总是将双手收回身边,这时演员质量分布靠近转轴,转动惯量变小,转动速度加快,转动动能增加。

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

大学物理教程 (上)课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题) 27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位, 求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 代入,有 2 1) y =- 或 1= (2)将1t s =和2t s =代入,有 11r i = , 241r i j =+ 213r r r i j =-=- 位移的大小 r = = (3) 2x dx v t dt = = 2(1)y dy v t dt = =- 22(1)v ti t j =+- 2 x x dv a dt = =, 2y y dv a dt = = 22a i j =+ 当2t s =时,速度和加速度分别为 42/v i j m s =+ 22a i j =+ m/s 2 1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+ ,式中的R 、ω均为常 量。求(1)质点的速度;(2)速率的变化率。

解 (1)质点的速度为 sin cos d r v R ti R t j dt ωωωω==-+ (2)质点的速率为 v R ω = = 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t d t θω= = 质点在t 时刻的法向加速度n a 的大小为 2 2 16n a R R t ω == 角加速度β的大小为 2 4/d ra d s d t ωβ== 77 页2-15, 2-30, 2-34, 2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用 下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2.0 2.0 2.02 (63)(33) 18I Fdt t dt t t N s = =+=+=? ? 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力 (空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 dv f m kv dt ==- 即 d v k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球

《大学物理》课后习题答案

《大学物理》课后习题 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

习题4-12图 H L H h H 4-12 一个器壁竖直的开口水槽,如图所示,水的深度为H =10m ,在水面下h =3m 处的侧壁开一个小孔。试求:(1)从小孔射出的水流在槽底的水平射程L 是多少(2)h 为何值时射程最远最远射程是多少 解:(1)设水槽表面压强为p 1,流速为v 1,高度为h 1, 小孔处压强为p 2,流速为v 2,高度为h 2,由伯努利方程得: 22 2212112 121gh v p gh v p ρρρρ++=++ 根据题中的条件可知: 211021,0,h h h v p p p -==== 由上式解得:gh v 22= 由运动学方程:221gt h H = -,解得: g h H t ) (2-= 水平射程为:)(m 17.9)310(34)(42=-??=-==h H h t v L (2)根据极值条件,令0=dh dL ,L出现最大值, 即 022 =--h hH h H ,解得:h=5m 此时L的最大值为10m 。 4-14 水在粗细不均匀的水平管中作稳定流动,已知在截面S1处的压强为110Pa ,流速为0.2m/s ,在截面S2处的压强为5Pa ,求S2处的流速(把水看作理想流体)。 解:由伯努利方程得:2 222112 121v p v p ρ+=ρ+ 2323100.12 1 52.0100.121110v ???+=???+ )(5.012-?=s m v 4-16在水管的某一端水的流速为1.0m/s ,压强为5100.3?Pa ,水管的另一端比第一端降低了20.0m ,第二端处水管的横截面积是第一端处的1/2。求第二 端处的压强。设管中的水为理想流体,且作稳定流动。 解: 由连续性方程 2 21 1v S v S = 得:)(211 2 12212 -?=?== s m v S S v 由伯努利方程22 2212112 121gh v p gh v p ρρρρ++=++ 得:)()(2 121222112h h g v v p p -+-+ =ρρ

大学物理下答案习题14

习题14 14.1 选择题 (1)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹[ ] (A) 对应的衍射角变小. (B) 对应的衍射角变大. (C) 对应的衍射角也不变. (D) 光强也不变. [答案:B] (2)波长nm (1nm=10-9m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm,则凸透镜的焦距是[ ] (A)2m. (B)1m. (C)0.5m. (D)0.2m. (E)0.1m [答案:B] (3)波长为的单色光垂直入射于光栅常数为d、缝宽为a、总缝数为N的光栅上.取k=0,±1,±2....,则决定出现主极大的衍射角的公式可写成[ ] (A) N a sin=k. (B) a sin=k. (C) N d sin=k. (D) d sin=k. [答案:D] (4)设光栅平面、透镜均与屏幕平行。则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k [ ] (A)变小。 (B)变大。 (C)不变。 (D)的改变无法确定。 [答案:B] (5)在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为[ ] (A) a=0.5b (B) a=b (C) a=2b (D)a=3b [答案:B] 14.2 填空题 (1)将波长为的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为,则缝的宽度等于________________. λθ] [答案:/sin (2)波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角=30°,单缝处的波面可划分为______________个半波带。 [答案:4] (3)在夫琅禾费单缝衍射实验中,当缝宽变窄,则衍射条纹变;当入射波长变长时,则衍射条纹变。(填疏或密) [答案:变疏,变疏]

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理课后习题答案(赵近芳)下册

习题八 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系 ? 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 2 220)3 3(π4130cos π412a q q a q '=?εε 解得 q q 3 3- =' (2)与三角形边长无关. 题8-1图 题8-2图 8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2 图所示.设小球的半径和线的质量都可 解: 如题8-2图示 ?? ? ?? ===220)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε= ,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解 ?

解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电 荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f = 2 024d q πε,又有人 说,因为f =qE ,S q E 0ε=,所以f =S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少 ? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε= ,另一板受它的作用 力S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为 r E = 302cos r p πεθ, θ E =3 04sin r p πεθ 证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量 θsin p . ∵ l r >>

赵近芳版《大学物理学上册》课后答案

1 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和 t d d r 有无不同? t d d v 和 t d d v 有无不同?其不同在哪里?试举例说明. 解:(1) r ?是位移的模,? r 是位矢的模的增量,即r ?1 2r r -=,1 2r r r -=?; (2) t d d r 是速度的模,即 t d d r = =v t s d d .t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与 r 不同如题1-1图所示 . 题1-1图 (3) t d d v 表示加速度的模,即t v a d d = , t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢) ,所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y = y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v = t r d d ,及a = 2 2d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 2 2d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴ 故它们的模即为

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理(吴柳主编)上册课后习题答案

大学物理(吴柳主编) 上册课后习题答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

说明: 上册教材中,第5,6,7等章的习题有答案; 第1,2,4,8章的习题有部分答案; 第3,9,10,11章的习题没有答案。 为方便学生使用,现根据上学期各位老师辛苦所做的解答,对书上原有的答案进行了校对,没有错误的,本“补充答案”中不再给出;原书中答案有误的,和原书中没有给出答案的,这里一并给出。错误之处,欢迎指正! 第1章 1.4. 2.8×10 15 m 1.5.根据方程中各项的量纲要一致,可以判断:Fx= mv 2/2合理, F=mxv , Ft=mxa , Fv= mv 2/2, v 2+v 3=2ax 均不合理. 第2章 2.1 (1) j i )2615()2625(-+-m; )/]()2615()2625[(45 1151020)2615()2625(s m j i j i t r v -+-=++-+-=??= (2)52m; 1.16m/s 2.2 (1) 4.1 m/s; 4.001m/s; 4.0m/s (2) 4m/s; 2 m.s -2 2.3 3m; m 3 4π ; 140033-s .m π方向与位移方向相同; 1.0m/s 方向沿切线方向 2.5 2π (m); 0; 1(s) 2.6 24(m); -16(m) 2.8 2 22 t v R vR dt d +=θ 2.10 (1) 13 22 =+y x (2) t v x 4sin 43ππ-=;t v y 4 cos 4π π=;t a x 4cos 1632ππ-=;t a y 4sin 162ππ-= (3) 2 6= x ,22=y ;π86- =x v ,π82=y v ;,2326π-=x a 2 322π-=y a 2.12 (1) ?=7.382θ,4025.0=t (s),2.19=y (m) (2) ?=7.382θ,48.2=t (s),25.93=y (m)。 2.14 (1) 22119x y - = (2) j t i v 42-=;j a 4-= (3) 0=t 时,j r 19=; 3=t 时,j i r +=6。(4)当9=t s 时取“=”,最小距离为37(m )。

大学物理之习题答案

单元一 简谐振动 一、 选择、填空题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? 【 C 】 (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π3 4 ,则t=0时,质点的位置在: 【 D 】 (A) 过A 21x = 处,向负方向运动; (B) 过A 21 x =处,向正方向运动; (C) 过A 21x -=处,向负方向运动;(D) 过A 2 1 x -=处,向正方向运动。 3. 将单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止释放任其振动,从放手开始计时,若用余弦函数表示运动方程,则该单摆的初相为: 【 B 】 (A) θ; (B) 0; (C)π/2; (D) -θ 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: 【 B 】 (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: 【 C 】 (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; ) 4(填空选择) 5(填空选择

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

大学物理课后习题答案(上)

《大学物理》练习题 No .1 电场强度 班级 ___________ 学号 ___________ ___________ 成绩 ________ 说明:字母为黑体者表示矢量 一、 选择题 1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的? [ B ] (A) 场强E 的大小与试探电荷q 0的大小成反比; (B) 对场中某点,试探电荷受力F 与q 0的比值不因q 0而变; (C) 试探电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试探电荷q 0,则F = 0,从而E = 0. 2.如图1.1所示,在坐标(a , 0)处放置一点电荷+q ,在坐标(a ,0)处放置另一点电荷q , P 点是x 轴上的一点,坐标为(x , 0).当x >>a 时,该点场强 的大小为: [ D ](A) x q 04πε. (B) 2 04x q πε. (C) 3 02x qa πε (D) 30x qa πε. 3.图1.2所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为 ( x < 0)和 ( x > 0),则xOy 平面上(0, a )点处的场强为: [ A ] (A ) i a 02πελ . (B) 0. (C) i a 04πελ . (D) )(40j +i a πελ . 4. 真空中一“无限大”均匀带负电荷的平面如图1.3所示,其电场的场强 分布图线应是(设场强方向向右为正、向左为负) ? [ D ] 5.在没有其它电荷存在的情况下,一个点电荷q 1受另一点电荷 q 2 的作用力为f 12 ,当放入第三个电荷Q 后,以下说法正确的是 [ C ] (A) f 12的大小不变,但方向改变, q 1所受的总电场力不变; (B) f 12的大小改变了,但方向没变, q 1受的总电场力不变; (C) f 12的大小和方向都不会改变, 但q 1受的总电场力发生了变化; -q -a +q a P (x,0) x x y O 图1.1 +λ -λ ? (0, a ) x y O 图1.2 σ -x O E x 02εσ O 02εσ-E x O 0 2εσ-E x 02εσO 02εσ -O E x 02εσ(D)图1.3

大学物理教程 上 课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 或1= (2)将1t s =和2t s =代入,有 11r i =u r r , 241r i j =+u r r r 位移的大小 r ==r V (3) 2x dx v t dt = = 2x x dv a dt = =, 2y y dv a dt == 当2t s =时,速度和加速度分别为 22a i j =+r r r m/s 2 1-4 设质点的运动方程为 cos sin ()r R ti R t j SI ωω=+r r r ,式中的R 、ω均为常量。求(1)质点的速度;(2)速率的变化率。 解 (1)质点的速度为 (2)质点的速率为 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t dt θ ω= = 质点在t 时刻的法向加速度n a 的大小为 角加速度β的大小为 24/d rad s dt ω β== 77 页2-15, 2-30, 2-34,

2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作 用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的 阻力(空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 即 dv k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等 于地球半径的2倍(即2R ),试以,m R 和引力恒量G 及地球的质量M 表示出: (1) 卫星的动能; (2) 卫星在地球引力场中的引力势能. 解 (1) 人造卫星绕地球做圆周运动,地球引力作为向心力,有 卫星的动能为 212 6k GMm E mv R == (2)卫星的引力势能为 2-37 一木块质量为1M kg =,置于水平面上,一质量为2m g =的子弹以 500/m s 的速度水平击穿木块,速度减为100/m s ,木块在水平方向滑行了20cm 后 停止。求: (1) 木块与水平面之间的摩擦系数; (2) 子弹的动能减少了多少。

大学物理课后习题答案

大学物理课后习题答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

第十一章 磁场与介质的相互作用 1、试用相对磁导率r 表征三种磁介质各自的特性。 解:顺磁质r >1,抗磁质r <1,铁磁质r >>1 2、用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为r 的均匀磁介质。若线圈中载有稳恒电流I ,求管中任意一点的磁场强度大小。 解:磁场强度大小为H = NI / l . 3、置于磁场中的磁介质,介质表面形成面磁化电流,试问该面磁化电流能否产生楞次─焦耳热为什么 答:不能.因为它并不是真正在磁介质表面流动的传导电流,而是由分子电流叠加而成,只是在产生磁场这一点上与传导电流相似。 4、螺绕环上均匀密绕线圈,线圈中通有电流,管内充满相对磁导率为r =4200的磁介质.设线圈中的电流在磁介质中产生的磁感强度的大小为B 0,磁化电流 在磁介质中产生的磁感强度的大小为B',求B 0与B' 之比. 解:对于螺绕环有:nI B r μμ0=,nI B 00μ= 5、把长为1m 的细铁棒弯成一个有间隙的圆环,空气间隙宽为mm 5.0,在环上绕有800匝线圈,线圈中的电流为1A ,铁棒处于初始磁化曲线上的某个状态,并测得间隙的磁感应强度为T 5.0。忽略在空气隙中的磁通量的分散,求铁环内的磁场强度及铁环的相对磁导率。 解:⑴沿圆环取安培环路,根据∑?=?i L I l d H ,得 NI d B HL =+00 μ (此处d L >>,忽略空气隙中的B φ分散)

于是 m A L d B NI H /60100 ≈-=μ ⑵ H B r μμ0= ,而0B B ≈,37.6620== ∴H B r μμ 6、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为 A 时,测得铁环内的磁感应强度的大小B 为 T ,求铁环的相对磁导率r (真空磁导率0 =4×10-7 T ·m ·A -1)。 解:因为:I l N nI B r μμμ0== 所以: 7、一根很长的同轴电缆,由一导体圆柱 (半径为a )和同轴的导体圆管(内、外半 径分别为b 、c )构成。使用时,电流I 从一导体流出,从另一导体流回,设电流都是均匀地分布在导体的横截面上,求导体圆柱内(a r <)和两导体之间 (b r a <<)的磁场强度H 的大小。 解:由于电流分布具有对称性,因而由此产生的磁场分布也必然具有相应的轴对称性,所以在垂直于电缆轴的平面内,以轴为中心作一圆环为安培环路。应用磁介质中的安培环路,计算安培环路的磁场强度矢量的线积分。 据 ∑?=?i L I l d H ,当a r <时,22a Ir H π= 当b r a <<时,r I H π2= 8、在无限长载流空心螺线管内同轴地插入一块圆柱形顺磁介质,若1、2点为圆柱介质中分面上靠近柱面而分居柱面两边的两个点。在1、2点处的磁感应强度分别为1B 、2B ,磁场强度分别为21H 、H ,则它们之间的关系是怎样的

《大学物理学》(袁艳红主编)下册课后习题答案

第9章 静电场 习 题 一 选择题 9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ] (A) 4f (B) 8f (C) 38f (D) 16 f 答案:B 解析:经过碰撞后,球A 、B 带电量为2q ,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为 8 f 。 9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B 解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。因而正确答案(B ) 9-3 如图9-3所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且 OP =OT ,那么[ ] (A) 穿过S 面的电场强度通量改变,O 点的场强大小不变 (B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 习题9-3图

(C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D 解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式2 04q E r πε= ,移动电荷后,由于OP =OT , 即r 没有变化,q 没有变化,因而电场强度大小不变。因而正确答案(D ) 9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ] (A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D 解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。因而通过该立方体任一面的电场强度通量为q /6ε0,答案(D ) 9-5 在静电场中,高斯定理告诉我们[ ] (A) 高斯面内不包围电荷,则面上各点E 的量值处处为零 (B) 高斯面上各点的E 只与面内电荷有关,但与面内电荷分布无关 (C) 穿过高斯面的E 通量,仅与面内电荷有关,而与面内电荷分布无关 (D) 穿过高斯面的E 通量为零,则面上各点的E 必为零 答案:C 解析:高斯定理表明通过闭合曲面的电场强度通量正比于曲面内部电荷量的代数和,与面内电荷分布无关;电场强度E 为矢量,却与空间中所有电荷大小与分布均有关。故答案(C ) 9-6 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1

相关文档
最新文档